US20070237822A1 - Testosterone gel and method of use - Google Patents

Testosterone gel and method of use Download PDF

Info

Publication number
US20070237822A1
US20070237822A1 US11/549,083 US54908306A US2007237822A1 US 20070237822 A1 US20070237822 A1 US 20070237822A1 US 54908306 A US54908306 A US 54908306A US 2007237822 A1 US2007237822 A1 US 2007237822A1
Authority
US
United States
Prior art keywords
testosterone
method
gel
skin
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/549,083
Inventor
Ramana Malladi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimed Pharmaceuticals LLC
Original Assignee
Laboratoires Besins International Sas
Unimed Pharmaceuticals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US72527605P priority Critical
Application filed by Laboratoires Besins International Sas, Unimed Pharmaceuticals LLC filed Critical Laboratoires Besins International Sas
Priority to US11/549,083 priority patent/US20070237822A1/en
Assigned to UNIMED PHARMACEUTICALS, INC. reassignment UNIMED PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALLADI, RAMANA
Assigned to LABORATOIRES BESINS INTERNATIONAL, SAS reassignment LABORATOIRES BESINS INTERNATIONAL, SAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNIMED PHARMACEUTICALS, INC.
Publication of US20070237822A1 publication Critical patent/US20070237822A1/en
Assigned to UNIMED PHARMACEUTICALS, LLC reassignment UNIMED PHARMACEUTICALS, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNIMED PHARMACEUTICALS, INC.
Assigned to UNIMED PHARMACEUTICALS, LLC reassignment UNIMED PHARMACEUTICALS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLER, JODI
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37943593&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070237822(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Assigned to UNIMED PHARMACEUTICALS, LLC reassignment UNIMED PHARMACEUTICALS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALLADI, RAMANA
Assigned to UNIMED PHARMACEUTICALS, LLC reassignment UNIMED PHARMACEUTICALS, LLC ASSIGNMENT AGREEMENT Assignors: LABORATOIRES BESINS INTERNATIONAL, SAS
Assigned to LABORATOIRES BESINS INTERNATIONAL, SAS reassignment LABORATOIRES BESINS INTERNATIONAL, SAS ASSIGNMENT AGREEMENT Assignors: UNIMED PHARMACEUTICALS, LLC
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens

Abstract

The present invention relates to an improved transdermal hydroalcoholic testosterone gel formulation that provides, among other things, a desirable pharmacokinetic hormone profile, and methods of use.

Description

  • This application claims priority to U.S. Provisional Patent Application Ser. No. 60/725,276 filed Oct. 12, 2005, the entire contents of which is hereby incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • Testosterone, the major circulating androgen in men, is synthesized from cholesterol. The approximately 500 million Leydig cells in the testes secrete more than 95% of the 6-7 mg of testosterone produced per day. Two hormones produced by the pituitary gland, luteinizing hormone (“LH”) and follicle stimulating hormone (“FSH”), are required for the development and maintenance of testicular function and negatively regulate testosterone production. Circulating testosterone is metabolized to various 17-keto steroids through two different pathways. Testosterone can be metabolized to dihydrotestosterone (“DHT”) by the enzyme 5α-reductase or to estradiol (“E2”) by an aromatase enzyme complex.
  • Testosterone circulates in the blood 98% bound to protein. In men, approximately 40% of the binding is to the high-affinity sex hormone binding globulin (“SHBG”). The remaining 60% is bound weakly to albumin. Thus, a number of measurements for testosterone are available from clinical laboratories. The term “free” testosterone as used herein refers to the fraction of testosterone in the blood that is not bound to protein. The term “total testosterone” or “testosterone” as used herein means the free testosterone plus protein-bound testosterone. The term “bioavailable testosterone” as used herein refers to the non-SHBG bound testosterone and includes testosterone weakly bound to albumin.
  • The following table from the UCLA-Harbor Medical Center summarizes the hormone concentrations in normal adult men range:
    TABLE 1
    Hormone Levels in Normal Men
    Hormone Normal Range
    Testosterone 298 to 1043 ng/dL
    Free testosterone 3.5 to 17.9 ng/dL
    DHT 31 to 193 ng/dL
    DHT/T Ratio 0.052 to 0.33
    DHT + T 372 to 1349 ng/dL
    SHBG 10.8 to 46.6 nmol/L
    FSH 1.0 to 6.9 mlU/mL
    LH 1.0 to 8.1 mlU/mL
    E2 17.1 to 46.1 pg/mL
  • There is considerable variation in the half-life of testosterone reported in the literature, ranging from 10 to 100 minutes. Researchers do agree, however, that circulating testosterone has a diurnal variation in normal young men. Maximum levels occur at approximately 6:00 to 8:00 a.m. with levels declining throughout the day. Characteristic profiles have a maximum testosterone level of 720 ng/dL and a minimum level of 430 ng/dL. The physiological significance of this diurnal cycle, if any, however, is not clear.
  • Male hypogonadism results from a variety of patho-physiological conditions in which testosterone concentration is diminished below the normal range. The hypogonadic condition is sometimes linked with a number of physiological changes, such as diminished interest in sex, impotence, reduced lean body mass, decreased bone density, lowered mood, and decreased energy levels.
  • Researchers generally classify hypogonadism into one of three types. Primary hypogonadism includes the testicular failure due to congenital or acquired anorchia, XYY Syndrome, XX males, Noonan's Syndrome, gonadal dysgenesis, Leydig cell tumors, maldescended testes, varicocele, Sertoli-Cell-Only Syndrome, cryptorchidism, bilateral torsion, vanishing testis syndrome, orchidectomy, Klinefelter's Syndrome, chemotherapy, toxic damage from alcohol or heavy metals, and general disease (renal failure, liver cirrhosis, diabetes, myotonia dystrophica). Patients with primary hypogonadism show an intact feedback mechanism in that the low serum testosterone concentrations are associated with high FSH and LH concentrations. However, because of testicular or other failures, the high LH concentrations are not effective at stimulating testosterone production.
  • Secondary hypogonadism involves an idiopathic gonadotropin or LH-releasing hormone deficiency. This type of hypogonadism includes Kallman's Syndrome, Prader-Labhart-Willi's Syndrome, Laurence-Moon-Biedl's Syndrome, pituitary insufficiency/adenomas, Pasqualini's Syndrome, hemochromatosis, hyperprolactinemia, or pituitary-hypothalamic injury from tumors, trauma, radiation, or obesity. Because patients with secondary hypogonadism do not demonstrate an intact feedback pathway, the lower testosterone concentrations are not associated with increased LH or FSH levels. Thus, these men have low testosterone serum levels but have gonadotropins in the normal to low range.
  • Hypogonadism may be age-related. Men experience a slow but continuous decline in average serum testosterone after approximately age 20 to 30 years. Researchers estimate that the decline is about 1-2% per year. Cross-sectional studies in men have found that the mean testosterone value at age 80 years is approximately 75% of that at age 30 years. Because the serum concentration of SHBG increases as men age, the fall in bioavailable and free testosterone is even greater than the fall in total testosterone. Researchers have estimated that approximately 50% of healthy men between the ages of 50 and 70 have levels of bioavailable testosterone that are below the lower normal limit. Moreover, as men age, the circadian rhythm of testosterone concentration is often muted, dampened, or completely lost. The major problem with aging appears to be within the hypothalamic-pituitary unit. For example, researchers have found that with aging, LH levels do not increase despite the low testosterone levels. Regardless of the cause, these untreated testosterone deficiencies in older men may lead to a variety of physiological changes, including sexual dysfunction, decreased libido, loss of muscle mass, decreased bone density, depressed mood, and decreased cognitive function. The net result is geriatric hypogonadism, or what is commonly referred to as “male menopause.” Today, hypogonadism is the most common hormone deficiency in men, affecting 5 in every 1,000 men. At present, it is estimated that only five percent of the estimated four to five million American men of all ages with hypogonadism currently receive testosterone replacement therapy.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an improved transdermal hydroalcoholic testosterone gel formulation that provides, among other things, a desirable pharmacokinetic hormone profile, and methods of use.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a standardized Pareto Chart demonstrating the effect of test factors testosterone, isopropyl myristate and ethyl alcohol on response variable-viscosity.
  • FIG. 2 is a standardized Pareto Chart demonstrating the effect of test factors testosterone, isopropyl myristate and ethyl alcohol on percent label permeated.
  • FIG. 3 is a standardized Pareto Chart demonstrating the effect of test factors testosterone, isopropyl myristate and ethyl alcohol on Ratio CAR.
  • FIG. 4 is an Estimated Response Surface Plot illustrating estimated response (Ratio CAR) for a given combination of testosterone and isopropyl myristate for an alcohol (95% v/v) content of 74.3 wt %.
  • FIG. 5 is a Contour Plot illustrating the contours of the Estimated Response Surface Plot in FIG. 4.
  • FIG. 6 is a graph showing the cumulated amount testosterone released as a function of time for various testosterone formulations (F57 to F59) in comparison to reference formulation (F56).
  • FIG. 7 is a graph showing cumulative amounts of testosterone permeated as a function of time for formulation F57.
  • FIG. 8 is a graph showing the cumulative amounts of testosterone permeated as a function of time for formulation F58.
  • FIG. 9 is a graph showing the cumulative amounts of testosterone permeated as a function of time for formulation F59.
  • FIG. 10 is a graph showing mean serum concentration-time profiles for observed testosterone on Day 1.
  • FIG. 11 is a graph showing mean serum concentration-time profiles for observed testosterone on Day 14.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the present invention may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present disclosure is to be considered only as an exemplification of the principles of the invention, and it is not intended to limit the invention to the embodiments illustrated. Where the invention is illustrated herein with particular reference to testosterone, it will be understood that any other steroid in the testosterone synthetic pathway can, if desired, be substituted in whole or in part for testosterone in the methods, kits, combinations, and compositions herein described.
  • The present invention relates to an improved testosterone gel formulation and methods of use.
  • In one embodiment, the present invention is directed to a method for percutaneous administration of testosterone in a hydroalcoholic gel. The gel comprises testosterone (or a testosterone derivative), one or more lower alcohols, such as ethanol or isopropanol; a penetration enhancing agent such as isopropyl myristate; a thickener; and water. Additionally, the present invention may optionally include salts, emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • The present invention also includes kits, methods, combinations, and pharmaceutical compositions for treating, preventing, reversing, halting or slowing the progression of hypogonadism or other low-testosterone-associated disorders in a subject once it becomes clinically evident, or treating the symptoms associated with, or related to the hypogonadism or low-testosterone-associated disorder. The subject may already have a diagnosis of hypogonadism and/or low testosterone at the time of administration, or be at risk of developing hypogonadism and/or low testosterone. The present invention preferably is for treatment of adult subjects over 18 years of age. Even more preferably the present invention is for treatment of adult subjects over 21 years of age.
  • The term “derivative” refers to a compound that is produced from another compound of similar structure by the replacement of substitution of one atom, molecule or group by another. For example, a hydrogen atom of a compound may be substituted by alkyl, acyl, amino, etc., to produce a derivative of that compound.
  • As used herein, the term “lower alcohol,” alone or in combination, means a straight-chain or branched-chain alcohol moiety containing one to about six carbon atoms. In one embodiment, the lower alcohol contains one to about 4 carbon atoms, and in another embodiment the lower alcohol contains two to about 3 carbon atoms. Examples of such alcohol moieties include methanol, ethanol, ethanol USP (i.e., 95% v/v), n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, and tert-butanol.
  • As used herein, the term “ethanol” refers to C2H5OH. It may be used as dehydrated alcohol USP, alcohol USP, or in any common form including in combination with various amounts of water.
  • The composition is used in a “pharmacologically effective amount.” This means that the concentration of the drug administered is such that in the composition it results in a therapeutic level of drug delivered over the term that the drug is to be used. Such delivery is dependent on a number of variables including the time period for which the individual dosage unit is to be used, the flux rate of the drug from the composition, for example, testosterone, from the gel, surface area of application site, etc. For testosterone, for example, the amount of testosterone necessary can be experimentally determined based on the flux rate of testosterone through the gel, and through the skin when used with and without enhancers.
  • In one embodiment, the present invention is directed to a method for percutaneous administration of testosterone in a hydroalcoholic gel. The gel comprises one or more lower alcohols, such as ethanol or isopropanol; a penetration enhancing agent; a thickener; and water. In one embodiment, the gel comprises an anionic polymer thickening agent precursor neutralized with a hydroxide releasing agent, such as, e.g, sodium hydroxide. Additionally, the present invention may optionally include salts, emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • Included in the methods and pharmaceutical compositions of the present invention are the isomeric forms and tautomers of the described compounds and the pharmaceutically-acceptable salts thereof. Illustrative pharmaceutically acceptable salts are prepared from formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, b-hydroxybutyric, galactaric and galacturonic acids.
  • The thickening agents (aka gelling agents) suitable for use in the present invention include neutralized anionic polymers such as polyacrylic acid. Preferred are the carbomer polyacrylic acids, especially those made and sold by Noveon Inc. of Cleveland, Ohio under the trademark Carbopol®. (See information at http://www.noveon.com, incorporated herein by reference.) Particularly preferred are Carbopols® Ultrez 10, 940, 941, 954, 980, 981, ETD 2001, EZ-2 and EZ-3. Most preferred are Carbopol® 940 and Carbopol® 980. Other suitable anionic polymers include carboxypolymethylene and carboxymethyl cellulose. Also suitable are other known polymeric thickening agents such as Pemulen® polymeric emulsifiers, and Noveon® polycarbophils. Additional thickening agents, enhancers and adjuvants may generally be found in Remington's The Science and Practice of Pharmacy, Meade Publishing Co., United States Pharmacopeia/National Formulary, all incorporated herein by reference.
  • In one embodiment, the formulation is a gel, an ointment, a cream or a patch and is comprised of testosterone; a penetration enhancing agent, such as isopropyl myristate; a thickening agent, such as a neutralized carbomer; a lower alcohol, such as ethanol or isopropanol; and water.
  • In another embodiment, the formulation contains an anionic polymer thickening agent precursor such as a carbomer which has been combined with a neutralizer in an amount sufficient to form a gel in the course of forming the composition.
  • In another embodiment, the formulation contains an anionic polymer thickening agent precursor such as a carbomer which has been combined with a neutralizer in an amount sufficient to form a gel with a viscosity greater than 9000 cps as measured by a Brookfield RV DVII+ Viscometer with a spindle equal to RV6, RPM (rotations per minute) equal to 10, and the temperature maintained at 20° C.
  • In yet a further embodiment, the formulation contains an anionic polymer thickening agent precursor such as a carbomer which has been combined with a neutralizer selected from the group consisting of sodium hydroxide, ammonium hydroxide, potassium hydroxide, arginine, aminomethyl propanol, tetrahydroxypropyl ethylenediamine, triethanolamine (“TEA”), tromethamine, PEG-15 cocamine, diisopropanolamine, and triisopropanolamine, or combinations thereof in an amount sufficient to neutralize the anionic polymer thickening agent precursor to form a gel in the course of forming the composition. Suitable neutralizing agents and their use with selected anionic polymer thickening agent precursors are disclosed in “Neutralizing Carbopol® and Pemulen® Polymers in Aqueous and Hydroalcoholic Systems,” Commercial Brochure TDS-237 (October 1998) by Noveon Inc. of Cleveland, Ohio, incorporated by reference herein.
  • In yet a further embodiment, the formulation contains an anionic polymer thickening agent precursor such as a carbomer which has been combined with a neutralizer which is an aqueous solution of sodium hydroxide such as 0.1 N sodium hydroxide, or 1.5 N sodium hydroxide, or 2.0 N sodium hydroxide or any other convenient strength aqueous solution in an amount sufficient to form a gel. In one embodiment, the composition was prepared using between about 1.0% and 10.0% 0.1 N sodium hydroxide. Accordingly, embodiments employing any percentage between about 1.0% and about 10.0% 0.1N NaOH may be used, such as, e.g., 1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0% or 10.0% 0.1N NaOH.
  • In one embodiment the formulation is a gel and is obtained by combining the following substances in approximate percentages:
    TABLE 2
    Ingredients Combined to Yield Testosterone Formulations (% w/w)
    T Alcohol Isopropyl Carbopol 0.1N Purified
    (Testosterone) (95% v/v) Myristate 980 NaOH Water
    1.20 73.5 1.00 1.0 7.00 16.3
    1.40 73.5 1.00 1.0 7.00 16.1
    1.60 73.5 1.00 1.0 7.00 15.9
  • In one embodiment, the composition comprises from about 1.22% testosterone to about 1.62% testosterone, such as, e.g, about 1.22% testosterone, about 1.42% testosterone, or about 1.62% testosterone.
  • In another embodiment, the composition comprises from about 1.15% to about 1.22% (w/w) testosterone.
  • In another embodiment, the composition comprises from about 1.30% to about 1.45% (w/w) testosterone.
  • In another embodiment, the composition comprises from about 1.50% to about 1.70% (w/w) testosterone.
  • In one embodiment, the composition comprises about 1.15% to about 1.8% (w/w) testosterone; about 0.6% to about 1.2% (w/w) isopropyl myristate; about 60% to about 80% (w/w) alcohol selected from the group consisting of ethanol and isopropanol; a sufficient amount of a thickening agent to give the composition a viscosity in excess of about 9000 cps; and water.
  • In another embodiment, the composition comprises about 1.15% to about 1.8% (w/w) testosterone; about 0.6% to about 1.2% (w/w) isopropyl myristate; about 67% to about 74% (w/w) alcohol selected from the group consisting of ethanol and isopropanol; a sufficient amount of a thickening agent to give the composition a viscosity in excess of about 9000 cps; and water.
  • The composition of the present invention can comprise about 1.15% to about 1.25% (w/w) testosterone, about 1.30% to about 1.45% (w/w) testosterone, or about 1.50% to about 1.70% (w/w) testosterone.
  • In an embodiment, the viscosity of the composition of the present invention is about 13,000 cps to about 33,000 cps. Accordingly, the viscosity of the composition of the present invention may be any amount between about 13,000 cps and 33,000 cps, such as, e.g., 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, 23,000, 24,000, 25,000, 26,000, 27,000, 28,000, 29,000, 30,000, 31,000, 32,000, or 33,000 cps.
  • In one embodiment of the present invention, the composition is obtained by combining about 1.30% to about 1.45% (w/w) testosterone; about 0.6% to about 1.4% (w/w) isopropyl myristate; about 67% to about 74% (w/w) ethanol; about 0.6% to about 1.4% (w/w) carbomer; about 6.5% to about 7.5% (w/w) 0.1N NaOH; and additional water.
  • In another embodiment of the present invention, the composition is obtained by combining about 1.50% to about 1.70% (w/w) testosterone; about 0.6% to about 1.4% (w/w) isopropyl myristate; about 67% to about 74% (w/w) ethanol; about 0.6% to about 1.4% (w/w) carbomer; about 6.5% to about 7.5% (w/w) 0.1N NaOH; and additional water.
  • In yet another embodiment of the present invention, the composition is obtained by combining about 1.15% to about 1.25% (w/w) testosterone; about 0.6% to about 1.4% (w/w) isopropyl myristate; about 67% to about 74% (w/w) ethanol; about 0.6% to about 1.4% (w/w) carbomer; about 6.5% to about 7.5% (w/w) 0.1N NaOH; and additional water.
  • The gel is rubbed or placed onto an area of skin of the subject and allowed to dry. The gel dries rapidly, i.e., within about 30 seconds to about 3 minutes after application. Illustratively, the gel is rubbed onto an area of skin, for example, on the upper outer thigh and/or hip once daily. Following application the subject washes his or her hands. Application of the gel results in an increased testosterone level having a desirable pharmacokinetic profile and is effective to treat or prevent hypogonadism and/or low testosterone, or the symptoms associated with, or related to hypogonadism and/or low testosterone in the subject. The composition is thus useful for treating a number of conditions or diseases.
  • In one embodiment, the present invention employs a packet having a polyethylene liner compatible with the components of a testosterone gel, as described below. The packet may hold a unit dose or multiple dose.
  • In another embodiment, the methods and compositions employ a composition that is dispensed from a rigid multi-dose container (for example, with a hand pump) having a larger foil packet, for example, of the composition inside the container. Such larger packets can also comprise a polyethylene liner as above. In one embodiment, the multi-dose container comprises an airless pump that comprises a polyethylene lined foil pouch within a canister with a hand pump inserted. In one embodiment, the polyethylene lined foil pouch comprises 44 g or 88 g of product. In one embodiment, the pump is capable of dispensing a total amount of about 75 g of gel. In one embodiment, the pump is primed before use, such as, e.g., by fully depressing the pump three times and discarding the gel. In one embodiment, the pump contains enough product to allow for priming and a set number of precise doses. In one embodiment, each full pump depression delivers 1.25 g of testosterone gel. In this embodiment, a 3.75 g dose of gel would require 3 pump depressions. A 5 g dose of gel would require 4 pump depressions. A 7.5 g dose of gel would require 6 pump depressions. A 10 g dose of gel would require 8 depressions, and so on. Of course, each pump depression can deliver any amount of testosterone gel suitable for delivering the desired dose. The pouch size, amount dispensed and the delivery volume per depression are not limited to these embodiments and may be changed or adjusted to meet the needs of the patient population.
  • The methods and compositions of the present invention provide enhanced treatment options for treating, preventing, reversing, halting or slowing the progression of hypogonadism or another low-testosterone-associated disorder in a subject, for example, a man, as compared to those currently available.
  • In one embodiment, the pharmaceutical composition of the present invention is administered once, twice, or three times a day, or as many times necessary to achieve the desired therapeutic effect. In another embodiment the composition of the present invention is administered once, twice, or three times a day on alternate days. In another embodiment the composition of the present invention is administered once, twice, or three times a day on a weekly, biweekly, or monthly basis.
  • In one embodiment, a therapeutically effective dose is between about 1.0 g and 10.0 g, preferably between about 1.25 g and 6.25 g.
  • Besides being useful for human treatment, the present invention is also useful for veterinary treatment of mammals, reptiles, birds, exotic animals and farm animals, including mammals, rodents, and the like. In one embodiment, the mammal includes a primate, for example, a human, a monkey, or a lemur, a horse, a dog, a pig, or a cat. In another embodiment, the rodent includes a rat, a mouse, a squirrel or a guinea pig.
  • The composition is capable of releasing the steroid after applying the composition to the skin at a rate and duration that delivers in one embodiment of the present invention at least about 10 μg per day of the steroid to the blood serum of the subject.
  • In another embodiment of the present invention, the composition is capable of releasing the testosterone after applying the composition to the skin of a subject at a rate and duration that achieves a circulating serum concentration of testosterone greater than about 300 ng per dl serum.
  • In another embodiment of the present invention, the composition is capable of releasing the testosterone after applying the composition to the skin of a subject at a rate and duration that achieves a circulating serum concentration of testosterone greater than about 300 ng per dl serum during a time period beginning about 0.5 hours after administration and ending about 24 hours after administration.
  • In another embodiment of the present invention, the composition is capable of releasing the testosterone after applying the composition to the skin of a subject at a rate and duration that achieves a circulating serum concentration of the testosterone between about 298 ng testosterone per dl serum to about 1043 ng testosterone per dl serum.
  • In another embodiment of the present invention, after administration of the composition, the serum testosterone concentration is maintained between about 400 and 1050 ng testosterone per dl serum.
  • In yet another embodiment of the present invention, after administration of the composition, the serum testosterone concentration is maintained between about 200 and 1800 ng testosterone per dl serum.
  • In another embodiment of the present invention, after administration of the composition, an obtained Cmax is between about 300 and 5000 ng/dl.
  • In another embodiment of the present invention, the composition is provided to a subject for daily administration in about a 1.25 g to about a 3.75 g dose, such as, e.g., about 1.25 g, or about 2.50 g, or about 3.75 g. Any other suitable dose may be also be administered.
  • In yet another embodiment of the present invention, the subject in need of treatment has a serum testosterone level before the first application (pretreatment) of the composition of the present invention of less than about 300 ng/dl.
  • In another embodiment of the present invention, where after at least about 30 days of daily administration of the composition of the present invention the serum testosterone concentration in a subject is at least about 300 ng/dl to about 1050 ng/dl, such as, for example, about 300 ng/dl to about 400 ng/dl, about 300 ng/dl to about 500 ng/dl, about 500 ng/dl to about 700 ng/dl, about 700 ng/dl to about 900 ng/dl, about 400 ng/dl to about 500 ng/dl, about 500 ng/dl to about 600 ng/dl, about 600 ng/dl to about 700 ng/dl, about 700 ng/dl to about 800 ng/dl, about 800 ng/dl to about 900 ng/dl, about 900 ng/dl to about 1000 ng/dl, about 1000 ng/dl to about 1100 ng/dl, about 400 ng/dl to about 1050 ng/dl, about 500 ng/dl to about 1050 ng/dl, about 600 ng/dl to about 1050 ng/dl, or about 700 ng/dl to about 1050 ng/dl.
  • In still another embodiment of the present invention, where after daily administration of the composition of the present invention the total testosterone concentration in a subject is greater than about 300 ng/dl. In one embodiment, the total serum testosterone concentration in the subject is greater than about 400 ng/dl, about 500 ng/dl, about 600 ng/dl or about 700 ng/dl. In one embodiment, the total testosterone concentration is measured after 24 hours of administration. In one embodiment, the total testosterone concentration is measured after more than 2 days of daily administration, such as, for example, after 10 days, 14 days, 20 days, or 30 days.
  • In another embodiment of the methods, kits, combinations, and compositions of the present invention, the composition of the present invention is administered once, twice, or three times daily to a subject for at least about 7 days. In one embodiment, the composition is administered once a day.
  • EXAMPLE 1 Development of Improved Testosterone Gel(s)
  • Introduction
  • In order to develop a new testosterone gel formulation, a number of exploratory studies were conducted to prepare and test gel formulations containing different levels of testosterone, isopropyl myristate and ethyl alcohol. Preliminary studies have demonstrated that viscosity of the gel can be increased by slightly increasing the concentrations of gelling and neutralizing agents. A statistical program was used to generate a design to study the effect of 3 ingredients, testosterone, ethyl alcohol and isopropyl myristate on viscosity and in vitro permeation of testosterone from hydroalcoholic gels. In vitro permeation studies were conducted using Franz diffusion cells. The concentration of testosterone present in receptor samples was analyzed by HPLC technique or beta scintillation counter (for radiolabeled technique). Based on results from these studies three optimized formulations were prepared and tested for skin permeation using HPLC method. All three optimized formulations showed significant improvement in viscosity and in vitro skin permeation compared to currently marketed formulation (1% testosterone gel).
  • Objectives
  • The present disclosure summarizes studies conducted to develop testosterone gel formulation(s) with improved viscosity, reduced volume of application, and improved in vitro skin permeation compared to currently marketed formulation (1% testosterone gel), and potentially reduce the volume of gel application.
  • Procedure
  • a. Statistical Design
  • A statistical design was created (StatGraphics Plus 5.1) to study the effect of 3 ingredients, testosterone, ethyl alcohol and isopropyl myristate on viscosity and in vitro permeation of testosterone from hydroalcoholic gels. Concentration of two other ingredients, Carbopol 980 and 0.1N sodium hydroxide solution were kept constant. Following is the design summary:
  • Design class: Response Surface
  • Design name: Box-Behnken design
  • Number of experimental factors: 3 (all continuous)
  • Number of blocks: 1; Number of runs: 15 (randomized)
  • Error degrees of freedom: 5
    Factors Low (%) High (%)
    Testosterone 1.33 2.0
    Isopropyl myristate 0.5 1.0
    Alcohol (95% v/v) 72.5 76.1
  • The following table summarizes the ingredients of test formulations as created by the statistical design. These formulations were prepared at 1 kg size and packaged in to glass jars for analytical and skin permeation tests.
    TABLE 3
    Ingredients Combined to Yield Test Formulations and Control
    Formulation (% w/w)
    F# T Alcohol Isopropyl Carbopol 0.1N Purified
    (Formulation) (Testosterone) (95% v/v) Myristate 980 NaOH Water
    41 1.665 74.3 0.75 1.0 7.00 15.3
    42 1.665 72.5 0.50 1.0 7.00 17.3
    43 1.665 76.1 0.50 1.0 7.00 13.7
    44 2.000 74.3 0.50 1.0 7.00 15.2
    45 1.330 74.3 0.50 1.0 7.00 15.9
    46 1.330 76.1 0.75 1.0 7.00 13.8
    47 2.000 74.3 1.00 1.0 7.00 14.7
    48 1.665 74.3 0.75 1.0 7.00 15.3
    49 1.330 74.3 1.00 1.0 7.00 15.4
    50 2.000 72.5 0.75 1.0 7.00 16.8
    51 1.665 76.1 1.00 1.0 7.00 13.2
    52 2.000 76.1 0.75 1.0 7.00 13.2
    53 1.665 72.5 1.00 1.0 7.00 16.8
    54 1.330 72.5 0.75 1.0 7.00 17.4
    55 1.665 74.3 0.75 1.0 7.00 15.3
    56 1.000 72.5 0.50 0.9 4.75 20.4
    (control)
  • b. Analytical Testing
  • All test formulations and control samples were analyzed for physical (appearance, pH and viscosity) and chemical (assays for testosterone, isopropyl myristate and alcohol) attributes.
  • c. In Vitro Skin Permeation Studies
  • Permeation of testosterone was studied quantitatively with human skin placed on the Franz diffusion cell. The skin was mounted horizontally between the donor and receptor half. The surface area of the skin exposed to the formulation in the donor chamber was 0.64 cm2, and the receptor volume was 5.0 mL. Temperature was maintained at 37° C. with the help of a double water circulation jacket surrounding the lower part of the cell. The donor chamber was open on the top.
  • Radiolabel Method
  • Test formulations were spiked with 14C labeled testosterone. Spiked radiolabeled) formulation (5-15 mg of gel containing 0.125-0.250 μCi) was applied over the surface of the epidermis gravimetrically. Periodic samples (0, 1, 2, 4, 6, 8, 10, 22 and 24 h) were taken from the receptor cell to measure the radioactivity/amount of drug permeated across the skin. In addition the amount of radiolabel/drug remaining on the skin, in the skin samples was also determined. Further details of these experiments and results are presented in Example 2.
  • HPLC Method
  • Formulation (300 mg±5% which contains 3000 μg of the drug based on 1% gel) was applied over the surface of the epidermis gravimetrically. Aliquots were collected periodically (0, 1, 2, 4, 6, 8, 10, 22 and 24 h) and replaced with fresh buffer. Later aliquots were analyzed for testosterone content. Further details of these experiments and results are presented in Example 3.
  • d. Data Analysis
  • In addition to data reported in corresponding examples, data from both radiolabel and HPLC methods was analyzed further by statistical program (StatGraphics Plus 5.1). StatGraphics program was also used to predict optimum levels of different factors which could provide maximum response.
  • Results and Discussion
  • Analytical Data
  • All test formulations were clear and have pH between 5.68-5.82. The contents of testosterone, isopropyl myristate and alcohol were close to the target. The following table summarizes analytical test results after 1 month storage at 40° C./75% RH.
    TABLE 4
    Analytical Results for Test Formulations and Control Formulation*
    F# Viscosity Assay-T Assay-Alcohol Assay-IPM
    (Formulation) Appearance pH (cps) (%) (95% v/v) (%)
    41 Clear gel 5.79 23567 1.69 73.8 0.67
    42 Clear gel 5.76 26900 1.66 71.8 0.45
    43 Clear gel 5.82 23000 1.69 75.5 0.44
    44 Clear gel 5.75 26700 2.00 74.1 0.44
    45 Clear gel 5.76 25467 1.32 73.7 0.44
    46 Clear gel 5.69 30233 1.40 74.5 0.74
    47 Clear gel 5.78 24733 2.02 73.3 0.92
    48 Clear gel 5.79 24767 1.66 74.3 0.68
    49 Clear gel 5.76 24300 1.33 73.8 0.93
    50 Clear gel 5.72 26133 2.02 71.7 0.68
    51 Clear gel 5.82 20700 1.75 75.4 0.93
    52 Clear gel 5.83 19733 2.00 75.5 0.68
    53 Clear gel 5.72 26033 1.68 71.7 0.95
    54 Clear gel 5.69 28267 1.34 71.9 0.69
    55 Clear gel 5.77 23233 1.67 74.0 0.68
    56 Clear gel 5.59 22033 1.01 72.4 0.44
    (control)

    *test results after 1 month storage at 40° C./75% RH

    T = testosterone,

    IPM = isopropyl myristate
  • As one of the objectives for this study is to increase the viscosity of the gel, statistical analysis was performed to assess the effect of test factors testosterone, isopropyl myristate and ethyl alcohol on response variable-viscosity. The following is an analysis summary:
    TABLE 5
    ANOVA for Viscosity
    Analysis of Variance for Viscosity
    Source Sum of Squares Df Mean Square F-Ratio P-Value
    A:T 9.41613E6 1 9.41613E6 1.58 0.2488
    B:IPM 3.16945E6 1 3.16945E6 0.53 0.4892
    C:EtOH 1.94337E7 1 1.94337E7 3.27 0.1137
    AA 1.43962E6 1 1.43962E6 0.24 0.6379
    AB 3.37413E6 1 3.37413E6 0.57 0.4760
    AC 3.50601E7 1 3.50601E7 5.89 0.0456
    BB 1.00605E6 1 1.00605E6 0.17 0.6933
    BC 1.95303E6 1 1.95303E6 0.33 0.5847
    CC 286812.0 1 286812.0 0.05 0.8325
    Total error 4.16608E7 7 5.95155E6
    Total (corr.) 1.17733E8 16
  • Referring now to FIG. 1, where in the chart A represents testosterone, B represents isopropyl myristate, C represents EtOH, and joint letters represents a combination of factors, it is clear that the combination of alcohol and testosterone (i.e., AC) has a significant negative effect on viscosity. This observation is consistent with earlier studies with alcohol; to maximize the viscosity the level of alcohol should be at the lowest level possible.
  • Permeation Data: Radiolabel Technique
  • Skin samples from two donors were used in this study. To minimize variability between skins, permeation data, % label permeated (% LP), from test formulations was normalized to control formulation tested with corresponding donor skin. Additional statistical analysis was performed on the ratio of % LP (test/control, Ratio %LP) to obtain trends and optimal concentrations of testosterone, isopropyl myristate and ethyl alcohol. Following is the analysis summary:
    TABLE 6
    Radiolabel Data Table used for Statistical Analysis*
    F# Alcohol
    (Formulation) Donor T IPM (95% v/v) % LP Ratio % LP
    41 8127 1.665 0.75 74.3 4.86 0.83
    42 8127 1.665 0.50 72.5 3.45 0.59
    43 8127 1.665 0.50 76.1 2.7 0.46
    44 8127 2.000 0.50 74.3 3.8 0.65
    45 8300 1.330 0.50 74.3 3.51 0.46
    46 8300 1.330 0.75 76.1 6.37 0.84
    47 8300 2.000 1.00 74.3 3.57 0.47
    48 8300 1.665 0.75 74.3 5.38 0.71
    49 8300 1.330 1.00 74.3 9.47 1.25
    50 8300 2.000 0.75 72.5 5.69 0.75
    51 8300 1.665 1.00 76.1 6.73 0.89
    52 8300 2.000 0.75 76.1 2.22 0.29
    53 8300 1.665 1.00 72.5 4.61 0.61
    54 8300 1.330 0.75 72.5 4.33 0.57
    55 8300 1.665 0.75 74.3 4.33 0.57
    56 8127 1.000 0.50 72.5 5.87 1.00
    (control)
    56 8300 1.000 0.50 72.5 7.56 1.00
    (control)

    *% LP data from Example 2. Ratio % LP calculated from % LP values.

    T = testosterone,

    IPM = isopropyl myristate,

    LP = label permeated
  • TABLE 7
    ANOVA for Ratio of % Label Permeated (Ratio % LP)
    Analysis of Variance for Viscosity
    Source Sum of Squares Df Mean Square F-Ratio P-Value
    A:T 0.213314 1 0.213314 7.19 0.0315
    B:IPM 0.107294 1 0.107294 3.62 0.0990
    C:EtOH 0.00430679 1 0.00430679 0.15 0.7145
    AA 0.119589 1 0.119589 4.03 0.0847
    AB 0.131132 1 0.131132 4.42 0.0736
    AC 0.0554353 1 0.0554353 1.87 0.2140
    BB 0.00724917 1 0.00724917 0.24 0.6363
    BC 0.0800686 1 0.0800686 2.70 0.1445
    CC 0.00941549 1 0.00941549 0.32 0.5908
    Total error 0.207716 7 0.0296737
    Total (corr.) 0.947084 16
  • The Pareto chart in FIG. 2 shows that the level of testosterone has significant negative effect, and the level of isopropyl myristate has a positive (not statistically significant) effect on % label permeated. Above analysis suggests that the maximum level of testosterone in gel formulation should be less than highest level studied. This analysis also suggests that the maximum level of isopropyl myristate in gel formulation should be close to the highest level studied.
  • Permeation Data: HPLC Technique
  • Same skin samples (two donors) used in radiolabel study were used in this study. To minimize variability between skins, permeation data (flux or cumulative amount released, CAR) from test formulations was normalized to control formulation tested with corresponding donor skin. Additional statistical analysis was performed on the ratio of CAR (test/control, Ratio CAR) to obtain trends and optimal concentrations of testosterone, isopropyl myristate and ethyl alcohol. Following is the analysis summary:
    TABLE 8
    HPLC Data Table used for Statistical Analysis*
    F# Alcohol Ratio
    (Formulation) Donor T IPM (95% v/v) CAR CAR
    41 8127 1.665 0.75 74.3 189.81 1.02
    42 8127 1.665 0.50 72.5 188.21 1.01
    43 8127 1.665 0.50 76.1 50.11 0.27
    44 8127 2.000 0.50 74.3 151.95 0.82
    45 8300 1.330 0.50 74.3 74.13 0.69
    46 8300 1.330 0.75 76.1 117.87 1.09
    47 8300 2.000 1.00 74.3 114.61 1.06
    48 8300 1.665 0.75 74.3 208.82 1.94
    49 8127 1.330 1.00 74.3 298.76 1.61
    50 8127 2.000 0.75 72.5 94.71 0.51
    51 8127 1.665 1.00 76.1 254.57 1.37
    52 8127 2.000 0.75 76.1 113.93 0.61
    53 8127 1.665 1.00 72.5 326.46 1.76
    54 8127 1.330 0.75 72.5 200.45 1.08
    55 8127 1.665 0.75 74.3 240.61 1.30
    56 8127 1.000 0.50 72.5 185.71 1.00
    (control)
    56 8300 1.000 0.50 72.5 107.79 1.00
    (control)

    *T = testosterone, IPM = isopropyl myristate, CAR = cumulative amount released
  • TABLE 9
    ANOVA for Ratio of Cumulative Amount Released (Ratio CAR)
    Analysis of Variance for Viscosity
    A:T 0.452519 1 0.452519 3.27 0.1135
    B:IPM 1.01713 1 1.01713 7.35 0.0302
    C:EtOH 0.18431 1 0.18431 1.33 0.2864
    AA 0.164241 1 0.164241 1.19 0.3120
    AB 0.0291287 1 0.0291287 0.21 0.6603
    AC 0.0600202 1 0.0600202 0.43 0.5312
    BB 0.000234383 1 0.000234383 0.00 0.9683
    BC 0.0737582 1 0.0737582 0.53 0.4891
    CC 0.200542 1 0.200542 1.45 0.2678
    Total error 0.968701 7 0.138386
    Total (corr.) 3.03859 16
  • The results in Table 8 were subjected to a regression analysis and generated the following algorithm:
    Ratio CAR=5.1239−0.4403*T+1.5781*IPM−0.0607*EtOH
    where T is an amount of testosterone % (w/w), IPM is an amount of isopropyl myristate % (w/w), and EtOH is an amount (w/w) of alcohol 95% v/v.
  • In one embodiment of the invention, values of T, IPM and EtOH are selected from within the ranges given below such that the above algorithm gives a Ratio CAR value greater than 1, preferably greater than 1.1, or most preferably greater than 2. The ranges are: between 1.0 and 2.0% (w/w) testosterone, preferably between 1.15 and 1.8% (w/w) testosterone; between 0.2% and 2.0% (w/w) isopropyl myristate, preferably between 0.6 and 1.2% (w/w) isopropyl myristate; and between about 60.0% and 80% (w/w) alcohol 95% v/v, preferably between about 72.5% and 76.1% (w/w) alcohol 95% v/v.
  • Referring now to the Pareto chart in FIG. 3, statistical analysis clearly shows that the level of isopropyl myristate has significant positive effect and the level of testosterone has negative (not statistically significant) effect on Ratio CAR. FIG. 3 suggests that the maximum level of testosterone in gel formulation should be less than highest level studied. This analysis also suggests that the maximum level of isopropyl myristate in gel formulation should be close to the highest level studied. Permeation results from HPLC method are qualitatively consistent with results from radiolabel method.
  • Response Optimization
  • Permeation results from HPLC method are qualitatively similar to those from radiolabel method. For convenience, data from HPLC study was used to predict (statistical optimization) optimum levels of testosterone, isopropyl myristate and alcohol for a given response. The statistical program produced the following combination of factor levels which maximizes the ratio of cumulative amount released (Ratio CAR).
    TABLE 10
    Optimized Factor Levels for Cumulative Amount Released (Ratio CAR)
    Goal: maximize Ratio CAR Optimum Value = 1.81748
    Factor Low High Optimum
    T 1.0 2.0 1.28995
    IPM 0.5 1.0 1.0
    EtOH 72.5 76.1 73.7366
  • FIGS. 4 and 5 illustrate estimated response (Ratio CAR) for a given combination of testosterone and isopropyl myristate at an alcohol 95% v/v level of 74.3 %(w/w).
  • a. Formulation Selection
  • Based on response surface plots and predicted optimum factor levels, the following 3 formulations were selected for further permeation studies. Again for convenience these 3 formulations were tested by HPLC method only.
    TABLE 11
    Ingredients Combined to Yield Selected Formulations and Control
    Formulation (% w/w)
    F# T Alcohol Isopropyl Carbopol 0.1N Purified
    (Formulation) (Testosterone) (95% v/v) Myristate 980 NaOH Water
    57 1.20 73.5 1.00 1.0 7.00 16.3
    58 1.40 73.5 1.00 1.0 7.00 16.1
    59 1.60 73.5 1.00 1.0 7.00 15.9
    56 1.00 72.5 0.50 0.9 4.75 20.4
    (control)
  • The following table summarizes initial (after preparation) analytical test results for selected formulations.
    TABLE 12
    Analytical Test Results for Selected Formulations and Control
    Formulation
    F# Viscosity Assay-T Assay-Alcohol Assay-IPM
    (Formulation) Appearance pH (cps) (%) (95% v/v) (%)
    57 Clear gel 5.66 24500 1.21 73.1 0.94
    58 Clear gel 5.71 25533 1.42 72.7 0.94
    59 Clear gel 5.68 24800 1.61 73.3 0.94
    56 Clear gel 5.57 20267 1.02 71.8 0.43
    (control)
  • The following table and FIG. 6 summarize permeation data from 3 selected formulations (data points for FIG. 6 and the table were obtained from Example 4, Tables 17-20).
    TABLE 13
    HPLC Data Table used for Statistical Analysis*
    F56 F57 F58 F59
    Time (1% gel) (1.2% gel) (1.4% gel) (1.6% gel)
    (hr) CAR SD CAR SD CAR SD CAR SD
    0 0 0 0.0 0 0.0 0.00 0.0 0
    1 0 0 0.5 0.7 0.0 0.00 0.0 0
    2 0 0 1.3 0.5 1.3 1.2 0.5 0.3
    4 0.40 0.1 4.3 1.3 4.0 1.0 2.9 1.3
    6 1.52 0.3 14.2 4.5 11.0 2.7 13.8 4.6
    8 6.96 1.5 38.0 11.5 35.9 11.0 43.5 10.8
    10 18.35 3.4 57.0 17.9 65.4 14.3 64.5 10.4
    22 48.20 12.5 119.2 51.0 129.1 11.8 137.5 30.6
    24 50.76 12.3 129.7 50.4 137.0 13.9 156.3 36.4

    *Data points obtained from Example 4, tables 17-20.
  • All 3 selected formulations showed significantly improved permeation (2-3× cumulative amount released) than control. These results further support the observation from initial screening of formulations and formed the basis for selection of final formulations.
  • Conclusions
  • Statistical program was used to design the experiments based on 3 key factors i.e., testosterone, isopropyl myristate and ethyl alcohol. The program was also used to analyze the analytical and in vitro skin permeation data, and identify trends and optimum levels of each of the factors to maximize response (permeation).
  • Three selected testosterone gel formulations have higher viscosity (˜4,000 cps) than control formulation.
  • Significantly improved in-vitro permeation of testosterone (2-3 times than control) through the dermatomed human skin was observed with the three selected testosterone gel formulations.
  • EXAMPLE 2 In Vitro Percutaneous Absorption of Experimental Testosterone Gel Formulations Through Human Skin by Radiolabel Method
  • Materials
  • Formulations were prepared and supplied by Solvay Pharmaceuticals. Testosterone (14C) was procured from American Radiolabeled Chemicals Inc, (St Louis, Mo.). All other chemicals and reagents were procured from approved vendors and were of highest quality and purity available.
  • Methods
  • Description of Transdermal Diffusion Cell Apparatus
  • The transdermal diffusion cell apparatus used in this study (PermeGear, Bethlehem, Pa.) holds up to 9 diffusion cells in series and the receptor fluid is stirred by the magnetic bead at 600 rpm. Percutaneous absorption in vitro was studied quantitatively with human skin placed in the Franz diffusion cell. The skin was mounted horizontally between the donor and receptor halves of the diffusion cell. The surface area of the skin exposed to the formulation in the donor chamber was 0.64 cm2, and the receptor cell volume was 5.0 ml.
  • The receptor compartment was filled with phosphate buffered saline pH 7.4 (PBS) and propylene glycol (1:1) and gentamicin sulphate (50 μg/ml). A double water circulation jacket (37° C.) surrounds the receptor cell in order to have the skin temperature maintained at physiologic level. The donor chamber was open towards the external environment, thus exposing the surface of the skin to the surrounding air of the laboratory. The relative humidity (RH) of the experimental area (around the diffusion cell setup) was monitored for every experiment and this was found to be in the range of 35 to 45% for all the experiments.
  • Skin Permeation Study
  • Human skin (thigh region) dermatomed to 0.3 mm thickness was obtained from a tissue bank (US Tissue and Cell, Salt Lake City, Utah) from cadavers. The skin was collected within 8 h of donor death and frozen in 10% w/v glycerol in normal saline. The skin was stored at −80° C. until use. Skin from two different donors was used in the experiments. Each experiment was carried out with each formulation for at least 6 times using the skin from one donor. The skin permeation data of formulations was compared with that of permeation of 1% marketed gel (in 6 replicates) tested on the skin of same donor as test formulations and all data were normalized to the reference (marketed) formulation.
  • Radiolabeled Testosterone (14C, specific activity 50-60 mCi/mmol) was used for this purpose. This is supplied by American Radiolabeled Chemicals and is 99.5% pure as ascertained by HPLC.
  • Radioactive gels were prepared in order to apply 0.125 to 0.250 μCi in a minimum amount of the gel that spreads 0.64 cm2 of the diffusion area of Franz cell (0.64 cm2). The minimum quantity was at least 5.0 to 15.0 mg. An appropriate amount of radioactive testosterone (12.5 μCi per 125 μl of ethanol) was evaporated in a round bottom flask until the solvent is completely evaporated to dryness. To this flask, 500 mg of cold gel formulation was added and vortexed for 5 minutes and allowed to equilibrate over night (12 to 16 h). This gel was further vortexed for 30 minutes to obtain homogenous gels. Homogeneity of the formulation's radioactivity was determined by the counting level of 9 exactly weighted (˜5 mg) samples (standards).
  • The frozen skin was thawed to room temperature by keeping the skin at ambient temperature for about 30 to 45 minutes. This was then rinsed with water to remove glycerol. The skin was then put in PBS pH 7.4 and gently agitated in a shaker (100 rpm) for 20 min to remove traces of glycerol. The washed skin was mounted on the cells approximately 30 minutes before the application of the formulations. The formulation (5 to 15 mg) was applied over the surface of the epidermis gravimetrically using a syringe (for each determination sufficient gel was dispensed to cover the test surface and the weight of the gel dispensed was determined). Periodic samples were taken from the receptor cell to measure the amount of drug transporting across the skin (1, 2, 4, 6, 8, 10, 22 and 24 h).
  • Washing Procedures:
  • At the end of the test (24 hours), the residual drug remaining at the surface of the skin was removed by washing the surface with 200 μl of different solvents according to the following protocol:
  • 1st wash: Cetavlon™ alcoholic (10/90 v/v)
  • 2nd wash: water
  • 3rd wash: Cetavlon™ alcoholic (10/90 v/v)
  • 4th wash: water
  • 5th wash: water.
  • The application area was then wiped with a cotton wool stick (Q-tip). The washings, cotton stick and the donor cell were collected in 20 ml of ethanol and allowed to extract all radioactivity in to ethanol. The exposed area was collected by a biopsy punch. To account for lateral diffusion, lateral portions of skin were collected and counted for radioactivity to account for Mass balance for the experiments.
  • The skin of the active diffusion area as well as the lateral skin were minced into pieces with a pair of sharp point dissecting scissors (Sigma) and digested for extraction of radioactivity, with 3 ml of Soluene 350™ (PACKARD) for overnight.
  • The radioactivity contained in the samples obtained as previously described, was measured in the totality or in weighed aliquots using a scintillating liquid beta counter equipped with dedicated software.
  • The evaluation was performed for the standards (0.5 ml/5 ml picofluor 40™), for the receptor fluid (1.0 ml/10 ml Picofluor 40™) and for an aliquot exactly weighed of the ethanolic solution containing the washing solvents (0.5 ml/5 ml Picofluor 40™).
  • For the epidermis and dermis, after digestion, 15 ml of Hionic Fluor 30™ (PACKARD) were added. The background of the count is automatically deducted from the counting rate of each sample in counts per minute (dpm).
  • Data Analysis:
  • The results were expressed in quantities or in percentages of applied testosterone, found in the different compartments. Applied quantities of testosterone were determined from the counting levels of diluted standards. Each result represents the mean value of 6 experimental determinations and is associated with its standard error of mean.
  • 1. The quantity of testosterone and the % of the dose absorbed in the receptor fluid for each time were calculated as follows:
    %=(Qt/Qi)×100
  • where Qt represents absorbed amount at time t, and Qi, applied quantity at time 0,
  • 2. The total quantity and corresponding % of the dose absorbed as a function of the time (cumulated values),
  • 3. The mean flux of testosterone permeated was calculated from the slope of the linear portion of the Q versus time plot and expressed as μCi/cm2/h
  • 4. The quantity and % of the administered dose, which was found in the skin and in the washing solvents.
  • The validity of the test was checked by balancing the radioactivity which is found in the different samples (this summarization should be comprised, for each test, between 90% and 110% of the applied dose).
  • Results and Conclusion
  • Table 14 shows that formulations F45, F47, F52, F53, F54 and F55 permeate significantly lower amount of testosterone than F56 (P<0.001). For formulations F41, 42, 43, 44, 46, 48, 50, 51 the permeated amounts appear to be lower than F56. However, the difference between these formulations and F56 were not statistically significant (P>0.05). However F49 permeated higher than F56 but the difference between these two formulations were not statistically significant (P>0.05). The mass balance data indicate variable levels of skin retention of testosterone. Furthermore, this data also demonstrates that the total mass balance is in between 90 to 110% of the initial quantity of 14C Testosterone applied (Table 14).
  • The flux of formulations F41, F42, 46, F49 and F50, albeit appearing to be higher than F56, the differences were not statistically significant (P>0.05). The flux of the all other formulations, were although appearing to be lower than control, the differences among the formulations versus F56 were not statistically significant except for F45 (P>0.05).
  • From this study, it is clear that the rate and extent of permeation of testosterone through human skin of all the test formulations were lower (or similar in some cases) than the reference formulation and none of the test formulation demonstrated significantly higher permeation than the reference formulation (F56).
  • Constraints for Flux studies: The studies conducted here were based on a finite dose kinetics where the rate limiting step is amount of gel used. Due to our using a finite dose, a non-linear permeation profile was obtained for most of the formulations which made us difficult to calculate the steady state flux. Nevertheless, a 2-10 h time points were used to calculate the flux values which is an assumption of a linear progression of flux but in actuality, the steady state was not achieved in these experiments. Hence the AUC values are a better representation to compare the formulations than flux values.
    TABLE 14
    Mass Balance Studies
    DONOR 8127
    F41 F42 F43 F44 F56
    Mean SD Mean SD Mean SD Mean SD Mean SD
    % IN WASH 72.84 19.88 82.63 12.27 95.46 8.71 92.22 3.68 92.01 13.45
    % LATERAL SK. 1.15 2.14 0.27 0.18 0.31 0.41 0.36 0.29 0.59 0.40
    % CTRL SKIN 10.57 4.50 6.38 5.27 4.18 1.14 5.80 2.28 3.52 2.39
    % PERMEATED 4.86 1.53 3.45 0.43 2.70 0.70 3.80 2.05 5.87 5.05
    % TOTAL 89.42 92.73 102.65 102.18 101.99
    DONOR 8300
    F45 F46 F47 F48 F56
    Mean SD Mean SD Mean SD Mean SD Mean SD
    % IN WASH 95.41 5.29 86.91 3.16 87.98 13.59 79.68 7.41 86.08 3.67
    % LATERAL SK. 0.24 0.14 0.42 0.17 0.14 0.08 0.25 0.10 0.21 0.09
    % CTRL SKIN 4.09 2.05 4.67 1.84 2.29 0.84 4.88 2.76 4.07 1.59
    % PERMEATED 3.51 1.65 6.37 3.98 3.57 1.25 5.38 3.81 7.56 1.78
    % TOTAL 103.25 98.37 93.98 90.19 97.92
    F49 F50 F51 F52 F56
    Mean SD Mean SD Mean SD Mean SD Mean SD
    % IN WASH 79.64 5.61 88.34 2.30 91.04 8.28 95.51 4.07 86.08 3.67
    % LATERAL SK. 0.41 0.24 0.29 0.25 0.54 0.59 0.23 0.21 0.21 0.09
    % CTRL SKIN 8.29 2.69 5.70 2.12 6.58 1.92 2.67 0.84 4.07 1.59
    % PERMEATED 9.47 2.14 5.69 1.72 6.73 2.28 2.22 0.40 7.56 1.78
    % TOTAL 97.82 100.01 104.89 100.64 97.92
    F53 F54 F55 F56
    Mean SD Mean SD Mean SD Mean SD
    % IN WASH 85.33 4.58 87.39 4.37 90.02 2.64 86.08 3.67
    % LATERAL SK. 0.20 0.08 0.35 0.33 0.09 0.05 0.21 0.09
    % CTRL SKIN 9.14 2.93 5.88 3.69 4.37 3.29 4.07 1.59
    % PERMEATED 4.61 0.62 4.33 0.68 4.33 0.68 7.56 1.78
    % TOTAL 99.28 97.95 98.81 97.92
  • EXAMPLE 3 In Vitro Percutaneous Absorption of Experimental Testosterone Gel Formulations Through Human Skin by HPLC Method
  • Methods
  • Human Skin: Human frozen skin was supplied by U.S. Tissue and Cell (Cincinnati, Ohio). Skin was shipped over dry ice and once received, it was stored at −80° C. until use. The average thickness of the dermatomed skin was 540 μm. Each experiment was carried out in replicates of six (n=6) using the same donor for any given formulation. Also, each donor was tested for permeation of 1% marketed gel (F56) in triplicate and all data was normalized to this measurement.
  • Formulations: Formulations were prepared and supplied by Solvay Pharmaceuticals. Formulations were blinded except for control/marketed product formula (F56).
  • Transport Studies: Percutaneous absorption in vitro was studied quantitatively with human skin placed on the Franz diffusion cell. The skin was mounted horizontally between the donor and receptor half. The surface area of the skin exposed to the formulation in the donor chamber was 0.64 cm2, and the receptor volume was 5.0 mL. Temperature was maintained at 37° C. with the help of a double water circulation jacket surrounding the lower part of the cell. This enabled the skin temperature to be maintained at physiological level. The donor chamber was open on the top.
  • The receptor compartment was filled with receptor fluid consisting of phosphate buffered saline pH 7.4 (PBS) and propylene glycol (1:1). The skin was mounted on the cells approximately 30 minutes before the application of the formulations. Formulation (300 mg±5% which contains 3000 μg of the drug based on 1% gel) was applied over the surface of the epidermis gravimetrically. Samples of 0.3 ml were collected periodically (0, 1, 2, 4, 6, 8, 10, 22 and 24 h) and replaced with fresh buffer.
  • Assay: Samples were analyzed for testosterone content using HPLC assay. The conditions/details were as follows:
    Mobile phase Acetonitrile: Water (50:50)
    Column C18, 3μ, 150 mm Phenomenex (Nucleosil)
    Injection volume 30 μl
    Flow rate 1 ml/min
    UV detection 239 nm

    Results
  • Referring to Table 15, the results were expressed as cumulative amounts of testosterone permeated as a function of time for the different formulations. The table shows the cumulative amount permeated relative to control/marketed product formula using the same human skin donor. The mean flux of testosterone permeated was calculated from the slope of the linear portion of the CAR (Cumulative amount released) versus time plot and expressed as μg/cm2/h. The results were expressed as a ratio of flux of test formulation and Control formulation (test/control). The cumulative amount of drug permeated through the skin per sq. cm area was also compared with that of marketed formulation and expressed as a ratio (test/control). Therefore, each formulation was compared to the marketed product formula for its cumulative permeation and flux value and the results are compiled in Table 15. The comparison of each formulation to the marketed product formula was assessed for statistical significance using ANOVA. Mean differences with p<0.05 were considered to be statistically significant. Raw data for each formulation relative to marketed product formula shows the Ratio Flux and Ratio CAR as well as the statistical conclusions.
  • Conclusions
  • Permeation of testosterone through the dermatomed human skin was observed with all the formulations and permeation ranged from 1 to 7% with various formulations.
  • Referring again to Table 15, it is shown that improved permeation relative to marketed product formulation as determined by a comparison of cumulative amount of drug permeated after 24 hrs and/or flux at statistically significant levels was observed for Formulations F 48, F 49 and F 53.
    TABLE 15
    Relative
    Standard
    Cum Amt Deviation Statistically better than
    Flux Rel (CAR) ((SD/Mean) * Ratio marketed formulation?
    Formulation Donor (μg/cm2/h) (μg) Relate 100) Flux Ratio CAR Ratio Flux Ratio CAR
    F41 (n = 4) 8127 13.03 189.81 11.87 0.65 1.02 No No
    F42 (n = 5) 8127 10.944 188.21 55.52 0.54 1.01 No No
    F43 (n = 6) 8127 3.44 50.11 23.91 0.17 0.27 No No
    F44 (n = 6) 8127 10.57 151.95 22.05 0.53 0.82 No No
    F45 (n = 6) 8300 5.95 74.13 29.00 0.47 0.69 No No
    F46 (n = 6) 8300 11.16 117.87 22.60 0.88 1.09 No No
    F47 (n = 6) 8300 10.85 114.61 22.57 0.86 1.06 No No
    F48 (n = 6) 8300 20.53 208.82 39.5 1.62 1.94 Yes Yes
    F49 (n = 6) 8127 20.34 298.76 18.70 1.01 1.61 No Yes
    F50 (n = 6) 8127 6.78 94.71 28.76 0.34 0.51 No No
    F51 (n = 6) 8127 21.37 254.57 29.68 1.06 1.37 No No
    F52 (n = 4) 8127 8.18 113.93 40.08 0.41 0.61 No No
    F53 (n = 6) 8127 24.04 326.46 28.49 1.19 1.76 No Yes
    F54 (n = 6) 8127 14.75 200.45 37.80 0.73 1.08 No No
    F55 (n = 4) 8127 16.67 240.61 27.58 0.83 1.30 No No
    F56 (n = 3) 8127 20.13 185.71 23.15 NA NA NA NA
    F56 (n = 3) 8300 12.69 107.79 7.00 NA NA NA NA
  • EXAMPLE 4 In Vitro Percutaneous Absorption of Three Testosterone Gel Formulations Through Human Skin by HPLC Method
  • Methods
  • Human Skin: Human frozen skin was supplied by U.S. Tissue and Cell (Cincinnati, Ohio). Skin was shipped over dry ice and once received; it was stored at −80° C. until use. The average thickness of the dermatomed skin was about 700 μm. Each experiment was carried out in replicates of six (n=6) using the same donor for any given formulation. Permeation of marketed formula testosterone gel (1%, F56) was also carried out in replicates of six (n=6) and all data was normalized to this measurement.
  • Formulations: Formulations were prepared and supplied by Solvay Pharmaceuticals. Formulations were blinded except for control/marketed product formula (F56).
  • Transport Studies: Percutaneous absorption in vitro was studied quantitatively with human skin placed on the Franz diffusion cell. The skin was mounted horizontally between the donor and receptor half. The surface area of the skin exposed to the formulation in the donor chamber was 0.64 cm2, and the receptor volume was 5.0 mL. Temperature was maintained at 37° C. with the help of a double water circulation jacket surrounding the lower part of the cell. This enabled the skin temperature to be maintained at physiological level. The donor chamber was open on the top.
  • The receptor compartment was filled with receptor fluid consisting of phosphate buffered saline pH 7.4 (PBS) and propylene glycol (1:1). The skin was mounted on the cells approximately 30 minutes before the application of the formulations. Formulation (300 mg±5% which contains 3000 μg of the drug based on 1% gel) was applied over the surface of the epidermis gravimetrically. Samples of 0.3 ml were collected periodically (0, 1, 2, 4, 6, 8, 10, 22 and 24 h) and replaced with fresh buffer.
  • Assay: Samples were analyzed for testosterone content using HPLC assay. The conditions/details were as follows:
    Mobile phase Acetonitrile: Water (50:50)
    Column C18, 3μ, 150 mm Phenomenex (Nucleosil)
    Injection volume 30 μl
    Flow rate 1 ml/min
    UV detection 239 nm

    Results
  • Referring to FIGS. 7-9 and Tables 17-20, the results were expressed as cumulative amounts of testosterone permeated as a function of time for the different formulations. Each table shows the cumulative amount permeated relative to control/marketed product formula using the same human skin donor. The mean flux of testosterone permeated was calculated from the slope of the linear portion of the CAR (Cumulative amount released) versus time plot and expressed as μg/cm2/h. The result was expressed as a ratio of flux of test formulation and Control formulation (test/control). The cumulative amount of drug permeated through the skin per sq. cm area was also compared with that of marketed formulation and expressed as a ratio (test/control). Therefore, each formulation was compared to the marketed product formula for its cumulative permeation and flux value and the results are compiled in Table 16. The comparison of each formulation to the marketed product formula was assessed for statistical significance using ANOVA. Mean differences with p<0.05 were considered to be statistically significant.
  • Conclusions
  • Permeation of testosterone through the dermatomed human skin was observed with the three formulations and permeation was about 3% (CAR)
  • Improved permeation relative to marketed product formulation as determined by a comparison of cumulative amount of drug permeated after 24 hrs and/or flux at statistically significant levels was observed for all test formulations F57, F58 and F59.
  • Accordingly, utilizing the teachings of the present disclosure, a hydroalcoholic gel comprising testosterone, isopropyl myristate, ethanol, water and a sufficient amount of a thickening agent to give the gel a viscosity in excess of about 9000 cps can be prepared such that when is applied to human skin mounted in a Frantz cell in an amount of about 300 mg, after 24 hours the flux ratio is in excess of 1, or preferably in excess of 1.5 where the flux ratio is the ratio of flux of testosterone expressed in amount per unit area and per unit time which permeates the skin when the gel is so tested to the flux of testosterone which permeates the skin when a gel of similar viscosity comprising 1 wt % testosterone, 0.5 wt % isopropyl myristate and 72.5 wt % alcohol 95% v/v is so tested. The hydroalcoholic gel has between 1.15 and 1.8% (w/w) testosterone; between 0.6 and 1.2% (w/w) isopropyl myristate, and between about 72.0 and 78.0% (w/w) alcohol 95% v/v.
    TABLE 16
    Summary of Testosterone Skin Permeation Data at 24 hours from
    Test Formulations (F57, F58 and F59) and Control (F56)
    Relative
    Standard
    Cumulative Deviation Statistically better than
    Flux Amount ((SD/Mean) * marketed formulation?
    Formulation Donor (μg/cm2/h) Rel (CAR, μg) 100) Ratio Flux Ratio CAR Ratio Flux Ratio CAR
    Control-F56 8126 4.20 50.76 26.08
    (n = 6)
    F57 (n = 6) 8126 10.69 129.66 41.77 2.55 2.55 Yes Yes
    F58 (n = 6) 8126 8.70 136.98 10.88 2.07 2.70 Yes Yes
    F59 (n = 6) 8126 12.67 156.32 15.25 3.02 3.08 Yes Yes
  • TABLE 17
    Testosterone Skin Permeation Data from Control Formulation (F56)
    Control Flux
    Time (hrs) (area counts) Conc (μg/ml) Conc X Dil Conc * 0.3 Total (5 ml) Cum. (μg) Cum-Sqcm SD (mcg/cm2/hr)
    0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    4.00 4137.83 0.05 0.05 0.02 0.25 0.25 0.40 0.10 0.20
    6.00 15522.67 0.19 0.19 0.06 0.96 0.97 1.52 0.30 0.56
    8.00 71183.00 0.88 0.88 0.26 4.38 4.46 6.96 1.49 2.72
    10.00 185241.67 2.28 2.28 0.68 11.41 11.74 18.35 3.37 5.69
    22.00 484302.17 5.97 5.97 1.79 29.83 30.85 48.20 12.49 2.49
    24.00 481870.50 5.94 5.94 1.78 29.68 32.49 50.76 12.29 1.28
  • TABLE 18
    Testosterone Skin Permeation Data from Test Formulation-F57
    F57 Flux
    Time (hrs) (area counts) Conc (μg/ml) Conc X Dil Conc * 0.3 Total (5 ml) Cum. (μg) Cum-Sqcm SD (mcg/cm2/hr)
    0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    1.00 5171.20 0.06 0.06 0.02 0.31 0.31 0.48 0.73 0.48
    2.00 13574.00 0.16 0.16 0.05 0.81 0.83 1.30 0.53 0.82
    4.00 45117.33 0.54 0.54 0.16 2.71 2.77 4.33 1.29 1.52
    6.00 147837.67 1.77 1.77 0.53 8.87 9.10 14.21 4.45 4.94
    8.00 393201.67 4.72 4.72 1.42 23.58 24.35 38.04 11.49 11.91
    10.00 571442.33 6.86 6.86 2.06 34.28 36.45 56.96 17.86 9.46
    22.00 1201173.50 14.41 14.41 4.32 72.05 76.28 119.19 50.99 5.19
    24.00 1240824.00 14.89 14.89 4.47 74.43 82.98 129.66 50.45 5.24
  • TABLE 19
    Testosterone Skin Permeation Data from Test Formulation-F58
    F58 Flux
    Time (hrs) (area counts) Conc (μg/ml) Conc X Dil Conc * 0.3 Total (5 ml) Cum. (μg) Cum-Sqcm SD (mcg/cm2/hr)
    0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    2.00 13377.80 0.16 0.16 0.05 0.80 0.80 1.25 1.23 1.25
    4.00 41996.33 0.50 0.50 0.15 2.52 2.57 4.01 1.03 1.38
    6.00 114316.00 1.37 1.37 0.41 6.86 7.06 11.03 2.71 3.51
    8.00 372728.67 4.47 4.47 1.34 22.36 22.97 35.89 10.99 12.43
    10.00 665420.00 7.98 7.98 2.39 39.91 41.86 65.41 14.32 14.76
    22.00 1304913.50 15.65 15.65 4.70 78.27 82.62 129.09 11.80 5.31
    24.00 1123168.83 15.72 15.72 4.72 78.62 87.67 136.98 13.89 3.95
  • TABLE 20
    Testosterone Skin Permeation Data from Test Formulation-F59
    F59 Flux
    Time (hrs) (area counts) Conc (μg/ml) Conc X Dil Conc * 0.3 Total (5 ml) Cum. (μg) Cum-Sqcm SD (mcg/cm2/hr)
    0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    2.00 5610.17 0.07 0.07 0.02 0.35 0.35 0.54 0.25 0.54
    4.00 30049.67 0.37 0.37 0.11 1.86 1.88 2.94 1.34 1.20
    6.00 140427.33 1.74 1.74 0.52 8.69 8.82 13.79 4.64 5.42
    8.00 439193.83 5.44 5.44 1.63 27.18 27.83 43.49 10.80 14.85
    10.00 629849.83 7.80 7.80 2.34 38.98 41.26 64.47 10.42 10.49
    22.00 1346943.00 16.67 16.67 5.00 83.36 87.98 137.47 30.64 6.08
    24.00 1461065.83 18.08 18.08 5.43 90.42 100.05 156.32 36.38 9.43
  • EXAMPLE 5 The Single and Multiple Dose Pharmacokinetics of Testosterone After Administration of 1.62% Hydro-Alcoholic Gel at Dose Levels of 1.25, 2.50, 3.75, 5.00, and 6.25 g in Hypogonadal Males
  • Objectives
  • To determine the single and multiple dose pharmacokinetics of testosterone after administration of testosterone gel 1.62% at doses of 1.25 g (20.3 mg), 2.50 g (40.5 mg), 3.75 g (60.8 mg), 5.00 g (81.0 mg), and 6.25 g (101.3 mg).
  • To assess the dose proportionality and accumulation of testosterone over the dose range of 1.25 g (20.3 mg) to 6.25 g (101.1 mg) of testosterone gel 1.62%.
  • Methods
  • Formulations: Formulations were prepared and supplied by Solvay Pharmaceuticals. Formulations were blinded except for control/marketed product formula.
  • Design: A single center, open-label, randomized, single and multiple dose, parallel group study in hypogonadal male subjects. Subjects were randomized to one of five treatment groups. Each group was to be composed of 12 subjects, for a total of 60 subjects.
  • Subjects who consented to participate in this study and met the inclusion/exclusion criteria were randomized to one of the following treatment groups:
    TABLE 21
    Treatment Groups
    Treatment Group Gel Dose (g) Testosterone Dose (mg)
    A 1.25 20.3
    B 2.50 40.5
    C 3.75 60.8
    D 5.00 81.0
    E 6.25 101.3
  • Each subject received single (Day 1) and multiple (Days 2-14) doses of testosterone gel 1.62% over a 14-day treatment period. Study drug was applied topically once daily in the morning. The total duration of the study was 17 days, not including the screening period. Subjects were confined to the clinic for the entire 17-day study period. The following table lists the ingredients combined to yield the study formulation used.
    TABLE 22
    Ingredients Combined to Yield Study Formulation (% w/w)
    Component Function % w/w
    Testosterone Active pharmaceutical ingredient 1.62
    Alcohol (95% v/v)* Absorption enhancer 73.5
    Isopropyl myristate Absorption enhancer 1.00
    Carbopol 980 Thickening agent precursor 1.00
    0.1N Sodium hydroxide Neutralizer 7.00
    Purified water Solvent 15.9

    *Equivalent to about 68.1% of absolute alcohol in the formulation.
  • Subjects: Fifty-six (56) hypogonadal males.
  • Main Criteria for Inclusion: Male subjects 18-75 years of age, inclusive; serum total testosterone <300 ng/dL at screening as measured by the clinical site laboratory; and subjects with a Body Mass Index (BMI) of 20-35 kg/mA2, inclusive.
  • Procedures and Assessments
  • Dose Administration: Testosterone gel 1.62% was applied topically once daily in the morning on Days 1-14. The site of application was either the shoulder/upper arm area or the abdomen. The study drug was applied in 1.25 g increments until the total target dose was reached using maximum surface area possible.
  • Twenty (20) minutes prior to the targeted time of dose application, subjects showered and washed the application site with soap and water. Subjects were not allowed to remain in the shower for longer than 10 minutes. The designated area for gel application was thoroughly dried.
  • Site personnel directly involved with the dosing procedures wore gloves when handling the study gel. A fresh pair of gloves was used for each subject. Each incremental gel dose of 1.25 g+/−0.02 g was weighed on a sheet of weighing paper on a balance. Immediately after measuring the appropriate amount of gel, the weighing paper with the measured gel dose was wiped directly onto the subject's designated site of application by the study personnel. The subject then rubbed the product into the skin of the designated application site using his hand. This process was repeated until the total target dose (1.25 g to 6.25 g) was reached.
  • Pharmacokinetic Sampling: Whole blood samples (10 mL each) were obtained from each subject for determination of total testosterone, dihydrotestosterone, and estradiol at the following time points:
      • Day −1: predose, 0.5, 1, 2, 4, 6, 8, 10, 12, and 16 hours relative to the projected time of gel application on subsequent study days;
      • Day 1: predose, 0.5, 1, 2, 4, 6, 8, 10, 12, and 16 hours postdose;
      • Days 2-13: predose;
      • Day 14: predose, 0.5, 1, 2, 4, 6, 8, 10, 12, 16, and 24 hours postdose.
  • Bioanalysis: Serum concentrations of total testosterone, dihydrotestosterone, and estradiol were determined using validated LC-MS/MS methodology.
  • Criteria for Evaluation
  • Safety: Vital signs, ECG, physical examination, clinical laboratory determinations (including PSA measurement), DRE and IPSS, safety testosterone and hematocrit measurements.
  • Pharmacokinetics: For this preliminary report, pharmacokinetic parameters (AUC(0-24), Cmax, Cavg, Cmin, peak to trough fluctuation, Tmin and Tmax) derived from both observed and baseline adjusted serum concentrations for testosterone.
  • Statistical methods: Descriptive statistics (m, mean, SD, CV, median, geometric mean, minimum, maximum) and graphical representations.
    TABLE 23
    Subject Demographics (Mean (range))
    Treatment Group N Age (years) BMI (kg/m{circumflex over ( )}2)
    A (1.25 g) 11 50 (27-69) 30.4 (25.6-33.6)
    B (2.50 g) 11 50 (31-66) 31.0 (25.9-36.1)
    C (3.75 g) 11 52 (38-65) 29.3 (21.8-35.3)
    D (5.00 g) 12 55 (37-68) 29.6 (22.6-34.0)
    E (6.25 g) 11 48 (27-68) 30.2 (27.3-32.7)
    All Groups 56 51 (27-69) 30.1 (21.8-36.1)
  • TABLE 24
    Ethnicity of the Subjects (N (%))
    White Not White
    Treatment Hispanic Hispanic or
    Group N or Latino Latino Black Asian
    A 11 5 5 0 1
    B 11 5 6 0 0
    C 11 5 5 1 0
    D 12 5 7 0 0
    E 11 2 9 0 0
    All Groups 56 22 (39.3%) 32 (57.1%) 1 (1.8%) 1 (1.8%)

    Screening Testosterone Baseline Values
  • All subjects at screening had testosterone concentrations <300 ng/dL, confirming the hypogonadal status of all subjects prior to exposure to study drug. The local clinical laboratory used chemiluminescence methodology for these evaluation. Mean screening baseline serum total testosterone concentrations ranged from 215 to 232 ng/dL for the five individual dose groups. Table 25 provides the screening baseline mean (range) by treatment group.
    TABLE 25
    Mean Screening Testosterone Baseline Values
    Mean Baseline
    Treatment Group N Testosterone (ng/dL) Range
    A 11 215  73-286
    B 11 231 132-293
    C 11 230  93-295
    D 12 232 132-293
    E 11 225 158-282
    All 56 227  23-295

    Testosterone Concentration-Time Data
  • The mean concentration-time profiles for observed testosterone on Day 1 and Day 14 are provided in FIGS. 10 and 11, respectively.
  • Referring to FIG. 10, on Day 1, a continuous increase in testosterone concentrations occurred in all treatments for approximately 8 hours postdose. Testosterone concentrations then remained consistent over the remainder of the 24-hour dosing interval. Based on the mean concentration-time profiles, all treatments provided sufficient testosterone exposure to increase levels above the lower limit of the eugonadal range (>300 ng/dL) after a single dose on Day 1.
  • Consistent testosterone levels were observed throughout the majority of the 24-hour concentration-time profiles after multiple dosing of testosterone gel 1.62%. The exception to this is Treatment D, 5.00 g, where a significant peak was observed at 6 hours postdose. This increase in the mean profile was due to the results of one subject who had a reported testosterone concentration of 4980 ng/dL at 6 hours postdose.
  • Referring now to FIG. 11, the mean profiles on Day 14 demonstrate testosterone concentrations remain above the lower limit of the eugonadal range (>300 ng/dL) over the 24-hour dose interval for all five doses. An increase in testosterone exposure was observed with increased dose over the 1.25 g to 6.25 g range, with the exception of the second profile peak in Treatment D, 5.00 g.
  • Testosterone Pharmacokinetic Results
  • The pharmacokinetic results for observed and baseline adjusted testosterone are provided in Table 26 below after subjects received a single dose of 1.62% testosterone gel on Day 1.
    TABLE 26
    Single Dose Pharmacokinetic Parameters for Testosterone Gel 1.62% on
    Day 1
    Treatment Gel Dose Testosterone Arithmetic Mean (SD)
    Parameter Group (g) Dose (mg) N Observed N Baseline Adjusted
    AUC(0-24) A 1.25 20.3 11 7376 (1465) 11 1934 (1005)
    (ng * h/dl) B 2.50 40.5 11 9112 (3354) 9 3168 (1845)
    C 3.75 60.8 11 8719 (2831) 10 3330 (1875)
    D 5.00 81 12 11933 (3188)  12 5329 (3296)
    E 6.25 101.3 11 11137 (3024)  11 5573 (2602)
    Cavg A 1.25 20.3 11 307 (61)  11 81 (42)
    (ng/dl) B 2.50 40.5 11 380 (140) 9 132 (77) 
    C 3.75 60.8 11 363 (118) 10 139 (78) 
    D 5.00 81 12 497 (133) 12 222 (137)
    E 6.25 101.3 11 464 (265) 11 232 (108)
    Cmax A 1.25 20.3 11 387 (80)  11 159 (57) 
    (ng/dL) B 2.50 40.5 11 479 (161) 9 234 (102)
    C 3.75 60.8 11 533 (211) 10 305 (178)
    D 5.00 81 12 698 (231) 12 424 (200)
    E 6.25 101.3 11 657 (215) 11 424 (210)
    Tmax[a] A 1.25 20.3 11  12 (4-24) 11  12 (4-24)
    (h) B 2.50 40.5 11  12 (4-24) 9  16 (8-24)
    C 3.75 60.8 11  16 (8-24) 10  16 (8-24)
    D 5.00 81 12  12 (2-24) 12  12 (6-24)
    E 6.25 101.3 11  12 (8-24) 11  12 (8-24)

    [a]median (range).
  • Observed mean Cavg on Day 1 was in the eugonadal range of 300-1000 ng/dL for all dose levels. Mean AUC and Cavg generally increased over the 1.25 g to 6.25 g dose range, with similar values for Treatments B and C, and Treatments D and E, respectively. Mean Cmax increased with dose from 1.25 g to 5.00 g, then leveled off. Median Tmax for all groups, except 5.00 g, was 12 hours and ranged from 2 to 24 hours.
  • Observed Cave, values on Day 1 for 1.25 g, 2.50 g, and 3.75 g remained below the upper limit of the eugonadal range (<1000 ng/dL). In treatment D, 5.00 g, one subject had a Cmax value of 1070 ng/dL. In treatment E, 6.25 g, one subject had a Cmax value of 1020 ng/dL. All other Day 1 Cmax values were <1000 ng/dL in Treatment groups D and E.
  • Baseline adjusted mean AUC and Cavg parameter values increased with dose over all five treatment levels. Baseline adjusted mean Cavg indicates endogenous testosterone concentrations increased from 81 to 232 ng/dL over the 1.25 g to 6.25 g dose range after single dose administration of testosterone gel 1.62%.
  • The multiple dose pharmacokinetic results for observed and baseline adjusted testosterone are provided in Table 27 below for testosterone gel 1.62% on Day 14.
    TABLE 27
    Multiple Dose Pharmacokinetic Parameters for Testosterone Gel 1.62%
    on Day 14
    Treatment Gel Dose Testosterone Arithmetic Mean (SD)
    Parameter Group (g) Dose (mg) N Observed N Baseline Adjusted
    AUC(0-24) A 1.25 20.3 11 7731 (2914) 9 3149 (2909)
    (ng * h/dl) B 2.50 40.5 11 9232 (4146) 11 3174 (2628)
    C 3/75 60.8 11 11132 (2950)  11 5346 (3834)
    D 5.00 81 8 16115 (11345) 8  9646 (12002)
    E 6.25 101.3 10 15250 (4123)  10 10005 (4474) 
    Cavg A 1.25 20.3 11 322 (121) 9 131 (121)
    (ng/dl) B 2.50 40.5 11 385 (173) 11 132 (110)
    C 3.75 60.8 11 464 (123) 11 223 (160)
    D 5.00 81 8 671 (473) 8 402 (500)
    E 6.25 101.3 9 634 (182) 9 413 (197)
    Cmax A 1.25 20.3 11 464 (158) 9 293 (170)
    (ng/dL) B 2.50 40.5 11 506 (195) 11 266 (119)
    C 3.75 60.8 11 750 (221) 11 523 (241)
    D 5.00 81 8 1422 (1450) 8 1145 (1466)
    E 6.25 101.3 10 1179 (520)  10 965 (527)
    Tmax[a] A 1.25 20.3 11   8 (0-16) 9    4 (0.5-16)
    (h) B 2.50 40.5 11   4 (0-16) 11   8. (0.5-24)
    C 3.75 60.8 11   8 (1-12) 11   1 (1-12)
    D 5.00 81 8   1.5 (0.5-24) 8   1.5 (0.5-24)
    E 6.25 101.3 10    6 (0.5-24) 10    6 (0.5-24)
    Cmin A 1.25 20.3 11 209 (91)  9 46 (77)
    (ng/dl) B 2.50 40.5 11 263 (138) 11 29 (70)
    C 3.75 60.8 11 310 (106) 11  89 (152)
    D 5.00 81 8 414 (184) 8 154 (203)
    E 6.25 101.3 10 351 (43)  10 102 (74) 
    Fluctuation A 1.25 20.3 11 81 (20) 9 271 (166)
    B 2.50 40.5 11 66 (18) 11 262 (188)
    C 3.75 60.8 11 97 (43) 11 252 (149)
    D 5.00 81 8 129 (66)  8 355 (306)
    E 6.25 101.3 9 117 (52)  9 201 (69) 

    [a]median (range).
  • Observed AUC, Cavg, and Cmax parameter values on Day 14 increased across the dose range of 1.25 g to 5.00 g, with an apparent leveling off with the 6.25 g dose. In the 5 g dose level group, one subject (#25791) on Day 14 had Cmax and Cavg values of 4980 ng/dL and 1801 ng/dL, respectively. These values were approximately 4-fold higher than the other subjects in this same treatment group. The cause of elevated levels in this subject is unknown. When this subject's values are removed from the group mean presented in the table above, the pharmacokinetic parameters for the 5.00 g dose group are reduced from 1422 to 914 ng/dL for Cmax and 671 to 510 ng/dL fro Cavg, respectively. Using these revised mean values, a trend of increased Cavg and Cmax values over the entire dose range of 1.25 g to 6.25 g is observed.
  • Observed mean Cmin values remained above the lower limit of the eugonadal range (>300 ng/dL) with multiple dosing at the 3.75 g, 5.00 g, and 6.25 dose levels. Observed mean Cavg for all dose levels ranged from 322 to 671 ng/dL and were in the eugonadal testosterone range of 300 to 1000 ng/dL.
  • Observed Cmax values on Day 14 for the 1.25 g dose level remained below the upper limit of the eugonadal range (<1000 ng/dL). In the other dose groups, a total of 12 subjects had observed Cmax values above 1000 ng/dL. At the 2.50 dose level, one subject had a Cmax value of 1010 ng/dL. At the 3.75 dose level, one subject had a Cmax value of 1070 ng/dL. At the 5.00 g dose level, four subjects had Cmax values >1000 ng/dL ranging from 1050 to 4980 ng/dL. At the 6.25 dose level, six subjects had Cmax values >1000 ng/dL ranging from 1110 to 2080 ng/dL. These observations are based on the bioanalytical results from the LC-MS/MS assay. These values were not identified during the predose testosterone safety testing conducted at the clinical site.
  • Baseline adjusted mean Cavg values increased with dose across the entire dose range. Baseline adjusted mean Cavg indicates endogenous testosterone concentrations increased from 131 to 413 ng/dL over the 1.25 g to 6.25 g dose range after fourteen days of multiple dose administration of testosterone gel 1.62%.
  • Conclusions
  • Based on the preliminary review of adverse event data, safety testosterone and hematocrit laboratory measures, and application site evaluation, testosterone gel 1.62% was safe and well tolerated at dose levels ranging from 1.25 to 6.25 g of gel (20.3 to 101.1 mg of testosterone). After single and multiple dose administration of testosterone gel 1.62% at dose levels ranging from 1.25 g to 6.25 g (20.3 to 101.1 mg of testosterone), mean Cavg values in the eugonadal range of 300-1000 ng/dL are obtained.
  • At the highest dose levels of 5.00 g and 6.25 g (81.0 and 101.3 mg of testosterone, respectively) a greater incidence of Cmax values exceeding the upper limit of normal for eugonadal men was observed. Appropriate monitoring in Phase 3 clinical development is indicated.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of individual numerical values are stated as approximations as though the values were preceded by the word “about” or “approximately.” Similarly, the numerical values in the various ranges specified in this application, unless expressly indicated otherwise, are stated as approximations as though the minimum and maximum values within the stated ranges were both preceded by the word “about” or “approximately.” In this manner, variations above and below the stated ranges can be used to achieve substantially the same results as values within the ranges. As used herein, the terms “about” and “approximately” when referring to a numerical value shall have their plain and ordinary meanings to a person of ordinary skill in the art to which the particular subject matter is most closely related or the art relevant to the range or element at issue. The amount of broadening from the strict numerical boundary depends upon many factors. For example, some of the factors which may be considered include the criticality of the element and/or the effect a given amount of variation will have on the performance of the claimed subject matter, as well as other considerations known to those of skill in the art. As used herein, the use of differing amounts of significant digits for different numerical values is not meant to limit how the use of the words “about” or “approximately” will serve to broaden a particular numerical value. Thus, as a general matter, “about” or “approximately” broaden the numerical value. Also, the disclosure of ranges is intended as a continuous range including every value between the minimum and maximum values plus the broadening of the range afforded by the use of the term “about” or “approximately.” Thus, recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it there individually recited herein.
  • Use of the phrase ‘the invention’ or ‘the present invention’ is not meant to limit the claims in any manner and no conclusion should be drawn that any description or argument associated with a particular use of the phrase ‘the invention’ or ‘the present invention’ applies to each and every claim. The use of the phrase ‘the invention’ or ‘the present invention’ has been used solely for linguistic or grammatical convenience and not to effect a limitation of any nature on any of the claims.
  • Alternative embodiments of the claimed invention are described herein, including the best mode known to the inventors for carrying out the claimed invention. Of these, variations of the disclosed embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing disclosure. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the claimed invention to be practiced otherwise than as specifically described herein. Accordingly, the claimed invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the claimed invention unless otherwise indicated herein or otherwise clearly contradicted by context.
  • It is to be understood that any ranges, ratios and ranges of ratios that can be formed by, or derived from, any of the data disclosed herein represent further embodiments of the present disclosure and are included as part of the disclosure as though they were explicitly set forth. This includes ranges that can be formed that do or do not include a finite upper and/or lower boundary. Accordingly, a person of ordinary skill in the art most closely related to a particular range, ratio or range of ratios will appreciate that such values are unambiguously derivable from the data presented herein.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of this disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., such as, preferred, preferably) provided herein, is intended merely to further illustrate the content of the disclosure and does not pose a limitation on the scope of the claims. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the claimed invention.

Claims (44)

1. A method of treating hypogonadism in a male subject comprising the steps of:
a. providing a hydroalcoholic gel pharmaceutical composition comprising:
i. about 1.15% to about 1.8% (w/w) testosterone;
ii. about 0.6% to about 1.2% (w/w) isopropyl myristate;
iii. about 60% to about 80% (w/w) of an alcohol selected from the group consisting of ethanol and isopropanol;
iv. a sufficient amount of a thickening agent to give the composition a viscosity in excess of about 9000 cps; and
v. water;
b. administering a therapeutically effective dose of the composition to an area of skin of the subject;
wherein after applying the composition to the skin of the subject, the composition provides sufficient testosterone to give the subject a blood serum concentration of testosterone of between about 298 and 1043 ng testosterone per dl serum.
2. The method of claim 1, wherein the composition comprises about 67.0% to about 74.0% (w/w) of an alcohol selected from the group consisting of ethanol and isopropanol.
3. The method of claim 1, wherein the composition comprises about 1.15% to about 1.25% (w/w) testosterone.
4. The method of claim 1, wherein the composition comprises about 1.22% (w/w) testosterone.
5. The method of claim 1, wherein the composition comprises about 1.30% to about 1.45% (w/w) testosterone.
6. The method of claim 1, wherein the composition comprises about 1.42% (w/w) testosterone.
7. The method of claim 1, wherein the composition comprises about 1.50% to about 1.70% (w/w) testosterone
8. The method of claim 1, wherein the composition comprises about 1.62% (w/w) testosterone.
9. The method of claim 1, wherein the composition comprises about 0.6% to about 1.4% (w/w) of a thickening agent.
10. The method of claim 1, wherein the thickening agent is formed by combining a precursor polyacrylic acid with a neutralizer in the course of forming the composition.
11. The method of claim 10, wherein the thickening agent is neutralized Carbomer 980.
12. The method of claim 10, wherein the thickening agent is neutralized Carbomer 940.
13. The method of claim 11 or 12, wherein the neutralizer is selected from the group consisting of sodium hydroxide, ammonium hydroxide, potassium hydroxide, arginine, aminomethyl propanol, tetrahydroxypropyl ethylenediamine, triethanolamine, tromethamine, PEG-15 cocamine, diisopropanolamine, triisopropanolamine and combinations thereof.
14. The method of claim 10, wherein the neutralizer is between about 6.5% and 7.5% (w/w) 0.1N NaOH.
15. The method of claim 1, wherein the composition has a viscosity of about 13,000 cps to about 33,000 cps.
16. The method of claim 1, wherein the subject has a pretreatment serum testosterone concentration less than about 300 ng/dl.
17. The method of claim 1, wherein the composition is capable of releasing the testosterone after applying the composition to the skin of a subject at a rate and duration that achieves a circulating serum concentration of testosterone greater than about 300 ng per dl serum.
18. The method of claim 17, wherein the serum concentration of testosterone is greater than about 300 ng per dl serum during a time period beginning about 0.5 hours after administration and ending about 24 hours after administration.
19. The method of claim 18, wherein the serum testosterone concentration is maintained between about 400 and 1050 ng testosterone per dl serum.
20. The method of claim 18, wherein the serum testosterone concentration is maintained between about 200 and 1800 ng testosterone per dl serum.
21. The method of claim 1, wherein an obtained Cmax is between about 300 and 5000 ng/dl.
22. The method of claim 1, wherein the therapeutically effective dose is about 1.0 g to about 10.0 g of the composition.
23. The method of claim 22, wherein the therapeutically effective dose is administered daily.
24. The method of claim 1, wherein the therapeutically effective dose is administered once, twice, or three times daily for at least about 7 days.
25. The method of claim 1, wherein the hydroalcoholic gel pharmaceutical composition comprises the result of combining the following ingredients:
a. about 1.15% to about 1.25% (w/w) testosterone;
b. about 67.0% to about 74.0% (w/w) ethanol;
c. about 0.6% to about 1.4% (w/w) isopropyl myristate;
d. about 0.6% to about 1.4% (w/w) carbomer;
e. about 6.5% to about 7.5% (w/w) 0.1N NaOH; and
f. additional water.
26. The method of claim 1, wherein the hydroalcoholic gel pharmaceutical composition comprises the result of combining the following ingredients:
a. about 1.30% to about 1.45% (w/w) testosterone;
b. about 67.0% to about 74.0% (w/w) ethanol;
c. about 0.6% to about 1.4% (w/w) isopropyl myristate;
d. about 0.6% to about 1.4% (w/w) carbomer;
e. about 6.5% to about 7.5% (w/w) 0.1N NaOH; and
f. additional water.
27. The method of claim 1, wherein the hydroalcoholic gel pharmaceutical composition comprises the result of combining the following ingredients:
a. about 1.5% to about 1.7% (w/w) testosterone;
b. about 67.0% to about 74.0% (w/w) ethanol;
c. about 0.6% to about 1.4% (w/w) isopropyl myristate;
d. about 0.6% to about 1.4% (w/w) carbomer;
e. about 6.5% to about 7.5% (w/w) 0.1N NaOH; and
f. additional water.
28. A method of treating hypogonadism in a male subject comprising the steps of:
a. providing a hydroalcoholic gel pharmaceutical composition comprising the result of combining the following ingredients:
i. about 1.40% to about 1.80% (w/w) testosterone;
ii. about 0.6% to about 1.4% (w/w) isopropyl myristate;
iii. about 67.0% to about 74.0% (w/w) ethanol;
iv. about 0.6% to about 1.4% (w/w) carbomer;
v about 6.5% to about 7.5% (w/w) 0.1N NaOH; and
vi. additional water;
b. administering a therapeutically effective dose of the composition to an area of skin of the subject;
wherein after applying the composition to the skin of the subject, the composition provides sufficient testosterone to give the subject a blood serum concentration of testosterone of between about 298 and 1043 ng testosterone per dl serum.
29. The method of claim 28, wherein the composition is administered to the shoulder/upper arm and/or abdomen area of the male subject.
30. The method of claim 28, wherein the composition has a viscosity between about 13,000 cps and 33,000 cps.
31. The method of claim 28, wherein the composition comprises about 1.62% (w/w) testosterone.
32. The method of claim 28, wherein the therapeutically effective dose is about 1.25 g to about 6.25 g of the composition.
33. The method of claim 32, wherein the therapeutically effective dose delivers about 20.3 mg to about 101.1 mg of testosterone to the skin.
34. The method of claim 33, wherein the therapeutically effective dose is administered daily.
35. The method of claim 33, wherein the therapeutically effective dose is administered once daily for at least 14 days.
36. A hydroalcoholic gel for the transdermal delivery of testosterone to a person comprising:
a. testosterone;
b. isopropyl myristate;
c. ethanol;
d. water; and
e. a sufficient amount of a thickening agent to give the gel a viscosity in excess of about 9000 cps;
in amounts such that said gel, when applied to human skin mounted in a Frantz cell in an amount of about 300 mg, provides after 24 hours a CAR ratio in excess of 1 wherein said CAR ratio is the ratio of cumulative testosterone which permeates said skin when said gel is so tested to the cumulative testosterone which permeates skin when a hydroalcoholic gel of similar viscosity comprising 1 wt % testosterone, 0.5 wt % isopropyl myristate and 72.5 wt % ethanol 95% v/v is so tested.
37. The hydroalcoholic gel of claim 36, wherein the CAR ratio is in excess of 1.1.
38. The hydroalcoholic gel of claim 37, wherein the CAR ratio is in excess of 2.
39. The hydroalcoholic gel of claim 36, wherein:
a. the amount of testosterone is between about 1.15% and 1.8% (w/w);
b. the amount of isopropyl myristate is between about 0.6% and 1.2% (w/w); and
c. the amount of ethanol is between about 67.0% and 74.0% (w/w).
40. A hydroalcoholic gel for the transdermal delivery of testosterone to a person comprising:
a. testosterone;
b. isopropyl myristate;
c. ethanol;
d. water; and
e. a sufficient amount of a thickening agent to give the gel a viscosity in excess of about 9000 cps;
in amounts such that said gel, when applied to human skin mounted in a Frantz cell in an amount of about 300 mg, provides after 24 hours a flux ratio in excess of 1 wherein said flux ratio is the ratio of flux of testosterone expressed in amount per unit area and per unit time which permeates said skin when said gel is so tested to the flux of testosterone which permeates said skin when a hydroalcoholic gel of similar viscosity comprising 1 wt % testosterone, 0.5 wt % isopropyl myristate, and 72.5 wt % ethanol 95% v/v is so tested wherein the flux is determined in both cases by plotting the testosterone which permeates said skin versus time and taking the slope of the linear portion of the curve.
41. The hydroalcoholic gel of claim 40, wherein the flux ratio is in excess of 1.5.
42. The hydroalcoholic gel of claim 40, wherein:
a. the amount of testosterone is between about 1.15% and 1.8% (w/w);
b. the amount of isopropyl myristate is between about 0.6% and 1.2% (w/w); and
c. the amount of ethanol is between about 67.0% and 74.0% (w/w).
43. A hydroalcoholic gel for the transdermal delivery of testosterone to a person comprising:
a. testosterone;
b. isopropyl myristate;
c. ethanol;
d. water; and
e. a sufficient amount of a thickening agent to give the gel a viscosity in excess of about 9000 cps;
in amounts such that said gel, when applied to the skin of a person, causes a significantly greater increase in serum concentration of testosterone than the application of the same amount of a hydroalcoholic gel of similar viscosity comprising 1 wt % testosterone, 0.5 wt % isopropyl myristate, and 72.5 wt % ethanol 95% v/v.
44. The hydroalcoholic gel of claim 43, wherein:
a. the amount of testosterone is between about 1.0% and 2.0% (w/w);
b. the amount of isopropyl myristate is between about 0.5% and 2.0% (w/w); and
c. the amount of ethanol is between about 67.0% and 74.0% (w/w).
US11/549,083 2005-10-12 2006-10-12 Testosterone gel and method of use Abandoned US20070237822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US72527605P true 2005-10-12 2005-10-12
US11/549,083 US20070237822A1 (en) 2005-10-12 2006-10-12 Testosterone gel and method of use

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US11/549,083 US20070237822A1 (en) 2005-10-12 2006-10-12 Testosterone gel and method of use
US13/180,316 US8466136B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/180,327 US8466137B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/253,848 US8466138B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/253,867 US8486925B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/831,207 US8729057B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,189 US8759329B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,231 US8741881B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,217 US8754070B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US14/231,002 US20140329788A1 (en) 2005-10-12 2014-03-31 Testosterone gel and method of use
US15/092,440 US20160228355A1 (en) 2005-10-12 2016-04-06 Testosterone gel and method of use

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US13/180,327 Continuation US8466137B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/180,316 Continuation US8466136B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/180,316 Division US8466136B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/253,848 Continuation US8466138B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/253,867 Continuation US8486925B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/253,867 Division US8486925B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use

Publications (1)

Publication Number Publication Date
US20070237822A1 true US20070237822A1 (en) 2007-10-11

Family

ID=37943593

Family Applications (11)

Application Number Title Priority Date Filing Date
US11/549,083 Abandoned US20070237822A1 (en) 2005-10-12 2006-10-12 Testosterone gel and method of use
US13/180,327 Active US8466137B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/180,316 Active US8466136B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/253,848 Active US8466138B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/253,867 Active US8486925B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/831,207 Active US8729057B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,217 Active US8754070B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,231 Active US8741881B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,189 Active US8759329B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US14/231,002 Abandoned US20140329788A1 (en) 2005-10-12 2014-03-31 Testosterone gel and method of use
US15/092,440 Abandoned US20160228355A1 (en) 2005-10-12 2016-04-06 Testosterone gel and method of use

Family Applications After (10)

Application Number Title Priority Date Filing Date
US13/180,327 Active US8466137B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/180,316 Active US8466136B2 (en) 2005-10-12 2011-07-11 Testosterone gel and method of use
US13/253,848 Active US8466138B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/253,867 Active US8486925B2 (en) 2005-10-12 2011-10-05 Testosterone gel and method of use
US13/831,207 Active US8729057B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,217 Active US8754070B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,231 Active US8741881B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US13/831,189 Active US8759329B2 (en) 2005-10-12 2013-03-14 Testosterone gel and method of use
US14/231,002 Abandoned US20140329788A1 (en) 2005-10-12 2014-03-31 Testosterone gel and method of use
US15/092,440 Abandoned US20160228355A1 (en) 2005-10-12 2016-04-06 Testosterone gel and method of use

Country Status (29)

Country Link
US (11) US20070237822A1 (en)
EP (3) EP2450041B1 (en)
JP (2) JP5584415B2 (en)
KR (1) KR20080068654A (en)
CN (1) CN101287470B (en)
AU (1) AU2006299833B2 (en)
BR (1) BRPI0617294A2 (en)
CA (1) CA2624788C (en)
DK (2) DK2450041T3 (en)
EA (1) EA012754B1 (en)
EC (1) ECSP088363A (en)
ES (2) ES2399763T3 (en)
GE (1) GEP20125432B (en)
HK (1) HK1117417A1 (en)
HR (1) HRP20130071T1 (en)
IL (1) IL190522A (en)
LT (1) LT2450041T (en)
MA (1) MA29941B1 (en)
NO (1) NO20082170L (en)
NZ (1) NZ567056A (en)
PL (1) PL2450041T3 (en)
PT (1) PT1937276E (en)
RS (1) RS52671B (en)
SI (2) SI2450041T1 (en)
TN (1) TNSN08167A1 (en)
TR (1) TR201815853T4 (en)
UA (1) UA87627C2 (en)
WO (1) WO2007044976A2 (en)
ZA (1) ZA200803087B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038220A1 (en) * 2004-09-09 2008-02-14 Laboratoires Besins International Testosterone Gels Comprising Propylene Glycol as Penetration Enhancer
US8466138B2 (en) 2005-10-12 2013-06-18 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
WO2015089289A1 (en) * 2013-12-13 2015-06-18 Upsher-Smith Laboratories, Inc. Testosterone gel compositions and related methods
US9125816B2 (en) 2000-08-30 2015-09-08 Besins Healthcare Inc. Pharmaceutical composition and method for treating hypogonadism

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI339122B (en) * 2002-03-15 2011-03-21 Lab Besins Iscovesco Androgen pharmaceutical composition,kit containing the same and method for using the same
US20040002482A1 (en) * 2000-08-30 2004-01-01 Dudley Robert E. Androgen pharmaceutical composition and method for treating depression
EP2136813A2 (en) * 2007-03-23 2009-12-30 Unimed Pharmaceuticals, LLC Compositions and method for treating pediatric hypogonadism
DK2214643T3 (en) * 2007-11-02 2014-05-26 Acrux Dds Pty Ltd A transdermal delivery system for hormones and steroids
AU2010237596A1 (en) * 2009-04-01 2011-10-27 Wirra Ip Pty Ltd A multidose package, course and method of treatment for delivering predetermined multiple doses of a pharmaceutical
US9757388B2 (en) 2011-05-13 2017-09-12 Acerus Pharmaceuticals Srl Intranasal methods of treating women for anorgasmia with 0.6% and 0.72% testosterone gels
US20130040923A1 (en) * 2011-05-13 2013-02-14 Trimel Pharmaceuticals Corporation Intranasal lower dosage strength testosterone gel formulations and use thereof for treating anorgasmia or hypoactive sexual desire disorder
US20130045958A1 (en) 2011-05-13 2013-02-21 Trimel Pharmaceuticals Corporation Intranasal 0.15% and 0.24% testosterone gel formulations and use thereof for treating anorgasmia or hypoactive sexual desire disorder
US20140058339A1 (en) * 2012-08-22 2014-02-27 Mark L. Baum Method and apparatus for self-dosing and self-administering pharmaceutical compositions
JP6338658B2 (en) * 2013-10-07 2018-06-06 アンタレス・ファーマ・インコーポレーテッド Hematocrit adjusted through needle auxiliary jet injection of testosterone
IN2014MU00667A (en) * 2014-02-25 2015-10-23 Intas Pharmaceuticals Ltd. Stable transdermal testosterone gel
US20170014417A1 (en) 2015-07-14 2017-01-19 Lipp Life Sciences Llc Pharmaceutical administration system for the transdermal application of vardenafil
CN107949389A (en) * 2015-09-30 2018-04-20 富士胶片株式会社 Transdermally absorbable composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319913B1 (en) * 1997-11-10 2001-11-20 Cellegy Pharmaceuticals, Inc. Penetration enhancing and irritation reducing systems
US20020183296A1 (en) * 2000-08-30 2002-12-05 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20030022877A1 (en) * 2000-08-30 2003-01-30 Dudley Robert E. Method of increasing testosterone and related steroid concentrations in women
US6562370B2 (en) * 1999-12-16 2003-05-13 Dermatrends, Inc. Transdermal administration of steroid drugs using hydroxide-releasing agents as permeation enhancers
US6562369B2 (en) * 1999-12-16 2003-05-13 Dermatrends, Inc. Transdermal administration of androgenic drugs hydroxide-releasing agents as permeation enhancers
US6586000B2 (en) * 1999-12-16 2003-07-01 Dermatrends, Inc. Hydroxide-releasing agents as skin permeation enhancers
US20030139384A1 (en) * 2000-08-30 2003-07-24 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20040002482A1 (en) * 2000-08-30 2004-01-01 Dudley Robert E. Androgen pharmaceutical composition and method for treating depression
US20040037173A1 (en) * 2000-02-10 2004-02-26 Teruhiko Fujisawa Time keeping apparatus and control method therefor
US20040072810A1 (en) * 2001-11-07 2004-04-15 Besins International Belgique Pharmaceutical composition in the form of a gel or a solution based on dihydrotestosterone, process for preparing it and uses thereof
US20050020552A1 (en) * 2003-07-16 2005-01-27 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US20050054623A1 (en) * 2000-08-30 2005-03-10 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20070088012A1 (en) * 2005-04-08 2007-04-19 Woun Seo Method of treating or preventing type-2 diabetes
US7320968B2 (en) * 2002-04-19 2008-01-22 Bentley Pharmaceuticals, Inc. Pharmaceutical composition

Family Cites Families (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155658A (en) 1936-01-08 1939-04-25 Chemische Forschungs Gmbh Surgical and medical preparations
US2232508A (en) 1938-10-21 1941-02-18 Lionel Corp Accessory control circuits for toy electric railroads and apparatus therefor
BE565269A (en) 1957-03-27
US3121042A (en) 1959-05-04 1964-02-11 Ercoli Alberto Oral compositions containing 3-enolethers of methyltestosterone
GB916778A (en) 1959-10-15 1963-01-30 Vismara Francesco Spa Oral compositions containing 3-substituted 17-ª--methyl testosterones
GB941634A (en) 1960-11-16 1963-11-13 Upjohn Co Improvements in or relating to steroids and the manufacture thereof
US3218283A (en) 1962-07-26 1965-11-16 Monsanto Co Novel solutions of poly-(acrylic anhydride) and poly-(methacrylic anhydride) polymers
US3164520A (en) 1962-10-29 1965-01-05 Olin Mathieson Injectable steroid compositions containing at least 75% benzyl benzoate
GB1158283A (en) 1965-10-21 1969-07-16 Foster Milburn Company Composition to be Applied to Skin and Process for Preparing Same.
US3888995A (en) 1968-07-19 1975-06-10 Syntex Corp Fatty alcohol-propylene glycol vehicle
US3887699A (en) 1969-03-24 1975-06-03 Seymour Yolles Biodegradable polymeric article for dispensing drugs
US3913789A (en) 1974-02-13 1975-10-21 United States Banknote Corp Fluid container of the flexible wall capsule type
US4009254A (en) 1974-05-06 1977-02-22 Colgate-Palmolive Company Topical compositions
US3939111A (en) 1974-07-01 1976-02-17 The B. F. Goodrich Company Stable polyurethane solutions
US3989816A (en) 1975-06-19 1976-11-02 Nelson Research & Development Company Vehicle composition containing 1-substituted azacycloheptan-2-ones
US4197316A (en) 1975-07-23 1980-04-08 Scott Eugene J Van Treatment of dry skin
NL7510104A (en) 1975-08-27 1977-03-01 Akzo Nv A process for the preparation of an orally active pharmaceutical composition.
US4078060A (en) 1976-05-10 1978-03-07 Richardson-Merrell Inc. Method of inducing an estrogenic response
CH625702A5 (en) 1977-01-18 1981-10-15 Delalande Sa
DE2747531A1 (en) 1977-10-22 1979-04-26 Basf Ag Substituted 3-aminopyrazoles
US4954487A (en) 1979-01-08 1990-09-04 The Procter & Gamble Company Penetrating topical pharmaceutical compositions
US4299826A (en) 1979-10-12 1981-11-10 The Procter & Gamble Company Anti-acne composition
CA1165240A (en) 1980-07-09 1984-04-10 The Procter & Gamble Company Penetrating topical pharmaceutical compositions
US4346709A (en) 1980-11-10 1982-08-31 Alza Corporation Drug delivery devices comprising erodible polymer and erosion rate modifier
US4442094A (en) 1980-12-23 1984-04-10 Merck & Co., Inc. (3-Aralkylamino-2-or-propoxy)heterocyclic compounds
US4440777A (en) 1981-07-07 1984-04-03 Merck & Co., Inc. Use of eucalyptol for enhancing skin permeation of bio-affecting agents
US4447562A (en) 1981-07-15 1984-05-08 Ivani Edward J Amino-polysaccharides and copolymers thereof for contact lenses and ophthalmic compositions
FR2515041B3 (en) 1981-10-26 1984-06-15 Besins Jean
FR2518879B3 (en) 1981-12-30 1985-02-08 Besins Jean
FR2519252B3 (en) 1982-01-07 1985-02-08 Besins Jean
US4496556A (en) 1982-08-16 1985-01-29 Norman Orentreich Topical applications for preventing dry skin
DE3315654C2 (en) 1983-04-29 1990-11-22 Robert Bosch Gmbh, 7000 Stuttgart, De
NL8301550A (en) 1983-05-03 1984-12-03 Gist Brocades Nv Imidazolethanol esters.
US4478822A (en) 1983-05-16 1984-10-23 Merck & Co., Inc. Drug delivery system utilizing thermosetting gels
US4557934A (en) 1983-06-21 1985-12-10 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one
US4631188A (en) 1983-08-31 1986-12-23 S.K.Y. Polymers, Ltd. (Kingston Technologies) Injectable physiologically-acceptable polymeric composition
DE3333240A1 (en) 1983-09-12 1985-03-28 Schering Ag Preparation for transdermal application of drug active ingredients
US4690775A (en) 1983-09-30 1987-09-01 Research Corporation Emulsion-based gel and process for preparing same
EP0501523B1 (en) 1983-11-14 1997-04-09 Columbia Laboratories, Inc. Bioadhesive compositions
FR2558373B1 (en) 1984-01-20 1987-07-03 Mauvais Jarvis Pierre Antiestrogen drug has basic 4-hydroxytamoxifen for percutaneous administration
CA1248450A (en) 1984-04-05 1989-01-10 Kazuo Kigasawa Soft patch
GB8416234D0 (en) 1984-06-26 1984-08-01 Ici Plc Biodegradable amphipathic copolymers
US4725439A (en) 1984-06-29 1988-02-16 Alza Corporation Transdermal drug delivery device
US4704282A (en) 1984-06-29 1987-11-03 Alza Corporation Transdermal therapeutic system having improved delivery characteristics
US4791099A (en) 1984-10-29 1988-12-13 Chaovanee Aroonsakul Method of treatment for central nervous system diseases such as Alzheimer's's disease
GB2167408B (en) 1984-11-23 1988-05-25 Farmos Oy Substituted imidazole derivatives and their preparation and use
EP0189861A3 (en) 1985-01-26 1988-02-17 Showa Denko Kabushiki Kaisha Percutaneous absorption accelerator for ionic water-soluble medicine
AT77962T (en) 1985-02-25 1992-07-15 Univ Rutgers Dosing system for transdermal absorption of drug active ingredients.
US5788983A (en) 1989-04-03 1998-08-04 Rutgers, The State University Of New Jersey Transdermal controlled delivery of pharmaceuticals at variable dosage rates and processes
US4663157A (en) 1985-02-28 1987-05-05 The Proctor & Gamble Company Sunscreen compositions
GB8508404D0 (en) 1985-03-30 1985-05-09 Baylor College Medicine Therapeutic compositions
US4767627A (en) 1985-05-29 1988-08-30 Merck & Co., Inc. Drug delivery device which can be retained in the stomach for a controlled period of time
US4994265A (en) 1985-09-06 1991-02-19 Aloe Scientific Labs Shaving composition
US4683242A (en) 1985-10-28 1987-07-28 A. H. Robins Company, Incorporated Transdermal treatment for pain and inflammation with 2-amino-3-aroylbenzeneacetic acids, salts and esters
DE3687692T2 (en) 1985-11-13 1993-05-19 Japan Res Dev Corp Sex hormones for treatment of immune-deficient diseases.
DE3690626C2 (en) 1985-12-04 1997-05-15 Dean Hsieh Medicinal compsn. for trans-dermal use
US5731303A (en) 1985-12-04 1998-03-24 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery compositions
US5023252A (en) 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US4699779A (en) 1986-02-18 1987-10-13 Victor Palinczar Waterproof sunscreen compositions
US4820724A (en) 1986-03-31 1989-04-11 University Of Southern California Dual phase solvent carrier system
US4780320A (en) 1986-04-29 1988-10-25 Pharmetrix Corp. Controlled release drug delivery system for the periodontal pocket
US4946870A (en) 1986-06-06 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Delivery systems for pharmaceutical or therapeutic actives
US4863911A (en) 1986-08-04 1989-09-05 University Of Florida Method for treating male sexual dysfunction
IL84269A (en) 1986-10-31 1991-08-16 Pfizer Transdermal flux enhancing compositions
US4863970A (en) 1986-11-14 1989-09-05 Theratech, Inc. Penetration enhancement with binary system of oleic acid, oleins, and oleyl alcohol with lower alcohols
US4861764A (en) 1986-11-17 1989-08-29 Macro Chem. Corp. Percutaneous absorption enhancers, compositions containing same and method of use
US5326790A (en) 1986-11-19 1994-07-05 Dermatologic Research Corporation Administration of skin medications by use of dicarboxylic acids and derivatives
AU601528B2 (en) 1986-12-22 1990-09-13 Ortho-Mcneil Pharmaceutical, Inc. Resilient transdermal drug-delivery device and compositions and devices employing fatty acid esters/ethers of alkanediols and percutaneous absorption enhancers
US4981696A (en) 1986-12-22 1991-01-01 E. I. Du Pont De Nemours And Company Polylactide compositions
US4906169A (en) 1986-12-29 1990-03-06 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US4788062A (en) 1987-02-26 1988-11-29 Alza Corporation Transdermal administration of progesterone, estradiol esters, and mixtures thereof
BE1000381A4 (en) 1987-03-13 1988-11-16 Pharlyse Sa PHARMACEUTICAL PREPARATION BASED indomethacin.
US4855305A (en) 1987-03-23 1989-08-08 Applied Medical Research Compositions and methods of effecting contraception utilizing melatonin
JPH0552806B2 (en) 1987-06-09 1993-08-06 Lion Corp
US5013553A (en) 1987-06-30 1991-05-07 Vipont Pharmaceutical, Inc. Drug delivery devices
US5256652A (en) 1987-11-12 1993-10-26 Pharmedic Co. Topical compositions and methods for treatment of male impotence
US4920203A (en) 1987-12-17 1990-04-24 Allied-Signal Inc. Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5223261A (en) 1988-02-26 1993-06-29 Riker Laboratories, Inc. Transdermal estradiol delivery system
US5719197A (en) 1988-03-04 1998-02-17 Noven Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
US5656286A (en) 1988-03-04 1997-08-12 Noven Pharmaceuticals, Inc. Solubility parameter based drug delivery system and method for altering drug saturation concentration
IE62871B1 (en) 1988-03-08 1995-03-08 Warner Lambert Co Compositions with enhanced penetration
US5231087A (en) 1988-03-16 1993-07-27 Cellegy Pharmaceuticals, Inc. Treatment of skin diseases and tumors with esters and amides of monocarboxylic acids
US5641504A (en) 1988-06-09 1997-06-24 Alza Corporation Skin permeation enhancer compositions using glycerol monolinoleate
EP0364211B1 (en) 1988-10-11 1994-12-21 Shire Holdings Ltd. A percutaneous pharmaceutical preparation
HU210549B (en) 1988-10-27 1995-05-29 Schering Ag Process for producing transdermally applicable pharmaceutical composition containing gestodene
DE3836862A1 (en) 1988-10-27 1990-05-03 Schering Ag Composition for the transdermal administration of steroid hormones
US5238944A (en) 1988-12-15 1993-08-24 Riker Laboratories, Inc. Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine
US5332577A (en) 1988-12-27 1994-07-26 Dermamed Transdermal administration to humans and animals
US5324521A (en) 1989-12-18 1994-06-28 Dermamed Systems for transdermal administration of medicaments
EP0386960A3 (en) 1989-03-07 1991-10-23 American Cyanamid Company Pharmaceutical compositions useful as drug delivery vehicles and/or as wound dressings
JP2959838B2 (en) 1989-03-10 1999-10-06 アンドルシェルシュ・インコーポレイテッド Combination therapy for the treatment of estrogen-sensitive disease
US4917882A (en) 1989-03-16 1990-04-17 Amway Corporation Gel-type sunscreen composition
US5053227A (en) 1989-03-22 1991-10-01 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
DE69010076D1 (en) 1989-05-25 1994-07-28 Takeda Chemical Industries Ltd Transdermal therapeutic agent.
US5059603A (en) 1989-06-12 1991-10-22 Centuries Laboratories, Inc. Method and composition for treating impotence
US5122519A (en) 1989-06-27 1992-06-16 American Cyanamid Company Stable, cosmetically acceptable topical gel formulation and method of treatment for acne
EP0595796B1 (en) 1989-07-07 2003-01-15 Endorecherche Inc. Method of treatment of androgen-related diseases
US5232703A (en) 1989-07-21 1993-08-03 Izhak Blank Estradiol compositions and methods for topical application
US5116828A (en) 1989-10-26 1992-05-26 Nippon Zoki Pharmaceutical Co., Ltd. Pharmaceutical composition for treatment of osteoporosis
JP2893803B2 (en) 1990-02-27 1999-05-24 日本電気株式会社 The driving method of plasma display
DE69125855D1 (en) 1990-06-01 1997-05-28 Population Council Inc Therapeutically effective, topical application of ST1435
US5250534A (en) 1990-06-20 1993-10-05 Pfizer Inc. Pyrazolopyrimidinone antianginal agents
US5202125A (en) 1990-12-10 1993-04-13 Theratech, Inc. Method and systems for administering nitroglycerin transdermally at enhanced transdermal fluxes
US5152997A (en) 1990-12-11 1992-10-06 Theratech, Inc. Method and device for transdermally administering testosterone across nonscrotal skin at therapeutically effective levels
EP0491076A1 (en) 1990-12-19 1992-06-24 Theratech, Inc. Penetration enhancement with multi-component system of N-aliphatic pyrrolidones with lower alcohols
JPH04261119A (en) 1991-02-13 1992-09-17 Lintec Corp Percutaneous absorption-type pharmaceutical preparation
US5446070A (en) 1991-02-27 1995-08-29 Nover Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
US5340586A (en) 1991-04-12 1994-08-23 University Of Southern California Methods and formulations for use in treating oophorectomized women
US5340585A (en) 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
US5211952A (en) 1991-04-12 1993-05-18 University Of Southern California Contraceptive methods and formulations for use therein
TW218849B (en) 1991-05-17 1994-01-11 Squibb Bristol Myers Co
US5326566A (en) 1991-05-17 1994-07-05 Bristol-Myers Squibb Company Use of dibutyl adipate and isopropyl myristate in topical and transdermal products
US5208013A (en) 1991-06-03 1993-05-04 Olympus International, Inc. Composition for skin care and protection
US5252338A (en) 1991-06-27 1993-10-12 Alza Corporation Therapy delayed
US5487898A (en) 1991-08-26 1996-01-30 Abbott Laboratories Compositions and method for the sublingual or buccal administration therapeutic agents
US5238933A (en) 1991-10-28 1993-08-24 Sri International Skin permeation enhancer compositions
JP3202777B2 (en) 1992-01-24 2001-08-27 リンテック株式会社 Percutaneous absorption-promoting agent and tape formulations
US5629019A (en) 1992-02-27 1997-05-13 Alza Corporation Formulations with hydrophobic permeation enhancers
TW224048B (en) 1992-03-30 1994-05-21 Hoechst Roussel Pharma
JP2960832B2 (en) 1992-05-08 1999-10-12 ペルマテック テクノロジー アクチェンゲゼルシャフト Administration system of estradiol
US5607691A (en) 1992-06-12 1997-03-04 Affymax Technologies N.V. Compositions and methods for enhanced drug delivery
US5446025A (en) 1992-06-12 1995-08-29 Abbott Laboratories Formulations and method of the percutaneous administration of leuprolide
AT192928T (en) 1992-06-19 2000-06-15 Univ California Lipids for epidermal moisturization and to restore the barrier function
DE4223004A1 (en) 1992-07-13 1994-01-20 Liedtke Pharmed Gmbh Pharmaceutical semi-solid topical dosage form for transdermal
US5932227A (en) 1992-07-23 1999-08-03 Hisamitsu Pharmaceutical Co., Inc. Percutaneously administrable base composition and drug composition prepared therefrom
JP3276406B2 (en) 1992-07-24 2002-04-22 富士通株式会社 The driving method of plasma display
CA2101496A1 (en) 1992-07-31 1994-02-01 Masao Kobayashi Base for transdermal administration
DE4227989A1 (en) 1992-08-21 1994-06-09 Schering Ag Means for transdermal administration containing 3-keto-desogestrel
US5883115A (en) 1992-11-09 1999-03-16 Pharmetrix Division Technical Chemicals & Products, Inc. Transdermal delivery of the eutomer of a chiral drug
US5639743A (en) 1992-11-13 1997-06-17 University Of Georgia Research Foundation Compositions and methods for treating exocrine gland atrophy
WO1994013257A1 (en) 1992-12-16 1994-06-23 Creative Products Resource Associates, Ltd. Occlusive/semi-occlusive lotion for treatment of a skin disease or disorder
WO1994016709A2 (en) 1993-01-19 1994-08-04 Endorecherche Inc. Therapeutic uses and delivery systems of dehydroepiandrosterone
US5776923A (en) 1993-01-19 1998-07-07 Endorecherche, Inc. Method of treating or preventing osteoporosis by adminstering dehydropiandrosterone
US5881926A (en) 1993-03-11 1999-03-16 Taro Pharmaceutical Industries, Ltd. Pharmaceutical compositions in semisolid form and a device for administration thereof
US5885565A (en) 1993-03-19 1999-03-23 Cellegy Pharmaceuticals Inc. Methods for inducing phase separation of epithelial lipid bilayers
DE69429768T2 (en) 1993-04-05 2002-09-19 Competitive Tech Inc Diagnosis and treatment of erectile dysfunctions
DE69430917D1 (en) 1993-05-19 2002-08-08 Hisamitsu Pharmaceutical Co 3-l-menthoxy-PROPANE-1, 2-diol as a solubilizer AND EXTERNAL PREPARATION CONTAINING THESE CONTAINS
US5648350A (en) 1993-05-25 1997-07-15 Laboratoires Besins Iscovesco Dihydrotestosterone for use in androgenotherapy
US5460820B1 (en) 1993-08-03 1999-08-03 Theratech Inc Method for providing testosterone and optionally estrogen replacement therapy to women
US5362886A (en) 1993-10-12 1994-11-08 Eli Lilly And Company Asymmetric synthesis
CA2176824A1 (en) 1993-12-27 1995-07-06 Hiroshi Kuroda Percutaneously absorbable preparation
GB9401090D0 (en) 1994-01-21 1994-03-16 Glaxo Lab Sa Chemical compounds
US6143746A (en) 1994-01-21 2000-11-07 Icos Corporation Tetracyclic cyclic GMP-specific phosphodiesterase inhibitors, process of preparation and use
CN1106259A (en) 1994-02-05 1995-08-09 日东制药株式会社 Antiphlogistic and analgesic gel agent for external use containing propanoic acid non steroid pharmaceutical as effective composition
FR2718372B1 (en) 1994-04-08 1996-06-28 Sofab Dispenser of fluid products.
US6395744B1 (en) 1994-04-22 2002-05-28 Queen's University At Kingston Method and compositions for the treatment or amelioration of female sexual dysfunction
DE10199068I2 (en) 1994-04-22 2004-05-06 Pentech Pharmaceuticals Inc Sublingual dosage forms containing apomorphinzur use in the treatment of erectile D ysfunktion.
US5540934A (en) 1994-06-22 1996-07-30 Touitou; Elka Compositions for applying active substances to or through the skin
JP4102901B2 (en) 1994-09-14 2008-06-18 スリーエム カンパニー Matrix for transdermal drug delivery
AU695170B2 (en) 1994-12-21 1998-08-06 Theratech, Inc. Transdermal delivery system with adhesive overlay and peel seal disc
US5807568A (en) 1994-12-27 1998-09-15 Mcneil-Ppc, Inc. Enhanced delivery of topical compositions containing flurbiprofen
US6024974A (en) 1995-01-06 2000-02-15 Noven Pharmaceuticals, Inc. Composition and methods for transdermal delivery of acid labile drugs
US5629021A (en) 1995-01-31 1997-05-13 Novavax, Inc. Micellar nanoparticles
AT408067B (en) 1995-03-17 2001-08-27 Gebro Pharma Gmbh A pharmaceutical composition for topical applizierung and processes for their preparation
US5844103A (en) 1995-03-24 1998-12-01 Lever Brothers Company, Division Of Conopco, Inc. Anionic glycasuccinamide sufactants and a process for their manufacture
US5654337A (en) 1995-03-24 1997-08-05 II William Scott Snyder Topical formulation for local delivery of a pharmaceutically active agent
FR2732223B1 (en) 1995-03-30 1997-06-13 Sanofi Sa A pharmaceutical composition for transdermal administration
US5731339A (en) 1995-04-28 1998-03-24 Zonagen, Inc. Methods and formulations for modulating the human sexual response
DE19517145C2 (en) 1995-05-10 2000-02-24 Hexal Pharmaforschung Gmbh Transdermal therapeutic system (TTS) for administration of testosterone
US5882676A (en) 1995-05-26 1999-03-16 Alza Corporation Skin permeation enhancer compositions using acyl lactylates
US5876746A (en) 1995-06-07 1999-03-02 Cygnus, Inc. Transdermal patch and method for administering 17-deacetyl norgestimate alone or in combination with an estrogen
US5785991A (en) 1995-06-07 1998-07-28 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
GB9512670D0 (en) 1995-06-21 1995-08-23 Sod Conseils Rech Applic Camptothecin analogues
US5780050A (en) 1995-07-20 1998-07-14 Theratech, Inc. Drug delivery compositions for improved stability of steroids
WO1997004752A1 (en) 1995-07-26 1997-02-13 Duramed Pharmaceuticals, Inc. Pharmaceutical compositions of conjugated estrogens and methods for their use
US5906830A (en) 1995-09-08 1999-05-25 Cygnus, Inc. Supersaturated transdermal drug delivery systems, and methods for manufacturing the same
US5902603A (en) 1995-09-14 1999-05-11 Cygnus, Inc. Polyurethane hydrogel drug reservoirs for use in transdermal drug delivery systems, and associated methods of manufacture and use
US6225299B1 (en) 1996-09-16 2001-05-01 Jenapharm Gmbh & Co. Kg Hormonal agent for skin treatment
US6036977A (en) 1995-09-29 2000-03-14 L.A.M. Pharmaceutical Corp. Drug preparations for treating sexual dysfunction
US6251436B1 (en) 1995-09-29 2001-06-26 L.A.M. Pharmaceutical Corporation Drug preparations for treating sexual dysfunction
US5849729A (en) 1995-12-26 1998-12-15 Hershey Foods Corporation Use of hydrolyzed cocoa butter for percutaneous absorption
US5643587A (en) 1996-02-15 1997-07-01 Avon Products, Inc. Composition and method for under-eye skin lightening
AUPN814496A0 (en) 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
US5898038A (en) 1996-03-19 1999-04-27 Board Of Regents, The University Of Texas System Treatment of osteoporosis and metabolic bone disorders with nitric oxide substrate and/or donors
DE19619045C1 (en) 1996-05-02 1997-11-13 Jenapharm Gmbh Use of combination products for the treatment of hypogonadal men and men with hypophyseal
IT1283102B1 (en) 1996-06-06 1998-04-07 Permatec Nv therapeutic composition for the transdermal administration of an active principle estrogen or progestin or mixtures thereof
US5730987A (en) 1996-06-10 1998-03-24 Omar; Lotfy Ismail Medication for impotence containing lyophilized roe and a powdered extract of Ginkgo biloba
US5708038A (en) 1996-06-13 1998-01-13 Univera Pharmaceuticals, Inc. Method of using aloe vera as a biological vehicle
US6007837A (en) 1996-07-03 1999-12-28 Alza Corporation Drug delivery devices and process of manufacture
US6139873A (en) 1996-07-10 2000-10-31 Cedars-Sinai Medical Center Combined pharmaceutical estrogen-androgen-progestin
US5770226A (en) 1996-07-10 1998-06-23 Wake Forest University Combined pharmaceutical estrogen-androgen-progestin oral contraceptive
RU2122396C1 (en) 1996-07-12 1998-11-27 Валентина Александровна Андрюшина Bioactive addition to cosmetics
US6228852B1 (en) 1996-07-12 2001-05-08 Carolyn V. Shaak Transdermal application of naturally occurring steroid hormones
US5783208A (en) 1996-07-19 1998-07-21 Theratech, Inc. Transdermal drug delivery matrix for coadministering estradiol and another steroid
US5837289A (en) 1996-07-23 1998-11-17 Grasela; John C. Transdermal delivery of medications using a combination of penetration enhancers
US5863560A (en) 1996-09-11 1999-01-26 Virotex Corporation Compositions and methods for topical application of therapeutic agents
US5760096A (en) 1996-10-18 1998-06-02 Thornfeldt; Carl R. Potent penetration enhancers
WO1998018416A1 (en) 1996-10-30 1998-05-07 Theratech, Inc. Fatty acid esters of glycolic acid and its salts as permeation enhancers
US6472425B1 (en) 1997-10-31 2002-10-29 Nitromed, Inc. Methods for treating female sexual dysfunctions
US6331543B1 (en) 1996-11-01 2001-12-18 Nitromed, Inc. Nitrosated and nitrosylated phosphodiesterase inhibitors, compositions and methods of use
US6019988A (en) 1996-11-18 2000-02-01 Bristol-Myers Squibb Company Methods and compositions for enhancing skin permeation of drugs using permeation enhancers, when drugs and/or permeation enhancers are unstable in combination during long-term storage
US5855920A (en) 1996-12-13 1999-01-05 Chein; Edmund Y. M. Total hormone replacement therapy
US5807957A (en) 1996-12-23 1998-09-15 Macrochem Corporation Cationic film-forming polymer compositions, and use thereof in topical agents delivery system and method of delivering agents to the skin
US6019997A (en) 1997-01-09 2000-02-01 Minnesota Mining And Manufacturing Hydroalcoholic compositions for transdermal penetration of pharmaceutical agents
US5908619A (en) 1997-01-09 1999-06-01 Minnesota Mining And Manufacturing Company Hydroalcoholic compositions thickened using surfactant/polymer complexes
DE19701949A1 (en) 1997-01-13 1998-07-16 Jenapharm Gmbh Transdermal therapeutic system
GB9700878D0 (en) 1997-01-17 1997-03-05 Scherer Ltd R P Dosage forms and method for ameliorating male erectile dysfunction
US20010023261A1 (en) 1997-01-27 2001-09-20 Lg Chemical Limited. Novel composition for the transdermal administration of drugs
US6132760A (en) 1997-02-28 2000-10-17 3M Innovative Properties Company Transdermal device for the delivery of testosterone
US6103765A (en) 1997-07-09 2000-08-15 Androsolutions, Inc. Methods for treating male erectile dysfunction
US6342250B1 (en) 1997-09-25 2002-01-29 Gel-Del Technologies, Inc. Drug delivery devices comprising biodegradable protein for the controlled release of pharmacologically active agents and method of making the drug delivery devices
US5968919A (en) 1997-10-16 1999-10-19 Macrochem Corporation Hormone replacement therapy drug formulations for topical application to the skin
US20020013304A1 (en) 1997-10-28 2002-01-31 Wilson Leland F. As-needed administration of an androgenic agent to enhance female sexual desire and responsiveness
US6156753A (en) 1997-10-28 2000-12-05 Vivus, Inc. Local administration of type III phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6037346A (en) 1997-10-28 2000-03-14 Vivus, Inc. Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
US6127363A (en) 1997-10-28 2000-10-03 Vivus, Inc. Local administration of Type IV phosphodiesterase inhibitors for the treatment of erectile dysfunction
US5877216A (en) 1997-10-28 1999-03-02 Vivus, Incorporated Treatment of female sexual dysfunction
CA2306837C (en) 1997-10-28 2007-05-08 Asivi, Llc. Treatment of female sexual dysfunction
US6046244A (en) 1997-11-05 2000-04-04 Nexmed Holdings, Inc. Topical compositions for prostaglandin E1 delivery
US6172088B1 (en) 1997-11-24 2001-01-09 University Of Florida Research Foundation, Inc. Testosterone compounds and use for the protection of neurons
AU1728099A (en) 1997-12-22 1999-07-12 Alza Corporation Monoglyceride and ethyl palmitate permeation enhancer compositions
EP1043020A1 (en) 1997-12-25 2000-10-11 Daiichi Pharmaceutical Co., Ltd. Medicinal composition for percutaneous administration
US5935949A (en) 1998-03-20 1999-08-10 Trustees Of Dartmouth College Use of androgen therapy in fibromyalgia and chronic fatigue syndrome
CA2329005C (en) 1998-04-17 2006-01-03 Ortho-Mcneil Pharmaceutical, Inc. Folic acid-containing pharmaceutical compositions, and related methods and delivery systems
FR2777784B1 (en) 1998-04-27 2004-03-19 Arepa A pharmaceutical composition based on estrogen and progesterone
US6124461A (en) 1998-05-26 2000-09-26 Saint Louis University, Health Services Center, Research Administration Compounds, compositions, and methods for treating erectile dysfunction
US5847128A (en) 1998-05-29 1998-12-08 Virginia Commonwealth University Water soluble derivatives of cannabinoids
US6277884B1 (en) 1998-06-01 2001-08-21 Nitromed, Inc. Treatment of sexual dysfunction with N-hydroxyguanidine compounds
US6087368A (en) 1998-06-08 2000-07-11 Bristol-Myers Squibb Company Quinazolinone inhibitors of cGMP phosphodiesterase
DE19825856A1 (en) 1998-06-10 1999-12-16 Labtec Gmbh New topical formulation which includes active agent as liquid lipid nanoparticles in an oil-in-water emulsion
US5942545A (en) 1998-06-15 1999-08-24 Macrochem Corporation Composition and method for treating penile erectile dysfunction
AU4696499A (en) 1998-06-19 2000-01-05 Genetronics, Inc. Electrically assisted transdermal method and apparatus for the treatment of erectile dysfunction
US6200591B1 (en) 1998-06-25 2001-03-13 Anwar A. Hussain Method of administration of sildenafil to produce instantaneous response for the treatment of erectile dysfunction
US5880117A (en) 1998-07-13 1999-03-09 Arnold; Patrick Use of 4-androstenediol to increase testosterone levels in humans
US6207694B1 (en) 1998-07-27 2001-03-27 Howard Murad Pharmaceutical compositions and methods for managing scalp conditions
US6284234B1 (en) 1998-08-04 2001-09-04 Johnson & Johnson Consumer Companies, Inc. Topical delivery systems for active agents
US6436950B1 (en) 1998-08-14 2002-08-20 Nastech Pharmaceutical Company, Inc. Nasal delivery of apomorphine
WO2000014088A1 (en) 1998-09-04 2000-03-16 Ortho-Mcneil Pharmaceutical, Inc. 5-heterocyclyl pyrazolo[4,3-d]pyrimidin-7-ones for the treatment of male erectile dysfunction
US6323242B1 (en) 1998-12-02 2001-11-27 Peter Sterling Mueller Treatment of disorders secondary to organic impairments
EP1005831A3 (en) 1998-12-04 2001-05-30 Eisai Co., Ltd. A method for measurement of a penile diameter
US6224573B1 (en) 1999-01-15 2001-05-01 Nexmed Holdings, Inc. Medicament dispenser
US6117446A (en) 1999-01-26 2000-09-12 Place; Virgil A. Drug dosage unit for buccal administration of steroidal active agents
DE19903087A1 (en) 1999-01-27 2000-08-10 Forssmann Wolf Georg Treatment of erectile dysfunction with C-type natriuretic polypeptide (CNP) as monotherapy or in combination with phosphodiesterase inhibitors
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US6087362A (en) 1999-03-16 2000-07-11 Pentech Pharmaceuticals, Inc. Apomorphine and sildenafil composition
US6267985B1 (en) 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6309663B1 (en) 1999-08-17 2001-10-30 Lipocine Inc. Triglyceride-free compositions and methods for enhanced absorption of hydrophilic therapeutic agents
US6187750B1 (en) 1999-08-25 2001-02-13 Everyoung Technologies, Inc. Method of hormone treatment for patients with symptoms consistent with multiple sclerosis
US6075028A (en) 1999-09-23 2000-06-13 Graham; Richard Method of treating Tourette's syndrome and related CNS disorders
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6582724B2 (en) 1999-12-16 2003-06-24 Dermatrends, Inc. Dual enhancer composition for topical and transdermal drug delivery
WO2001052823A2 (en) 2000-01-20 2001-07-26 Noven Pharmaceuticals, Inc. Compositions to effect the release profile in the transdermal administration of drugs
US6980566B2 (en) 2000-03-10 2005-12-27 Lightwaves Systems, Inc. Method for routing data packets using an IP address based in GEO position
DE10015783C2 (en) 2000-03-30 2003-12-04 Lohmann Therapie Syst Lts A transdermal therapeutic system for dispensing lerisetron and its use
EP1284735A4 (en) 2000-04-07 2006-01-11 Tap Pharmaceutical Prod Inc Apomorphine derivatives and methods for their use
PT1322336E (en) 2000-08-30 2013-08-05 Unimed Pharmaceuticals Llc Method of increasing testosterone and related steroid concentrations in women
TWI339122B (en) 2002-03-15 2011-03-21 Lab Besins Iscovesco Androgen pharmaceutical composition,kit containing the same and method for using the same
JP5039252B2 (en) 2000-08-31 2012-10-03 ユニメッド ファーマシューティカルズ,リミティド ライアビリティ カンパニー Pharmaceutical compositions and methods for treating hypogonadism
FR2814074B1 (en) 2000-09-15 2003-03-07 Theramex New topical estrogen-progestin compositions systemic effect
WO2002051421A2 (en) 2000-12-22 2002-07-04 Dr. August Wolff Gmbh & Co. Gel composition and trans-scrotal application of a composition for the treatment of hypogonadism
JP2002212105A (en) 2001-01-22 2002-07-31 Lion Corp Aqueous skin care composition
EP1390024A4 (en) 2001-05-11 2010-02-17 Merrion Res Iii Ltd Isostearic acid salts as permeation enhancers
US20030027804A1 (en) 2001-06-27 2003-02-06 Van Der Hoop Roland Gerritsen Therapeutic combinations for the treatment of hormone deficiencies
AU2002340120A1 (en) 2001-10-04 2003-04-14 Cellegy Pharmaceuticals, Inc. Semisolid topical hormonal compositions and methods for treatment
AT439829T (en) 2001-12-07 2009-09-15 Besins Int Belgique Gel or Lisung containing dihydrotestosterone, manufacturing process and their use
WO2003066130A2 (en) 2002-02-07 2003-08-14 Massachusetts Institute Of Technology Transdermal drug delivery systems
CN1470239A (en) 2002-07-28 2004-01-28 王怀秀 Testosterone intradermic sustained preparation
FR2848112B1 (en) 2002-12-10 2007-02-16 Besins Int Belgique A pharmaceutical composition for transdermal or transmucosal administration comprising at least one progestogen and / or at least one estrogen, process for its preparation and uses thereof
FR2851470B1 (en) 2003-02-20 2007-11-16 Besins Int Belgique A pharmaceutical composition for transdermal or transmucosal administration
US20050025833A1 (en) 2003-07-16 2005-02-03 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US20050042268A1 (en) 2003-07-16 2005-02-24 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US7968532B2 (en) 2003-12-15 2011-06-28 Besins Healthcare Luxembourg Treatment of gynecomastia with 4-hydroxy tamoxifen
RU2275930C2 (en) 2004-04-26 2006-05-10 ООО "РусГен" Composition for correction of human endocrine system age-related changes (variants) and method for production of pharmaceutical formulation based on the same
US20070189977A1 (en) 2004-06-07 2007-08-16 Jie Zhang Spray-on formulations and methods for dermal delivery of drugs
US20070196323A1 (en) 2004-06-07 2007-08-23 Jie Zhang Polyvinyl alcohol-containing compositions and methods for dermal delivery of drugs
US20070196453A1 (en) 2004-06-07 2007-08-23 Jie Zhang Two or more non-volatile solvent-containing compositions and methods for dermal delivery of drugs
US8907153B2 (en) 2004-06-07 2014-12-09 Nuvo Research Inc. Adhesive peel-forming formulations for dermal delivery of drugs and methods of using the same
US20070190124A1 (en) 2004-06-07 2007-08-16 Jie Zhang Two or more solidifying agent-containing compositions and methods for dermal delivery of drugs
EP1634583A1 (en) 2004-09-09 2006-03-15 Laboratoires Besins International Testosterone gels comprising propylene glycol as penetration enhancer
US20070082039A1 (en) 2004-10-18 2007-04-12 Jones Gerald S Jr Synthesis of fatty alcohol esters of alpha-hydroxy carboxylic acids, the use of the same as percutaneous permeation enhancers, and topical gels for the transdermal delivery of steroids
CN101217874B (en) 2005-04-12 2012-06-06 优尼麦德药物股份有限公司 Method of treating or preventing bone deterioration or osteoporosis
WO2006113242A2 (en) 2005-04-13 2006-10-26 Unimed Pharmaceuticals, Inc. Method of increasing testosterone and related steroid concentrations in women
KR20080009201A (en) 2005-04-15 2008-01-25 클라루스 쎄러퓨틱스, 아이엔씨. Pharmaceutical delivery systems for hydrophobic drugs and compositions comprising same
US8435944B2 (en) 2005-06-03 2013-05-07 Acrux Dds Pty Ltd. Method and composition for transdermal drug delivery
US20070065494A1 (en) 2005-08-03 2007-03-22 Watson Laboratories, Inc. Formulations and Methods for Enhancing the Transdermal Penetration of a Drug
SI2450041T1 (en) 2005-10-12 2019-02-28 Unimed Pharmaceuticals, Llc Improved testosterone gel for use in the treatment of hypogonadism
US20070254036A1 (en) 2006-04-13 2007-11-01 Besins Healthcare Sa Treatment of menopause associated symptoms
US20080220068A1 (en) 2006-07-31 2008-09-11 Laboratories Besins International Treatment and prevention of excessive scarring
EP2062575B1 (en) 2006-09-11 2012-02-15 Sekisui Chemical Co., Ltd. Adhesive preparation comprising desglymidodrine
US20080261937A1 (en) 2007-03-23 2008-10-23 Dudley Robert E Pharmaceutical compositions and method for treating pediatric hypogonadism

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319913B1 (en) * 1997-11-10 2001-11-20 Cellegy Pharmaceuticals, Inc. Penetration enhancing and irritation reducing systems
US6579865B2 (en) * 1997-11-10 2003-06-17 Cellegy Pharmaceuticals, Inc. Penetration enhancing and irritation reducing systems
US6562370B2 (en) * 1999-12-16 2003-05-13 Dermatrends, Inc. Transdermal administration of steroid drugs using hydroxide-releasing agents as permeation enhancers
US6586000B2 (en) * 1999-12-16 2003-07-01 Dermatrends, Inc. Hydroxide-releasing agents as skin permeation enhancers
US6562369B2 (en) * 1999-12-16 2003-05-13 Dermatrends, Inc. Transdermal administration of androgenic drugs hydroxide-releasing agents as permeation enhancers
US20040037173A1 (en) * 2000-02-10 2004-02-26 Teruhiko Fujisawa Time keeping apparatus and control method therefor
US20050118242A1 (en) * 2000-08-30 2005-06-02 Dudley Robert E. Androgen pharmaceutical composition and method for treating depression
US20030022877A1 (en) * 2000-08-30 2003-01-30 Dudley Robert E. Method of increasing testosterone and related steroid concentrations in women
US6503894B1 (en) * 2000-08-30 2003-01-07 Unimed Pharmaceuticals, Inc. Pharmaceutical composition and method for treating hypogonadism
US20030139384A1 (en) * 2000-08-30 2003-07-24 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20030232072A1 (en) * 2000-08-30 2003-12-18 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20040002482A1 (en) * 2000-08-30 2004-01-01 Dudley Robert E. Androgen pharmaceutical composition and method for treating depression
US20020183296A1 (en) * 2000-08-30 2002-12-05 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20050152956A1 (en) * 2000-08-30 2005-07-14 Dudley Robert E. Method of increasing testosterone and related steroid concentrations in women
US20050142173A1 (en) * 2000-08-30 2005-06-30 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20050049233A1 (en) * 2000-08-30 2005-03-03 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20050054623A1 (en) * 2000-08-30 2005-03-10 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20050112181A1 (en) * 2000-08-30 2005-05-26 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20050113353A1 (en) * 2000-08-30 2005-05-26 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20030050292A1 (en) * 2000-08-30 2003-03-13 Dudley Robert E. Pharmaceutical composition and method for treating hypogonadism
US20040072810A1 (en) * 2001-11-07 2004-04-15 Besins International Belgique Pharmaceutical composition in the form of a gel or a solution based on dihydrotestosterone, process for preparing it and uses thereof
US7320968B2 (en) * 2002-04-19 2008-01-22 Bentley Pharmaceuticals, Inc. Pharmaceutical composition
US20060211664A1 (en) * 2002-10-18 2006-09-21 Dudley Robert E Method for treating erectile dysfunction and increasing libido in men
US20050020552A1 (en) * 2003-07-16 2005-01-27 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US20070088012A1 (en) * 2005-04-08 2007-04-19 Woun Seo Method of treating or preventing type-2 diabetes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125816B2 (en) 2000-08-30 2015-09-08 Besins Healthcare Inc. Pharmaceutical composition and method for treating hypogonadism
US9132089B2 (en) 2000-08-30 2015-09-15 Besins Healthcare Inc. Pharmaceutical composition and method for treating hypogonadism
US20080038220A1 (en) * 2004-09-09 2008-02-14 Laboratoires Besins International Testosterone Gels Comprising Propylene Glycol as Penetration Enhancer
US8754070B2 (en) 2005-10-12 2014-06-17 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8486925B2 (en) 2005-10-12 2013-07-16 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8729057B2 (en) 2005-10-12 2014-05-20 Unimed Pharmaeuticals, LLC Testosterone gel and method of use
US8741881B2 (en) 2005-10-12 2014-06-03 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8466137B2 (en) 2005-10-12 2013-06-18 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8759329B2 (en) 2005-10-12 2014-06-24 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8466136B2 (en) 2005-10-12 2013-06-18 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
US8466138B2 (en) 2005-10-12 2013-06-18 Unimed Pharmaceuticals, Llc Testosterone gel and method of use
WO2015089289A1 (en) * 2013-12-13 2015-06-18 Upsher-Smith Laboratories, Inc. Testosterone gel compositions and related methods
US9295675B2 (en) 2013-12-13 2016-03-29 Upsher-Smith Laboratories, Inc. Testosterone gel compositions and related methods
US9662340B2 (en) 2013-12-13 2017-05-30 Upsher-Smith Laboratories, Inc. Testosterone gel compositions and related methods

Also Published As

Publication number Publication date
JP5728508B2 (en) 2015-06-03
EP1937276B1 (en) 2012-11-21
US20120028946A1 (en) 2012-02-02
NZ567056A (en) 2012-02-24
PT1937276E (en) 2013-02-21
JP5584415B2 (en) 2014-09-03
DK2450041T3 (en) 2018-11-19
US8729057B2 (en) 2014-05-20
US20130203720A1 (en) 2013-08-08
US20120028948A1 (en) 2012-02-02
EA200801049A1 (en) 2008-08-29
CA2624788A1 (en) 2007-04-19
MA29941B1 (en) 2008-11-03
KR20080068654A (en) 2008-07-23
IL190522D0 (en) 2008-11-03
LT2450041T (en) 2018-12-27
BRPI0617294A2 (en) 2011-07-19
EP2450041A3 (en) 2012-08-01
TR201815853T4 (en) 2018-11-21
HK1117417A1 (en) 2013-06-21
US20130210791A1 (en) 2013-08-15
AU2006299833B2 (en) 2012-04-12
US8741881B2 (en) 2014-06-03
US20110269729A1 (en) 2011-11-03
EP2450041A2 (en) 2012-05-09
US8466136B2 (en) 2013-06-18
IL190522A (en) 2015-04-30
RS52671B (en) 2013-06-28
US20160228355A1 (en) 2016-08-11
TNSN08167A1 (en) 2009-10-30
NO20082170L (en) 2008-05-09
ZA200803087B (en) 2009-11-25
CN101287470A (en) 2008-10-15
CA2624788C (en) 2011-04-19
WO2007044976A3 (en) 2007-09-07
US20110306583A1 (en) 2011-12-15
US20130210790A1 (en) 2013-08-15
JP2009511602A (en) 2009-03-19
DK1937276T3 (en) 2013-02-11
ES2693745T3 (en) 2018-12-13
UA87627C2 (en) 2009-07-27
US20140329788A1 (en) 2014-11-06
EP1937276A2 (en) 2008-07-02
ECSP088363A (en) 2008-10-31
HRP20130071T1 (en) 2013-03-31
CN101287470B (en) 2012-10-17
EA012754B1 (en) 2009-12-30
US8486925B2 (en) 2013-07-16
EP3456329A1 (en) 2019-03-20
US8466137B2 (en) 2013-06-18
AU2006299833A1 (en) 2007-04-19
US20130210789A1 (en) 2013-08-15
US8754070B2 (en) 2014-06-17
ES2399763T3 (en) 2013-04-03
EP2450041B1 (en) 2018-09-26
US8466138B2 (en) 2013-06-18
GEP20125432B (en) 2012-03-26
SI2450041T1 (en) 2019-02-28
PL2450041T3 (en) 2019-02-28
JP2013064028A (en) 2013-04-11
SI1937276T1 (en) 2013-04-30
US8759329B2 (en) 2014-06-24
WO2007044976A2 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
AU2002245104B2 (en) Topical testosterone formulations and associated methods
EP0179277B1 (en) Medical composition for external application
JP4864695B2 (en) Use and formulation for transdermal or transmucosal application of the active agent
DK1250138T4 (en) Fulvestrantformulering
US8221784B2 (en) Transdermal hormone delivery system: compositions and methods
US7470433B2 (en) Formulations for transdermal or transmucosal application
JP5699169B2 (en) At least one vitamin d or one vitamin d analogues and topical compositions containing at least one corticosteroid
US20090069364A1 (en) Pharmaceutical compositions of 5-alpha-reductase inhibitors and methods of use thereof
US20110245215A1 (en) Transdermal delivery systems for active agents
CN101077350B (en) Compostion and method of treating gonad dysfunction
EP1545621B1 (en) Pharmaceutical compositions comprising complexes of phosphate derivatives of lipophilic compounds
US20030175329A1 (en) Semisolid topical hormonal compositions and methods for treatment
US6964955B2 (en) Pharmaceutical compositions and uses for androst-5-ene-3β, 17β-diol
KR100861603B1 (en) Method for treating erectile dysfunction and increasing libido in men
CN100349572C (en) Pharmaceutical composition and method for treating hypogonadism
KR19990087057A (en) Dermal penetration enhancer and a drug delivery system containing the same
MARTIN et al. Inhibition by apomorphine of prolactin secretion in patients with elevated serum prolactin
EP0129283A2 (en) Improved penetrating topical pharmaceutical compositions containing corticosteroids
CA2451725C (en) Therapeutic combinations for the treatment of hormone deficiencies
EP0954260A1 (en) Compositions, methods and devices for the transdermal delivery of drugs
DE60315939T2 (en) A pharmaceutical composition comprising an androgen
US20050152956A1 (en) Method of increasing testosterone and related steroid concentrations in women
US20030139384A1 (en) Method for treating erectile dysfunction and increasing libido in men
US20070154533A1 (en) Method of increasing testosterone and related steriod concentrations in women
US20150250801A1 (en) Androgen pharmaceutical composition and method for treating depression

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIMED PHARMACEUTICALS, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLADI, RAMANA;REEL/FRAME:019768/0450

Effective date: 20070611

Owner name: LABORATOIRES BESINS INTERNATIONAL, SAS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIMED PHARMACEUTICALS, INC.;REEL/FRAME:019768/0477

Effective date: 20070410

AS Assignment

Owner name: UNIMED PHARMACEUTICALS, LLC, GEORGIA

Free format text: CHANGE OF NAME;ASSIGNOR:UNIMED PHARMACEUTICALS, INC.;REEL/FRAME:020654/0154

Effective date: 20071228

AS Assignment

Owner name: UNIMED PHARMACEUTICALS, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MILLER, JODI;REEL/FRAME:022485/0607

Effective date: 20090113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: UNIMED PHARMACEUTICALS, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLADI, RAMANA;REEL/FRAME:030309/0910

Effective date: 20130429

AS Assignment

Owner name: UNIMED PHARMACEUTICALS, LLC, ILLINOIS

Free format text: ASSIGNMENT AGREEMENT;ASSIGNOR:LABORATOIRES BESINS INTERNATIONAL, SAS;REEL/FRAME:030440/0866

Effective date: 20130516

Owner name: LABORATOIRES BESINS INTERNATIONAL, SAS, FRANCE

Free format text: ASSIGNMENT AGREEMENT;ASSIGNOR:UNIMED PHARMACEUTICALS, LLC;REEL/FRAME:030440/0844

Effective date: 20130516