US20070149660A1 - Stabilized polyolefin compositions - Google Patents

Stabilized polyolefin compositions Download PDF

Info

Publication number
US20070149660A1
US20070149660A1 US11/589,319 US58931906A US2007149660A1 US 20070149660 A1 US20070149660 A1 US 20070149660A1 US 58931906 A US58931906 A US 58931906A US 2007149660 A1 US2007149660 A1 US 2007149660A1
Authority
US
United States
Prior art keywords
tert
group
butyl
copolymers
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/589,319
Other languages
English (en)
Inventor
Vijayendra Kumar
Rajesh Kumar
Ashish Dhawan
Suizhou Yang
Ashok Cholli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polnox Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/589,319 priority Critical patent/US20070149660A1/en
Assigned to POLNOX CORPORATION reassignment POLNOX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, RAJESH, CHOLLI, ASHOK L., DHAWAN, ASHISH, KUMAR, VIJAYENDRA, YANG, SUIZHOU
Publication of US20070149660A1 publication Critical patent/US20070149660A1/en
Priority to US12/082,967 priority patent/US7705075B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • Antioxidants are employed to prevent oxidation in a wide range of materials, for example, plastics, elastomers, lubricants, petroleum based products (lubricants, gasoline, aviation fuels, and engine oils), cooking oil, cosmetics, processed food products, and the like. While many antioxidants exist, there is a continuing need for new antioxidants that have improved properties.
  • the present invention relates to compositions comprising antioxidants and stabilizers, such as, acid scavengers or organic phosphorus stabilizers and optionally further comprising co-stabilizers. These compositions are useful as stabilizers for polyolefins and other polymeric materials.
  • the present invention is a composition comprising an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • a phosphorus stabilizer e.g., a phosphate or phosphite stabilizer
  • an acid stabilizer e.g., a phosphate or phosphite stabilizer
  • co-stabilizer e.g., a co-stabilizer
  • the present invention is a polyolefin composition
  • a polyolefin composition comprising a polyolefin or a mixture of polyolefins, an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • a phosphorus stabilizer e.g., a phosphate or phosphite stabilizer
  • an acid stabilizer e.g., a phosphate or phosphite stabilizer
  • the present invention is a method of preventing oxidation in a polyolefin or a mixture of polyolefins comprising combining the polyolefin or mixture of polyolefins with an antioxidant, and at least one additive selected from the group consisting of a phosphorus stabilizer (e.g., a phosphate or phosphite stabilizer), an acid stabilizer and a co-stabilizer.
  • a phosphorus stabilizer e.g., a phosphate or phosphite stabilizer
  • compositions and methods of the present invention generally provide longer shelf life and better oxidative resistance to materials than currently available antioxidants.
  • FIG. 1 is a comparison of an oxidative induction time (OIT) of polypropylene in combination with one embodiment of the invention, namely, benzenepropanamide, 3, 5-bis(1,1-dimethylethyl)-4-hydroxy-N-(4-hydroxyphenyl): i) alone, ii) in combination with calcium stearate (CasS), iii) in combination with calcium stearate and phosphate (P) and iv) in combination with calcium sulfide, phosphite and zinc oxide (Z).
  • OIT oxidative induction time
  • FIG. 2 is a comparison of the Melt flow Index (MFI) of polypropylene in combination with one embodiment of the invention, namely, benzenepropanamide, 3, 5-bis(1,1-dimethylethyl)-4-hydroxy-N-(4-hydroxyphenyl): i) alone, ii) in combination with calcium stearate (CasS), iii) in combination with calcium stearate and phosphate (P) and iv) in combination with calcium sulfide, phosphite and zinc oxide (Z).
  • MFI Melt flow Index
  • compositions such as, polymer processing formulations involving i) antioxidants described in Provisional Patent Application Nos. 60/853,275, 60/632,893, 60/633,197, 60/633,252, 60/633,196, 60/665,638, 60/731,021, 60/731,125 and 60/655,169, U.S. patent application Ser. Nos.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include but are not limited to polyalkyl phenol based antioxidants, sterically hindered phenol based antioxidants, sterically hindered phenol based macromolecular antioxidants, nitrogen (amine, imine) and hindered phenol containing dual functional macromolecular antioxidants, alkylated macromolecular antioxidants, sterically hindered phenol and phosphite based macromolecular antioxidants.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include antioxidant polymers which comprises repeat units that include one or both of Structural Formulas (I) and (II): where:
  • R is —H or a substituted or unsubstituted alkyl, substituted or unsubstituted acyl or substituted or unsubstituted aryl group;
  • Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group, and optionally one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group and optionally one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • n is an integer equal to or greater than 2;
  • p is an integer equal to or greater than 0.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or both of Structural Formulas (III) and (IV): where Rings A and B are substituted as described above and n and p are as defined above.
  • Ring A and Ring B in Structural Formulas (I) to (IV) are each substituted with at least one tert-butyl group.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or more of Structural Formulas (Va), (Vb), (Vc), (VIa), (VIb) and (VIc):
  • R 1 , R 2 and R 3 are independently selected from the group consisting of —H, —OH, —NH, —SH, a substituted or unsubstituted alkyl or a substituted or unsubstituted aryl group, and a substituted or unsubstituted alkoxycarbonyl group, provided that at least one of R 1 , R 2 and R 3 is a tert-butyl group; and j and k are independently integers of zero or greater, such that the sum of j and k is equal to or greater than 2.
  • R is —H or —CH 3 ;
  • R 2 is —H, —OH, or a substituted or unsubstituted alkyl group; or both.
  • repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed above is generally selected to be appropriate for the desired application. Typically, the molecular weight is greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties.
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention are typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention is insoluble in a particular medium or substrate, it is preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention can be branched or linear, but are preferably linear.
  • Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • antioxidants which are suitable for use in the compositions and methods of the present invention include polymers with repeat units represented by one or both of Structural Formulas (I) and (II): where:
  • R is —H or a substituted or unsubstituted alkyl, acyl or aryl group
  • Ring A is substituted with at least one tert-butyl group, 1-ethenyl-2-carboxylic acid group or ester thereof, substituted or unsubstituted alkylenedioxy group, or substituted or unsubstituted n-alkoxycarbonyl group and zero, one or more additional functional groups;
  • Ring B is substituted with at least one —H and at least one tert-butyl group, 1-ethenyl-2-carboxylic acid group or ester thereof, substituted or unsubstituted alkylenedioxy group, or substituted or unsubstituted n-alkoxycarbonyl group and zero, one or more additional functional groups;
  • n is an integer equal to or greater than 2;
  • p is an integer equal to or greater than 0,
  • polymer includes two or more repeat units represented by one or both of Structural Formulas (I) and (II) that are directly connected by a C—C or C—O—C bond between benzene rings.
  • Polymers as described immediately above which are suitable for use in the compositions and methods of the present invention that do not include any repeat units represented by Structural Formula (I) are preferably substituted on Ring B with one or more hydroxyl or acyloxy groups.
  • Repeat units of the antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention include substituted benzene molecules.
  • These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl, ester or ether functional group.
  • the benzene molecules have a hydroxyl group.
  • the hydroxyl group is not restricted to being a free hydroxyl group, and the hydroxyl group can be protected or have a cleavable group attached to it (e.g., an ester group).
  • Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer is able to exert its antioxidant effect.
  • conditions e.g., changes in pH
  • time-controlled release e.g., measured by the half-life
  • Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group, a 1-ethenyl-2-carboxylic acid group, a substituted or unsubstituted alkylenedioxy group, or an n-alkoxycarbonyl group.
  • the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring.
  • a “bulky alkyl group” is defined herein as an alkyl group that is branched alpha- or beta- to the benzene ring.
  • the alkyl group is branched alpha to the benzene ring. More preferably, the alkyl group is branched twice alpha to the benzene ring (i.e., to form an alpha-tertiary carbon), such as in a tert-butyl group.
  • Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl.
  • the bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Substituted benzene repeat units that are substituted with a substituted or unsubstituted alkylenedioxy group typically have an unsubstituted alkylenedioxy group.
  • Substituted alkylenedioxy groups are also suitable, although the substituents should not interfere with the antioxidant activity of the molecule or the polymer.
  • an alkylenedioxy group is a lower alkylenedioxy group, such as a methylenedioxy group or an ethylenedioxy group.
  • a methylenedioxy group is preferred (as in sesamol).
  • Straight chained alkoxycarbonyl groups typically have an alkyl chain of one to sixteen carbon atoms, and include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl. n-propoxycarbonyl is a preferred group. Similar to the bulky alkyl groups, n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer. Alkoxycarbonyl groups can also be present in their hydrolyzed form, namely as carboxy groups or carboxylic acid groups.
  • the 1-carbon i.e., the carbon distal from the carboxylic acid moiety
  • the 1-carbon is attached to the benzene ring.
  • substituted benzene repeat units can have additional functional groups as substituents.
  • the additional functional groups can be selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted alkoxy group and a saturated or unsaturated carboxylic acid group.
  • the additional functional groups are selected from the group consisting of —OH, a substituted or unsubstituted alkoxy group and a saturated or unsaturated carboxylic acid group.
  • Ring A and Ring B in Structural Formulas (I) to (IV) are each substituted with at least one tert-butyl group.
  • repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • Structural Formulas (XI), (XVI), (XVII) and (XVIII) are represented as having a propoxycarbonyl substituent, this group can generally be replaced with a different C 1 -C 16 n-alkoxycarbonyl group or can be a carboxylate group.
  • a particular polymer suitable for use in the methods and compositions of the present invention is poly(2-tert-butyl-4-hydroxyanisole).
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein is generally selected to be appropriate for the desired application. Typically, the molecular weight is greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000 amu, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties (including monomers having no antioxidant activity).
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • a composition of the invention includes one or more homopolymers and one or more copolymers (e.g., in a blend).
  • both homopolymers and copolymers include two or more substituted benzene repeat units that are directly connected by a C—C or C—O—C bond.
  • at least 50%, such as at least 70%, for example, at least 80%, but preferably about 100% of the repeat units in a copolymer are substituted benzene repeat units directly connected by a C—C or C—O—C bond.
  • copolymers examples include poly(TBHQ-co-propyl gallate), poly(TBHQ-co-BHA), poly(TBHQ-co-sesamol), poly(BHA-co-sesamol), poly(propyl gallate-co-sesamol) and poly(BHA-co-propyl gallate).
  • the ratio of one monomer to another, on a molar basis is typically about 100:1 to about 1:100, such as about 10:1 to about 1:10, for example, about 2:1 to about 1:2. In one example, the ratio of monomers is about 1:1.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media, although certain polymers of gallic acid and its esters are water soluble.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention is insoluble in a particular medium or substrate, it is preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear.
  • Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include a polyalkylphenol antioxidant represented by Structural Formula U or U′.
  • n is an integer equal or greater than 2.
  • R is a C1-C10 alkyl group, an aryl group, or a benzyl group. Typically, R is a tertiary alkyl group, or in preferred embodiments, a tertiary butyl group.
  • X is —O—, —NH— or —S—.
  • Each R 10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH 2 ; or two R 10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring.
  • q is an integer from 0 to 2.
  • Repeat units of the antioxidant polymers as described immediately above which are suitable for use in the compositions and methods of the present invention include substituted benzene molecules.
  • These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl or ether functional group.
  • the benzene molecules have a hydroxyl group.
  • the hydroxyl group can be a free hydroxyl group and can be protected or have a cleavable group attached to it (e.g., an ester group).
  • Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer can exert its antioxidant effect.
  • the repeat units can also include analogous thiophenol and aniline derivatives, e.g., where the phenol —OH can be replaced by —SH, —NH—, and the like.
  • Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group.
  • the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho.
  • a “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring.
  • the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group.
  • Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl.
  • the bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl.
  • n-propoxycarbonyl is a preferred group.
  • n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include a polymer comprising repeat units represented by one or both of Structural Formulas (i) and (ii): where:
  • Ring A is substituted with at least one tert-butyl group, and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • Ring B is substituted with at least one —H and at least one tert-butyl group and optionally one or more groups selected from the group consisting of—a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group;
  • n is an integer equal to or greater than 2;
  • p is an integer equal to or greater than 0.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention are polymers represented by one or both of Structural Formulas (iv) and (v): where Ring A is substituted with at least one tert-butyl group, and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group and optionally one or more groups selected from the group consisting of a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; R is —H, an optionally substituted C1-C10 alkyl group, an aryl group, a benzyl group, or an acyl group n is an integer equal to or greater than 2; and p is an
  • Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties.
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention are typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods of the present invention can be branched or linear, but are preferably linear.
  • Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • the antioxidant polymers which are suitable for use in the compositions and methods of the present invention includes a macromolecule which can be represented by one or both of Structural Formulas R and S:
  • n is an integer equal to or greater than 2.
  • variable X is 0, NH, or S.
  • the variable Z is H.
  • Each variable K is independently —H or —OH, with at least one —OH adjacent to a —H; or K is a bond when that position is involved in the polymer chain.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention includes a macromolecular antioxidant polymer represented by one or both of Structural Formulas T, T′, V and V′:
  • n is an integer equal to or greater than 2.
  • variable X is O, NH, or S.
  • the variable Z is H.
  • Each variable R is independently —H, —OH, a C1-C10 alkyl group, or a bond when that position is involved in the polymer chain wherein at least one —OH is adjacent to a C1-C10 alkyl group, e.g., a tertiary butyl group.
  • Each R 10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH 2 or two R 10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring.
  • q is an integer from 0 to 2.
  • R 12 is a bulky alkyl group substituent bonded to a ring carbon atom adjacent (ortho) to a ring carbon atom substituted with an —OH group.
  • n is an integer equal to or greater than 2.
  • macromolecular antioxidant polymers can contain, for example, tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, BHT type repeat units and their combinations.
  • macromolecular antioxidants described immedialtey above can be homopolymers, copolymers, terpolymers, and the like
  • Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the methods and compositions of the present invention are typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group.
  • the benzene monomers are substituted with a bulky alkyl group.
  • the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho.
  • a “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring.
  • the alkyl group is branched alpha to the benzene ring.
  • the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group.
  • Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl.
  • the bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl.
  • n-propoxycarbonyl is a preferred group.
  • n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties.
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear.
  • Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • repeat units included in polymers which are suitable for use in the compositions and methods of the present invention are represented by one of the following structural formulas:
  • examples of sterically hindered polymeric macromolecular antioxidant produced by the methods of the present invention comprises at least one repeat unit selected from: n is an integer equal to or greater than 2.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention includes an antioxidant polymer represented by Structural Formula M.
  • n is an integer equal to or greater than 2;
  • R 1 is O, S, or NH
  • R 4 , R 5 , R 7 and R 8 are independently —H, —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, or a substituted or unsubstituted alkoxycarbonyl group, or a bond when part of the polymer chain, provided that:
  • R 4 , R 5 , R 7 and R 8 is a tert-butyl group or a substituted or unsubstituted alkoxycarbonyl group, and at least two of R 4 , R 5 , R 7 and R 8 are —H; or
  • R 4 , R 5 , R 7 and R 8 is a tert-butyl group or a substituted or unsubstituted alkoxycarbonyl group, at least one of R 4 , R 5 , R 7 and R 8 is a hydroxyl, alkoxy, alkoxycarbonyl or aryloxycarbonyl group, and at least one of R 4 , R 5 , R 7 and R 8 is —H.
  • each X is independently —O—, —NH— or —S—.
  • Each R 10 is independently an optionally substituted C1-C10 alkyl group, an optionally substituted aryl group, and optionally substituted alkoxy group, an optionally substituted carbonyl group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryloxycarbonyl group, —OH, —SH or —NH 2 ; and/or two R 10 groups on adjacent carbon atoms join together to form an optionally substituted aromatic ring or an optionally substituted carbocyclic or heterocyclic non-aromatic ring.
  • q is an integer from 0 to 2.
  • n is an integer greater than or equal to 2.
  • Substituted benzene repeat units of an antioxidant polymer as described immediately above which are suitable for use in the methods and compositions of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group.
  • the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho.
  • a “bulky alkyl group” is defined herein as an alkyl group that is branched alpha- or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring.
  • the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group.
  • Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl.
  • the bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl.
  • n-propoxycarbonyl is a preferred group.
  • n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1,000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties.
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention are typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above which are suitable for use in the methods and compositions of the present invention can be branched or linear, but are preferably linear.
  • Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms), as in Structural Formulas (XX), (XXI) and (XXIV).
  • R′ is a covalent bond, —O—, —C(O)O—, —C(O)N—, —C(O)—, —CH ⁇ CH—, —S— or —N—.
  • R 1 is —H or an alkyl group, or —(CH 2 ) k —O—X-Z. Typically, R 1 is —H or alkyl.
  • Each X is independently a covalent bond, —C(O)—, —C(O)O— or —C(O)N—.
  • Y is —O—, —N— or —S—.
  • Each Z is an independently selected antioxidant.
  • a is an integer from 0 to 12.
  • Each k is independently an integer from 0 to 12.
  • n is an integer from 0 to 6.
  • n 0 or 1.
  • p is an integer from 0 to 6.
  • the polymer does not include cyclic anhydride repeat units.
  • An antioxidant can be attached to the polymer by one or more linkages or bonds.
  • suitable linkages include acetal, amide, amine, carbamate, carbonate, ester, ether and thioether linkage. Carbon-carbon bonds can be also suitable.
  • an amide is distinguished from a diacyl hydrazide.
  • polymers that can be derivatized with an antioxidant.
  • One type of such polymer has pendant hydroxyl groups, such as poly(vinyl alcohol) and copolymers thereof (e.g., poly(ethylene-co-vinyl alcohol)).
  • the hydroxyl groups of poly(vinyl alcohol), a polyhydroxyalkyl methacrylate (e.g., polyhydroxy methyl methacrylate), and poly(ethylene-co-vinyl alcohol) react with an antioxidant to form the derivatized antioxidant polymer.
  • Another type of derivatizable polymer contains pendant carboxylic acid groups or esters thereof, such as poly(acrylic acid), poly(alkylacrylic acid) and esters thereof.
  • Poly(acrylic acid) is a preferred polymer; the carboxylic acid groups of poly(acrylic acid) can be derivatized, although carboxylic acid groups generally require activation before derivatization can occur.
  • An additional type of derivatizable polymer can be a poly(substituted phenol), where the substituted phenol has a substituent with a nucleophilic or electrophilic moiety.
  • Such poly(substituted phenols) can include repeat units represented by the following structural formulas: where a is an integer from 0 to 12; R is —OH, —COOH, —NH 2 , —SH or a halogen; and R 10 , R 11 and R 12 are each independently —H, —OH, —NH 2 or —SH, provided that at least one of R 10 , R 11 and R 12 is —OH, —NH 2 or —SH.
  • one of R 10 , R 11 and R 12 is —OH and the remaining two are optionally —H. More preferably, R 11 , is —OH and R 10 and R 12 are —H.
  • the derivatizable polymers can be homopolymers or copolymers. Copolymers include, for example, block, star, hyperbranched, random, gradient block, and alternate copolymers.
  • the derivatizable polymers can be branched or linear, but are preferably linear.
  • Second and further repeat units of a copolymer can optionally include a pendant reactive group.
  • a pendant reactive group For example, about 1% to 100%, such as 10% to 50% or 50% to 100%, of the repeat units of a polymer include pendant functional groups.
  • All or a fraction of the pendant reactive groups of a derivatizable polymer can be derivatized with an antioxidant. In one example, about 100% of the pendant reactive groups can be derivatized. In another example, about 5% to about 90%, such as about 20% to about 80% (e.g., about 50% to about 80%) of the pendant reactive groups can be derivatized.
  • These polymers can be minimally derivatized with a single type of antioxidant, but can be derivatized with two or more antioxidants (e.g., chemically distinct antioxidants). When there can be two or more antioxidants, they can be in the same class, as described below, or can be in different classes.
  • the ratio of antioxidants can be varied in order to obtain a polymer having a desired set of properties. For example, when a polymer can be derivatized with two antioxidants, the ratio of a first antioxidant to a second antioxidant can be from about 20:1 to about 1:20, such as from about 5:1 to about 1:5 (e.g., about 1:1).
  • antioxidants can be suitable, provided that they can be attached to a polymer and retain their antioxidant activity.
  • One class of suitable antioxidants can be phenolic antioxidants.
  • Phenolic antioxidants typically have one or more bulky alkyl groups (alkyl groups having a secondary or tertiary carbon alpha to the phenol ring) ortho or meta, preferably ortho, to the phenol hydroxyl group.
  • Phenolic antioxidants can alternatively have an alkylenedioxy substituent, an alkoxycarbonyl substituent, a 1-propenyl-3-carboxylic acid substituent or an ester thereof.
  • a preferred bulky alkyl group is a tert-butyl group.
  • Phenolic antioxidants for use in the present invention also generally have a substituent that can react with the pendant reactive group of one of the polymers described above to form a covalent bond between the antioxidant and the polymer.
  • R 9 is —H or a substituted or unsubstituted alkyl, acyl or aryl group, preferably —H or an acyl group.
  • R 4 , R 5 , R 6 , R 7 and R 8 are independently chosen substituent groups, such that at least one substituent can be a substituted or unsubstituted alkyl or aryl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted alkylenedioxy group, a 1-propenyl-3-carboxylic acid group or an ester thereof. Also, at least one of R 4 , R 5 , R 6 , R 7 and R 8 must be a substituent capable of reacting with the pendant reactive group of the polymers described above, such as a substituent having a nucleophilic or electrophilic moiety.
  • Other suitable substituents include, for example, —H, —OH, —NH and —SH.
  • a substituent should not decrease the antioxidant activity more than two-fold, instead, substituents preferably increase the antioxidant activity of the molecule.
  • antioxidants that can be attached to one of the polymers described immediately above can be ascorbic acid or a molecule that contains an ascorbic acid moiety.
  • ascorbic acid attached to a polymer has the following configuration: where this moiety can be attached to the polymer by an ether or ester linkage.
  • Polymers described immediately above which are suitable for use in the compositions and methods of the present invention can be homopolymers or copolymers.
  • One type of copolymer includes ethylene repeat units, particularly in a copolymer containing repeat units represented by Structural Formula (A) and/or Structural Formula (B).
  • a polymer comprises repeat units represented by Structural Formula (A).
  • A Structural Formula (A).
  • the sum of m and p is typically two or greater.
  • Z is typically a phenolic antioxidant, as described above.
  • One preferred phenolic antioxidant is a 3,5-di-tert-butyl-4-hydroxyphenyl group, particularly when X is —C(O)—.
  • m is preferably 2 and n and p are each 0.
  • a second preferred antioxidant is a 3,4,5-trihydroxyphenyl group, particularly when X is —C(O)—.
  • antioxidants are mono and di-tert-butylated-4-hydroxyphenyl groups, 4-acetoxy-3-tert-butylphenyl groups and 3-alkoxycarbonyl-2,6-dihydroxyphenyl groups (e.g., 3-propoxycarbonyl-2,6-dihydroxyphenyl groups), particularly when X is a covalent bond.
  • m and p are each 0.
  • n is also typically 0.
  • Z is typically ascorbic acid.
  • X is typically a covalent bond.
  • Z is a 3,4,5-trihydroxyphenyl group or a 4-acetoxy-3-tert-butylphenyl group, particularly when X is —C(O)—.
  • an antioxidant polymer has repeat units represented by Structural Formula (B).
  • m, n and p are each typically 0.
  • Z is preferably a phenolic antioxidant, specifically a 3,4,5-trihydroxyphenyl, 3,5-di-tert-butyl-4-hydroxyphenyl group or a 3,5-di-tert-butyl-2-hydroxyphenyl group.
  • a further embodiment of the invention involves polymers that include repeat units represented by Structural Formula (C).
  • Y is —O— and Z is preferably ascorbic acid, particularly when k is 0.
  • Y is —O— and Z is a phenolic antioxidant, particularly when k is 0 to 3; more preferably, k is 1.
  • a preferred phenolic antioxidant is a 3,5-di-tert-butyl-4-hydroxyphenyl group.
  • phenolic antioxidants include 4-acetoxy-3-tert-butylphenyl, 3-tert-butyl-4-hydroxyphenyl, 2,6-di-tert-butyl-4-mercaptophenyl and 2,6-di-tert-butyl-4-hydroxyphenyl groups.
  • a polymer in yet another embodiment of the invention, includes repeat units represented by Structural Formula (D).
  • R′ is a covalent bond or —OH in such polymers.
  • Other typical values of R′ are amide and ester linkages.
  • Preferred Z groups can be phenolic antioxidants, as described above. For these polymers, the phenol hydroxyl group is typically para or meta to the group containing Z, more typically para.
  • Antioxidant polymers described immediately above which are suitable for use in the methods of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 1,000,000 amu, greater than about 1000 amu and less than about 100,000 amu, greater than about 2,000 amu and less than about 10,000 amu, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers described immediately above which are suitable for use in the methods of the present invention can be typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers can be typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • antioxidants which are suitable for use in the compositions and methods of the present invention are represented by the following structural formula:
  • n and m in each occurrence independently is 0 or a positive integer. Preferably 0 to 18 inclusive.
  • j in each occurrence independently is 0, 1, 2, 3 or 4.
  • Z′ in each occurrence independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —N ⁇ CH—, —C(O)—, —O—, —S—, —S—S—, —S ⁇ N—, —N ⁇ S—, —C(S)O—, —OC(S), —OP(O)(OR 4 )O—, OP(OR 4 )O—, —C(O)OC(O)— or a bond.
  • Z′ is —C(O)O—.
  • R′ in each occurrence independently is C1-C6 alkyl, —OH, —NH 2 , —SH, an optionally substituted aryl, an optionally substituted ester or
  • R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • R′ 1 in each occurrence independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).).
  • a bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • M′ is H, an optionally substituted aryl, C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain,
  • o 0 or a positive integer
  • R′ 2 in each occurrence independently is —H, C1-C6 alkyl, —OH, —NH 2 , —SH, optionally substituted aryl, ester, or
  • R′ 2 is —OH
  • R′ 3 in each occurrence independently is —H, C1-C6 alkyl, optionally substituted aryl, optionally substituted aralkyl —OH, —NH 2 , —SH or ester.
  • antioxidants which are suitable for use in the compositions and methods of the present invention are represented by the following structural formula:
  • X′ in each occurrence independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • R′ 2 is C1-C6 alkyl, —OH, —NH 2 , —SH, aryl, ester, or
  • R′ 2 is —OH, and the values and preferred values for the remainder of the variables are as described immediately above.
  • Z′ is —C(O)O—. In certain other embodiments Z′ is —OC(O)—. In certain other embodiments Z′ is —C(O)NH—. In certain other embodiments Z′ is —NHC(O)—. In certain other embodiments Z′ is —NH—. In certain other embodiments Z′ is —CH ⁇ N—. In certain other embodiments Z′ is —N ⁇ CH—. In certain other embodiments Z′ is —C(O)—. In certain other embodiments Z′ is —O—. In certain other embodiments Z′ is —S—. In certain other embodiments Z′ is —S—S—. In certain other embodiments Z′ is —S ⁇ N—.
  • Z′ is —N ⁇ S—. In certain other embodiments Z′ is —C(S)O—. In certain other embodiments Z′ is —OC(S)—. In certain other embodiments Z′ is —OP(O)(OR 4 )0—. In certain other embodiments Z′ is OP(OR 4 )O—. In certain other embodiments Z′ is —C(O)OC(O)—. In certain other embodiments Z′ is a bond.
  • both R′ groups adjacent to the —OH group is an optionally substituted bulky alkyl group. In a particular embodiment both R′ groups adjacent to the —OH group are tert-butyl.
  • M′ is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • M′ is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • At least one R′ is
  • n 0.
  • n 1
  • n 0, m is 1 and Z is —C(O)O—.
  • n is 0, m is 1, Z is —C(O)O— and the two R′ groups adjacent to the —OH are t-butyl.
  • n is 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl and M′ is
  • n 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is and the R′ 2 in the para position is —OH.
  • n 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is the R′ 2 in the para position is —OH and an adjacent R′ 2 is —OH.
  • n 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is the R′ 2 in the para position is —OH and the two adjacent R′ 2 are —OH.
  • n 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —H are t-butyl, M′ is
  • n 0, m is 1, Z is —C(O)O—, the two R′ groups adjacent to the —OH are t-butyl, M′ is and R 3 is —H.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include a macromonomer represented by Structural Formulas I and I′.
  • R and R 1 -R 6 are independently —H, —OH, or a C1-C10 optionallyu substituted linear or branched alkyl group.
  • n is an integer from 0 to 24.
  • each of R and R 1 -R 8 are independently —H, —OH, or a C1-C10 alkyl group.
  • n is an integer from 0 to 24.
  • R′ is —H, optionally substituted C1-C20 alkyl or optionally substituted aryl group.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include a macromonomer represented by Structural Formulas III and III′ and an antioxidant polymer represented by Structural Formula IV and IV′.
  • each of R, and R 1 -R 8 are independently —H, —OH, or a C1-C10 alkyl group.
  • n is an integer from 0 to 24.
  • m is an integer equal to 2 or greater.
  • R′ is —H, optionally substituted C 1 -C20 alkyl or optionally substituted aryl group.
  • the variables are as defined above.
  • Repeat units of the antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention include substituted benzene molecules.
  • These benzene molecules are typically based on phenol or a phenol derivative, such that they have at least one hydroxyl or ether functional group.
  • the benzene molecules have a hydroxyl group.
  • the hydroxyl group can be a free hydroxyl group and can be protected or have a cleavable group attached to it (e.g., an ester group).
  • Such cleavable groups can be released under certain conditions (e.g., changes in pH), with a desired shelf life or with a time-controlled release (e.g., measured by the half-life), which allows one to control where and/or when an antioxidant polymer can exert its antioxidant effect.
  • the repeat units can also include analogous thiophenol and aniline derivatives, e.g., where the phenol —OH can be replaced by —SH, —NH—, and the like.
  • Substituted benzene repeat units of an antioxidant polymer as described immediately above suitable for use in the compositions and methods of the present invention are also typically substituted with a bulky alkyl group or an n-alkoxycarbonyl group.
  • the benzene monomers are substituted with a bulky alkyl group. More preferably, the bulky alkyl group is located ortho or meta to a hydroxyl group on the benzene ring, typically ortho.
  • a “bulky alkyl group” is defined herein as an alkyl group that is branched alpha— or beta- to the benzene ring. Preferably, the alkyl group is branched alpha to the benzene ring.
  • the alkyl group is branched twice alpha to the benzene ring, such as in a tert-butyl group.
  • Other examples of bulky alkyl groups include isopropyl, 2-butyl, 3-pentyl, 1,1-dimethylpropyl, 1-ethyl-1-methylpropyl and 1,1-diethylpropyl.
  • the bulky alkyl groups are preferably unsubstituted, but they can be substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Straight chained alkoxylcarbonyl groups include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, n-butoxycarbonyl and n-pentoxycarbonyl.
  • n-propoxycarbonyl is a preferred group.
  • n-alkoxycarbonyl groups are optionally substituted with a functional group that does not interfere with the antioxidant activity of the molecule or the polymer.
  • Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention have two or more repeat units, preferably greater than about five repeat units.
  • the molecular weight of the polymers disclosed herein can be generally selected to be appropriate for the desired application. Typically, the molecular weight can be greater than about 500 atomic mass units (amu) and less than about 2,000,000 amu, greater than about 1000 amu and less than about 100,000, greater than about 2,000 amu and less than about 10,000, or greater than about 2,000 amu and less than about 5,000 amu.
  • Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention can be either homopolymers or copolymers.
  • a copolymer preferably contains two or more or three or more different repeating monomer units, each of which has varying or identical antioxidant properties.
  • the identity of the repeat units in a copolymer can be chosen to modify the antioxidant properties of the polymer as a whole, thereby giving a polymer with tunable properties.
  • the second, third and/or further repeat units in a copolymer can be either a synthetic or natural antioxidant.
  • Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention are typically insoluble in aqueous media.
  • the solubility of the antioxidant polymers in non-aqueous media depends upon the molecular weight of the polymer, such that high molecular weight polymers are typically sparingly soluble in non-aqueous media.
  • an antioxidant polymer of the invention can be insoluble in a particular medium or substrate, it can be preferably well-mixed with that medium or substrate.
  • Antioxidant polymers as described immediately above suitable for use in the compositions and methods of the present invention can be branched or linear, but are preferably linear. Branched antioxidant polymers can only be formed from benzene molecules having three or fewer substituents (e.g., three or more hydrogen atoms).
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include macromolecule antioxidants represented by Structural Formula J or J′:
  • R and R 1 -R 6 are independently —H, —OH, or a C1-C10 optionally substituted linear or branched alkyl group.
  • n is an integer from 0 to 24.
  • Each R a is independently an optionally substituted alkyl.
  • Each R b is independently an optionally substituted alkyl.
  • Each R c is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl.
  • R x is —H or an optionally substituted alkyl.
  • R y is —H or an optionally substituted alkyl.
  • Each R′ is independently —H or an optionally substituted alkyl.
  • R′′ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl.
  • n is an integer from 1 to 10.
  • m is an integer from 1 to 10.
  • s is an integer from 0 to 5.
  • t is an integer from 0 to 4.
  • u is an integer from 1 to 4.
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include macromolecular antioxidants represented by structural formula J 1 :
  • Each R a is independently an optionally substituted alkyl.
  • Each R b is independently an optionally substituted alkyl.
  • Each R c is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl.
  • R x is —H or an optionally substituted alkyl.
  • R y is —H or an optionally substituted alkyl.
  • Each R′ is independently —H or an optionally substituted alkyl.
  • R′′ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl.
  • n is an integer from 1 to 10.
  • m is an integer from 1 to 10.
  • s is an integer from 0 to 5.
  • t is an integer from 0 to 4.
  • u is an integer from 1 to 4.
  • variables in J′ are as described as follows:
  • Each R a is independently an optionally substituted alkyl. In one embodiment, each R a is independently a C1-C20 alkyl. In another embodiment, each R a is independently a C1-C10 alkyl. In another embodiment, each R a is independently selected from the group consisting of:
  • Each R b is independently an optionally substituted alkyl.
  • Each R c is independently an optionally substituted alkyl or an optionally substituted alkoxycarbonyl. In one embodiment, each R c is independently a C1-C10 alkyl.
  • R x is —H or an optionally substituted alkyl.
  • R y is —H or an optionally substituted alkyl. In one embodiment, R x and R y are —H.
  • Each R′ is independently —H or an optionally substituted alkyl. In one embodiment, one R′ is —H. In another embodiment, both R′ are —H.
  • R′′ is —H, an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl. In one embodiment, R′′ is —H, a C1-C20 alkyl or an optionally substituted aralkyl. In another embodiment, R′′ is —H, a C1-C10 alkyl or a substituted benzyl group. In yet another embodiment, R′′ is —H. In yet another embodiment, R′′ is: In yet another embodiment R′′ is selected from the group consisting of:
  • R′′ is:
  • n is an integer from 1 to 10. In one embodiment, n is an integer from 1 to 6. In another embodiment, n is 1. In yet another embodiment, n is 2. In yet another embodiment, n is 3. In yet another embodiment, n is 4.
  • n is an integer from 1 to 10. In one embodiment, m is 1 or 2. In another embodiment, m is 1.
  • s is an integer from 0 to 5. In one embodiment, s is 0 or 1. In another embodiment, s is 0.
  • t is an integer from 0 to 4. In one embodiment, t is 0.
  • u is an integer from 1 to 4. In one embodiment, u is 1 or 2.
  • antioxidants represented by J′ when n is 1, the either ring C is not: s is not 0, or R′′ is not —H.
  • Each R a is independently a C 1 -C20 alkyl.
  • Each R c is independently a C 1 -C10 alkyl.
  • R′′ is —H, a C1-C20 alkyl or an optionally substituted aralkyl, and the remainder of the variables are as described above for structural formula (I).
  • n 1 or 2.
  • s is 0 or 1.
  • u is 1 or 2, and the remainder of the variables are as described in the immediately preceding paragraph or for J 1 .
  • both R′ are —H and m is 1 and the compounds are represented by structural formula J 3 : and the remainder of the variables are as described in the immediately preceding paragraph or for structural formula J 1 or J 2 .
  • Each R a is independently a C1-C10 alkyl.
  • R′′ is —H, a C1-C10 alkyl or a substituted benzyl group.
  • n is an integer from 1 to 6, and the remainder of the variables are as described in the immediately preceding paragraph or for structural formula J 1 or J 2 .
  • n 1, s is 0 and R′′ is —H and the compounds are represented by structural formula J 4 : with the proviso that ring C is not: and the remainder of the variables are as described above for structural formula J 1 , J 2 , or J 3 .
  • n is 1 and the compounds are represented by structural formula J 5 : and the remainder of the variables are as described above for structural formula J 1 , J 2 , or J 3 .
  • R′′ is —H and the compounds are represented by structural formula J 7 : and the remainder of the variables are as described above for structural formula J 1 , J 2 or J 3 .
  • R′′ is —H and n is 1 and the compounds are represented by structural formula J 8 : and the remainder of the variables are as described above for structural formula J 1 , J 2 or J 3 .
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include alkylated antioxidant macromolecules having formula K: wherein, independently for each occurrence,
  • n and m are integers from 0 to 6, inclusive;
  • Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • R is H, C 1-6 alkyl, —OH, —NH 2 , —SH, aryl, aralkyl, or wherein at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • R 1 is H, C 1-6 alkyl, aryl, alkylaryl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like); and
  • R 2 is H, C 1-6 alkyl, aryl, aralkyl, —OH, —NH 2 , or —SH wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • X is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • M is H, aryl, C-1 to C-20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • R 2 is H, C 1-6 alkyl, —OH, —NH 2 , —SH, aryl, ester, or wherein at least one R 2 is —OH and n, Z, and each R1 are independently as described above.
  • Z is —OC(O)—.
  • Z is —C(O)O—.
  • Z is —C(O)NH—.
  • Z is —NHC(O)—.
  • Z is —NH—.
  • Z is —CH ⁇ N—.
  • Z is —C(O)—.
  • Z is —O—.
  • Z is —C(O)OC(O)—.
  • Z is a bond.
  • both R groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R groups are tert-butyl.
  • n 0.
  • m 1
  • n is 0, m is 1, and Z is —C(O)O—.
  • n is 0, m is 1, Z is —C(O)O—, and the two R groups adjacent to the OH are tert-butyl.
  • n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, and M is
  • n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is and the R 2 in the para position is OH.
  • n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is the R 2 in the para position is OH, and an adjacent R 2 is OH.
  • n is 0, m is 1, Z is —C(O)O—, the two R groups adjacent to the OH are t-butyl, M is the R 2 in the para position is OH, and the two adjacent R 2 groups are —OH.
  • the antioxidant suitable for use in the compounds and methods of the present invention are compounds represented Structural Formula K 1 :
  • Z is —C(O)NR′—, —NR′C(O)—, —NR′—, —CR′ ⁇ N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • Each R′ is independently —H or optionally substituted alkyl.
  • Each R is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 , —SH, or
  • Each R 1 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 or —SH.
  • Each R 2 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 or —SH.
  • X is —C(O)O—, —OC(O)—, —C(O)NR′—, —NR′C(O)—, —NR—, —CH ⁇ N—, —C(O)—, —O—, —S—, —NR′— or —C(O)OC(O)—.
  • M is an alkyl or Each n and m are independently integers from 0 to 6. Each s, q and u are independently integers from 0 to 4. In certain embodiments M is not when X is —C(O)O— or —OC(O)—.
  • Z is —C(O)NR′—, —NR′C(O)—, —NR′—, —CR′ ⁇ N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC (O)— or a bond.
  • Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —O— or —C(O)—.
  • Z is —C(O)NH— or —NHC(O)—.
  • Z is not —C(O)O—, —OC(O)—, —O— or —NH—.
  • the present invention relates to a compound of Structural Formula 1 and the attendant definitions, wherein Z is —OC(O)—.
  • Z is —C(O)O—.
  • Z is —C(O)NH—.
  • Z is —NHC(O)—.
  • Z is —NH—.
  • Z is —CH ⁇ N—.
  • Z is —C(O)—.
  • Z is —O—.
  • Z is —C(O)OC(O)—.
  • Z is a bond.
  • R′ is independently —H or optionally substituted alkyl. In certain other embodiments R′ is —H or an alkyl group. In certain other embodiments R′ is —H or a C1-C10 alkyl group. In certain other embodiments R′ is —H.
  • Each R is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 , —SH, or In certain other embodiments, each R is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R is independently an alkyl or alkoxycarbonyl. In certain other embodiments each R is independently a C1-C6 alkyl or a C1-C6 alkoxycarbonyl. In certain other embodiments each R is independently tert-butyl or propoxycarbonyl. In certain other embodiments each R is independently an alkyl group.
  • each R is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each R is tert-butyl. In certain embodiments at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • both R groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R groups are tert-butyl. In another embodiment, both R groups are tert-butyl adjacent to the OH group.
  • Each R 1 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 or —SH. In certain other embodiments, each R 1 is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R 1 is independently an alkyl or alkoxycarbonyl. In certain other embodiments each R 1 is independently a C1-C6 alkyl or a C1-C6 alkoxycarbonyl. In certain other embodiments each R 1 is independently tert-butyl or propoxycarbonyl. In certain other embodiments each R 1 is independently an alkyl group.
  • each R 1 is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each R 1 is tert-butyl. In certain embodiments at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • both R 1 groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). In another embodiment, both R 1 groups are tert-butyl. In another embodiment, both R 1 groups are tert-butyl adjacent to the OH group.
  • Each R 2 is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 or —SH. In certain other embodiments, each R 2 is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl. In certain other embodiment each R 2 is independently an alkyl or alkoxycarbonyl. In certain other embodiments, each R 2 is independently an optionally substituted alkyl. In certain other embodiment each R 2 is independently an alkyl. In certain other embodiments each R 2 is independently a C1-C10 alkyl. In certain other embodiments each R 2 is independently a C1-C6 alkyl.
  • each R 2 is independently a bulky alkyl group or a straight chained alkyl group. In certain other embodiments each R 2 is independently methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, 2-propyl or 1,1-dimethylhexyl. In certain embodiments each R 2 is methyl or tert-butyl.
  • X is —C(O)O—, —OC(O)—, —C(O)NR′—, —NR′C(O)—, —NR′—, —CH ⁇ N—, —C(O)—, —O—, —S—, —NR′— or —C(O)OC(O)—.
  • X is —NH—, —S— or —O—.
  • X is —O—.
  • X is a bond.
  • M is an alkyl or In certain embodiment M is alkyl. In certain other embodiments M is a C1-C20 linear or branched chain alkyl. In certain other embodiments M is a C5-C20 linear or branched chain alkyl. In certain other embodiments M is decane.
  • Each n and m are independently integers from 0 to 6. In certain embodiments each n and m are independently integers from 0 to 2.
  • the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K 1 wherein n is 0.
  • the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K 1 wherein m is 1.
  • the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K 1 and the attendant definitions, wherein n is 0 and m is 1.
  • the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K 1 wherein n is 0, m is 1, and Z is —C(O)O—.
  • the antioxidant suitable for use in the compositions and methods of the present invention is represented by a compound of Structural Formula K 1 wherein n is 0, m is 1, Z is —C(O)O—, and the two R groups adjacent to the OH are tert-butyl.
  • Each s, q and u are independently integers from 0 to 4. In certain embodiments, each s and q are independently integers from 0 to 2. In certain embodiments, s is 2.
  • a Structural Formula K 1 the compound is represented by a Structural Formula selected from:
  • the antioxidants which are suitable for use in the compositions and methods of the present invention include alkylated antioxidant macromolecules having formula L. where M is C1 to C20-linear or branched alkyl chains.
  • n and m are integers from 0 to 6, inclusive;
  • Z is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • R is H, C 1-6 alkyl, —OH, —NH 2 , —SH, aryl, ester, or wherein at least one R adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • R 1 is H, C 1-6 alkyl, aryl, aralkyl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like); and
  • R 2 is H, C 1-6 alkyl, aryl, aralkyl, —OH, —NH 2 , —SH, or ester, wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like);
  • X is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)—, or a bond;
  • M is H, aryl, C-1 to C-20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • the antioxidants which are suitable for use in the compositions and methods of the present invention are sterically hindered phenol and phosphite based compounds, represented by a formula selected from I-III:
  • the antioxidants which are suitable for use in the compositions and methods of the present invention are sterically hindered phenol and phosphate based compounds, represented by a formula selected from O, P and Q.
  • R is:
  • X and Y in each occurrence independently is a bond, —O—, —NH—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)— or —CH 2 —.
  • X and Y in each occurrence independently is a bond or —CH 2 —.
  • X and Y in each occurrence independently is a bond, —O— or —CH 2 —.
  • X and Y in each occurrence independently is a bond, —NH— or —CH 2 —.
  • X and Y in each occurrence independently is a bond, —C(O)NH— or —CH 2 —.
  • X and Y in each occurrence independently is a bond, —NHC(O)—, or —CH 2 —. In yet another embodiment, X and Y in each occurrence independently is a bond, —C(O)O— or —CH 2 —. In yet another embodiment, X and Y in each occurrence independently is a bond, —OC(O)— or —CH 2 —.
  • n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence independently is 0 to 18. In another embodiment, n and m in each occurrence independently is 0 to 12. In yet another embodiment, n and m are in each occurrence independently is 0 to 6.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment j is 2.
  • R′′ is an optionally substituted alkyl. In one embodiment R′′ is C1-C6 alkyl.
  • R is: and n and m in each occurrence independently is 0 to 12, and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R, n and m are as described immediately above, and R 1 and R 2 in each occurrence, independently is an optionally substituted alkyl; i and j in each occurrence independently is 0, 1 or 2; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i and j are as described immediately above, and R is: n and m in each occurrence, independently is 0 to 6; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —O— or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NH— or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)NH— or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i,j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NHC(O)—, or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)O— or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • R 1 , R 2 , i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —OC(O)— or —CH 2 —; and the remainder of the variables are as described above for structural formulas O, P and Q.
  • n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • Z′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • Z′ is —C(O)O—.
  • Z′ is —OC(O)—.
  • Z′ is —C(O)NH—.
  • Z′ is —NHC(O)—.
  • Z′ is —NH—.
  • Z′ is —CH ⁇ N—.
  • Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • R′ is an optionally substituted C1-C6 alkyl, —OH, —NH 2 , —SH, an optionally substituted aryl, an ester or
  • R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • R′ 1 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). ).
  • R′ 2 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or ester.
  • X′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • X′ is —C(O)O—.
  • X′ is —OC(O)—.
  • X′ is —C(O)NH—.
  • X′ is —NHC(O)—.
  • X′ is —NH—.
  • X′ is —CH ⁇ N—.
  • X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • M′ is H, an optionally substituted aryl, an optionally substituted C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • R′ 2 is C1-C6 alkyl, —OH, —NH 2 , —SH, aryl, ester, aralkyl or
  • R′ 2 is —OH, and the values and preferred values for the remainder of the variables for R are as described immediately above.
  • the present invention relates to a compound of formula O, P and Q, wherein M is
  • p is 0, 1, 2, 3 or 4; and the values and preferred values for the remainder of the variables are as described above for formulas O, P and Q.
  • a in each occurrence independently is a bond, —O—, —NH—, —S—, —C(O)—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)—, —CH ⁇ N— or —N ⁇ CH—.
  • a in each occurrence independently is —C(O)NH— or —NHC(O)—.
  • B is a C1-C6 alkyl.
  • C in each occurrence independently is —H, an optionally substituted alkyl group or
  • C is:
  • R 1 and R 2 in each occurrence independently is an optionally substituted alkyl, optionally substituted aryl or optionally substituted aralkyl. In one embodiment, each R 1 and R 2 in each occurrence, independently is an optionally substituted alkyl. In another embodiment, each R 1 and R 2 in each occurrence, independently is a C1-C6 alkyl.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • k is a positive integer from 1 to 20. In one embodiment, k is a positive integer from 1 to 12. In another embodiment, k is a positive integer from 1 to 6.
  • 1 is 0 or a positive integer from 1 to 20. In one embodiment, 1 is 0 or a positive integer from 1 to 12. In another embodiment, 1 is 0 or a positive integer from 1 to 6.
  • n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence independently is 0 to 18. In another embodiment, n and m in each occurrence independently is 0 to 12. In yet another embodiment, n and m are in each occurrence independently is 0 to 6.
  • s is a positive integer from 1 to 6.
  • q is a positive integer from 1 to 3.
  • Z in each occurrence independently is a bond, an optionally substituted alkylene group, —S—, —O— or —NH—.
  • Z is a single bond.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • k is a positive integer from 1 to 20. In one embodiment, k is a positive integer from 1 to 12. In another embodiment, k is a positive integer from 1 to 6.
  • 1 is 0 or a positive integer from 1 to 20, and when D is —(CH 2 ) 1 NHC(O)(CH 2 ) h —, —(CH 2 ) 1 OC(O)(CH 2 ) h —, —(CH 2 ) 1 S—(CH 2 ) h —, or —(CH 2 ) 1 O(CH 2 ) h —, 1 is not 0.
  • 1 is 0 or a positive integer from 1 to 12.
  • l is 0 or a positive integer from 1 to 6.
  • h is 0 or a positive integer from 1 to 20, When Z is not a bond and D is —(CH 2 ) 1 C(O)O(CH 2 ) h —, —(CH 2 ) 1 C(O)NH(CH 2 ) h —, —(CH 2 ) 1 C(O)O(CH 2 ) h —, —(CH 2 ) 1 NH(CH 2 ) h —, —(CH 2 ) 1 S—(CH 2 ) h —, or —(CH 2 ) 1 O(CH 2 ) h —, h is not 0.
  • h is 0 or a positive integer from 1 to 12. In another embodiment, h is 0 or a positive integer from 1 to 6. In another embodiment, h is 0.
  • the present invention is directed to macromolecular antioxidants represented by a structural formula selected from Structural Formulas 1-6, wherein R is:
  • D a for each occurrence, is independently —C(O)NR d —, —NR d C(O)—, —NR d —, —CR d ⁇ N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • D a is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —O— or —C(O)—.
  • D a is —NH—, —C(O)NH— or —NHC(O)—.
  • D a is not —C(O)O—, —OC(O)—, —O— or —NH—.
  • the present invention relates to a compound of Structural Formula I and the attendant definitions, wherein D a is —OC(O)—.
  • D a is —C(O)O—.
  • D a is —C(O)NH—.
  • D a is —NHC(O)—.
  • D a is —NH—.
  • D a is —CH ⁇ N—.
  • D a is —C(O)—.
  • D a is —O—.
  • D a is —C(O)OC(O)—.
  • D a is a bond.
  • Each R d is independently —H or optionally substituted alkyl. In certain other embodiments R d is —H or an alkyl group. In certain other embodiments R d is —H or a C1-C10 alkyl group. In certain other embodiments R d is —H.
  • R c and R c ′ are independently H or an optionally substituted alkyl. In one embodiment, R c and R c ′ are H. In another embodiment, one of R c and R c ′ is H and the other is an optionally substituted alkyl. More specifically, the alkyl is a C 1 -C 10 alkyl. Even more specifically, the alkyl is a C10 alkyl.
  • R a for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 , or —SH.
  • each R a is independently an optionally substituted alkyl or optionally substituted alkoxycarbonyl.
  • each R a is independently an alkyl or alkoxycarbonyl.
  • each R a is independently a C 1 -C 6 alkyl or a C 1 -C 6 alkoxycarbonyl.
  • each R a is independently tert-butyl or propoxycarbonyl.
  • each R a is independently an alkyl group. In certain embodiments each R a is independently a bulky alkyl group. Suitable examples of bulky alkyl groups include butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like. In certain embodiments each R a is tert-butyl. In certain embodiments at least one R a adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • both R a groups adjacent to —OH are bulky alkyl groups (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • both R a groups are tert-butyl.
  • both R a groups are tert-butyl adjacent to the OH group.
  • R b for each occurrence, is independently H or optionally substituted alkyl. In certain embodiment, R b is H.
  • n′ and m′ are independently integers from 0 to 18. In another embodiment, n′ and m′ in each occurrence, independently is 0 to 12. In yet another embodiment, n′ and m′ in each occurrence, independently is 0 to 6. In certain embodiments each n′ and m′ are independently integers from 0 to 2. In a specific embodiment, n′ is 0. In another specific embodiment, m is an integer from 0 to 2. In another specific embodiment, n′ is 0 and m′ is 2.
  • Each p′ is independently an integer from 0 to 4. In certain embodiments, each p′ is independently an integer from 0 to 2. In certain embodiments, p′ is 2.
  • R is:
  • n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • Z′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • Z′ is —C(O)O—.
  • Z′ is —OC(O)—.
  • Z′ is —C(O)NH—.
  • Z′ is —NHC(O)—.
  • Z′ is —NH—.
  • Z′ is —CH ⁇ N—.
  • Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • R′ is an optionally substituted C1-C6 alkyl, —OH, —NH 2 , —SH, an optionally substituted aryl, an ester or
  • R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • R′ 1 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • a bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • R′ 2 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or ester.
  • X′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • X′ is —C(O)O—.
  • X′ is —OC(O)—.
  • X′ is —C(O)NH—.
  • X′ is —NHC(O)—.
  • X′ is —NH—.
  • X′ is —CH ⁇ N—.
  • X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • M′ is H, an optionally substituted aryl, an optionally substituted C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • R is:
  • n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
  • i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
  • Z′ in each occurrence independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • Z′ is —C(O)O—.
  • Z′ is —OC(O)—.
  • Z′ is —C(O)NH—.
  • Z′ is —NHC(O)—.
  • Z′ is —NH—.
  • Z′ is —CH ⁇ N—.
  • Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
  • R′ in each occurrence independently is C1-C6 alkyl, —OH, —NH 2 , —SH, an optionally substituted aryl, an ester or
  • R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
  • bulky alkyl group e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like.
  • R′ 1 in each occurrence independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or C1-C6 alkyl ester wherein at least one R 1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like). ).
  • R′ 2 in each occurrence independently is C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH 2 , —SH, or ester.
  • X′ in each occurrence independently is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH ⁇ N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond.
  • X′ is —C(O)O—.
  • X′ is —OC(O)—.
  • X′ is —C(O)NH—.
  • X′ is —NHC(O)—.
  • X′ is —NH—.
  • X′ is —CH ⁇ N—.
  • X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
  • M′ is H, an optionally substituted aryl, C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
  • o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
  • R is:
  • R′ 2 is C1-C6 alkyl, —OH, —NH 2 , —SH, aryl, aralkyl, ester, or
  • R′ 2 is —OH, and the values and preferred values for the remainder of the variables for R are as described immediately above.
  • the present invention relates to a compound of formula 1-6, wherein M is
  • p is 0, 1, 2, 3 or 4; and the values and preferred values for the remainder of the variables are as described above for formulas 1-6.
  • macromolecular antioxidants which are suitable for use in the compositions and methods of the present invention, for example, high molecular weight dimers, and tetramers etc., are shown below.
  • p in each occurrence independently is an integer equal to or greater than 2.
  • polymers which are useful in the compositions methods of the present invention include:
  • antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula I: wherein:
  • R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H;
  • Z is —C(O)NR c —, —NR c C(O)—, —NR c —, —CR c ⁇ N—, —C(O)—, —C(O)O—, —OC(O)—, —O—, —S—, —C(O)OC(O)— or a bond;
  • R c is independently H or optionally substituted alkyl
  • R a for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 , —SH;
  • R b for each occurrence, is independently H or optionally substituted alkyl
  • s for each occurrence, is independently an integer from 0 to 4.
  • n and n are independently integers from 0 to 6.
  • antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula II: wherein:
  • R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H;
  • R a for each occurrence, is independently an optionally substituted alkyl, optionally substituted aryl, optionally substituted alkoxycarbonyl, optionally substituted ester, —OH, —NH 2 , or —SH;
  • R b for each occurrence, is independently H or optionally substituted alkyl.
  • s for each occurrence, is independently an integer from 0 to 4.
  • n for each occurrence, is independently an integer from 0 to 6.
  • antioxidants suitable for use in the methods and compositions of the present invention include compounds represented by Structural Formula III: wherein R and R′ are independently H or optionally substituted alkyl and at least one of R and R′ is H.
  • compositions for use in stabilization of polyolefins include but are not limited to:
  • an antioxidant in the concentration range , from about 0.0001% to about 50%, from about 0.0005% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) with acid scavengers, for example, in amounts of from about 0.0005% to about 50%, from about 0.0001% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1% by weight, based on the weight of polyolefin to be stabilized.
  • an antioxidant in the concentration range from about 0.0005% to about 50%, from about 0.0001% to about 20%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) along with organic phosphorus stabilizers.
  • the organic phosphorus stabilizers are used for example, in amounts of, from about 0.001% to about 30%, from about 0.005% to about 20%, from about 0.01% to about 5%, from about 0.05% to about 2% or from about 0.1% to about 1%, by weight, based on the weight of the polyolefin to be stabilized.
  • an antioxidant in the concentration range from about 0.0005% to about 50%, from about 0.0001% to about 50%, from about 0.005% to about 10%, from about 0.05% to about 5% or from about 0.01% to about 1%) along with acid scavengers and organic phosphorus stabilizers in concentrations described in a. and b. above.
  • an antioxidant in combination with other known commercially available antioxidants, such as, for example, Irganox® 1010, Irganox® 1330, Irganox® 1076 and Irganox® 1135 or other antioxidants described above or incorporated herein by reference along with the formulations described in a.-c. above.
  • polyolefins and mixtures of polyolefins can be stabilized by contacting the polyolefin or mixture of polyolefins with a composition of the present invention.
  • These polyolefins and mixtures of polyolefins include, but are not limited to substituted polyolefins, polyacrylates, polymethacrylates and copolymers of polyolefins.
  • substituted polyolefins include, but are not limited to substituted polyolefins, polyacrylates, polymethacrylates and copolymers of polyolefins.
  • the following are examples of some types of polyolefins which can be stabilized by the methods of the present invention:
  • Polymers of monoolefins and diolefins for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE) and ultra low density polyethylene (ULDPE).
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • LDPE low density poly
  • Polyolefins i.e. the polymers of monoolefins exemplified in the preceding paragraph, for example polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table.
  • These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated.
  • These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide.
  • These catalysts may be soluble or insoluble in the polymerization medium.
  • the catalysts can be used by themselves in the polymerization or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table.
  • the activators may be modified conveniently with further ester, ether, amine or silyl ether groups.
  • These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • Copolymers of monoolefins and diolefins with each other or with other vinyl monomers for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (iono
  • Blends of polymers mentioned under 1. with impact modifiers such as ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins (such as ethylene-octene copolymers), polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers, hydrogenated styrene-isoprene copolymers.
  • TPO's thermoplastic polyolefins
  • polyolefins of the present invention are for example polypropylene homo- and copolymers and polyethylene homo- and copolymers.
  • polypropylene high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and polypropylene random and impact (heterophasic) copolymers.
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • heteroophasic polypropylene random and impact copolymers.
  • Acid scvaangers or stabilizers are defined herein as antacids or co-stabilizers which neutralize the acidic catalysts or other components present in the polymers.
  • the acid scavengers which are suitable for use in the methods of the present invention include but are not limited to: zinc oxide, calcium lactate, natural and synthetic hydrotalcites, natural and synthetic hydrocalumites, and alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate and zinc pyrocatecholate. Combinations of acid scavengers may also be employed.
  • the acid scavengers are used for example, in amounts of from about 0.0005% to about 50% by weight, about 0.0001% to about 20% by weight, about 0.005% to about 5% by weight, about 0.01% to about 3% by weight, about 0.05% to about 2% by weight, or about 0.1% to about 1% by weight, based on the weight of polyolefin to be stabilized.
  • examples of organic phosphorus stabilizers include phosphates, phosphites and phosphonites which are suitable for use in the methods of the present invention.
  • Specific examples of phosphorus stabilizers include but are not limited to: triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl)phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl)phosphite, ethanamine, 2-[[2,4,8,10-tetrakis(1,1dimethylethyl)dibenzo[d,f][1,2,3]dioxaphosphepin-6-yl]oxy
  • organic phosphites and phosphonites which are suitable for use in the methods of the present invention as organic phosphorus stabilizers: tris(2,4-di-tert-butylphenyl)phosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite (formula (D)), tetrakis(2,4-di-tert-butylphenyl)4,4′-biphenylene-diphosphonite (formula (H)), (2,4,6-tri-tert-butylphenyl)2-butyl-2-ethyl-1,3-propanediol phosphate (formula (J)), or bis(2,4-di-cumylphenyl)pentaerythritol diphosphite (formula (K)).
  • the organic phosphorus stabilizers are used, for example, in amounts of from about 0.001% to about 50% by weight, about 0.005% to about 20% by weight, about 0.01% to about 5% by weight, 0.05% to about 3% by weight, 0.1% to about 2% by weight or 0.1% to about 1% by weight based on the weight of the polyolefin to be stabilized.
  • compositions of the present invention may comprise further co-stabilizers (e.g., additives) such as, for example, the following:
  • Alkylated monophenols for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-di-tert-butyl-4-octadecylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,2,6-
  • Alkylthiomethylphenols for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.
  • Hydroquinones and alkylated hydroquinones for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipate.
  • 2,6-di-tert-butyl-4-methoxyphenol 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-
  • Tocopherols for example ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof (Vitamin E).
  • Hydroxylated thiodiphenyl ethers for example 2,2′-thiobis(6-tert-butyl-4-methylphenol), 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide.
  • 2,2′-thiobis(6-tert-butyl-4-methylphenol 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis(2,6
  • Alkylidenebisphenols for example 2,2′-methylenebis(6-tert-butyl-4-methylphenol), 2,2′-methylenebis(6-tert-butyl-4-ethylphenol), 2,2′-methylenebis[4-methyl-6-( ⁇ -methylcyclohexyl)phenol], 2,2′-methylenebis(4-methyl-6-cyclohexylphenol), 2,2′-methylenebis(6-nonyl-4-methylphenol), 2,2′-methylenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2′-methylenebis[6-( ⁇ -methylbenzyl)-4-nonylphenol], 2,2′-methylenebis[6-( ⁇ , ⁇ -dimethylbenzyl)-4-nonylphenol],
  • O—, N— and S-benzyl compounds for example 3,5,3′,5′-tetra-tert-butyl-4,4′-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.
  • Hydroxybenzylated malonates for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
  • Aromatic hydroxybenzyl compounds for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
  • Triazine compounds for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(
  • Benzylphosphonates for example dimethyl 2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
  • Acylaminophenols for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
  • esters of ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[
  • esters of ⁇ -(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.
  • esters of ⁇ -(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • Aminic antioxidants for example N,N′-di-isopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N′-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N′-bis(1-methylheptyl)-p-phenylenediamine, N,N′-dicyclohexyl-p-phenylenediamine, N,N′-diphenyl-p-phenylenediamine, N,N′-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl—N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-p-
  • hindered amine stabilizers are hindered amines which produce nitroxyl radicals that react with alkyl radicals produced during thermo-oxidation of the polymers.
  • Sterically hindered amine stabilizers for example 4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succ
  • the sterically hindered amine may also be one of the compounds described in U.S. Pat. No. 5,980,783, the entire contents of which are incorporated herein by reference, that is compounds of component I-a), I-b), I-c), I-d), I-e), I-f), I-g), I-h), I-i), I-j), I-k) or I-l), in particular the light stabilizer 1-a-1, 1-a-2, 1-b-1, 1-c-1, 1-c-2, 1-d-1, 1-d-2, 1-d-3, 1-e-1, 1-f-1, 1-g-1, 1-g-2 or 1-k-1 listed on columns 64-72 of said U.S. Pat. No. 5,980,783.
  • the sterically hindered amine may also be one of the compounds described in U.S. Pat. Nos. 6,046,304 and 6,297,299, the entire contents of each of which are incorporated herein by reference, for example compounds as described in claims 10 or 38 or in Examples 1-12 or D-1 to D-5 therein.
  • Sterically hindered amines substituted on the N-atom by a hydroxy-substituted alkoxy group for example compounds such as 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-hexadecanoyloxy-2,2,6,6-tetramethylpiperidine, the reaction product of 1-oxyl-4-hydroxy-2,2,6,6-tetramethylpiperidine with a carbon radical from t-amylalcohol, 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethylpiperidine, bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, bis(l-(2-hydroxy-2-methylpropoxy)
  • UV absorbers essentially absorb the harmful UV radiation and dissipate it so that is does not lead to photosensitization i.e., dissipation as heat.
  • Esters of substituted and unsubstituted benzoic acids as for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • Oxamides for example 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert-butoxanilide, 2,2′-didodecyloxy-5,5 ′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N,N′-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2′-ethoxanilide and its mixture with 2-ethoxy-2′-ethyl-5,4′-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubtituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • Tris-aryl-o-hydroxyphenyl-s-triazines for example known commercial tris-aryl-o-hydroxyphenyl-s-triazines and triazines as disclosed in, WO 96/28431, EP 434608, EP 941989, GB 2,317,893, U.S. Pat. Nos.
  • Metal deactivators as used herein are compounds which form stable complexes with metal ions and inhibit their reaction with peroxides, for example, N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicylo
  • Peroxide scavengers for example, esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis( ⁇ -dodecylmercapto)propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
  • mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc dibutyldithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis( ⁇ -dodecylmer
  • N,N-dihydrocarbylhydroxylamines selected from the group consisting of N,N-dibenzylhydroxylamine, N,N-dimethyl-hydroxylamine, N,N-diethylhydroxylamine, N,N-bis(2-hydroxypropyl)hydroxylamine, N,N-bis(3-hydroxypropyl)hydroxylamine, N,N-bis(2-carboxyethyl)hydroxylamine, N,N-bis(benzylthiomethyl)hydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-didodecylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-tetradecylhydroxylamine, N-hexadecyl-N-tetrade
  • the hydroxylamine may be for example the N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine.
  • N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine.
  • the hydroxylamine prepared by direct hydrogen peroxide oxidation of bis(hydrogenated tallow alkyl)amines that is N,N-di(hydrogenated tallow)hydroxylamine, CAS# 143925-92-2.
  • N,N-di(hydrogenated tallow)hydroxylamine is prepared as in the working Examples of U.S. Pat. No. 5,013,510 the entire contents of which are incorporated herein by reference.
  • Nitrones for example, N-benzyl- ⁇ -phenyl-nitrone, N-ethyl- ⁇ -methyl-nitrone, N-octyl- ⁇ -heptyl-nitrone, N-lauryl- ⁇ -undecyl-nitrone, N-tetradecyl- ⁇ -tridcyl-nitrone, N-hexadecyl- ⁇ -pentadecyl-nitrone, N-octadecyl- ⁇ -heptadecyl-nitrone, N-hexadecyl- ⁇ -heptadecyl-nitrone, N-ocatadecyl- ⁇ -pentadecyl-nitrone, N-heptadecyl- ⁇ -heptadecyl-nitrone, N-octadecyl- ⁇ -hexadecyl-nitrone, nitrone derived from N,N-di
  • Amine-N-oxides for example GenoxTM EP, a di(C 16 -C 18 )alkyl methyl amine oxide, CAS# 204933-93-7, Crompton Corporation.
  • Polyhydric alcohols for example pentaerythritol and glycerol.
  • Basic co-stabilizers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides and polyurethanes.
  • Nucleating agents for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate, lithium benzoate, disodium bicycle[2.2.1]heptane 2,3-dicarboxylate; organic phosphates and salts thereof, e.g. sodium 2,2′-methylenebis(4,6-di-tert-butylphenyl)phosphate, and polymeric compounds such as ionic copolymers (ionomers).
  • inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals
  • organic compounds such as mono-
  • Clarifiers for example substituted and unsubstituted bisbenzylidene sorbitols.
  • Fillers and reinforcing agents for example, calcium carbonate, silicates, glass fibers, glass bulbs, asbestos, talc, wollastonite, nanoclays, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.
  • Dispersing Agents are compounds which when added to a colloidal solution disperse the particles uniformly, such as, for example, polyethylene oxide waxes or mineral oil.
  • additives for example, plasticizers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flame retardants, antistatic agents, antimicrobials and blowing agents.
  • the co-stabilizers are added, for example, in concentrations of from about 0.0001% to about 50% by weight, about 0.0005% to about 20% by weight, about 0.001% to about 10% by weight, from about 0.01% to about 5% by weight, from about 0.05% to about 1% by weight from about 0.1% to about 1% by weight based on the overall weight of the polyolefin to be stabilized.
  • the fillers and reinforcing agents are added to the polyolefins in concentrations of about 0.001% to about 80% by weight, about 0.005% to about 60% by weight, about 0.01% to about 40% by weight, of about 0.05% to about 20% by weight, of about 0.1% to about 10% by weight, of about 0.5% to about 5% by weight, based on the overall weight of the polyolefins to be stabilized.
  • the fillers and reinforcing agents are added to the polyolefins in concentrations of about 0.001% to about 80% by weight, about 0.005% to about 70% by weight, about 0.01% to about 60% by weight, about 0.1% to about 50% by weight about 0.5% to about 40% by weight about 1% to about 20% by weight based on the overall weight of the polyolefins to be stabilized.
  • metal hydroxides especially aluminum hydroxide or magnesium hydroxide
  • carbon black as filler is added to the polyolefins in concentrations, judiciously, of from about 0.001% to about 30% by weight, 0.005% to about 10% by weight, 0.01% to about 5% by weight, of from about 0.05% to about 3% by weight of from about 0.1% to about 2% by weight of from about 0.1% to about 1% by weight based on the overall weight of the polyolefins to be stabilized.
  • glass fibers as reinforcing agents are added to the polyolefins in concentrations, judiciously, of from of about 0.001% to about 80% by weight, about 0.005% to about 60% by weight, about 0.01% to about 40% by weight, of about 0.05% to about 20% by weight, of about 0.1% to about 10% by weight, based on the overall weight of the polyolefins to be stabilized.
  • alkyl as used herein means a saturated straight-chain, branched or cyclic hydrocarbon. When straight-chained or branched, an alkyl group is typically C1-C8, more typically C1-C6; when cyclic, an alkyl group is typically C3-C12, more typically C3-C7 alkyl ester. Examples of alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl and 1,1-dimethylhexyl.
  • alkoxy as used herein is represented by —OR**, wherein R** is an alkyl group as defined above.
  • acyl as used herein is represented by —C(O)R**, wherein R** is an alkyl group as defined above.
  • alkyl ester as used herein means a group represented by —C(O)OR**, where R** is an alkyl group as defined above.
  • aromatic group used alone or as part of a larger moiety as in “aralkyl”, includes carbocyclic aromatic rings and heteroaryl rings.
  • aromatic group may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”.
  • Carbocyclic aromatic ring groups have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring is fused to one or more aromatic rings (carbocyclic aromatic or heteroaromatic). Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthracyl.
  • Carbocyclic aromatic ring is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), such as in an indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aromatic ring.
  • heteroaryl refers to heteroaromatic ring groups having five to fourteen members, including monocyclic heteroaromatic rings and polycyclic aromatic rings in which a monocyclic aromatic ring is fused to one or more other aromatic ring (carbocyclic aromatic or heteroaromatic). Heteroaryl groups have one or more ring heteroatoms.
  • heteroaryl groups include 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-triazolyl, 5-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, carbazolyl, 2-benzothienyl, 3-benzothiazo
  • heteroaryl is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), where the radical or point of attachment is on the aromatic ring.
  • heteroatom means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.
  • nitrogen includes a substitutable nitrogen of a heteroaryl or non-aromatic heterocyclic group.
  • the nitrogen in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR′′ (as in N-substituted pyrrolidinyl), wherein R′′ is a suitable substituent for the nitrogen atom in the ring of a non-aromatic nitrogen-containing heterocyclic group, as defined below.
  • aralkyl group is an alkyl groups substituted with an aryl group as defined above.
  • An optionally substituted aryl group as defined herein may contain one or more substitutable ring atoms, such as carbon or nitrogen ring atoms.
  • suitable substituents on a substitutable ring carbon atom of an aryl group include —OH, C1-C3 alkyl, C1-C3 haloalkyl, —NO 2 , C1-C3 alkoxy, C1-C3 haloalkoxy, —CN, —NH 2 , C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH 2 , —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —NHC(O)H, —NHC(O)(C1-C3 alkyl), —C(O)N(C1-C3 alkyl) 2 , —NHC(O)O—C1-C3 alkyl), —C
  • substituents on a substitutable ring nitrogen atom of an aryl group include C1-C3 alkyl, NH 2 , C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH 2 , —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —CO 2 R**, —C(O)C(O)R**, —C(O)CH 3 , —C(O)OH, —C(O)O-(C1-C3 alkyl), —SO 2 NH 2 —SO 2 NH(C1-C3alkyl), —SO 2 N(C1-C3alkyl) 2 , NHSO 2 H, NHSO 2 (C1-C3 alkyl), —C( ⁇ S)NH 2 , —C( ⁇ S)NH(C1-C3 alkyl), —C( ⁇ S)N(
  • An optionally substituted alkyl group as defined herein may contain one or more substituents.
  • suitable substituents for an alkyl group include those listed above for a substitutable carbon of an aryl and the following: ⁇ O, ⁇ S, ⁇ NNHR**, ⁇ NN(R**) 2 , ⁇ NNHC(O)R**, ⁇ NNHCO 2 (alkyl), ⁇ NNHSO 2 (alkyl), ⁇ NR**, spiro cycloalkyl group or fused cycloalkyl group.
  • R** in each occurrence, independently is —H or C1-C6 alkyl.
  • Preferred substituents on alkyl groups are as defined throughout the specification. In certain embodiments optionally substituted alkyl groups are unsubstituted.
  • a “spiro cycloalkyl” group is a cycloalkyl group which shares one ring carbon atom with a carbon atom in an alkylene group or alkyl group, wherein the carbon atom being shared in the alkyl group is not a terminal carbon atom.
  • macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention exploit the differences in activities (ks, equilibrium constant) of, for example, homo- or hetero-type antioxidant moieties.
  • Antioxidant moieties include, for example, hindered phenolic groups, unhindered phenolic groups, aminic groups and thioester groups, etc. of which there can be one or more present in each macromolecular antioxidant molecule.
  • a homo- type antioxidant macromolecule comprises antioxidant moieties which are all same, for example, hindered phenolic, —OH groups.
  • a hetero-type antioxidant macromolecule comprises at least one different type of moiety, for example, hindred phenolic and aminic groups in the one macromolecule.
  • This difference in activities can be the result of, for example, the substitutions on neighboring carbons or the local chemical or physical environment (for example, due to electrochemical or stereochemical factors) which can be due in part to the macromolecular nature of molecules.
  • a series of macromolecular antioxidant moieties of the present invention with different chemical structures can be represented by W1H, W2H, W3H, . . . to WnH.
  • two types of antioxidant moieties of the present invention can be represented by: W1H and W2H.
  • W1H and W2H can have rate constants of k1 and k2 respectively.
  • the reactions involving these moieties and peroxyl radicals can be represented as: where ROO. is a peroxyl radical resulting from, for example, initiation steps involving oxidation activity, for example: RH ⁇ R.+H. (3) R.+O2 ⁇ ROO. (4)
  • This transfer mechanism may take place either in intra— or inter-molecular macromolecules.
  • the transfer mechanism (5) could take place between moieties residing on the same macromolecule (intra-type) or residing on different macromolecules (inter-type).
  • the antioxidant properties described immediately above (equation 5) of the macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention result in advantages including, but not limited to:
  • the following items are of significant interest for enhanced antioxidant activity in the design of the macromolecular antioxidants and polymeric macromolecular antioxidants of the present invention:
  • more than two types of antioxidant moieties with different rate constants are used in the methods of the present invention.
  • the present invention pertains to the use of the disclosed compositions to inhibit oxidation in an oxidizable material such as for example a polyolefin.
  • a method of “inhibiting oxidation” is a method that inhibits the propagation of a free radical-mediated process.
  • Free radicals can be generated by heat, light, ionizing radiation, metal ions and some proteins and enzymes.
  • Inhibiting oxidation also includes inhibiting reactions caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents of these gases.
  • oxidizable material is any material which is subject to oxidation by free-radicals or oxidative reaction caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents thereof.
  • the oxidizable material is a polyolefin, a mixture of polyolefins a substituted polyolefin, (polyacrylates, polymethacrylates) and copolymers of polyolefins as defined above.
  • Polyolefin samples have been stabilized with selective additives described in this disclosure using extrusion methods. These stabilized polyolefins have been tested for their performance using techniques such as melt flow index, gas fading, oxidative induction time (OIT) ( FIG. 1 ) and yellowness index (YI) ( FIG. 2 ).
  • OIT oxidative induction time
  • YI yellowness index
US11/589,319 2005-10-27 2006-10-27 Stabilized polyolefin compositions Abandoned US20070149660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/589,319 US20070149660A1 (en) 2005-10-27 2006-10-27 Stabilized polyolefin compositions
US12/082,967 US7705075B2 (en) 2005-10-27 2008-04-15 Stabilized polyolefin compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73132505P 2005-10-27 2005-10-27
US11/589,319 US20070149660A1 (en) 2005-10-27 2006-10-27 Stabilized polyolefin compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/082,967 Continuation US7705075B2 (en) 2005-10-27 2008-04-15 Stabilized polyolefin compositions

Publications (1)

Publication Number Publication Date
US20070149660A1 true US20070149660A1 (en) 2007-06-28

Family

ID=37698023

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/589,319 Abandoned US20070149660A1 (en) 2005-10-27 2006-10-27 Stabilized polyolefin compositions
US12/082,967 Expired - Fee Related US7705075B2 (en) 2005-10-27 2008-04-15 Stabilized polyolefin compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/082,967 Expired - Fee Related US7705075B2 (en) 2005-10-27 2008-04-15 Stabilized polyolefin compositions

Country Status (3)

Country Link
US (2) US20070149660A1 (US20070149660A1-20070628-C00079.png)
EP (1) EP1966293A1 (US20070149660A1-20070628-C00079.png)
WO (1) WO2007050991A1 (US20070149660A1-20070628-C00079.png)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238789A1 (en) * 2004-01-21 2005-10-27 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
US20060029706A1 (en) * 2002-04-05 2006-02-09 Cholli Ashok L Polymeric antioxidants
US20060041087A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060128939A1 (en) * 2004-12-03 2006-06-15 Vijayendra Kumar One pot process for making polymeric antioxidants
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060128929A1 (en) * 2004-12-03 2006-06-15 Suizhou Yang Process for the synthesis of polyalkylphenol antioxidants
US20060189824A1 (en) * 2005-02-22 2006-08-24 Rajesh Kumar Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070059334A1 (en) * 2005-08-18 2007-03-15 Zimmer Technology, Inc. Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20070106059A1 (en) * 2005-10-27 2007-05-10 Cholli Ashok L Macromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20070161522A1 (en) * 2005-12-02 2007-07-12 Cholli Ashok L Lubricant oil compositions
US20080293856A1 (en) * 2005-10-27 2008-11-27 Vijayendra Kumar Stabilized polyolefin compositions
US20090184294A1 (en) * 2006-07-06 2009-07-23 Cholli Ashok L Novel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US20100025636A1 (en) * 2006-06-20 2010-02-04 Chemtura Corporation Liquid phosphite compositions having different alkyl groups
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20100048782A1 (en) * 2006-06-20 2010-02-25 Gelbin Michael E Liquid phosphite blends as stabilizers
US20100069542A1 (en) * 2006-06-20 2010-03-18 Chemtura Corporation Liquid amylaryl phosphite compositions and alkylate compositions for manufacturing same
US20100076125A1 (en) * 2006-06-20 2010-03-25 Chemtura Corporation Liquid phosphite composition derived from cresols
US20100076131A1 (en) * 2006-06-20 2010-03-25 Chemtura Corporation Liquid butylaryl phosphite compositions and alkylate compositions for manufacturing same
US20100137481A1 (en) * 2008-11-20 2010-06-03 Zimmer Gmbh Polyethylene materials
US20100187726A1 (en) * 2009-01-29 2010-07-29 Nova Chemicals (International) S.A Stabilized rotomolded parts
US7767853B2 (en) 2006-10-20 2010-08-03 Polnox Corporation Antioxidants and methods of making and using the same
US20100197837A1 (en) * 2006-06-20 2010-08-05 Chemtura Corporation Polymers with low gel content and enhanced gas-fading
US20110028600A1 (en) * 2007-04-10 2011-02-03 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8008383B2 (en) 2006-06-20 2011-08-30 Chemtura Corporation Liquid amylaryl phosphite compositions
US8008384B2 (en) 2006-06-20 2011-08-30 Chemtura Corporation Liquid butylaryl phosphite compositions
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US10577484B2 (en) 2014-07-01 2020-03-03 Samsung Electronics Co., Ltd. Compositions and polymer composites prepared from the same
CN112513119A (zh) * 2018-07-27 2021-03-16 美利肯公司 高分子酚抗氧化剂
US11241868B2 (en) * 2018-02-27 2022-02-08 Inteplast Group Corporation Clear film for tapes and labels
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206825B2 (en) * 2008-01-03 2012-06-26 Equistar Chemicals, Lp Preparation of wires and cables
SG174516A1 (en) * 2009-04-24 2011-10-28 Sumitomo Chemical Co Stabilizer composition
SG11201400495SA (en) 2011-09-09 2014-04-28 Chevron Phillips Chemical Co Polyethylene additive compositions and articles made from same
CN102617908B (zh) * 2012-03-09 2013-12-18 杭州源牌环境科技有限公司 一种纳米导热复合材料及其制备方法
CN102617922A (zh) * 2012-04-20 2012-08-01 贵州省复合改性聚合物材料工程技术研究中心 高性能纳米复合材料及其制备方法
US9808675B2 (en) 2012-09-13 2017-11-07 Acushnet Company Golf ball compositions
EP2909213A4 (en) 2012-10-18 2016-06-08 Reliance Ind Ltd TETRAOXA-DIPHOSPHASPIRO COMPOUNDS
US20140127438A1 (en) * 2012-11-08 2014-05-08 Robert L. Sherman, Jr. Stabilized high-density polyethylene composition with improved resistance to deterioration and stabilizer system
US10035043B2 (en) 2016-12-15 2018-07-31 Acushnet Company Golf ball incorporating highly crosslinked thermoset fluorescent microspheres and methods of making same
US10252112B2 (en) 2017-03-20 2019-04-09 Acushnet Company Golf ball composition
EP3378890A1 (en) * 2017-03-22 2018-09-26 Songwon Industrial Co., Ltd. Polyolefin stabilizers with reduced fragmentation
GB201907363D0 (en) 2019-05-24 2019-07-10 Si Group Switzerland Chaa Gmbh Stabilising composition
CN111019213A (zh) * 2019-12-11 2020-04-17 宁波禾隆新材料股份有限公司 一种抗静电木塑板用表层料及其制备方法和应用
CN111073004B (zh) * 2019-12-16 2022-11-01 四川大学 提高超高分子量聚乙烯关节材料辐照交联密度和氧化稳定性的方法
US20230340170A1 (en) * 2020-08-25 2023-10-26 Nova Chemicals (International) S.A. Improved color of mixed catalyst polyethylene
US11697048B2 (en) 2021-08-12 2023-07-11 Acushnet Company Colored golf ball and method of making same

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294836A (en) * 1962-09-17 1966-12-27 Geigy Chem Corp Stabilization of organic material with certain esters of substituted hydroquinones and organic acids
US3441545A (en) * 1963-11-01 1969-04-29 Du Pont Modification of olefin-carboxylic acid halide copolymers
US3632785A (en) * 1969-02-19 1972-01-04 Georgia Pacific Corp Method of forming shell molds
US3645970A (en) * 1969-10-01 1972-02-29 Ciba Geigy Corp Benzoate homopolymers hindered phenolic groups as stabilizers
US3655831A (en) * 1968-07-22 1972-04-11 Weston Chemical Corp Pentaerythritol diphosphites
US3996198A (en) * 1975-02-24 1976-12-07 Dynapol One step preparation of linear antioxidant phenolic polymers involving use of impure diolefin feedstock and aluminum catalyst under ortho alkylation conditions
US3996160A (en) * 1975-02-24 1976-12-07 Dynapol Corporation Hydroquinonoid ortho-alkylation polymers and the process of their production
US4094857A (en) * 1977-09-01 1978-06-13 E. I. Du Pont De Nemours And Company Copolymerizable phenolic antioxidant
US4098829A (en) * 1974-12-04 1978-07-04 Dynapol Polymeric hydroquinone antioxidant
US4202816A (en) * 1975-06-19 1980-05-13 Ciba-Geigy Corporation Novel light stabilizers
US4205151A (en) * 1975-04-04 1980-05-27 Dynapol Polymeric N-substituted maleimide antioxidants
US4213892A (en) * 1974-03-06 1980-07-22 Gerald Scott Process for preparing oxidatively-stable polymers by reaction with antioxidant in the presence of free radical
US4219453A (en) * 1977-09-22 1980-08-26 Asahi Kasei Kogyo Kabushiki Kaisha Inorganic filler-incorporated ethylene polymer film
US4267358A (en) * 1980-03-13 1981-05-12 Borg-Warner Corporation Phenolic ester inhibitor
US4281192A (en) * 1978-10-26 1981-07-28 L'oreal N-(2,5-Dihydroxy-3,4,6-trimethyl-benzyl)-acrylamide and-methacrylamide
US4283572A (en) * 1979-12-27 1981-08-11 Borg-Warner Corporation Conversion of alkyl phenyl ether to alkylphenol
US4341879A (en) * 1980-03-17 1982-07-27 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition having improved heat stability and impact strength
US4355148A (en) * 1980-09-18 1982-10-19 The B. F. Goodrich Company Norbornene polymers containing bound phenolic antioxidant
US4377666A (en) * 1981-08-17 1983-03-22 Phillips Petroleum Company Age-resistant polymers containing chemically bound antioxidant functional groups
US4447657A (en) * 1982-11-10 1984-05-08 Uop Inc. Preparation of ortho-alkylated phenols
US4465871A (en) * 1982-11-10 1984-08-14 Uop Inc. Preparation of 2-t-butyl-4-alkoxy- and 4-hydroxyphenols
US4511491A (en) * 1982-07-26 1985-04-16 Sumitomo Chemical Co., Ltd. Stabilizers for synthetic resins
US4849503A (en) * 1987-12-21 1989-07-18 Amoco Corporation Novel poly(aryl ethers)
US4855345A (en) * 1986-06-19 1989-08-08 Ciba-Geigy Corporation Stabilizers for organic polymers
US4857596A (en) * 1987-08-12 1989-08-15 Pennwalt Corporation Polymer bound antioxidant stabilizers
US4900671A (en) * 1985-11-13 1990-02-13 The Mead Corporation Biocatalytic process for preparing phenolic resins using peroxidase or oxidase enzyme
US4968759A (en) * 1985-08-22 1990-11-06 Hitachi Chemical Company, Ltd. Phenolic polymer and production thereof
US4977004A (en) * 1987-09-28 1990-12-11 Tropicana Products, Inc. Barrier structure for food packages
US5013470A (en) * 1989-10-10 1991-05-07 Texaco Inc. Antioxidant VII lubricant additive
US5017727A (en) * 1990-07-10 1991-05-21 Copolymer Rubber & Chemical Corporation Polymerizable antioxidant composition
US5143828A (en) * 1991-12-31 1992-09-01 The United States Of America As Represented By The Secretary Of The Army Method for synthesizing an enzyme-catalyzed polymerized monolayer
US5206303A (en) * 1990-12-27 1993-04-27 Exxon Chemical Patents Inc. Entanglement-inhibited macromolecules
US5207939A (en) * 1990-08-23 1993-05-04 Mobil Oil Corporation Dihydrocarbyl substituted phenylenediamine-derived phenolic products as antioxidants
US5320889A (en) * 1989-01-17 1994-06-14 Tropicana Products, Inc. Plastic bottle for food
US5449715A (en) * 1991-09-17 1995-09-12 Isp Investments Inc. Colorless, non-toxic, stabilized aqueous solution of a C1-C5 alkyl vinyl ether and maleic acid copolymers
US5574118A (en) * 1990-11-02 1996-11-12 Dsm Copolymer, Inc. Olefin polymers containing bound antioxidant
US5834544A (en) * 1997-10-20 1998-11-10 Uniroyal Chemical Company, Inc. Organic materials stabilized by compounds containing both amine and hindered phenol functional functionalities
US5911937A (en) * 1995-04-19 1999-06-15 Capitol Specialty Plastics, Inc. Desiccant entrained polymer
US5994498A (en) * 1997-08-21 1999-11-30 Massachusetts Lowell, University Of Lowell Method of forming water-soluble, electrically conductive and optically active polymers
US6018018A (en) * 1997-08-21 2000-01-25 University Of Massachusetts Lowell Enzymatic template polymerization
US6150491A (en) * 1998-11-06 2000-11-21 The United States Of America As Represented By The Secretary Of The Army Polyaromatic compounds and method for their production
US20010041203A1 (en) * 2000-04-06 2001-11-15 Kazutaka Uno Method of removing off-flavor from foods and deodorizer
US6342549B1 (en) * 1993-08-06 2002-01-29 Mitsui Chemicals, Inc. Cycloolefin resin pellets and a process for producing a molded product thereof
US6444450B2 (en) * 1998-01-28 2002-09-03 The United States Of America As Represented By The Secretary Of The Army Large-scale production of polyphenols or polyaromatic amines using enzyme-mediated reactions
US20020128493A1 (en) * 1997-10-09 2002-09-12 Mars, Incorporated Synthetic methods for polyphenols
US20020183470A1 (en) * 2000-11-27 2002-12-05 Sukant Tripathy Polymerization of aromatic monomers using derivatives of hematin
US20030030033A1 (en) * 1999-12-30 2003-02-13 Duyck Karl J. Antioxidant amines based on n-(4aniliophenyl) amides Antioxidant amines based on n-(4-anilinophenyl) Amides
US20030191242A1 (en) * 2000-02-22 2003-10-09 Alessandro Zedda Romp with oligomeric uv-absorbers
US6770785B1 (en) * 2003-03-25 2004-08-03 Council Of Scientific And Industrial Research Antiozonant cum antioxidant, process for preparation
US20040164279A1 (en) * 1999-07-29 2004-08-26 Stevenson Donald R. Solid melt blended phosphite composites
US20040180994A1 (en) * 2003-03-05 2004-09-16 Pearson Jason Clay Polyolefin compositions
US20040186167A1 (en) * 2003-01-24 2004-09-23 Dou Q. Ping Polyphenol proteasome inhibitors, synthesis, and methods of use
US20040186214A1 (en) * 2002-08-12 2004-09-23 Wen Li Fibers and nonwovens from plasticized polyolefin compositions
US20040198875A1 (en) * 2001-08-15 2004-10-07 Nikolas Kaprinidis Flame retardant compositions
US20040214935A1 (en) * 2002-04-05 2004-10-28 University Of Massachusetts Lowell Polymeric antioxidants
US6828364B2 (en) * 2000-07-14 2004-12-07 Ciba Specialty Chemicals Corporation Stabilizer mixtures
US20050238789A1 (en) * 2004-01-21 2005-10-27 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
US20060029706A1 (en) * 2002-04-05 2006-02-09 Cholli Ashok L Polymeric antioxidants
US20060041087A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060128929A1 (en) * 2004-12-03 2006-06-15 Suizhou Yang Process for the synthesis of polyalkylphenol antioxidants
US20060128939A1 (en) * 2004-12-03 2006-06-15 Vijayendra Kumar One pot process for making polymeric antioxidants
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060189824A1 (en) * 2005-02-22 2006-08-24 Rajesh Kumar Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070106059A1 (en) * 2005-10-27 2007-05-10 Cholli Ashok L Macromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20070161522A1 (en) * 2005-12-02 2007-07-12 Cholli Ashok L Lubricant oil compositions

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1161909A (en) 1966-09-12 1969-08-20 Mini Of Technology Polymeric Antioxidands for Elastomers and Rubbers
CA969192A (en) 1968-06-21 1975-06-10 Ciba-Geigy Corporation Polymeric antioxidants
US3907939A (en) 1969-06-16 1975-09-23 Ashland Oil Inc Phosphite esters of hindered phenols
US3649667A (en) 1970-06-24 1972-03-14 American Cyanamid Co Aryl polyesters of 3 5-dialkyl-4-hydroxy-phenyl-alkanoic acids
US3953402A (en) 1970-07-20 1976-04-27 The Goodyear Tire & Rubber Company Age resistant polymers of ditertiary alkyl-4-hydroxyaryl acrylate and dienes
CH547335A (de) 1970-10-13 1974-03-29 Sandoz Ag Stabilisierte, nicht-textile kunststoffe und spinnmassen.
GB1389442A (en) 1971-03-02 1975-04-03 Kodak Ltd P-phenylene-diamine derivatives and uses therefor
CH564047A5 (US20070149660A1-20070628-C00079.png) 1972-05-09 1975-07-15 Sandoz Ag
US3870680A (en) 1973-10-19 1975-03-11 Edward Schurdak Copper inhibitors for polyolefins
CA1053832A (en) 1973-11-08 1979-05-01 Polysar Limited Polymeric antioxidants
US4317933A (en) 1974-01-22 1982-03-02 The Goodyear Tire & Rubber Company Preparation of antioxidants
US4136055A (en) 1974-06-21 1979-01-23 Raychem Corporation Compositions of antioxidants of reduced volatility
GB1469245A (en) 1974-10-24 1977-04-06 Kodak Ltd Substituted p-phenylenediamines
US3965039A (en) 1974-11-19 1976-06-22 Chaplits Donat N Ion-exchange molded catalyst and method of its preparation
US3951831A (en) 1975-01-17 1976-04-20 Rohm And Haas Company Antioxidant-containing viscosity index improvers for high temperature service
US3983091A (en) 1975-07-25 1976-09-28 The Goodyear Tire & Rubber Company Phenolic antioxidants prepared from tricyclopentadiene and stabilized compositions
US4097464A (en) 1975-11-03 1978-06-27 The Goodyear Tire & Rubber Company 2,6-Di-tert-alkyl-4-vinylphenols as polymerizable antioxidants
CA1093248A (en) 1976-05-20 1981-01-06 Kenneth E. Russell Phenolic antioxidants with polymer tails
NL7905000A (nl) 1978-09-25 1980-03-27 Cincinnati Milacron Chem Gehinderde fenolverbindingen, alsmede organische mate- rialen die met behulp daarvan gestabiliseerd zijn tegen oxydatieve aantasting.
US4380554A (en) 1979-06-25 1983-04-19 Standard Oil Company (Indiana) Polymeric monohydroxybenzenoid hydroquinoid antioxidants
JPS5785366A (en) 1980-11-14 1982-05-28 Sankyo Co Ltd 2-mercaptoquinone derivative
US4510296A (en) 1984-05-10 1985-04-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom
IT1177022B (it) 1984-10-24 1987-08-26 Anic Spa Composizione stabilizzanti per polimeri organici e composizioni polimeriche stabilizzate che li contengono
KR930012016B1 (ko) 1985-03-26 1993-12-23 도오요오 보오세끼 가부시끼가이샤 고분자형 산화방지제 및 그의 제조방법
US4690995A (en) 1985-06-06 1987-09-01 The Dow Chemical Company Copolymers containing high concentrations of phenol antioxidant units
US5102962A (en) 1985-08-22 1992-04-07 Hitachi Chemical Company, Ltd. Phenolic polymer and production thereof
JPS6245658A (ja) 1985-08-22 1987-02-27 Hitachi Chem Co Ltd 安定化された合成樹脂組成物
FR2597109B1 (fr) 1986-04-15 1988-06-17 Thomson Csf Materiau polymerique mesomorphe utilisable en optique non lineaire
GB2192189B (en) 1986-06-06 1990-08-22 Canon Kk Polymer of vinyl-biphenyl derivative adapted for optical use
US4761247A (en) 1987-03-06 1988-08-02 Morton Thiokol, Inc. Phenol-stabilized microbiocidal compositions
GB8710171D0 (en) 1987-04-29 1987-06-03 Shell Int Research Copolymer composition
US4981917A (en) 1987-08-12 1991-01-01 Atochem North America, Inc. Process for preparing polymer bound antioxidant stabilizers
EP0321984B1 (en) 1987-12-22 1992-10-21 Mitsubishi Rayon Co., Ltd. Mesomorphic compound having beta-hydroxycarboxyl group as chiral source and liquid crystal composition
US4870214A (en) 1988-05-20 1989-09-26 Ethyl Corporation Antioxidant
US5051531A (en) 1988-05-31 1991-09-24 Atochem North America, Inc. Antioxidant-peroxides
EP0358157B1 (en) 1988-09-07 1993-12-15 Yoshitomi Pharmaceutical Industries, Ltd. Individual alpha-form particle crystals of tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl-oxymethyl]methane and process for its production
US5196142A (en) 1989-03-17 1993-03-23 Ciba-Geigy Corporation Aqueous antioxidant emulsions
DE3920616A1 (de) 1989-06-23 1991-01-03 Boehringer Mannheim Gmbh Arzneimittel, enthaltend di-tert.-butylhydroxyphenyl-derivate sowie neue derivate
US4994628A (en) 1989-09-25 1991-02-19 Ethyl Corporation Phenolic antioxidant process
GB9001367D0 (en) 1990-01-20 1990-03-21 Bp Chem Int Ltd Oxidatively stable polymers and processes for preparing said polymers
JP2761786B2 (ja) 1990-02-01 1998-06-04 富士写真フイルム株式会社 ポジ型フオトレジスト組成物
US5188953A (en) 1990-10-18 1993-02-23 The Mead Corporation Biocatalytic oxidation using soybean peroxidase
EP0502819A1 (de) 1991-03-01 1992-09-09 Ciba-Geigy Ag Säurekatalytisch vernetzbare Copolymere
CS111291A3 (en) 1991-04-19 1992-11-18 Chemicky Ustav Slovenska Akade Trimethoxyphenyl ethanols and process for preparing thereof
US5652201A (en) 1991-05-29 1997-07-29 Ethyl Petroleum Additives Inc. Lubricating oil compositions and concentrates and the use thereof
US5117063A (en) 1991-06-21 1992-05-26 Monsanto Company Method of preparing 4-aminodiphenylamine
US5869592A (en) 1991-08-19 1999-02-09 Maxdem Incorporated Macromonomers having reactive side groups
US5185407A (en) 1991-08-29 1993-02-09 Shell Oil Company Polymeric phenolic esters
US5191008A (en) 1991-10-21 1993-03-02 The Goodyear Tire & Rubber Company Process for the production of latexes by the selective monomer addition
US5185391A (en) 1991-11-27 1993-02-09 The Dow Chemical Company Oxidation inhibited arylcyclobutene polymers
DK0565487T3 (da) 1992-04-08 1997-05-20 Ciba Geigy Ag Flydende antioxidanter som stabilisatorer
US5278055A (en) 1992-06-09 1994-01-11 The Mead Corporation Biocatalytic production of phenolic resins with ramped peroxide addition
IL107927A0 (en) 1992-12-17 1994-04-12 Exxon Chemical Patents Inc Oil soluble ethylene/1-butene copolymers and lubricating oils containing the same
JP3165279B2 (ja) 1993-03-29 2001-05-14 三井農林株式会社 3−アシル化カテキンを含有する油溶性抗酸化剤
US5618984A (en) 1994-06-24 1997-04-08 Mitsui Toatsu Chemicals, Inc. Phenol aralkyl resins, preparation process thereof and epoxy resin compositions
US5541091A (en) 1995-04-05 1996-07-30 Enzymol International, Inc. Process for the biocatalytic coupling of aromatic compounds in the presence of a radical transfer agent
US5837798A (en) 1995-07-12 1998-11-17 Georgia-Pacific Resins Phenolic polymers made by aralkylation reactions
US6096859A (en) 1996-01-16 2000-08-01 The United States Of America As Represented By The Secretary Of The Army Process to control the molecular weight and polydispersity of substituted polyphenols and polyaromatic amines by enzymatic synthesis in organic solvents, microemulsions, and biphasic systems
AUPN977296A0 (en) 1996-05-10 1996-06-06 Monash University Pharmaceutical agents
US6096695A (en) 1996-06-03 2000-08-01 Ethyl Corporation Sulfurized phenolic antioxidant composition, method of preparing same, and petroleum products containing same
JP3320307B2 (ja) 1996-06-06 2002-09-03 株式会社エス・ディー・エス バイオテック フェノール性化合物等の高分子化方法及びその利用
US6046263A (en) 1997-05-26 2000-04-04 Ciba Specialty Chemicals Corporation Liquid antioxidants as stabilizers
DE19747644C2 (de) 1997-10-29 2001-02-22 Inst Polymerforschung Dresden Sterisch gehinderte Phenole und Verfahren zu ihrer Herstellung
US6800228B1 (en) 1998-09-22 2004-10-05 Albemarle Corporation Sterically hindered phenol antioxidant granules having balanced hardness
DE19843875A1 (de) 1998-09-25 2000-03-30 Basf Ag Verfahren zur Herstellung von Metallsalenen
CN1173918C (zh) 1998-12-29 2004-11-03 西巴特殊化学品控股有限公司 用作已氧化显影剂的清除剂的新对苯二酚衍生物
DE19919708A1 (de) 1999-04-30 2001-03-01 Univ Stuttgart Stufenweise Alkylierung von polymeren Aminen
JP3816697B2 (ja) 1999-07-07 2006-08-30 大日精化工業株式会社 重合体が結合した機能剤、その製造方法、それらの使用方法及びそれらを使用した物品
US6723815B2 (en) 1999-09-02 2004-04-20 Alcon, Inc. Covalently-bound, hydrophilic coating compositions for surgical implants
ITMI991896A1 (it) 1999-09-09 2001-03-09 Carlo Ghisalberti Melanine e pigmenti vegetali
NL1013942C2 (nl) 1999-12-23 2001-06-26 Dsm Nv Multifunctionele thermisch-oxidatieve stabilisator.
ATE368698T1 (de) 2000-02-23 2007-08-15 Koninkl Philips Electronics Nv Arylsubstituierte poly(p-arylenvinylene)
GB0004437D0 (en) 2000-02-25 2000-04-12 Clariant Int Ltd Synergistic combinations of phenolic antioxidants
US6559105B2 (en) 2000-04-03 2003-05-06 The Lubrizol Corporation Lubricant compositions containing ester-substituted hindered phenol antioxidants
US6383636B2 (en) 2000-04-04 2002-05-07 Director-General Of National Institute Of Advanced Industrial Science And Technology, Ministry Of Economy, Trade And Industry (2,5-disubstituted-1,4-phenylene oxide) block or graft copolymer
AU2001280445A1 (en) 2000-06-23 2002-01-08 Vanderbilt University Novel chain-breaking antioxidants
US6384176B1 (en) 2000-07-10 2002-05-07 General Electric Co. Composition and process for the manufacture of functionalized polyphenylene ether resins
JP3698067B2 (ja) 2001-03-30 2005-09-21 Jsr株式会社 電子吸引性基および電子供与性基を有するモノマー、それを用いた共重合体、ならびにプロトン伝導膜
WO2002079130A1 (en) 2001-03-30 2002-10-10 Council Of Scientific And Industrial Research A process for preparing alkylated dihydroxybenzene
JP4784720B2 (ja) 2001-09-25 2011-10-05 信越化学工業株式会社 粘着テープ
JP2003138258A (ja) 2001-11-07 2003-05-14 Univ Kyoto 抗酸化剤
JP2003212951A (ja) 2002-01-23 2003-07-30 Daicel Chem Ind Ltd 酸化防止機能性樹脂およびそのエマルション
DK1485441T4 (da) 2002-03-21 2009-11-23 Basf Se Vandige dispersioner for antioxidanter
DE60306371T2 (de) 2002-05-30 2007-06-21 Ciba Speciality Chemicals Holding Inc. Amorphe feste modifikation von bis(2,4-dicumylphenyl) pentaerythritdiphosphit
EP1545209A4 (en) 2002-09-10 2009-07-29 Us Gov Health & Human Serv DARMTOXINBINDING FACTORS
EP1575895A1 (en) 2002-11-26 2005-09-21 Ciba SC Holding AG Phenolic antioxidants in crystalline form
WO2004050795A2 (en) 2002-11-27 2004-06-17 Tufts University Antioxidant-functionalized polymers
GB0228647D0 (en) 2002-12-09 2003-01-15 Ciba Sc Holding Ag Polyeric material containing a latent acid
US20060208227A1 (en) 2003-04-02 2006-09-21 Idemitsu Losan Co., Ltd Antioxidant and bisaminophenol derivative
EP1468968A1 (de) 2003-04-18 2004-10-20 Technische Universitat, Institut fur Mikrobiologie und Abfalltechnologie Eine Laccase enthaltender Biokatalysator
WO2005025646A2 (en) 2003-09-08 2005-03-24 U.S. Government As Represented By The Secretary Of The Army System and method for providing servo-controlled resuscitation
WO2005025513A2 (en) 2003-09-12 2005-03-24 The Regents Of The Univeristy Of California Guanidinium derivatives for improved cellular transport
US7342060B2 (en) 2003-12-11 2008-03-11 Dover Chemical Corporation Process for manufacture of pentaerythritol diphosphites
US7494960B2 (en) 2004-02-03 2009-02-24 Crompton Corporation Lubricant compositions comprising an antioxidant blend
US7291669B2 (en) * 2004-03-16 2007-11-06 Ciba Specialty Chemicals Corporation Stabilized polyolefin compositions
US7329772B2 (en) 2004-04-29 2008-02-12 Crompton Corporation Method for the preparation of a hydroxyalkyl hindered phenolic antioxidant
CN101006165B (zh) 2004-08-18 2010-05-05 西巴特殊化学品控股有限公司 性能改进的润滑油组合物
US20070149660A1 (en) 2005-10-27 2007-06-28 Vijayendra Kumar Stabilized polyolefin compositions
WO2008005358A2 (en) 2006-07-06 2008-01-10 Polnox Corporation Novel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US7767853B2 (en) 2006-10-20 2010-08-03 Polnox Corporation Antioxidants and methods of making and using the same

Patent Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459704A (en) * 1962-09-17 1969-08-05 Geigy Chem Corp Compositions of organic material stabilized with certain esters of substituted hydroquinones and organic acids
US3294836A (en) * 1962-09-17 1966-12-27 Geigy Chem Corp Stabilization of organic material with certain esters of substituted hydroquinones and organic acids
US3441545A (en) * 1963-11-01 1969-04-29 Du Pont Modification of olefin-carboxylic acid halide copolymers
US3655831A (en) * 1968-07-22 1972-04-11 Weston Chemical Corp Pentaerythritol diphosphites
US3632785A (en) * 1969-02-19 1972-01-04 Georgia Pacific Corp Method of forming shell molds
US3645970A (en) * 1969-10-01 1972-02-29 Ciba Geigy Corp Benzoate homopolymers hindered phenolic groups as stabilizers
US4213892A (en) * 1974-03-06 1980-07-22 Gerald Scott Process for preparing oxidatively-stable polymers by reaction with antioxidant in the presence of free radical
US4098829A (en) * 1974-12-04 1978-07-04 Dynapol Polymeric hydroquinone antioxidant
US3996160A (en) * 1975-02-24 1976-12-07 Dynapol Corporation Hydroquinonoid ortho-alkylation polymers and the process of their production
US3996198A (en) * 1975-02-24 1976-12-07 Dynapol One step preparation of linear antioxidant phenolic polymers involving use of impure diolefin feedstock and aluminum catalyst under ortho alkylation conditions
US4205151A (en) * 1975-04-04 1980-05-27 Dynapol Polymeric N-substituted maleimide antioxidants
US4202816A (en) * 1975-06-19 1980-05-13 Ciba-Geigy Corporation Novel light stabilizers
US4094857A (en) * 1977-09-01 1978-06-13 E. I. Du Pont De Nemours And Company Copolymerizable phenolic antioxidant
US4219453A (en) * 1977-09-22 1980-08-26 Asahi Kasei Kogyo Kabushiki Kaisha Inorganic filler-incorporated ethylene polymer film
US4281192A (en) * 1978-10-26 1981-07-28 L'oreal N-(2,5-Dihydroxy-3,4,6-trimethyl-benzyl)-acrylamide and-methacrylamide
US4283572A (en) * 1979-12-27 1981-08-11 Borg-Warner Corporation Conversion of alkyl phenyl ether to alkylphenol
US4267358A (en) * 1980-03-13 1981-05-12 Borg-Warner Corporation Phenolic ester inhibitor
US4341879A (en) * 1980-03-17 1982-07-27 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition having improved heat stability and impact strength
US4355148A (en) * 1980-09-18 1982-10-19 The B. F. Goodrich Company Norbornene polymers containing bound phenolic antioxidant
US4377666A (en) * 1981-08-17 1983-03-22 Phillips Petroleum Company Age-resistant polymers containing chemically bound antioxidant functional groups
US4511491A (en) * 1982-07-26 1985-04-16 Sumitomo Chemical Co., Ltd. Stabilizers for synthetic resins
US4447657A (en) * 1982-11-10 1984-05-08 Uop Inc. Preparation of ortho-alkylated phenols
US4465871A (en) * 1982-11-10 1984-08-14 Uop Inc. Preparation of 2-t-butyl-4-alkoxy- and 4-hydroxyphenols
US4968759A (en) * 1985-08-22 1990-11-06 Hitachi Chemical Company, Ltd. Phenolic polymer and production thereof
US4900671A (en) * 1985-11-13 1990-02-13 The Mead Corporation Biocatalytic process for preparing phenolic resins using peroxidase or oxidase enzyme
US4855345A (en) * 1986-06-19 1989-08-08 Ciba-Geigy Corporation Stabilizers for organic polymers
US4857596A (en) * 1987-08-12 1989-08-15 Pennwalt Corporation Polymer bound antioxidant stabilizers
US4977004A (en) * 1987-09-28 1990-12-11 Tropicana Products, Inc. Barrier structure for food packages
US4849503A (en) * 1987-12-21 1989-07-18 Amoco Corporation Novel poly(aryl ethers)
US5320889A (en) * 1989-01-17 1994-06-14 Tropicana Products, Inc. Plastic bottle for food
US5013470A (en) * 1989-10-10 1991-05-07 Texaco Inc. Antioxidant VII lubricant additive
US5017727A (en) * 1990-07-10 1991-05-21 Copolymer Rubber & Chemical Corporation Polymerizable antioxidant composition
US5207939A (en) * 1990-08-23 1993-05-04 Mobil Oil Corporation Dihydrocarbyl substituted phenylenediamine-derived phenolic products as antioxidants
US5574118A (en) * 1990-11-02 1996-11-12 Dsm Copolymer, Inc. Olefin polymers containing bound antioxidant
US5206303A (en) * 1990-12-27 1993-04-27 Exxon Chemical Patents Inc. Entanglement-inhibited macromolecules
US5449715A (en) * 1991-09-17 1995-09-12 Isp Investments Inc. Colorless, non-toxic, stabilized aqueous solution of a C1-C5 alkyl vinyl ether and maleic acid copolymers
US5143828A (en) * 1991-12-31 1992-09-01 The United States Of America As Represented By The Secretary Of The Army Method for synthesizing an enzyme-catalyzed polymerized monolayer
US6342549B1 (en) * 1993-08-06 2002-01-29 Mitsui Chemicals, Inc. Cycloolefin resin pellets and a process for producing a molded product thereof
US5911937A (en) * 1995-04-19 1999-06-15 Capitol Specialty Plastics, Inc. Desiccant entrained polymer
US5994498A (en) * 1997-08-21 1999-11-30 Massachusetts Lowell, University Of Lowell Method of forming water-soluble, electrically conductive and optically active polymers
US6018018A (en) * 1997-08-21 2000-01-25 University Of Massachusetts Lowell Enzymatic template polymerization
US20020128493A1 (en) * 1997-10-09 2002-09-12 Mars, Incorporated Synthetic methods for polyphenols
US5834544A (en) * 1997-10-20 1998-11-10 Uniroyal Chemical Company, Inc. Organic materials stabilized by compounds containing both amine and hindered phenol functional functionalities
US6444450B2 (en) * 1998-01-28 2002-09-03 The United States Of America As Represented By The Secretary Of The Army Large-scale production of polyphenols or polyaromatic amines using enzyme-mediated reactions
US6150491A (en) * 1998-11-06 2000-11-21 The United States Of America As Represented By The Secretary Of The Army Polyaromatic compounds and method for their production
US20040164279A1 (en) * 1999-07-29 2004-08-26 Stevenson Donald R. Solid melt blended phosphite composites
US20030030033A1 (en) * 1999-12-30 2003-02-13 Duyck Karl J. Antioxidant amines based on n-(4aniliophenyl) amides Antioxidant amines based on n-(4-anilinophenyl) Amides
US20030191242A1 (en) * 2000-02-22 2003-10-09 Alessandro Zedda Romp with oligomeric uv-absorbers
US20010041203A1 (en) * 2000-04-06 2001-11-15 Kazutaka Uno Method of removing off-flavor from foods and deodorizer
US6828364B2 (en) * 2000-07-14 2004-12-07 Ciba Specialty Chemicals Corporation Stabilizer mixtures
US20020183470A1 (en) * 2000-11-27 2002-12-05 Sukant Tripathy Polymerization of aromatic monomers using derivatives of hematin
US20040198875A1 (en) * 2001-08-15 2004-10-07 Nikolas Kaprinidis Flame retardant compositions
US20060029706A1 (en) * 2002-04-05 2006-02-09 Cholli Ashok L Polymeric antioxidants
US20040214935A1 (en) * 2002-04-05 2004-10-28 University Of Massachusetts Lowell Polymeric antioxidants
US7223432B2 (en) * 2002-04-05 2007-05-29 University of Massachusettes Lowell Polymeric antioxidants
US20070154720A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US20070154430A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US20070154608A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US20040186214A1 (en) * 2002-08-12 2004-09-23 Wen Li Fibers and nonwovens from plasticized polyolefin compositions
US20040186167A1 (en) * 2003-01-24 2004-09-23 Dou Q. Ping Polyphenol proteasome inhibitors, synthesis, and methods of use
US20040180994A1 (en) * 2003-03-05 2004-09-16 Pearson Jason Clay Polyolefin compositions
US6770785B1 (en) * 2003-03-25 2004-08-03 Council Of Scientific And Industrial Research Antiozonant cum antioxidant, process for preparation
US20050238789A1 (en) * 2004-01-21 2005-10-27 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
US20060041087A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060041094A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060128939A1 (en) * 2004-12-03 2006-06-15 Vijayendra Kumar One pot process for making polymeric antioxidants
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US20060128929A1 (en) * 2004-12-03 2006-06-15 Suizhou Yang Process for the synthesis of polyalkylphenol antioxidants
US20060189824A1 (en) * 2005-02-22 2006-08-24 Rajesh Kumar Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20070106059A1 (en) * 2005-10-27 2007-05-10 Cholli Ashok L Macromolecular antioxidants and polymeric macromolecular antioxidants
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20070161522A1 (en) * 2005-12-02 2007-07-12 Cholli Ashok L Lubricant oil compositions

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507454B2 (en) 2002-04-05 2009-03-24 University Of Massachusetts Lowell Polymeric antioxidants
US7601378B2 (en) 2002-04-05 2009-10-13 University Of Massachusetts Lowell Polymeric antioxidants
US20070154608A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US20070154720A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US20070154430A1 (en) * 2002-04-05 2007-07-05 Cholli Ashok L Polymeric antioxidants
US7754267B2 (en) 2002-04-05 2010-07-13 The United States Of America As Represented By The Secretary Of The Army Polymeric antioxidants
US20060029706A1 (en) * 2002-04-05 2006-02-09 Cholli Ashok L Polymeric antioxidants
US7727571B2 (en) 2002-04-05 2010-06-01 University Of Massachusetts Lowell Polymeric antioxidants
US20050238789A1 (en) * 2004-01-21 2005-10-27 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
US7323511B2 (en) 2004-01-21 2008-01-29 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
US20080311065A1 (en) * 2004-07-23 2008-12-18 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US7923587B2 (en) * 2004-07-23 2011-04-12 Polnox Corporation Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060041094A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US20060041087A1 (en) * 2004-07-23 2006-02-23 Cholli Ashok L Anti-oxidant macromonomers and polymers and methods of making and using the same
US7678877B2 (en) 2004-12-03 2010-03-16 Polnox Corporation Process for the synthesis of polyalkylphenol antioxidants
US8846847B2 (en) 2004-12-03 2014-09-30 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20060128930A1 (en) * 2004-12-03 2006-06-15 Ashish Dhawan Synthesis of sterically hindered phenol based macromolecular antioxidants
US8242230B2 (en) 2004-12-03 2012-08-14 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US7956153B2 (en) 2004-12-03 2011-06-07 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8252884B2 (en) 2004-12-03 2012-08-28 Polnox Corporation Stabilized polyolefin compositions
US20060128931A1 (en) * 2004-12-03 2006-06-15 Rajesh Kumar Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US20060128939A1 (en) * 2004-12-03 2006-06-15 Vijayendra Kumar One pot process for making polymeric antioxidants
US7902317B2 (en) 2004-12-03 2011-03-08 Polnox Corporation Synthesis of aniline and phenol-based antioxidant macromonomers and corresponding polymers
US8598382B2 (en) 2004-12-03 2013-12-03 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20100305361A1 (en) * 2004-12-03 2010-12-02 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US8481670B2 (en) 2004-12-03 2013-07-09 Polnox Corporation Stabilized polyolefin compositions
US20060128929A1 (en) * 2004-12-03 2006-06-15 Suizhou Yang Process for the synthesis of polyalkylphenol antioxidants
US8008423B2 (en) 2004-12-03 2011-08-30 Polnox Corporation Stabilized polyolefin compositions
US8691933B2 (en) 2004-12-03 2014-04-08 Polnox Corporation Stabilized polyolefin compositions
US20100305251A1 (en) * 2004-12-03 2010-12-02 Vijayendra Kumar Stabilized polyolefin compositions
US9388120B2 (en) 2005-02-22 2016-07-12 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20110040125A1 (en) * 2005-02-22 2011-02-17 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US7799948B2 (en) 2005-02-22 2010-09-21 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US20060189824A1 (en) * 2005-02-22 2006-08-24 Rajesh Kumar Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US8710266B2 (en) 2005-02-22 2014-04-29 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US8080689B2 (en) 2005-02-22 2011-12-20 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US7705185B2 (en) 2005-03-25 2010-04-27 Polnox Corporation Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US20060233741A1 (en) * 2005-03-25 2006-10-19 Rajesh Kumar Alkylated and polymeric macromolecular antioxidants and methods of making and using the same
US7863348B2 (en) 2005-08-18 2011-01-04 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20070059334A1 (en) * 2005-08-18 2007-03-15 Zimmer Technology, Inc. Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8673202B2 (en) 2005-08-18 2014-03-18 Zimmer, Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20090118390A1 (en) * 2005-08-18 2009-05-07 Abt Niels A Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11015030B2 (en) 2005-08-18 2021-05-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11001680B2 (en) 2005-08-18 2021-05-11 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US7846376B2 (en) 2005-08-18 2010-12-07 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8470903B2 (en) 2005-08-18 2013-06-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20070135539A1 (en) * 2005-10-27 2007-06-14 Cholli Ashok L Macromolecular antioxidants based on sterically hindered phenols and phosphites
US20100084607A1 (en) * 2005-10-27 2010-04-08 Polnox Corporation Macromolecular antioxidants and polymeric macromolecular antioxidants
US7705176B2 (en) 2005-10-27 2010-04-27 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US7705075B2 (en) 2005-10-27 2010-04-27 Polnox Corporation Stabilized polyolefin compositions
US20080293856A1 (en) * 2005-10-27 2008-11-27 Vijayendra Kumar Stabilized polyolefin compositions
US20070106059A1 (en) * 2005-10-27 2007-05-10 Cholli Ashok L Macromolecular antioxidants and polymeric macromolecular antioxidants
US9523060B2 (en) 2005-12-02 2016-12-20 Polnox Corporation Lubricant oil compositions
US8927472B2 (en) 2005-12-02 2015-01-06 Polnox Corporation Lubricant oil compositions
US20070161522A1 (en) * 2005-12-02 2007-07-12 Cholli Ashok L Lubricant oil compositions
US20100048782A1 (en) * 2006-06-20 2010-02-25 Gelbin Michael E Liquid phosphite blends as stabilizers
US7888414B2 (en) 2006-06-20 2011-02-15 Chemtura Corporation Liquid phosphite blends as stabilizers
US20100076131A1 (en) * 2006-06-20 2010-03-25 Chemtura Corporation Liquid butylaryl phosphite compositions and alkylate compositions for manufacturing same
US8008383B2 (en) 2006-06-20 2011-08-30 Chemtura Corporation Liquid amylaryl phosphite compositions
US20100076125A1 (en) * 2006-06-20 2010-03-25 Chemtura Corporation Liquid phosphite composition derived from cresols
US8178005B2 (en) 2006-06-20 2012-05-15 Chemtura Corporation Liquid phosphite compositions having different alkyl groups
US20100025636A1 (en) * 2006-06-20 2010-02-04 Chemtura Corporation Liquid phosphite compositions having different alkyl groups
US8183311B2 (en) 2006-06-20 2012-05-22 Chemtura Corporation Liquid phosphite composition derived from cresols
US8188170B2 (en) 2006-06-20 2012-05-29 Chemtura Corporation Polymers with low gel content and enhanced gas-fading
US20100197837A1 (en) * 2006-06-20 2010-08-05 Chemtura Corporation Polymers with low gel content and enhanced gas-fading
US7947769B2 (en) 2006-06-20 2011-05-24 Chemtura Corporation Liquid amylaryl phosphite compositions and alkylate compositions for manufacturing same
US8258214B2 (en) 2006-06-20 2012-09-04 Chemtura Corporation Polymers with low gel content and enhanced gas-fading
US20100069542A1 (en) * 2006-06-20 2010-03-18 Chemtura Corporation Liquid amylaryl phosphite compositions and alkylate compositions for manufacturing same
US8008384B2 (en) 2006-06-20 2011-08-30 Chemtura Corporation Liquid butylaryl phosphite compositions
US9950990B2 (en) 2006-07-06 2018-04-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US9193675B2 (en) 2006-07-06 2015-11-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US20090184294A1 (en) * 2006-07-06 2009-07-23 Cholli Ashok L Novel macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US8039673B2 (en) 2006-07-06 2011-10-18 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US7767853B2 (en) 2006-10-20 2010-08-03 Polnox Corporation Antioxidants and methods of making and using the same
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9822224B2 (en) 2007-04-10 2017-11-21 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8178594B2 (en) 2007-04-10 2012-05-15 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8669299B2 (en) 2007-04-10 2014-03-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20110133371A1 (en) * 2007-04-10 2011-06-09 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20110028600A1 (en) * 2007-04-10 2011-02-03 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9926432B2 (en) 2007-04-10 2018-03-27 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8129440B2 (en) 2007-04-10 2012-03-06 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US10556998B2 (en) 2007-04-10 2020-02-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9718241B2 (en) 2008-01-30 2017-08-01 Zimmer, Inc. Method of manufacturing an acetabular component
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
US20100137481A1 (en) * 2008-11-20 2010-06-03 Zimmer Gmbh Polyethylene materials
US20100187726A1 (en) * 2009-01-29 2010-07-29 Nova Chemicals (International) S.A Stabilized rotomolded parts
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US10683455B2 (en) 2013-11-22 2020-06-16 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11060027B2 (en) 2013-11-22 2021-07-13 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10577484B2 (en) 2014-07-01 2020-03-03 Samsung Electronics Co., Ltd. Compositions and polymer composites prepared from the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same
US11241868B2 (en) * 2018-02-27 2022-02-08 Inteplast Group Corporation Clear film for tapes and labels
US20220134722A1 (en) * 2018-02-27 2022-05-05 Inteplast Group Corporation Clear film for tapes and labels
US11718077B2 (en) * 2018-02-27 2023-08-08 Interplast Group Corporation Clear film for tapes and labels
CN112513119A (zh) * 2018-07-27 2021-03-16 美利肯公司 高分子酚抗氧化剂

Also Published As

Publication number Publication date
WO2007050991A1 (en) 2007-05-03
US7705075B2 (en) 2010-04-27
US20080293856A1 (en) 2008-11-27
EP1966293A1 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7705075B2 (en) Stabilized polyolefin compositions
US8691933B2 (en) Stabilized polyolefin compositions
US11060027B2 (en) Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
AU2005259262B2 (en) Scratch resistant polyolefins
JP3062977B2 (ja) ビスベンゾフラン−2−オン
JP5676582B2 (ja) 耐スクラッチ性ポリプロピレン
EP1910455B1 (en) Stabilization of polyolefins with liquid tris-(mono-alkyl)phenyl phosphites
BE1011448A3 (fr) Melange stabilisant, composition le contenant et procede l'utilisant pour stabiliser une polyolefine.
US20070088108A1 (en) Stabilization of polyolefins with liquid cyclic phosphites
BE1011447A3 (fr) Melange stabilisant, composition le contenant et procede l'utilisant pour stabiliser une polyolefine.
KR101330607B1 (ko) 색 견뢰성 폴리우레탄
BE1012528A3 (fr) Melange stabilisant, composition le contenant et procede l'utilisant pour stabiliser une polyolefine.
US20050222308A1 (en) Nonylcyclohexylphosphite ester polyolefin stabilizers

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLNOX CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, VIJAYENDRA;KUMAR, RAJESH;DHAWAN, ASHISH;AND OTHERS;REEL/FRAME:018827/0641;SIGNING DATES FROM 20070105 TO 20070109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION