New! View global litigation for patent families

US20070241657A1 - White light apparatus with enhanced color contrast - Google Patents

White light apparatus with enhanced color contrast Download PDF

Info

Publication number
US20070241657A1
US20070241657A1 US11810024 US81002407A US2007241657A1 US 20070241657 A1 US20070241657 A1 US 20070241657A1 US 11810024 US11810024 US 11810024 US 81002407 A US81002407 A US 81002407A US 2007241657 A1 US2007241657 A1 US 2007241657A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
phosphor
light
led
material
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11810024
Inventor
Emil Radkov
Ilona Hausmann
Marisa Goodin
Derek Publicover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Lighting Solutions LLC
Original Assignee
GE Lighting Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7734Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KLIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/18Low pressure and fluorescent lamps
    • Y02B20/181Fluorescent powders

Abstract

A lighting apparatus for emitting white light including a semiconductor light source emitting radiation with a peak emission between from about 250 nm to about 500 nm and a first phosphor having a peak emission between about 550 and 615 nm, wherein an overall emission spectrum of the lighting apparatus has a depression between about 550 and 615 nm, whereby the red-green color contrast is increased versus a reference illuminant.

Description

  • [0001]
    This application is a continuation-in-part of commonly assigned U.S. patent application Ser. No. 11/285,122, filed on Nov. 22, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/909,564, filed on Aug. 2, 2004, and claims the benefit of the priority date thereof.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present exemplary embodiments relate to lighting devices incorporating one or more phosphors for the conversion of radiation emitted by a light source. They find particular application in conjunction with converting LED-generated ultraviolet (UV), violet or blue radiation into white light for general illumination purposes. It should be appreciated, however, that the invention is also applicable to the conversion of radiation in other applications, such as Hg-based fluorescent lamps, mercury-free gas discharge lamps, metal halide lamps, UV, violet and/or blue lasers, as well as other white light sources for different applications.
  • [0003]
    Light emitting diodes (LEDs) are semiconductor light emitters often used as a replacement for other light sources, such as incandescent lamps. They are particularly useful as display lights, warning lights and indicator lights or in other applications where colored light is desired. The color of light produced by an LED is dependent on the type of semiconductor material used in its manufacture.
  • [0004]
    Colored semiconductor light emitting devices, including light emitting diodes and lasers (both are generally referred to herein as LEDs), have been produced from Group III-V alloys such as gallium nitride (GaN). With reference to the GaN-based LEDs, light is generally emitted in the UV to green range of the electromagnetic spectrum. Until quite recently, LEDs have not been suitable for lighting uses where a bright white light is needed, due to the inherent color of the light produced by the LED.
  • [0005]
    Recently, techniques have been developed for converting the light emitted from LEDs to useful light for illumination purposes. In one technique, the LED is coated or covered with a phosphor layer. A phosphor is a luminescent material that absorbs radiation energy in a portion of the electromagnetic spectrum and emits energy in another portion of the electromagnetic spectrum. Phosphors of one important class are crystalline inorganic compounds of very high chemical purity and of controlled composition to which small quantities of other elements (called “activators”) have been added to convert them into efficient fluorescent materials. With the right combination of activators and inorganic compounds, the color of the emission can be controlled. Most useful and well-known phosphors emit radiation in the visible portion of the electromagnetic spectrum in response to excitation by electromagnetic radiation outside the visible range.
  • [0006]
    By interposing a phosphor excited by the radiation generated by the LED, light of a different wavelength, e.g., in the visible range of the spectrum, may be generated. Colored LEDs are often used in toys, indicator lights and other devices. Continuous performance improvements have enabled new applications for LEDs of saturated colors in traffic lights, exit signs, store signs, and the like.
  • [0007]
    In addition to colored LEDs, a combination of LED generated light and phosphor generated light may be used to produce white light. The most popular white LEDs consist of blue emitting GaInN chips. The blue emitting chips are coated with a phosphor that converts some of the blue radiation to a complementary color, e.g. a yellowish emission. Together, the blue and yellowish radiation produces a white light. There are also white LEDs that utilize a near UV emitting chip and a phosphor blend including red, green and blue emitting phosphors designed to convert the UV radiation to visible light.
  • [0008]
    Known white light emitting devices comprise a blue light-emitting LED having a peak emission wavelength in the near blue range (from about 440 nm to about 480 nm) combined with a yellow light-emitting phosphor, such as cerium(III) doped yttrium aluminum garnet (“YAG:Ce”), a cerium(III) doped terbium aluminum garnet (“TAG:Ce”), or a europium(II) doped barium orthosilicate (“BOS”). The phosphor absorbs a portion of the radiation emitted from the LED and converts the absorbed radiation to a yellow light. The remainder of the blue light emitted by the LED is transmitted through the phosphor and is mixed with the yellow light emitted by the phosphor. A viewer perceives the mixture of blue and yellow light as a white light. The total of the light from the phosphor material and the LED chip provides a color point with corresponding color coordinates (x and y) and correlated color temperature (CCT), and its spectral distribution provides a color rendering capability, measured by the color rendering index (CRI).
  • [0009]
    The CRI is commonly defined as a mean value for 8 standard color samples (R1−8), usually referred to as the General Color Rendering Index and abbreviated as Ra, although 14 standard color samples are specified internationally and one can calculate a broader CRI (R1−14) as their mean value. In particular, the R9 value, measuring the color rendering for the strong red, is very important for a range of applications, especially of medical nature. As used herein, “CRI” is used to refer to any of the above general, mean, or special values unless otherwise specified.
  • [0010]
    Incandescent lamps are known to generate a considerable amount of light in the yellow region of the spectrum, leading to “washing out” of the colors of objects illuminated by them. In response to this, methods have been developed to filter out part of the yellow light through the use of the rare earth element neodymium in the glass envelope. Examples of such lighting systems include the line of REVEAL™ light bulbs produced by GE.
  • [0011]
    A salient feature of the spectrum of REVEAL™ bulbs is the deep depression in the yellow region, resulting from the filtration by the neodymium glass, as shown in FIG. 5 (solid line). This yellow depression does not extend to zero spectral intensity, but only to about 15% of the highest intensity of the spectrum between 400 and 700 nm. As a result, the REVEAL™ bulbs have a deficiency in the yellow part of the spectrum versus the reference illuminant (shown as a dashed line in FIG. 5). This deficiency leads to increased red-green color contrast when objects are viewed under this lamp, in comparison to a regular incandescent bulb. This has been found to be very appealing to customers.
  • [0012]
    In the area of LEDs, white phosphor-converted LEDs are based primarily on yellow emitting phosphors, in order to maximize their lumen output. This however reduces the red-green color contrast for test samples of different colors. One way to enhance that contrast (addressed in commonly owned co-pending U.S. patent application Ser. No. 11/285,122) is to use a blend comprising red and green phosphors containing a depression in the yellow region of their combined emission spectrum. Despite the high inherent efficiency, a problem with this solution is its complexity, stemming from the need to use red and green phosphors with sufficient wavelength separation to create the requisite depression in the yellow region, plus an optional variable amount of yellow phosphor to modulate the red-green color contrast enhancement and trade off the latter effect against the loss in luminous efficacy. The invention described herein overcomes this problem by a simpler solution, with the unexpected additional benefit of increased Ra in some cases.
  • [0013]
    Thus, a continuing need exists to develop new, preferably LED based, lighting devices with enhanced red-green color contrast compared to state of the art solutions.
  • BRIEF SUMMARY
  • [0014]
    In a first aspect, there is provided a lighting apparatus for emitting white light having enhanced red-green color contrast, including a light source emitting radiation with a peak in the range of from about 250 nm to about 500 nm; a phosphor material having a peak emission between 550 and 615 nm; and a filter that prevents a portion of radiation emitted by the phosphor material from being emitted by the apparatus while substantially permitting the emission of radiation from the lighting apparatus in emission wavelengths other than between 550 and 615 nm.
  • [0015]
    In a second aspect, there is provided a method for making a lighting apparatus for emitting white light having enhanced red-green color contrast, the method including the steps of providing a light source emitting radiation having a peak emission at from about 250 to 500 nm; providing a phosphor material having a peak emission between 550 and 615 nm radiationally coupled to the light source; and providing a filter that prevents a portion of radiation emitted by the phosphor material from being emitted by the apparatus while substantially permitting the emission of radiation from the lighting apparatus in emission wavelengths other than between 550 and 615 nm.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    FIG. 1 is a schematic cross-sectional view of a prior art phosphor converted LED illumination system.
  • [0017]
    FIG. 2 is a schematic sectional view of an LED device in accord with a first embodiment.
  • [0018]
    FIG. 3 is a schematic sectional view of an LED device in accord with a second embodiment.
  • [0019]
    FIG. 4 is a schematic sectional view of an LED device in accord with a third embodiment.
  • [0020]
    FIG. 5 shows the power spectrum for a GE Reveal™ lamp versus that of a reference CIE illuminant of the same CCT.
  • [0021]
    FIG. 6 shows the color coordinates of 15 test color samples in CIELAB color space for the GE Reveal™ lamp spectrum from FIG. 5 versus those for the reference CIE illuminant.
  • [0022]
    FIG. 7 shows the power spectra for an example white LED, both with and without Nd glass filter.
  • [0023]
    FIGS. 8A and 8B show the color coordinates of 15 test color samples in CIELAB color space for both spectra from FIG. 7 versus those for a reference CIE illuminant.
  • [0024]
    FIG. 9 shows the power spectra for another example white LED, both with and without Nd glass filter.
  • [0025]
    FIGS. 10A and 10B show the color coordinates of 15 test color samples in CIELAB color space for both spectra from FIG. 9 versus those for a reference CIE illuminant.
  • [0026]
    FIG. 11 shows the power spectra for yet another example white LED, both with and without Nd glass filter.
  • [0027]
    FIGS. 12A and 12B show the color coordinates of 15 test color samples in CIELAB color space for both spectra from FIG. 11 versus those for a reference CIE illuminant.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0028]
    Phosphors convert radiation (energy) to visible light. Different combinations of phosphors provide different colored light emissions. Novel phosphor materials and blends are presented herein as well as their use in LED and other light sources.
  • [0029]
    The color of the generated visible light is dependent on the particular components of the phosphor material. The phosphor material may include only a single phosphor compound or two or more phosphors of basic color, for example a particular mix with one or more of a yellow and red phosphor to emit a desired color (tint) of light. As used herein, the terms “phosphor” and “phosphor material” may be used to denote both a single phosphor compound as well as a blend of two or more phosphors.
  • [0030]
    It was determined that a lighting apparatus or device that produces a white light with enhanced red-green color contrast would be useful to impart desirable qualities to light sources, preferably LED based. Therefore, in one embodiment, a luminescent material phosphor conversion material blend (phosphor blend) coated LED chip and a filter is disclosed for providing such light. The phosphor blends presented in this embodiment enable white light with an optimal combination of CRI and LER at any CCT of interest, when excited by radiation from about 250 to 550 nm as emitted by a near UV to green LED.
  • [0031]
    With reference to FIG. 1, an exemplary LED based light emitting assembly or lamp 10 is shown in accordance with one preferred structure of the present invention. The light emitting assembly 10 comprises a semiconductor UV or visible radiation source, such as a light emitting diode (LED) chip 12 and leads 14 electrically attached to the LED chip. The leads 14 may comprise thin wires supported by a thicker lead frame(s) 16 or the leads may comprise self-supported electrodes and the lead frame may be omitted. The leads 14 provide current to the LED chip 12 and thus cause the LED chip 12 to emit radiation.
  • [0032]
    The lamp may include any visible or UV light source that is capable of producing white light when its emitted radiation is directed onto the phosphor. One preferred light source is a semiconductor source such an LED chip or an OLED. The preferred peak emission of the LED chip in the present invention will depend on the identity of the phosphors in the disclosed embodiments and may range from, e.g., 250- 550 nm. In one preferred embodiment, however, the emission of the LED will be in the near UV to blue-green region and have a peak wavelength in the range from about 370 to about 500 nm. Typically then, the semiconductor light source comprises an LED doped with various impurities. Thus, the LED may comprise a semiconductor diode based on any suitable III-V, II-VI or IV-IV semiconductor layers and having a peak emission wavelength of about 250 to 550 nm.
  • [0033]
    Preferably, the LED may contain at least one semiconductor layer comprising GaN, AIN or SiC. For example, the LED may comprise a nitride compound semiconductor represented by the formula IniGajAlkN (where 0≦i; 0≦j; 0≦k and i+j+k=1) having a peak emission wavelength greater than about 250 nm and less than about 550 nm. Such LED semiconductors are known in the art. The radiation source is described herein as an LED for convenience. However, as used herein, the term is meant to encompass all semiconductor radiation sources including, e.g., semiconductor laser diodes.
  • [0034]
    Although the general discussion of the exemplary structures of the invention discussed herein are directed toward inorganic LED based light sources, it should be understood that the LED chip may be replaced by an organic light emissive structure or other radiation source unless otherwise noted and that any reference to LED chip or semiconductor is merely representative of any appropriate radiation source.
  • [0035]
    The LED chip 12 may be encapsulated within a shell 18, which encloses the LED chip and an encapsulant material 20. The shell 18 may be, for example, glass or plastic. Preferably, the LED 12 is substantially centered in the encapsulant 20. The encapsulant 20 is preferably an epoxy, plastic, low temperature glass, polymer, thermoplastic, thermoset material, resin or other type of LED encapsulating material as is known in the art. Optionally, the encapsulant 20 is a spin-on glass or some other material having a high index of refraction. In one embodiment, the encapsulant material 20 is a polymer material, such as epoxy, silicone, or silicone epoxy, although other organic or inorganic encapsulants may be used. Both the shell 18 and the encapsulant 20 are preferably transparent or substantially optically transmissive with respect to the wavelength of light produced by the LED chip 12 and a phosphor material 22 (described below). In an alternate embodiment, the lamp 10 may only comprise an encapsulant material without an outer shell 18. The LED chip 12 may be supported, for example, by the lead frame 16, by the self supporting electrodes, the bottom of the shell 18, or by a pedestal (not shown) mounted to the shell or to the lead frame.
  • [0036]
    The structure of the illumination system includes a phosphor material 22 radiationally coupled to the LED chip 12. Radiationally coupled means that the elements are associated with each other so that at least part of the radiation emitted from one is transmitted to the other.
  • [0037]
    This phosphor material 22 is deposited on the LED 12 by any appropriate method. For example, a suspension of the phosphor(s) can be formed, and applied as a phosphor layer to the LED surface. In one such method, a silicone, epoxy or other matrix material is used (either directly or diluted with an organic solvent, e.g. acetone, MIBK or butyl acetate) to create a slurry in which the phosphor particles are randomly suspended and placed around the LED. This method is merely exemplary of possible positions of the phosphor material 22 and LED 12. Thus, the phosphor material 22 may be coated over or directly on the light emitting surface of the LED chip 12 by coating and drying or curing the phosphor suspension over the LED chip 12. Both the shell 18 and the encapsulant 20 should be transparent to allow light 24 to be transmitted through those elements. Although not intended to be limiting, the median particle size of the phosphor material as measured using light scattering methods or via microscope (electron or optical) measurements may be from about 1 to about 20 microns.
  • [0038]
    A filter 50 is positioned to absorb at least part of the radiation emitted by the phosphor material. The filter is described in more detail below. Like the phosphor material itself, the position of the filter can vary, so long as at least part of the radiation emitted by the phosphor material strikes and is absorbed by the filter prior to its emission from the lighting device. Thus, as shown in FIG. 1, the filter may be positioned in the encapsulant 20. Alternately, the filter can be positioned on a surface of the encapsulant or shell, positioned directly on the phosphor material, created by embedding or coating light absorbing particles into or onto the LED etc.
  • [0039]
    FIG. 2 illustrates a second preferred structure of the system according to the preferred aspect of the present invention. Corresponding numbers from FIGS. 1-4 (e.g. 12 in FIG. 1 and 112 in FIG. 2) relate to corresponding structures in each of the figures unless otherwise stated. The structure of the embodiment of FIG. 2 is similar to that of FIG. 1, except that the phosphor material 122 is interspersed within the encapsulant material 120, instead of being formed directly on the LED chip 112. The phosphor material (in the form of a powder) may be interspersed within a single region of the encapsulant material 120 or, more preferably, throughout the entire volume of the encapsulant material. Radiation 126 emitted by the LED chip 112 mixes with the light emitted by the phosphor material 122, and the mixed light appears as white light 124. If the phosphor is to be interspersed within the encapsulant material 120, then a phosphor powder may be added to a polymer precursor, loaded around the LED chip 112, and then the polymer precursor may be cured to solidify the polymer material. Other known phosphor interspersion methods may also be used, such as transfer molding. Again, a filter 150 is positioned over the phosphor material to absorb at least a portion of the radiation emitted therefrom. The filter should have certain properties as described further below and can be made in the same fashion as described in the preceding paragraph.
  • [0040]
    FIG. 3 illustrates a third preferred structure of the system according to the preferred aspects of the present invention. The structure of the embodiment shown in FIG. 3 is similar to that of FIG. 1, except that the phosphor material 222 is coated onto a surface of the shell 218, instead of being formed over the LED chip 212. The phosphor material is preferably coated on the inside surface of the shell 218, although the phosphor may be coated on the outside surface of the shell, if desired. The phosphor material 222 may be coated on the entire surface of the shell or only a top portion of the surface of the shell. The radiation 226 emitted by the LED chip 212 mixes with the light emitted by the phosphor material 222, and the mixed light appears as white light 224. The filter 250 can be positioned on a surface of the shell in this case. Of course, the structures of FIGS. 1-3 may be combined and the phosphor may be located in any two or all three locations or in any other suitable location, such as separately from the shell or integrated into the LED.
  • [0041]
    In any of the above structures, the lamp 10 may also include a plurality of scattering particles (not shown), which are embedded in the encapsulant material. The scattering particles may comprise, for example, Al2O3 particles (such as alumina powder) or TiO2 particles. The scattering particles effectively scatter the coherent light emitted from the LED chip, preferably with a negligible amount of absorption.
  • [0042]
    As shown in a fourth preferred structure in FIG. 4, the LED chip 412 may be mounted in a reflective cup 430. The cup 430 may be made from or coated with a reflective material, such as alumina, titania, or other dielectric powder known in the art. A preferred reflective material is Al2O3. The remainder of the structure of the embodiment of FIG. 4 is the same as that of any of the previous Figures, and includes two leads 416, a conducting wire 432 electrically connecting the LED chip 412 with the second lead, an encapsulant material 420, and a filter 450.
  • [0043]
    In one embodiment, there is provided a lighting device incorporating an LED having a peak emission in the range from about 370 to about 500 nm, a yellow emitting phosphor and a filter such as outlined above. In another embodiment, in addition to the yellow emitting phosphor, the phosphor material includes a blend of at least one additional phosphor having a peak emission between about 615 and 670 nm, and an optional second additional phosphor having a peak emission between about 450 and 550 nm, to provide color balance if the LED chip peak emission is less than 450 nm. In such an embodiment, the LED may have an emission peak in the near UV to blue region.
  • [0044]
    By “depression”, it is meant that the combined emission spectrum of the lighting apparatus, which is the combined emission of the phosphor(s) present in the device as well as any residual LED (or other source) emission bleed, has a relatively decreased emission intensity in the specified wavelength range. This depression is not necessarily an absolute intensity minimum over the entire emission spectrum, but merely a region where the emission intensity reaches a local minimum in the yellow range between about 550 and 615 nm. The emission intensity does not need to reach zero (or baseline level) at the lowest depression point, but should drop to between about 5% and 25%, more preferably between about 10% and 20%, of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm. Thus, the salient feature of the spectrum of a REVEAL™ bulb is approximated.
  • [0045]
    The first phosphor can be any yellow emitting phosphor having a peak emission in the range of from about 550 to 615 nm when excited by radiation from the light source, part of which can be absorbed by a filter, thereby creating a depression in the overall power spectrum of the LED as described further below. Examples of such phosphor materials are garnets (YAG and TAG) doped with Ce(III), silicates doped with Eu(II) such as BOS, and their various compositional modifications known in the art.
  • [0046]
    As detailed above, the excitation source in one embodiment is a UV to blue light emitting LED. Thus, the phosphors are preferably efficient absorbers in this range. Phosphors that satisfy this requirement are known.
  • [0047]
    The yellow narrow band filter may be any type of filter that can effectively absorb or otherwise filter out at least a portion of the radiation emitted by the yellow phosphor, while substantially permitting the emission of radiation from the lighting apparatus in emission wavelengths other than between 550 and 615 nm. Thus the overall power spectrum of the apparatus will exhibit a depression between about 550 and 615 nm, said depression extending to between about 5% and 25%, more preferably between about 10% and 20% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm.
  • [0048]
    A particularly preferred material for making the filter described above is neodymium (a.k.a. didymium) glass with Nd2O3 content between 1 and 10% by weight (e.g. as described in U.S. Pat. No. 6,358,873), used either as a layer with a thickness e.g. between 0.3 and 5 mm, more preferably between 0.5 and 1.5 mm, or in powder form as a pigment for incorporation into (or coating onto) an LED opposite to the chip from the phosphor. Other suitable materials include, but are not limited to, neodymium(III) doped silicates, phosphates, aluminates, borates and ceramics.
  • [0049]
    As noted above, additional phosphors can also be included. Thus, a phosphor having a peak emission between about 450 and 550 nm when excited with radiation from the excitation source may also be included if an LED chip with peak emission less than 450 nm is used, as needed to achieve an overall white spectrum with a requisite CCT value. Multiple emission peaks in the same range are also acceptable, as shown in the examples. Exemplary, but non-limiting examples of suitable phosphors for use with the first phosphor material in the present embodiments include, for example, (Mg, Ca, Sr, Ba, Zn)5(PO4)3(F, Cl, Br, OH):Eu2+, Sr4Al14O25:Eu2+, (Ca, Sr, Ba)Al2O4:Eu2+, and (Ca, Sr, Ba)MgAl10O17:Eu2+, Mn 2+.
  • [0050]
    It should be noted that various phosphors are described herein in which different elements enclosed in parentheses and separated by commas, such as in the above (Ca, Sr, Ba)Al2O4:Eu2+ phosphor. As understood by those skilled in the art, this type of notation means that the phosphor can include any or all of those specified elements in the formulation in any ratio. That is, this type of notation for the above phosphor, for example, has the same meaning as (Ca1−a−bSraBab)Al2O4:Eu2+, wherein 0≦a, b≦1.
  • [0051]
    Another additional phosphor may include those having a peak emission between about 615 and 670 nm when excited with radiation from the excitation source. Multiple emission peaks in the same range are also acceptable, as shown in the examples. As detailed above, the LED in one embodiment is a UV to blue light emitting LED. Thus, the phosphors are preferably efficient absorbers in this range. Phosphors that satisfy this requirement are known. Exemplary, but non-limiting examples of suitable phosphor compounds for use as the second phosphor material in the present embodiments include, for example, 3.5 MgO*0.5 MgF2*GeO2:Mn4+, Ca1−2e−fCee(Li, Na)eEufAlSiN3, where 0≦e≦0.2, 0≦f≦0.2, e+f>0; or Ca1−g−h−iCeg(Li, Na)hEuiAl1+g−hSi1−g+hN3 where 0≦g≦0.2, 0<h≦0.4, 0≦i≦0.2, g+i>0; CaAlSiN3:Eu2+ and A2[MF6]:Mn4+ where A═Li, Na, K, Rb or Cs and M═Ge, Si, Sn, Ti or Zr.
  • [0052]
    In addition, other phosphors emitting throughout the visible spectrum region, at wavelengths substantially different from those of the phosphors described in the present invention, may be used in the blend to customize the white color of the resulting light and produce sources with improved light quality. While not intended to be limiting, suitable phosphors for use in the blend with the present phosphors include:
    • (Ba, Sr, Ca)5(PO4)3(Cl, F, Br, OH):Eu2+, Mn2+
    • (Ba, Sr, Ca)BPO5:Eu2+, Mn2+
    • (Sr, Ca)10(PO4)6*νB2O3:Eu2+ (wherein 0<ν≦1)
    • Sr2Si3O8*2SrCl2: Eu2+
    • (Ca, Sr, Ba)3MgSi2O8:Eu2+, Mn2+
    • BaAl8O13: Eu2+
    • 2SrO*0.84P2O5*0.16B2O3:Eu2+
    • (Ba, Sr, Ca)MgAl10O17:Eu2+, Mn2+
    • (Ba, Sr, Ca)Al2O4:Eu2+
    • (Y, Gd, Lu, Sc, La)BO3:Ce3+, Tb3+
    • (Ba, Sr, Ca)2Si1−ξO4−2ξ:Eu2+(wherein ≦ξ≦0.2)
    • (Ba, Sr, Ca)2(Mg, Zn)Si2O7:Eu2+
    • (Sr, Ca, Ba)(Al, Ga, In)2S4:Eu2+
    • (Y, Gd, Tb, La, Sm, Pr, Lu)3(Sc, Al, Ga)5−α 12−3/2α:Ce3+(wherein 0≦α≦0.5)
    • (Lu, Sc, Y, Tb)2−u−vCev, Ca1+uLiwMg2−wPw(Si, Ge)3−wO12−u/2 where −0.5≦u≦1; 0<v≦0.1; and
    • 0≦w0.2
    • (Ca, Sr)8(Mg, Zn)(SiO4)4Cl2:Eu2+, Mn2+
    • Na2Gd2B2O7:Ce3+, Tb3+
    • (Sr, Ca, Ba, Mg, Zn)2P2O7:Eu2+, Mn2+
    • (Gd, Y, Lu, La)2O3:Eu3+Bi3+
    • (Gd, Y, Lu, La)2O2S:Eu3+,Bi3+
    • (Gd, Y, Lu, La)VO4:Eu3+, Bi3+
    • (Ca, Sr)S:Eu2+, Ce3+
    • ZnS:Cu+, Cl
    • ZnS:Cu+, Al3+
    • ZnS:Ag+, Cl
    • ZnS:Ag+, Al3+
    • SrY2S4:Eu2+
    • CaLa2S4:Ce3+
    • (Ba, Sr, Ca)MgP2O7:Eu2+, Mn2+
    • (Y, Lu)2WO6:Eu3+,Mo6+
    • (Ba, Sr, Ca)62 SiγN: Eu2+(wherein 2β+4γ=3μ)
    • Ca3(SiO4)Cl2: Eu2+
    • (Y, Lu, Gd)2−φCaφSi4N6+φC1−φ:Ce3+, (wherein 0≦φ≦0.5)
    • (Lu, Ca, Li, Mg, Y)alpha-SiA|ON doped with Eu2+ and/or Ce3+
    • (Ca, Sr, Ba)SiO2N2:Eu2+,Ce3+
    • 3.5MgO*0.5MgF2*GeO2:Mn4+
    • Ca1−c−fCecEufAl1+cSi1−cN3, (where 0<c≦0.2, 0≦f≦0.2)
    • Ca1−h−rCehEurAl1−h(Mg, Zn)hSiN3, (where 0<h≦0.2, 0≦r≦0.2)
    • Ca1−2s−tCes(Li, Na)sEutAlSiN3, (where 0≦s≦0.2, 0≦f≦0.2, s+t>0)
    • Ca1−σ−χ−ΦCe94 (Li, Na)χEuΦAl1+φ−χSi1−σ+χN3, (where 0≦σ≦0.2, 0<χ≦0.4, 0≦Φ≦0.2)
  • [0094]
    For purposes of the present application, it should be understood that when a phosphor has two or more dopant ions (i.e. those ions following the colon in the above compounds), this is to mean that the phosphor has at least one (but not necessarily all) of those dopant ions within the material. That is, as understood by those skilled in the art, this type of notation means that the phosphor can include any or all of those specified ions as dopants in the formulation.
  • [0095]
    It will be appreciated by a person skilled in the art that other phosphor compounds with sufficiently similar emission spectra may be used instead of any of the preceding suitable examples, even though the chemical formulations of such substitutes may be significantly different from the aforementioned examples.
  • [0096]
    The specific amounts of the individual phosphor compounds used in the phosphor material will depend upon the desired color temperature. The relative amounts of each phosphor in the phosphor materials can be described in terms of spectral weight. The spectral weight is the relative amount that each phosphor contributes to the overall emission spectrum of the phosphor material. Additionally, part of the LED light may be allowed to bleed through and contribute to the light spectrum of the device if necessary. The amount of LED bleed can be adjusted by changing the optical density of the phosphor layer, as routinely done for industrial blue chip based white LEDs. Alternatively, it may be adjusted by using a suitable filter or a pigment, as described further below.
  • [0097]
    The spectral weight amounts of all of the phosphors and any residual bleed from the LED source should add up to 100% of the emission spectrum of the light device.
  • [0098]
    When the phosphor material includes a blend of two or more phosphors, the ratio of each of the individual phosphors in the phosphor blend may vary depending on the characteristics of the desired light output. The relative proportions of the individual phosphors in the various embodiment phosphor blends may be adjusted such that when their emissions are blended and employed in an lighting device, there is produced visible light of predetermined x and y values on the CIE chromaticity diagram. As stated, a white light is preferably produced. This white light may, for instance, may possess an x value in the range of about 0.30 to about 0.55, and a y value in the range of about 0.30 to about 0.55. Preferably, the color point of the white light will lie on or substantially on the Planckian (also known as the blackbody) locus, e.g. within 0.020 units in the vertical (y) direction of the CIE 1931 chromaticity diagram, more preferably within 0.010 units in the vertical direction. As stated, however, the identity and amounts of each phosphor in the phosphor material can be varied according to the needs of the end user. Since the efficiency of individual phosphors may vary widely between suppliers, the exact amounts of each phosphor needed are best determined empirically, e.g. through standard design of experiment (DOE) techniques.
  • [0099]
    The above described phosphor compounds may be produced using known solid state reaction processes for the production of phosphors by combining, for example, elemental oxides, carbonates and/or hydroxides as starting materials. Other starting materials may include nitrates, sulfates, acetates, citrates, or oxalates. In a typical process, the starting materials are combined via a dry or wet blending process and fired in air or under a reducing atmosphere at from, e.g., 900 to 1600° C.
  • [0100]
    It may be desirable to add pigments or filters to the lighting device to absorb or remove emission of any residual LED bleed. When the LED is a UV emitting LED, the device may also comprise from 0 up to about 10% by weight (based on the total weight of the phosphors) of a pigment or other UV absorbent material capable of absorbing or reflecting UV or other radiation from the LED.
  • [0101]
    Suitable pigments or filters include any of those known in the art that are capable of absorbing radiation generated between 200 nm and 450 nm. Such pigments include, for example, nickel titanate or praseodymium zirconate. The pigment may be used in an amount effective to filter 10% to 100% of the radiation generated by the LED.
  • [0102]
    One can create spectral blends for use in each phosphor material to cover the relevant portions of color space, especially for white lamps. Specific examples of this are shown below. For various desired color points, one can determine the identity and appropriate amounts of each phosphor compound to include in the phosphor material. Thus, one can customize phosphor blends for use in the embodiments to produce almost any CCT or color point, with control over the CRI and luminosity based on the amount of each phosphor in the lighting device.
  • [0103]
    One feature of the present invention is the use of a white LED containing at least one yellow emitting phosphor in conjunction with a narrow band filter, e.g. Nd glass. The resulting partial elimination of the yellow emission leads to increased red-green contrast in the LED, with a slight change in color coordinates, as shown in the examples below. The extent of the effect can be adjusted e.g. by increasing or decreasing the thickness of the filter, the Nd content, or both. When using LEDs with high (90+) CRI, the CRI drops and the filtered light of the LEDs shows red-green contrast greater than that of the CIE reference source, similarly to the REVEAL™ lamps. Unexpectedly, the opposite effect on CRI is observed when using the same Nd glass filter on LEDs with low CRI.
  • [0104]
    The narrow band filter (such as a Nd glass) described above may also be used as part of a fixture enclosing the lighting apparatus described herein. This fixture could be adjacent the lighting apparatus or spaced apart therefrom, as individual design may warrant. This would allow, for example, one to modify the extent of the red-green color contrast enhancement by using filters with higher or lower thickness, Nd content, etc., as explained in the preceding paragraph.
  • [0105]
    By use of the present embodiments wherein one or more phosphors with the specified emission ranges are used in a lighting device along with a narrow band yellow filter, which has an overall emission spectrum with a depression between about 550 and 615 nm, lamps can be provided having customizable CRI and luminosity for a given color point. The preparation of the phosphor material, including the identity and amounts of each phosphor compound present therein, and the evaluation of its contribution to the LED spectrum can be done using established techniquest aided by, e.g., the DOE approach.
  • EXAMPLES
  • [0106]
    Various LED based light devices based on violet chip with emission maximum near 405 nm and using phosphor blends according to the above embodiments were investigated and compared to identical light sources also including a Nd glass filter of average thickness 1 mm and containing 7.5% Nd2O3 by weight. A summary of photometric characteristics (luminous flux Iv, 1931 CIE coordinates x and y, CCT and CRI values) of these devices is shown in Table 1. The yellow phosphor used in LED samples 1 through 10 was an alkali earth silicate doped with Eu(II) and corresponding to the formula Sr1.66Ca0.30Eu0.04Si0.96O3.92. The blue and green phosphors (Ca,Sr,Ba)5(PO4)3Cl:Eu2+, (Ba0.65Sr0.20Ca0.10Eu0.05)2SiO4 and Sr4Al14O25:Eu2+also used, as needed to achieve the requisite CCTs ranging from 2500 to 7500K prior to filtration. In addition, sample #7 contained a deep red line emitting phosphor (3.5 MgO*0.5 MgF2*GeO2:Mn4+) whereas samples #4-#6 and #8-#10 contained a deep red broadband phosphor (Ca0.88Eu0.02Li0.1Al0.9Si1.1N3), in order to attain high (e.g. greater than 90) starting Ra values.
    TABLE 1
    Item Source Iv (lm) x y CCT (K) Ra
    1 GE Reveal ™ 25 W 133 0.467 0.402 2531 79
    2 LED sample #1 137 0.469 0.430 2721 66
    3 Same w. Nd glass 105 0.460 0.421 2780 80
    4 LED sample #2 174 0.418 0.418 3448 69
    5 Same w. Nd glass 131 0.401 0.407 3732 82
    6 LED sample #3 170 0.373 0.376 4203 78
    7 Same w. Nd glass 132 0.353 0.359 4746 91
    8 LED sample #4 95 0.484 0.416 2437 92
    9 Same w. Nd glass 75 0.479 0.405 2404 89
    10 LED sample #5 109 0.466 0.413 2636 93
    11 Same w. Nd glass 86 0.460 0.401 2631 87
    12 LED sample #6 111 0.432 0.395 3015 93
    13 Same w. Nd glass 88 0.421 0.381 3079 86
    14 LED sample #7 75 0.393 0.387 3756 97
    15 Same w. Nd glass 60 0.381 0.372 3952 80
    16 LED sample #8 112 0.337 0.348 5296 98
    17 Same w. Nd glass 90 0.322 0.330 6012 85
    18 LED sample #9 113 0.314 0.334 6381 97
    19 Same w. Nd glass 91 0.299 0.316 7475 87
    20 LED sample #10 117 0.300 0.320 7351 98
    21 Same w. Nd glass 94 0.284 0.301 9044 89
  • [0107]
    FIG. 6 demonstrates the effect of a Nd glass filtration in a Reveal™ lamp (solid line) on the appearance of 15 test color samples proposed by NIST in CIE space, compared to that of the same samples under a reference illuminant (dashed line). Reference illuminants are spectra of a blackbody radiator with the same CCT (if the latter is below 5000K), or of a simulated daylight spectra with the same CCT (if the latter is at or above 5000K), as specified internationally in: CIE Method of Measuring and Specifying Colour Rendering Properties of Light Sources, CIE 13.3 (1995). It should be noted that the filtration by Nd glass has an effect of enlarging the color differences along the a* axis in CIELAB color space, corresponding to increased red-green color contrast versus the reference illuminant. A side effect of this increased contrast is a drop in the CRI value from 100 (for an unfiltered incandescent lamp) to less than 80 (as shown for Item 1 in Table 1; also in Y. Ohno, Color Rendering and Luminous Efficacy of White LED Spectra, in Fourth Intemational Conference on Solid State Lighting, edited by I. T. Ferguson, N. Narendran, S. DenBaars, and J. C. Carrano, Proc. SPIE 5530, 88-98, 2004).
  • [0108]
    FIGS. 6, 8 and 10 were generated using an Excel spreadsheet generously provided by Dr. Yoshihiro Ohno: W. Davis and Y. Ohno, “Toward an improved color rendering metric”, in Fifth Intemational Conference on Solid State Lighting, edited by I. T. Ferguson, J. C. Carrano, T. Taguchi, I. E. Ashdown, Proc. SPIE 5941, 59411 G, 2005.
  • [0109]
    FIG. 7 shows a representative spectrum of an LED sample with a low CRI (item 2 in table 1 above designated “LED sample #1”). Unexpectedly, the CRI value of this sample increases from 66 to 80 upon filtration through Nd glass. CRI values of 80 and above are often required for illumination quality light sources. This unexpected benefit can be explained by considering the graphs in FIG. 8, which shows the color coordinates of the 15 test color samples in CIE color space for both the reference illuminant and LED sample 1, both without (8A) and with (8B) Nd glass. The effect of filtration is in the same direction as with the Reveal™ lamp, but in this case it leads to the color points of the test color samples approaching those for the reference illuminant from the inside. Samples 2 and 3 show similar behavior.
  • [0110]
    By contrast, samples with a high starting CRI (as the representative example in FIG. 9, LED sample #6 from table 1) yield color coordinates very close to that of the reference illuminant without Nd glass filtration (FIG. 10 A), and filtration by Nd glass has the same effect of extending the red-green color contrast outside the gamut of the reference illuminant (FIG. 10 B), with a penalty on the CRI value, similarly to the Reveal™ lamp. The remaining examples exhibit this effect at various CCTs ranging from 2500 to 7500K.
  • [0111]
    FIGS. 11 and 12 A/B demonstrate the presence of the red-green color contrast enhancement when a deep red line emitting phosphor is used to attain high initial CRI, as opposed to a deep red broadband emitter phosphor, as mentioned earlier.
  • [0112]
    The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding, detailed description. It is intended that the invention be construed as including all such modifications and alterations, insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (25)

  1. 1. A lighting apparatus for emitting white light having enhanced red-green color: contrast and comprising:
    a light source emitting radiation having a peak emission in the range of from about 250 to 500 nm;
    a phosphor material radiationally coupled to said light source comprising a first phosphor having a peak emission between about 550 to 615 nm; and
    a filter that prevents a portion of radiation emitted by the phosphor material from being emitted by the apparatus while substantially permitting the emission of radiation from the lighting apparatus in emission wavelengths other than between 550 and 615 nm.
  2. 2. The lighting apparatus of claim 1, wherein said filter functions such that an overall emission spectrum of the lighting apparatus has a depression between about 550 and 615 nm, said depression extending to between about 5% and 25% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm.
  3. 3. The lighting apparatus of claim 2, wherein the depression extends to between about 10% and 20% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm.
  4. 4. The lighting apparatus of claim 1, wherein said filter is a neodymium glass filter that filters out at least a portion of the radiation emitted by said first phosphor.
  5. 5. The lighting apparatus of claim 1, wherein said first phosphor comprises at least one of a garnet phosphor doped with Ce3+ and a silicate phosphor doped with Eu2+.
  6. 6. The lighting apparatus of claim 1, wherein said lighting apparatus has a general (Ra) CRI of at least 80.
  7. 7. The lighting apparatus of claim 1, wherein said phosphor material further comprises one or more additional phosphors.
  8. 8. The lighting apparatus of claim 1, wherein the light source is a semiconductor source.
  9. 9. The lighting apparatus of claim 7, wherein said phosphor material further comprises a phosphor having a peak emission the range of from about 450 to 550 nm.
  10. 10. The lighting apparatus of claim 1, wherein said light source has a peak emission at a wavelength less than 450 nm.
  11. 11. The lighting apparatus of claim 7, wherein said phosphor material further comprises a red phosphor having a peak emission in the range of from about 615 nm to 670 nm.
  12. 12. The lighting apparatus of claim 11, wherein said red phosphor comprises at least one of 3.5MgO*0.5MgF2*GeO2:Mn4+, Ca1−2e−fCee(Li, Na)eEufAlSiN3, where 0≦e≦0.2, 0≦f≦0.2, e+f>0; or Ca1−g−h−iCeg(Li, Na)hEuiAl1+g−hSi1−g+hN3 where 0≦g≦0.2, 0<h≦0.4, 0≦i≦0.2, g+i>0; CaAlSiN3:Eu2+ and A2[MF6]:Mn4+ where A=Li, Na, K, Rb or Cs and M=Ge, Si, Sn, Ti or Zr.
  13. 13. The lighting apparatus of claim 8, wherein said semiconductor light source comprises a nitride compound semiconductor represented by the formula IniGajAlkN, where 0≦i; 0≦j, 0≦k, and i+j+k=1.
  14. 14. The lighting apparatus of claim 1, wherein the phosphor material is at least one of coated on the surface of the light source, and dispersed in an encapsulant surrounding the light source and the phosphor material.
  15. 15. The lighting apparatus of claim 1, further comprising a reflector.
  16. 16. The lighting apparatus of claim 1, wherein said filter comprises neodymium.
  17. 17. The lighting apparatus of claim 16, wherein said filter is a neodymium glass.
  18. 18. The lighting apparatus of claim 1, wherein said filter is part of a light fixture enclosing the apparatus.
  19. 19. The lighting apparatus of claim 1, wherein said filter is in the form of a continuous layer or in powder form.
  20. 20. The lighting apparatus of claim 1, wherein said filter is at least one of embedded in an encapsulant surrounding said phosphor material, positioned on top of an encapsulant or shell surrounding said phosphor material, and positioned directly on a layer of said phosphor material.
  21. 21. The lighting apparatus of claim 1, wherein said apparatus has a CCT of from 2500 to 7500 K.
  22. 22. The lighting apparatus of claim 21, wherein a CCT of said apparatus is higher than 3000K.
  23. 23. The lighting apparatus of claim 1, wherein a color point of said apparatus lies substantially on the black body locus within 0.020 units in the vertical direction on the 1931 CIE Diagram.
  24. 24. A method for making a lighting apparatus for emitting white light having enhanced red-green color contrast, the method including the steps of:
    providing a light source emitting radiation having a peak emission at from about 250 to 500 nm;
    providing a phosphor material comprising: a first phosphor material having a peak emission between about 550 and 615 nm;
    radiationally coupling said phosphor material to said light source, and providing a filter that prevents a portion of radiation emitted by the phosphor material from being emitted by the apparatus while substantially permitting the emission of radiation from the lighting apparatus in emission wavelengths other than between 550 and 615 nm.
  25. 25. The method of claim 24, wherein said filter functions such that an overall emission spectrum of the lighting apparatus has a depression between about 550 and 615 nm, said depression extending to between about 5% and 25% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm.
US11810024 2004-08-02 2007-06-04 White light apparatus with enhanced color contrast Abandoned US20070241657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10909564 US7768189B2 (en) 2004-08-02 2004-08-02 White LEDs with tunable CRI
US11285122 US7453195B2 (en) 2004-08-02 2005-11-22 White lamps with enhanced color contrast
US11810024 US20070241657A1 (en) 2004-08-02 2007-06-04 White light apparatus with enhanced color contrast

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11810024 US20070241657A1 (en) 2004-08-02 2007-06-04 White light apparatus with enhanced color contrast
PCT/US2008/062986 WO2008150628A1 (en) 2007-06-04 2008-05-08 White light apparatus with enhanced color contrast
US14295486 US20140285996A1 (en) 2004-08-02 2014-06-04 White light apparatus with enhanced color contrast

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11285122 Continuation-In-Part US7453195B2 (en) 2004-08-02 2005-11-22 White lamps with enhanced color contrast

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14295486 Continuation US20140285996A1 (en) 2004-08-02 2014-06-04 White light apparatus with enhanced color contrast

Publications (1)

Publication Number Publication Date
US20070241657A1 true true US20070241657A1 (en) 2007-10-18

Family

ID=39540688

Family Applications (2)

Application Number Title Priority Date Filing Date
US11810024 Abandoned US20070241657A1 (en) 2004-08-02 2007-06-04 White light apparatus with enhanced color contrast
US14295486 Pending US20140285996A1 (en) 2004-08-02 2014-06-04 White light apparatus with enhanced color contrast

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14295486 Pending US20140285996A1 (en) 2004-08-02 2014-06-04 White light apparatus with enhanced color contrast

Country Status (2)

Country Link
US (2) US20070241657A1 (en)
WO (1) WO2008150628A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090122530A1 (en) * 2007-10-17 2009-05-14 William Winder Beers Solid state illumination system with improved color quality
US20100096974A1 (en) * 2008-10-22 2010-04-22 General Electric Company Blue-green and green phosphors for lighting applications
US20100142189A1 (en) * 2008-02-07 2010-06-10 Mitsubishi Chemical Corporation Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them
US20110033690A1 (en) * 2008-04-04 2011-02-10 Airbus Operations Gmbh Afterglow coating for cabin interiors
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US20110216522A1 (en) * 2010-03-04 2011-09-08 Xicato, Inc. Efficient LED-Based Illumination Module With High Color Rendering Index
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
WO2012080934A1 (en) 2010-12-17 2012-06-21 Koninklijke Philips Electronics N.V. Illumination system with light source, radiation converting element and filter
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US20120187824A1 (en) * 2009-09-17 2012-07-26 Toshiba Materials Co., Ltd. White light emitting lamp and white led lighting apparatus including the same
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US8294177B2 (en) 2007-12-07 2012-10-23 Panasonic Corporation Light emitting device utilizing a LED chip
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
DE102011089144A1 (en) * 2011-12-20 2013-06-20 Osram Gmbh WHITE blue light emitting LAMPS
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US20130257266A1 (en) * 2010-12-09 2013-10-03 Sharp Kabushiki Kaisha Light emitting device
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8624491B2 (en) 2010-07-22 2014-01-07 Kyocera Corporation Light emitting device
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8703016B2 (en) 2008-10-22 2014-04-22 General Electric Company Phosphor materials and related devices
WO2014063011A1 (en) 2012-10-18 2014-04-24 GE Lighting Solutions, LLC Led lamp with nd-glass bulb
WO2014118706A1 (en) * 2013-01-29 2014-08-07 Koninklijke Philips N.V. A light source, luminaire and surgical illumination unit
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9062851B2 (en) 2010-03-01 2015-06-23 Panasonic Intellectual Property Management Co., Ltd. LED lamp, LED illumination device, and LED module
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9192013B1 (en) 2014-06-06 2015-11-17 Cree, Inc. Lighting devices with variable gamut
US9215761B2 (en) 2014-05-15 2015-12-15 Cree, Inc. Solid state lighting devices with color point non-coincident with blackbody locus
WO2015200268A1 (en) * 2014-06-25 2015-12-30 Lexington Lighting Group, LLC dba Wilshire Manufacturing Decorative led lighting system
US9241384B2 (en) 2014-04-23 2016-01-19 Cree, Inc. Solid state lighting devices with adjustable color point
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
EP3000863A1 (en) * 2014-09-24 2016-03-30 Nichia Corporation Light emitting device
US20160097496A1 (en) * 2014-10-07 2016-04-07 GE Lighting Solutions, LLC Led apparatus employing neodymium-fluorine materials
US9335531B2 (en) 2011-12-30 2016-05-10 Cree, Inc. LED lighting using spectral notching
WO2016166005A1 (en) * 2015-04-17 2016-10-20 Osram Gmbh Optoelectronic component and method for producing an optoelectronic component
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9534741B2 (en) 2014-07-23 2017-01-03 Cree, Inc. Lighting devices with illumination regions having different gamut properties
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US9593812B2 (en) 2014-04-23 2017-03-14 Cree, Inc. High CRI solid state lighting devices with enhanced vividness
US9685101B2 (en) 2014-04-23 2017-06-20 Cree, Inc. Solid state light-emitting devices with improved contrast
US9702524B2 (en) 2015-01-27 2017-07-11 Cree, Inc. High color-saturation lighting devices
US9711688B2 (en) 2008-12-02 2017-07-18 Koninklijke Philips N.V. Controlling LED emission pattern using optically active materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768326A (en) * 2016-11-24 2017-05-31 郑州航空工业管理学院 Apparatus for detecting spectrum quality of LED white-light lamp and detection method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084250A (en) * 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6358873B1 (en) * 1999-07-02 2002-03-19 Corning Incorporatedc Neodymium glass for tungsten-halogen lamp envelopes and filters
US6515314B1 (en) * 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
US6538371B1 (en) * 2000-03-27 2003-03-25 The General Electric Company White light illumination system with improved color output
US20040000862A1 (en) * 2002-06-28 2004-01-01 General Electric Company Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same
US6680569B2 (en) * 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
US6717353B1 (en) * 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
US6720584B2 (en) * 2000-12-04 2004-04-13 Sharp Kabushiki Kaisha Nitride type compound semiconductor light emitting element
US20040119086A1 (en) * 2002-11-25 2004-06-24 Matsushita Electric Industrial Co. Ltd. Led Lamp
US20050189863A1 (en) * 2004-02-27 2005-09-01 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7015510B2 (en) * 2000-05-15 2006-03-21 General Electric Company White light emitting phosphor blend for LED devices
US7026775B2 (en) * 2001-12-20 2006-04-11 Brother Kogyo Kabushiki Kaisha Method and apparatus for controlling speed of moving body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB487572A (en) * 1936-11-03 1938-06-22 Siemens Ag Improvements in or relating to optical projection apparatus, in particular for sub-standard kinematograph films
EP2571066B1 (en) * 2010-05-14 2015-09-23 Panasonic Intellectual Property Management Co., Ltd. Led module, led lamp, and illuminating apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084250A (en) * 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
US6680569B2 (en) * 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6358873B1 (en) * 1999-07-02 2002-03-19 Corning Incorporatedc Neodymium glass for tungsten-halogen lamp envelopes and filters
US6538371B1 (en) * 2000-03-27 2003-03-25 The General Electric Company White light illumination system with improved color output
US7015510B2 (en) * 2000-05-15 2006-03-21 General Electric Company White light emitting phosphor blend for LED devices
US6515314B1 (en) * 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
US6720584B2 (en) * 2000-12-04 2004-04-13 Sharp Kabushiki Kaisha Nitride type compound semiconductor light emitting element
US7026775B2 (en) * 2001-12-20 2006-04-11 Brother Kogyo Kabushiki Kaisha Method and apparatus for controlling speed of moving body
US6809471B2 (en) * 2002-06-28 2004-10-26 General Electric Company Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same
US20040000862A1 (en) * 2002-06-28 2004-01-01 General Electric Company Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same
US6717353B1 (en) * 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
US20040119086A1 (en) * 2002-11-25 2004-06-24 Matsushita Electric Industrial Co. Ltd. Led Lamp
US20050189863A1 (en) * 2004-02-27 2005-09-01 Dowa Mining Co., Ltd. Phosphor, light source and LED

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090122530A1 (en) * 2007-10-17 2009-05-14 William Winder Beers Solid state illumination system with improved color quality
US8247959B2 (en) * 2007-10-17 2012-08-21 General Electric Company Solid state illumination system with improved color quality
US8294177B2 (en) 2007-12-07 2012-10-23 Panasonic Corporation Light emitting device utilizing a LED chip
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US20100142189A1 (en) * 2008-02-07 2010-06-10 Mitsubishi Chemical Corporation Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them
US9541238B2 (en) 2008-02-07 2017-01-10 Mitsubishi Chemical Corporation Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them
US8491816B2 (en) 2008-02-07 2013-07-23 Mitsubishi Chemical Corporation Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them
US20110033690A1 (en) * 2008-04-04 2011-02-10 Airbus Operations Gmbh Afterglow coating for cabin interiors
US9243151B2 (en) * 2008-04-04 2016-01-26 Airbus Operations Gmbh Afterglow coating for cabins
US8807785B2 (en) 2008-05-23 2014-08-19 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US8329060B2 (en) 2008-10-22 2012-12-11 General Electric Company Blue-green and green phosphors for lighting applications
US8703016B2 (en) 2008-10-22 2014-04-22 General Electric Company Phosphor materials and related devices
US20100096974A1 (en) * 2008-10-22 2010-04-22 General Electric Company Blue-green and green phosphors for lighting applications
US9585216B2 (en) 2008-10-24 2017-02-28 Ilumisys, Inc. Integration of LED lighting with building controls
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US9398661B2 (en) 2008-10-24 2016-07-19 Ilumisys, Inc. Light and light sensor
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
US8251544B2 (en) 2008-10-24 2012-08-28 Ilumisys, Inc. Lighting including integral communication apparatus
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US9635727B2 (en) 2008-10-24 2017-04-25 Ilumisys, Inc. Light and light sensor
US9711688B2 (en) 2008-12-02 2017-07-18 Koninklijke Philips N.V. Controlling LED emission pattern using optically active materials
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US8884512B2 (en) * 2009-09-17 2014-11-11 Kabushiki Kaisha Toshiba White light emitting lamp and white LED lighting apparatus including the same
US20120187824A1 (en) * 2009-09-17 2012-07-26 Toshiba Materials Co., Ltd. White light emitting lamp and white led lighting apparatus including the same
US9062851B2 (en) 2010-03-01 2015-06-23 Panasonic Intellectual Property Management Co., Ltd. LED lamp, LED illumination device, and LED module
EP2543920B1 (en) * 2010-03-01 2017-11-15 Panasonic Intellectual Property Management Co., Ltd. Led lamp, led illumination device, and led module
US8104908B2 (en) 2010-03-04 2012-01-31 Xicato, Inc. Efficient LED-based illumination module with high color rendering index
US20110216522A1 (en) * 2010-03-04 2011-09-08 Xicato, Inc. Efficient LED-Based Illumination Module With High Color Rendering Index
US9835295B2 (en) 2010-03-04 2017-12-05 Xicato, Inc. Efficient LED-based illumination modules with high color rendering index
US8408726B2 (en) 2010-03-04 2013-04-02 Xicato, Inc. Efficient led-based illumination modules with high color rendering index
US9068702B2 (en) 2010-03-04 2015-06-30 Xicato, Inc. Efficient LED-based illumination modules with high color rendering index
US9395075B2 (en) 2010-03-26 2016-07-19 Ilumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8624491B2 (en) 2010-07-22 2014-01-07 Kyocera Corporation Light emitting device
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US9351371B2 (en) * 2010-12-09 2016-05-24 Sharp Kabushiki Kaisha Light emitting device
US20130257266A1 (en) * 2010-12-09 2013-10-03 Sharp Kabushiki Kaisha Light emitting device
US9647181B2 (en) 2010-12-09 2017-05-09 Sharp Kabushiki Kaisha Light emitting device with phosphors
WO2012080934A1 (en) 2010-12-17 2012-06-21 Koninklijke Philips Electronics N.V. Illumination system with light source, radiation converting element and filter
US8779448B2 (en) 2010-12-17 2014-07-15 Koninklijke Philips N.V. Illumination system with light source, radiation converting element and filter
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
DE102011089144A1 (en) * 2011-12-20 2013-06-20 Osram Gmbh WHITE blue light emitting LAMPS
US9335531B2 (en) 2011-12-30 2016-05-10 Cree, Inc. LED lighting using spectral notching
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9807842B2 (en) 2012-07-09 2017-10-31 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9612002B2 (en) 2012-10-18 2017-04-04 GE Lighting Solutions, LLC LED lamp with Nd-glass bulb
WO2014063011A1 (en) 2012-10-18 2014-04-24 GE Lighting Solutions, LLC Led lamp with nd-glass bulb
CN104968256A (en) * 2013-01-29 2015-10-07 皇家飞利浦有限公司 A light source, luminaire and surgical illumination unit
WO2014118706A1 (en) * 2013-01-29 2014-08-07 Koninklijke Philips N.V. A light source, luminaire and surgical illumination unit
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US9685101B2 (en) 2014-04-23 2017-06-20 Cree, Inc. Solid state light-emitting devices with improved contrast
US9593812B2 (en) 2014-04-23 2017-03-14 Cree, Inc. High CRI solid state lighting devices with enhanced vividness
US9241384B2 (en) 2014-04-23 2016-01-19 Cree, Inc. Solid state lighting devices with adjustable color point
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9215761B2 (en) 2014-05-15 2015-12-15 Cree, Inc. Solid state lighting devices with color point non-coincident with blackbody locus
US9192013B1 (en) 2014-06-06 2015-11-17 Cree, Inc. Lighting devices with variable gamut
WO2015200268A1 (en) * 2014-06-25 2015-12-30 Lexington Lighting Group, LLC dba Wilshire Manufacturing Decorative led lighting system
US9534741B2 (en) 2014-07-23 2017-01-03 Cree, Inc. Lighting devices with illumination regions having different gamut properties
EP3000863A1 (en) * 2014-09-24 2016-03-30 Nichia Corporation Light emitting device
US20160097496A1 (en) * 2014-10-07 2016-04-07 GE Lighting Solutions, LLC Led apparatus employing neodymium-fluorine materials
US9702524B2 (en) 2015-01-27 2017-07-11 Cree, Inc. High color-saturation lighting devices
WO2016166005A1 (en) * 2015-04-17 2016-10-20 Osram Gmbh Optoelectronic component and method for producing an optoelectronic component

Also Published As

Publication number Publication date Type
WO2008150628A1 (en) 2008-12-11 application
US20140285996A1 (en) 2014-09-25 application

Similar Documents

Publication Publication Date Title
US6555958B1 (en) Phosphor for down converting ultraviolet light of LEDs to blue-green light
US6982045B2 (en) Light emitting device having silicate fluorescent phosphor
US7267787B2 (en) Phosphor systems for a white light emitting diode (LED)
US7554129B2 (en) Light emitting device
US6466135B1 (en) Phosphors for down converting ultraviolet light of LEDs to blue-green light
US20040124758A1 (en) Luminescene conversion based light emitting diode and phosphors for wave length conversion
US20040245532A1 (en) Semiconductor light emitting element and light emitting device using this
US6255670B1 (en) Phosphors for light generation from light emitting semiconductors
US20070090381A1 (en) Semiconductor light emitting device
US8057706B1 (en) Moisture-resistant phosphor and associated method
RU2251761C2 (en) Light source with light-emitting component
US20060033081A1 (en) Luminescent material and light emitting diode using the same
US8252613B1 (en) Color stable manganese-doped phosphors
US20060091790A1 (en) Phosphor mixture and light emitting device
EP1480278A2 (en) Light emitting diode comprising a fluorescent multilayer
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
US20050199897A1 (en) Phosphor and blends thereof for use in LEDs
US7274045B2 (en) Borate phosphor materials for use in lighting applications
US20100096974A1 (en) Blue-green and green phosphors for lighting applications
US20050029927A1 (en) Deep red phosphor for general illumination applications
US20060226759A1 (en) Light emitting device and fabricating method thereof
US7252787B2 (en) Garnet phosphor materials having enhanced spectral characteristics
US20070235751A1 (en) White light LED devices with flat spectra
US20090218581A1 (en) Illumination system comprising a radiation source and a luminescent material
WO2003080763A1 (en) Tri-color white light led lamp

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUMINATION, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RADKOV, EMIL VERGILOV;HAUSMANN, ILONA ELISABETH;PUBLICOVER, DEREK ALLEN;REEL/FRAME:019435/0169;SIGNING DATES FROM 20070515 TO 20070531