US20070148033A1 - Silver alloy excellent in reflectance maintenance property - Google Patents

Silver alloy excellent in reflectance maintenance property Download PDF

Info

Publication number
US20070148033A1
US20070148033A1 US10/580,294 US58029404A US2007148033A1 US 20070148033 A1 US20070148033 A1 US 20070148033A1 US 58029404 A US58029404 A US 58029404A US 2007148033 A1 US2007148033 A1 US 2007148033A1
Authority
US
United States
Prior art keywords
silver alloy
dopant element
reflective film
film according
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/580,294
Inventor
Tomokazu Obata
Hiroshi Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Assigned to TANAKA KIKINZOKU KOGYO K.K. reassignment TANAKA KIKINZOKU KOGYO K.K. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OBATA, TOMOKAZU, YANAGIHARA, HIROSHI
Publication of US20070148033A1 publication Critical patent/US20070148033A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2595Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on gold
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers

Definitions

  • the present invention relates to a silver alloy suitable as a material for forming reflective films provided on optical recording media, displays and the likes. Particularly, the present invention relates to a silver alloy for reflective films capable of maintaining the reflectance thereof even in long-term use.
  • Silver is recognized as a most preferable material as a material for reflective films to be used in optical recording media, displays and the like. This is because silver is high in reflectance, and additionally, lower in price than gold that is also high in reflectance.
  • transition to recordable/rewritable media CD-R/RW, DVD-R/RW/RAM
  • expanding importance of optical recording media attaches importance to silver that is high in reflectance and relatively low in cost as a central material for use in reflective films.
  • silver involves a problem such that silver is poor in corrosion resistance and is degraded in reflectance by discoloration to black through corrosion.
  • the root causes for the corrosion of reflective films may vary with products (recording media, displays and the like) to which the reflective films are applied, in such a way that, for example, reflective films of displays suffer from a fear that they are corroded due to the atmospheric humidity or the like.
  • a reflective layer of an optical recording medium also suffers from a fear of corrosion due to the atmosphere such as the air, and furthermore, requires a consideration of corrosion caused by the effects of the other constituent layers (the recording layer, dielectric layer and the like) in contact with the reflective layer in the recording medium.
  • a recordable optical disk (CD-R, DVD-R, DVD+R or the like) has a structure in which an organic azo or cyanine dye ink is coated on a polycarbonate substrate and dried to form a recording layer, a reflective layer is formed on the surface of the recording layer, and the recording layer with the reflective layer is bonded to another polycarbonate substrate with an ultraviolet cure adhesive.
  • the organic dye ink in the recording layer and the ultraviolet cure adhesive both in contact with the reflective layer, contain sulfur as a component thereof or as an impurity, and accordingly, the reflective layer is exposed to a fear of corrosion in the course of use thereof because silver is poor in resistance to sulfidation.
  • a rewritable optical disk CD-RW, DVD-RW, DVD+RW, DVD-RAM or the like
  • CD-RW, DVD-RW, DVD+RW, DVD-RAM or the like has a structure in which a derivative layer, a recording layer, a dielectric layer and a reflective layer are laminated in such a condition that the reflective layer is in contact with the dielectric layer.
  • ZnS zinc sulfide
  • the reflective layer of an optical recording medium is in such an environment that the reflective layer is in contact with a layer containing sulfur or a sulfide, irrespective as to whether the optical recording medium is recordable or rewritable in type; thus, the resistance to sulfidation comes to be more significant than the corrosion caused by the atmosphere involving humidity or the like, and there is a fear that the reflectance of the reflective layer is degraded by the long-term use of the recording medium.
  • a reflective film made of silver is also thermally degraded in reflectance.
  • the mechanism involved in the reflectance degradation due to heating is not yet elucidated, but it has been verified that heating of a thin silver film causes a phenomenon in which local agglomeration occurs in the thin film so as to expose the underlayer.
  • the reflective film of an optical recording medium, a plasma display or the like is required to have a heat resistance because it possibly undergoes heating.
  • silver alloys for use in reflective films, that are improved in corrosion resistance and heat resistance while the reflectance being secured.
  • These alloys mostly include silver as the main component, and are doped with one or more of various elements as dopant elements; examples of such disclosed alloys include, for example, an alloy in which Ag is doped with Ca, V or Nb. It has been disclosed that these silver alloys are satisfactory in corrosion resistance, can maintain the reflectance in service environment, and consequently, suitable for reflective films (for the details of the conventional art, see Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Laid-Open No. Hei 6-243509
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-6926
  • red semiconductor lasers (wavelength: 650 nm) are applied as recording light sources, but blue lasers (wavelength: 405 nm) have almost seen their way clear to practical use.
  • Application of the blue laser can ensure a memory capacity 5 to 6 times as large as the memory capacity of an optical recording device available at present, so that optical recording devices incorporating blue lasers applied thereto will conceivably form the mainstream of the next-generation optical recording devices.
  • the reflectance of a reflective film varies with the wavelength of the incident laser light; in particular, it has been verified that shorter-wavelength laser irradiation degrades the reflectance irrespective as to whether corrosion occurs or not, and makes the extent of the reflectance degradation due to corrosion frequently larger than the longer-wavelength laser irradiation. Consequently, for the purpose of producing recording media adaptable to the development of the future recording light sources, it is desired to develop a material that has a high reflectance even for the laser irradiation in a shorter wavelength region, and furthermore, can maintain the reflectance within a range of practical use.
  • the present invention has been achieved on the above described background, and is aimed at providing a material that is a silver alloy to form a reflective film of an optical recording medium or the like, and is workable without degrading the reflectance even in a long-term use. Additionally, the present invention provides a material that has a high reflectance even for a short wavelength laser light.
  • the present inventors selected appropriate dopant elements with silver as the main component similarly to the conventional art. Consequently, the present inventors have come up with the present invention by discovering that the addition of a rare-earth metal element, as an dopant element, higher than silver in melting point is effective in maintaining the reflectance and is useful for improving the heat resistance, the moisture resistance or the resistance to sulfidation.
  • the present invention is a silver alloy for use in a reflective film, including silver as a main element and at least one precious metal element as a first dopant element.
  • the precious metal as the first dopant element is selected from platinum, palladium, gold, rhodium, ruthenium and indium. Inclusion of at least one of these elements can lead to a silver thin film useful for maintaining the high reflectance.
  • a silver alloy, doped with platinum, palladium or gold among the above described elements can maintain the various properties required for a reflective film at specially high levels.
  • Such a silver alloy is excellent both in corrosion resistance and in heat resistance, and are suitable not only for the reflective layer for use in an optical recording medium but also for the reflective film for use in a display.
  • the silver alloy is preferably an alloy doped with at least one element, as a second dopant element, selected from gallium, dysprosium, thulium, magnesium, zinc, nickel, molybdenum, terbium, gadolinium, erbium, aluminum, neodymium, holmium, copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium, manganese, germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium.
  • These elements have effects to improve, in cooperation with the first dopant element, the resistance to sulfidation, moisture resistance and heat resistance, and work in combination with the first dopant elements.
  • a silver alloy doped with a second dopant element of gallium, dysprosium or thulium is a preferable alloy because such an alloy can effectively suppress the agglomeration phenomenon which possibly occur in a thin film material in a humidified environment.
  • the dopant element concentration namely, total of the concentration(s) of the first dopant element(s) and the concentration(s) of the second dopant element(s) is preferably 0.01 to 5.0 atomic %.
  • the addition amount is less than 0.01 atomic %, no effect of the reflectance maintenance is found.
  • the dopant element concentration exceeds 5.0 atomic %, the reflectance degradation becomes large depending on the service environment and the incident laser light wavelength, and it becomes impossible to ensure the reflectance.
  • the concentration is particularly preferably 0.01 to 2.0 atomic %, because this range of concentration can maintain the reflectance at a higher level irrespective of the service environment and the laser light wavelength.
  • the above-described silver alloy, according to the present invention, as the material for use in a reflective film, can be produced by the melt casting method and the sintering method.
  • the production based on the melt casting method involves no particular difficulties, and can produce the alloy by means of a general method in which individual raw materials are weighed out, mixed by melting, and the mixture is subjected to casting.
  • the sintering method also involves no particular difficulties, and can produce the alloy by means of a general method in which individual raw materials are weighed out, and subjected to sintering.
  • the silver alloy according to the present invention has properties favorable for a reflective film, and suppresses the reflectance degradation in the course of use. As described below, the silver alloy according to the present invention exhibits a more satisfactory reflectance and a more satisfactory maintenance of the reflectance than conventional materials for use in reflective films, even under irradiation with a short wavelength laser light. As described above, the sputtering method is generally applied to the production of reflective films of optical recording media and the like. Accordingly, sputtering targets made of the silver alloy according to the present invention can serve to produce optical recording media, displays and the like each provided with a reflective film having satisfactory properties.
  • the silver alloy according to the present invention also exhibits a more satisfactory reflectance and a more satisfactory maintenance of the reflectance than conventional materials for use in reflective films, even under irradiation with a short wavelength laser light. Accordingly, the silver alloy according to the present invention is compatible with recording media for use in optical recording devices each having a short wavelength laser as the light source, such recording devices being anticipated to form the mainstream of such devices.
  • binary and ternary silver alloys having various compositions with Ag as the main component were produced; targets were produced from these alloys, and thin films were formed therefrom by means of a sputtering method. These thin films were subjected to corrosion tests (accelerated tests) in various environments, and the reflectance variations as observed after the corrosion tests were examined.
  • each of the silver alloys In the production of each of the silver alloys, individual metals were weighed out so as to give predetermined concentrations, mixed by melting in a high frequency melting furnace to yield an alloy. The molten alloy thus obtained was cast into a casting mold to be solidified to yield an ingot, the ingot was forged, rolled and heat treated, and thereafter shaped into a sputtering target.
  • a substrate borosilicate glass
  • a target borosilicate glass
  • argon gas was introduced into the interior of the apparatus so as to give a pressure of 5.0 ⁇ 10 ⁇ 1 Pa.
  • Sputtering conditions were such that film formation was carried out with a direct current power of 4 kW for 8 seconds to attain a film thickness of 1200 ⁇ . It is to be noted that the film thickness distribution fell within ⁇ 10%.
  • the thin film products were evaluated with respect to heat resistance and moisture resistance. These properties were evaluated as follows: a thin film was exposed to each corresponding environment and the reflectance of the thin film after each test was measured at a varying wavelength in a spectrophotometer; and the observed reflectances at different wavelengths were compared differentially with the corresponding reflectances of silver as the reference levels, which were measured immediately after film formation.
  • the heating test to examine the heat resistance of a thin film was carried out as follows: the thin film was placed on a hot plate, heated in an atmosphere at 250° C. for 1 hour, and the reflectance after heating was evaluated.
  • the humidification test to examine the moisture resistance of a thin film was carried out as follows: the thin film was exposed to an atmosphere of a temperature of 100° C. and a humidity of 100%, and the reflectance after humidification was evaluated; the exposure time was varied to take two periods, namely, 24 hours (humidification test I) and 100 hours (humidification test II). The results of these corrosion tests are shown in Tables 1 to 3.
  • the reflectances shown in these tables are relative values based on the reflectances of silver immediately after film formation which are set at 100.
  • the measured reflectance values are the values measured at the wavelengths of 400 nm, 550 nm and 650 nm (respectively corresponding to the wavelengths of blue, yellow and red lasers). It is to be noted that each of these tables includes, for comparison, the test results obtained for a thin film produced from a target made of pure silver.
  • the reason why the former simulated evaluation was carried out in the present invention is as follows: in an optical recording medium taken as an example, the optical recording medium is composed of a large number of layers including, in addition to the reflective layer, a substrate and a recording layer, and including, depending on the type of the medium, a dielectric layer, a heat release layer and the like; and for the purpose of evaluating the adaptability of the reflective layer of the optical recording medium, it is necessary that these constituent layers are formed on the substrate to produce the recording medium, and then the recording medium is evaluated, and this is troublesome.
  • the present inventors has adopted a method, as a convenient method, in which such a film is exposed in a predetermined environment, and thereafter the surface appearance of the film is observed to evaluate the adaptability of the thin film to practical use.
  • the humidification test is carried out as follows: first, a formed thin film is allowed to stand (for 20 to 30 minutes) in a cooling atmosphere set at a temperature (preferably 10° C.) lower than room temperature to be sufficiently cooled together with the substrate; the thus cooled thin film is exposed in a humidification environment; and the thin film is taken out and dried, and thereafter a surface appearance of the thin film is observed.
  • the humidification environment is preferably an atmosphere at a temperature of 100° C. and with a humidity of 100%, and the exposure time in this case is preferably set at 20 minutes.
  • a formed thin film is directly placed together with the substrate in a heating environment; the heating environment is preferably an air atmosphere at 250° C., and the exposure time in this case is preferably set at 60 minutes.
  • the observation of the surface appearance is conducted to evaluate the evaluation of the degree of generation of silver agglomerates (hereinafter referred to as black spots) occurring as black spots on the thin film surface after having been exposed in each environment.
  • black spots the degree of generation of silver agglomerates
  • the black spots to be counted are preferably those each having a size of 1 to 10 ⁇ m. Such clear definition of the spots to be evaluated allows the evaluation to be facilitated.
  • Such a size as described above matches the size of marks to be used for record reproduction in an optical recording medium.
  • the evaluation of the generation degree of the black spots may be carried out, for example, by taking a photo of the surface of the thin film, and by subjecting the photo to image processing to derive the rate of the area of the black spots.
  • evaluation is carried out by taking as a reference the surface condition (in this case, almost no black spots being generated) of a silver thin film immediately after formation thereof and by assessing the surface condition of a thin film after heating, relatively to the reference, through classification into a few levels.
  • the humidification environment was set to be an atmosphere at a temperature of 100° C. and with a humidity of 100%, with the exposure time set at 20 minutes.
  • different types of 120 ⁇ and 1200 ⁇ silver alloy thin films were produced, and each thin film was cooled and thereafter exposed in the above described humidification environment to be subsequently subjected to optical microscopic observation of the surface appearance thereof.
  • the surface condition of a silver thin film immediately after the production thereof was taken as a reference to be graded as “level 1,” and the surface condition evaluation was carried out in terms of 5 grades in the degrading order of the surface condition from level 1 (in the order of increasing number of the black spots) in such a way that the properties of the films were assessed through classification into level 1 to level 5.
  • the results thus obtained are shown in Table 4.
  • Level Binary alloy Ternary alloy Film thickness 1200 ⁇ 1 Ag-1.0 Pt Ag-2.0 Pd Ag-1.0 Pd-1.0 Dy 2 Ag-0.5 Pt-2.0 Ga 3 Ag-1.0 Au 4 5 Ag-1.0 Ir Ag-1.0 Rh Ag-1.0 Ru Ag-1.0 Os Film thickness: 120 ⁇ 1 Ag-1.0 Pd-1.0 Dy Ag-0.5 Pt-2.0 Ga 2 Ag-1.0 Au 3 Ag-2.0 Pd 4 5 Ag-1.0 Ir Ag-1.0 Rh Ag-1.0 Ru Ag-1.0 Os Level 1 refers to the surface condition of silver immediately after deposition.
  • DVD-R media having as a reflective layer thin films made of the silver alloys according to the present invention were actually produced and were evaluated for the properties as the reflective film of an optical recording medium.
  • substrates polycarbonate substrates (120 mm in diameter, 0.6 mm in plate thickness, 0.17 ⁇ m in groove depth, 0.3 ⁇ m in groove width, and 0.74 ⁇ m in groove pitch) with preformatted pattern formed thereon, produced with an injection molding machine equipped with a stamper.
  • a metal-containing azo recording ink was coated by way of spin coating and dried, and thereafter, a reflective film was formed so as to have a film thickness of 1200 ⁇ with a sputtering target produced in the present embodiment.
  • a polycarbonate substrate the same in size as the substrate concerned was bonded with an ultraviolet curable resin to produce a DVD-R medium.
  • the jitter values, PI8 errors and PO errors of the thus produced DVD-R media in the initial condition subsequent to the production thereof were measured, and were verified to fall within the ranges of the DVD specifications.
  • the DVD-R media were subjected to an accelerated environment test in which the DVD-R media were exposed in an environment at a temperature of 80° C. and with a relative humidity of 85%, and the DVD-R media after the accelerated environment test were subjected to the measurement of the individual values by means of the evaluation apparatus.
  • FIGS. 1 to 3 show relations between humidification time and jitter value, PI8 error value and PO error, respectively, which were all measured in this test. These figures also show the results obtained by applying the same tests to a DVD-R medium having a reflective film made of pure silver and commercially available DVD-R media.
  • the recording media each provided with a reflective film made of a silver alloy according to the present invention each clear the specifications for the individual values, and have a long-term stability, even after a long time humidification.
  • the recording medium provided with a reflective film made of pure silver failed to be recognized by the recording device and became unusable after humidification for 150 hours.
  • the jitter values of the commercially available products exceeded the specification, and although the error values of these commercial products were able to clear the specifications, the properties of these commercial products were inferior to those of the recording media according to the present embodiment.
  • Table 5 shows results obtained as follows: DVD-R media each provided with a reflective film made of a silver alloy different in composition from those examined above were produced; the DVD-R media thus produced were exposed in a humidification environment in the same manner as described above; and thereafter, the results shown in Table 6, namely, the jitter values, PI8 errors and PO errors thereof were measured.
  • FIG. 1 is a graph showing the results (jitter values) of an accelerated environment test carried out on DVD-R media each provided with one of the reflective films according to present Embodiment;
  • FIG. 2 is a graph showing the results (PI8 error values) of the accelerated environment test carried out on the DVD-R media each provided with one of the reflective films according to present Embodiment.
  • FIG. 3 is a graph showing the results (PO error values) of the accelerated environment test carried out on the DVD-R media each provided with one of the reflective films according to present Embodiment.

Abstract

The present invention is a silver alloy including silver as the main component and at least one precious metal element as a first dopant element, and excellent in reflectance maintenance property. In the present invention, the first dopant element is preferably platinum, gold, palladium, rhodium, ruthenium and iridium. Also, in the present invention, the silver alloy preferably includes, as a second dopant element, at least one element selected from copper, manganese, silicon, chromium, nickel, cobalt, iron, scandium, zirconium, niobium, molybdenum, tantalum, tungsten, indium, tin, lead, aluminum, calcium, germanium, gallium, bismuth, antimony, strontium, hafnium, gadolinium, samarium, neodymium, lanthanum, cerium, ytterbium and europium.

Description

    TECHNICAL FIELD
  • The present invention relates to a silver alloy suitable as a material for forming reflective films provided on optical recording media, displays and the likes. Particularly, the present invention relates to a silver alloy for reflective films capable of maintaining the reflectance thereof even in long-term use.
  • BACKGROUND ART
  • Silver is recognized as a most preferable material as a material for reflective films to be used in optical recording media, displays and the like. This is because silver is high in reflectance, and additionally, lower in price than gold that is also high in reflectance. In the field of optical recording media in these years, transition to recordable/rewritable media (CD-R/RW, DVD-R/RW/RAM) takes place, and expanding importance of optical recording media attaches importance to silver that is high in reflectance and relatively low in cost as a central material for use in reflective films.
  • On the other hand, silver involves a problem such that silver is poor in corrosion resistance and is degraded in reflectance by discoloration to black through corrosion. The root causes for the corrosion of reflective films may vary with products (recording media, displays and the like) to which the reflective films are applied, in such a way that, for example, reflective films of displays suffer from a fear that they are corroded due to the atmospheric humidity or the like.
  • A reflective layer of an optical recording medium also suffers from a fear of corrosion due to the atmosphere such as the air, and furthermore, requires a consideration of corrosion caused by the effects of the other constituent layers (the recording layer, dielectric layer and the like) in contact with the reflective layer in the recording medium. For example, a recordable optical disk (CD-R, DVD-R, DVD+R or the like) has a structure in which an organic azo or cyanine dye ink is coated on a polycarbonate substrate and dried to form a recording layer, a reflective layer is formed on the surface of the recording layer, and the recording layer with the reflective layer is bonded to another polycarbonate substrate with an ultraviolet cure adhesive. In this case, the organic dye ink in the recording layer and the ultraviolet cure adhesive, both in contact with the reflective layer, contain sulfur as a component thereof or as an impurity, and accordingly, the reflective layer is exposed to a fear of corrosion in the course of use thereof because silver is poor in resistance to sulfidation. On the other hand, a rewritable optical disk (CD-RW, DVD-RW, DVD+RW, DVD-RAM or the like) has a structure in which a derivative layer, a recording layer, a dielectric layer and a reflective layer are laminated in such a condition that the reflective layer is in contact with the dielectric layer. Various materials are available for the dielectric layer, but in these years, materials to which zinc sulfide (ZnS) is applied are being used (sometimes, for the purpose of controlling heat reserve, a material made of zinc sulfide doped with silicon oxide, namely, ZnS-20 mol % SiO2 or the like being applied). Consequently, also in this case, there is a fear of corrosion due to a sulfide. As described above, the reflective layer of an optical recording medium is in such an environment that the reflective layer is in contact with a layer containing sulfur or a sulfide, irrespective as to whether the optical recording medium is recordable or rewritable in type; thus, the resistance to sulfidation comes to be more significant than the corrosion caused by the atmosphere involving humidity or the like, and there is a fear that the reflectance of the reflective layer is degraded by the long-term use of the recording medium.
  • Additionally, there is a problem that a reflective film made of silver is also thermally degraded in reflectance. The mechanism involved in the reflectance degradation due to heating is not yet elucidated, but it has been verified that heating of a thin silver film causes a phenomenon in which local agglomeration occurs in the thin film so as to expose the underlayer. Accordingly, the reflective film of an optical recording medium, a plasma display or the like is required to have a heat resistance because it possibly undergoes heating.
  • For the purpose of coping with the reflectance degradation of the reflective film as described above, there have conventionally been developed silver alloys, for use in reflective films, that are improved in corrosion resistance and heat resistance while the reflectance being secured. These alloys mostly include silver as the main component, and are doped with one or more of various elements as dopant elements; examples of such disclosed alloys include, for example, an alloy in which Ag is doped with Ca, V or Nb. It has been disclosed that these silver alloys are satisfactory in corrosion resistance, can maintain the reflectance in service environment, and consequently, suitable for reflective films (for the details of the conventional art, see Patent Documents 1 and 2).
  • Patent Document 1: Japanese Patent Laid-Open No. Hei 6-243509
  • Patent Document 2: Japanese Patent Laid-Open No. 2003-6926
  • As for the above described silver alloys, improvements of the corrosion resistance and heat resistance have been developed to some extents. However, even these silver alloys are not absolutely free from deterioration in service environment. Additionally, the reflectance is not completely guaranteed against reflectance degradation, and materials that can maintain the reflectance at a higher level are desired.
  • In the field of optical recording devices, at present, red semiconductor lasers (wavelength: 650 nm) are applied as recording light sources, but blue lasers (wavelength: 405 nm) have almost seen their way clear to practical use. Application of the blue laser can ensure a memory capacity 5 to 6 times as large as the memory capacity of an optical recording device available at present, so that optical recording devices incorporating blue lasers applied thereto will conceivably form the mainstream of the next-generation optical recording devices. In this connection, according to the present inventors, it has been verified that the reflectance of a reflective film varies with the wavelength of the incident laser light; in particular, it has been verified that shorter-wavelength laser irradiation degrades the reflectance irrespective as to whether corrosion occurs or not, and makes the extent of the reflectance degradation due to corrosion frequently larger than the longer-wavelength laser irradiation. Consequently, for the purpose of producing recording media adaptable to the development of the future recording light sources, it is desired to develop a material that has a high reflectance even for the laser irradiation in a shorter wavelength region, and furthermore, can maintain the reflectance within a range of practical use.
  • The present invention has been achieved on the above described background, and is aimed at providing a material that is a silver alloy to form a reflective film of an optical recording medium or the like, and is workable without degrading the reflectance even in a long-term use. Additionally, the present invention provides a material that has a high reflectance even for a short wavelength laser light.
  • DISCLOSURE OF THE INVENTION
  • In order to solve the above described problems, the present inventors selected appropriate dopant elements with silver as the main component similarly to the conventional art. Consequently, the present inventors have come up with the present invention by discovering that the addition of a rare-earth metal element, as an dopant element, higher than silver in melting point is effective in maintaining the reflectance and is useful for improving the heat resistance, the moisture resistance or the resistance to sulfidation.
  • The present invention is a silver alloy for use in a reflective film, including silver as a main element and at least one precious metal element as a first dopant element.
  • Here, the precious metal as the first dopant element is selected from platinum, palladium, gold, rhodium, ruthenium and indium. Inclusion of at least one of these elements can lead to a silver thin film useful for maintaining the high reflectance.
  • According to the investigations carried out by the present inventors, it has been verified that a silver alloy, doped with platinum, palladium or gold among the above described elements, can maintain the various properties required for a reflective film at specially high levels. Such a silver alloy is excellent both in corrosion resistance and in heat resistance, and are suitable not only for the reflective layer for use in an optical recording medium but also for the reflective film for use in a display.
  • Further, in the present invention, the silver alloy is preferably an alloy doped with at least one element, as a second dopant element, selected from gallium, dysprosium, thulium, magnesium, zinc, nickel, molybdenum, terbium, gadolinium, erbium, aluminum, neodymium, holmium, copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium, manganese, germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium. These elements have effects to improve, in cooperation with the first dopant element, the resistance to sulfidation, moisture resistance and heat resistance, and work in combination with the first dopant elements.
  • In particular, a silver alloy doped with a second dopant element of gallium, dysprosium or thulium is a preferable alloy because such an alloy can effectively suppress the agglomeration phenomenon which possibly occur in a thin film material in a humidified environment.
  • Additionally, the dopant element concentration, namely, total of the concentration(s) of the first dopant element(s) and the concentration(s) of the second dopant element(s) is preferably 0.01 to 5.0 atomic %. When the addition amount is less than 0.01 atomic %, no effect of the reflectance maintenance is found. When the dopant element concentration exceeds 5.0 atomic %, the reflectance degradation becomes large depending on the service environment and the incident laser light wavelength, and it becomes impossible to ensure the reflectance. The concentration is particularly preferably 0.01 to 2.0 atomic %, because this range of concentration can maintain the reflectance at a higher level irrespective of the service environment and the laser light wavelength.
  • The above-described silver alloy, according to the present invention, as the material for use in a reflective film, can be produced by the melt casting method and the sintering method. The production based on the melt casting method involves no particular difficulties, and can produce the alloy by means of a general method in which individual raw materials are weighed out, mixed by melting, and the mixture is subjected to casting. The sintering method also involves no particular difficulties, and can produce the alloy by means of a general method in which individual raw materials are weighed out, and subjected to sintering.
  • The silver alloy according to the present invention has properties favorable for a reflective film, and suppresses the reflectance degradation in the course of use. As described below, the silver alloy according to the present invention exhibits a more satisfactory reflectance and a more satisfactory maintenance of the reflectance than conventional materials for use in reflective films, even under irradiation with a short wavelength laser light. As described above, the sputtering method is generally applied to the production of reflective films of optical recording media and the like. Accordingly, sputtering targets made of the silver alloy according to the present invention can serve to produce optical recording media, displays and the like each provided with a reflective film having satisfactory properties.
  • As described above, according to the present invention, a reflective film that is less degraded in reflectance even under long-term use can be produced, and various devices to which reflective films are applied, such as optical recording media, displays and the like, can be made to have a long operation life. The silver alloy according to the present invention also exhibits a more satisfactory reflectance and a more satisfactory maintenance of the reflectance than conventional materials for use in reflective films, even under irradiation with a short wavelength laser light. Accordingly, the silver alloy according to the present invention is compatible with recording media for use in optical recording devices each having a short wavelength laser as the light source, such recording devices being anticipated to form the mainstream of such devices.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, a preferred embodiment of the present invention is described together with comparative examples. Here, binary and ternary silver alloys having various compositions with Ag as the main component were produced; targets were produced from these alloys, and thin films were formed therefrom by means of a sputtering method. These thin films were subjected to corrosion tests (accelerated tests) in various environments, and the reflectance variations as observed after the corrosion tests were examined.
  • In the production of each of the silver alloys, individual metals were weighed out so as to give predetermined concentrations, mixed by melting in a high frequency melting furnace to yield an alloy. The molten alloy thus obtained was cast into a casting mold to be solidified to yield an ingot, the ingot was forged, rolled and heat treated, and thereafter shaped into a sputtering target.
  • In the thin film production, a substrate (borosilicate glass) and a target were placed in a sputtering apparatus, the interior of the apparatus was evacuated to a vacuum of 5.0×10−3 Pa, and then argon gas was introduced into the interior of the apparatus so as to give a pressure of 5.0×10−1 Pa. Sputtering conditions were such that film formation was carried out with a direct current power of 4 kW for 8 seconds to attain a film thickness of 1200 Å. It is to be noted that the film thickness distribution fell within ±10%.
  • The thin film products were evaluated with respect to heat resistance and moisture resistance. These properties were evaluated as follows: a thin film was exposed to each corresponding environment and the reflectance of the thin film after each test was measured at a varying wavelength in a spectrophotometer; and the observed reflectances at different wavelengths were compared differentially with the corresponding reflectances of silver as the reference levels, which were measured immediately after film formation.
  • The heating test to examine the heat resistance of a thin film was carried out as follows: the thin film was placed on a hot plate, heated in an atmosphere at 250° C. for 1 hour, and the reflectance after heating was evaluated. The humidification test to examine the moisture resistance of a thin film was carried out as follows: the thin film was exposed to an atmosphere of a temperature of 100° C. and a humidity of 100%, and the reflectance after humidification was evaluated; the exposure time was varied to take two periods, namely, 24 hours (humidification test I) and 100 hours (humidification test II). The results of these corrosion tests are shown in Tables 1 to 3. The reflectances shown in these tables are relative values based on the reflectances of silver immediately after film formation which are set at 100. The measured reflectance values are the values measured at the wavelengths of 400 nm, 550 nm and 650 nm (respectively corresponding to the wavelengths of blue, yellow and red lasers). It is to be noted that each of these tables includes, for comparison, the test results obtained for a thin film produced from a target made of pure silver.
    TABLE 1
    Incident light wavelength: 400 nm
    Reflectance
    Humidi- Humidi-
    Immediately fica- fica- Sulfur-
    Sample after Heating tion tion ation
    composition (at %) deposition test test I test II test
    Ag-0.6 Pt 98.7 92.5 80.3 58.9 58.9
    Ag-0.3 Au 100.6 85.4 28.1 25.9 25.9
    Ag-0.6 Au 99.8 43.5 97.8 94.1 94.1
    Ag-1.1 Au 86.0 91.7 77.1 88.1 88.1
    Ag-1.0 Pd 97.0 91.8 92.5 87.3 87.3
    Ag-1.0 Rh 95.2 76.1 93.0 78.8 78.8
    Ag-1.1 Ru 93.1 90.3 90.4 64.4 64.4
    Ag-2.7 Ir 98.1 90.5 95.8 84.4 84.4
    Ag-0.3 Au-0.5 In 96.2 74.7 89.7 70.9 70.9
    Ag-0.5 Au-0.5 In 97.9 74.5 88.6 39.4 39.4
    Ag-0.5 Au-0.5 Cu 99.8 68.6 73.6 61.9 61.9
    Ag-0.5 Pd-0.5 In 94.1 89.7 89.8 82.2 82.2
    Ag (for 102.3 1.6 45.9 37.5 37.5
    comparison)
  • TABLE 2
    Incident light wavelength: 550 nm
    Reflectance
    Immediately Humidi- Humidi- Sulfur-
    Sample after Heating fication fication ation
    composition (at %) deposition test test I test II test
    Ag-0.6 Pt 99.6 98.4 90.4 90.6 71.9
    Ag-0.3 Au 100.5 73.0 58.3 69.7 54.5
    Ag-0.6 Au 100.5 66.4 100.0 82.6 62.3
    Ag-1.1 Au 96.9 96.0 88.9 84.6 73.9
    Ag-1.0 Pd 99.0 97.5 97.5 72.4 79.1
    Ag-1.0 Rh 97.2 87.1 97.3 97.9 61.7
    Ag-1.1 Ru 97.4 96.6 95.7 91.4 3.7
    Ag-2.7 Ir 99.4 95.5 98.4 95.8 50.1
    Ag-0.3 Au-0.5 In 98.9 94.6 94.8 91.2 67.3
    Ag-0.5 Au-0.5 In 99.6 85.9 95.9 93.1 69.3
    Ag-0.5 Au-0.5 Cu 100.3 87.8 85.7 83.6 57.5
    Ag-0.5 Pd-0.5 In 98.1 96.1 95.5 91.8 76.5
    Ag (for 100.8 1.5 78.4 67.8 39.6
    comparison)
  • TABLE 3
    Incident light wavelength: 650 nm
    Reflectance
    Immediately Humidi- Humidi- Sulfur-
    Sample after Heating fication fication ation
    composition (at %) deposition test test I test II test
    Ag-0.6 Pt 99.7 99.2 92.9 92.6 81.7
    Ag-0.3 Au 100.6 79.6 67.8 79.1 70.0
    Ag-0.6 Au 100.6 76.0 100.2 86.7 74.3
    Ag-1.1 Au 100.3 98.4 91.9 88.6 83.7
    Ag-1.0 Pd 99.8 99.0 98.6 77.1 87.3
    Ag-1.0 Rh 97.6 89.7 97.8 98.1 71.3
    Ag-1.1 Ru 98.1 97.7 97.2 92.1 12.5
    Ag-2.7 Ir 99.6 96.4 98.7 96.2 62.7
    Ag-0.3 Au-0.5 In 99.2 85.8 95.0 92.4 75.4
    Ag-0.5 Au-0.5 In 99.8 87.3 96.6 94.0 78.1
    Ag-0.5 Au-0.5 Cu 100.3 92.8 85.9 84.8 71.5
    Ag-0.5 Pd-0.5 In 98.8 97.3 96.2 93.2 84.3
    Ag (for 100.6 11.6 86.0 78.6 53.5
    comparison)
  • As can be seen from these results, as a general tendency, with decreasing incident light wavelength, the reflectance was lowered. When binary and ternary alloys were judged in a comprehensive manner in terms of heat resistance, moisture resistance and sulfide resistance, it was verified that the alloys are more excellent than silver in all the wavelength bands.
  • Next, the applicability as a practical reflective film was evaluated for each silver alloy film according to the present invention. Actually, this evaluation was carried out on the basis of two evaluation methods: one was a convenient simulated evaluation method that was devised by the present inventors and the other was an evaluation method in which an optical recording medium was actually produced and the performance (presence or absence of error) thereof was examined. The reason why the former simulated evaluation was carried out in the present invention is as follows: in an optical recording medium taken as an example, the optical recording medium is composed of a large number of layers including, in addition to the reflective layer, a substrate and a recording layer, and including, depending on the type of the medium, a dielectric layer, a heat release layer and the like; and for the purpose of evaluating the adaptability of the reflective layer of the optical recording medium, it is necessary that these constituent layers are formed on the substrate to produce the recording medium, and then the recording medium is evaluated, and this is troublesome.
  • For optical recording media in practical use, it is relatively easy to produce such media for an evaluation purpose. However, high-density large-capacity recording media under development for practical use in future, such as HD-DVD disks and Blu-lay disks, become more complex in structure and have reflective layers to work as semitransparent reflective layers that are anticipated to be used as further thinner films (the film thickness of the reflective layer of an optical recording medium currently used being around 1000 to 1200 Å; but the reflective layer of such a next generation optical recording medium being developed for a film thickness of 200 Å or less). As for such media to be complex as described above, it is difficult to actually produce and evaluate them.
  • Consequently, for the purpose of evaluating the adaptability of a formed thin film as a reflective film without producing an optical recording medium, the present inventors has adopted a method, as a convenient method, in which such a film is exposed in a predetermined environment, and thereafter the surface appearance of the film is observed to evaluate the adaptability of the thin film to practical use.
  • In this method, the humidification test is carried out as follows: first, a formed thin film is allowed to stand (for 20 to 30 minutes) in a cooling atmosphere set at a temperature (preferably 10° C.) lower than room temperature to be sufficiently cooled together with the substrate; the thus cooled thin film is exposed in a humidification environment; and the thin film is taken out and dried, and thereafter a surface appearance of the thin film is observed. The humidification environment is preferably an atmosphere at a temperature of 100° C. and with a humidity of 100%, and the exposure time in this case is preferably set at 20 minutes. In the heating test, a formed thin film is directly placed together with the substrate in a heating environment; the heating environment is preferably an air atmosphere at 250° C., and the exposure time in this case is preferably set at 60 minutes.
  • The observation of the surface appearance is conducted to evaluate the evaluation of the degree of generation of silver agglomerates (hereinafter referred to as black spots) occurring as black spots on the thin film surface after having been exposed in each environment. This is based on the consideration that: as a form of deterioration of a heated silver alloy film, silver agglomerates are locally generated on the surface of the film; silver agglomerates conceivably affect the properties of a reflective film; and accordingly, the evaluation of the generation degree of the black spots allows the adaptability as a reflective film to be determined. In this evaluation, the black spots to be counted are preferably those each having a size of 1 to 10 μm. Such clear definition of the spots to be evaluated allows the evaluation to be facilitated. Such a size as described above matches the size of marks to be used for record reproduction in an optical recording medium.
  • The evaluation of the generation degree of the black spots may be carried out, for example, by taking a photo of the surface of the thin film, and by subjecting the photo to image processing to derive the rate of the area of the black spots. As a more convenient method, there is one in which evaluation is carried out by taking as a reference the surface condition (in this case, almost no black spots being generated) of a silver thin film immediately after formation thereof and by assessing the surface condition of a thin film after heating, relatively to the reference, through classification into a few levels.
  • In the present embodiment, the humidification environment was set to be an atmosphere at a temperature of 100° C. and with a humidity of 100%, with the exposure time set at 20 minutes. In the simulated evaluation of a thin film in the present embodiment, different types of 120 Å and 1200 Å silver alloy thin films were produced, and each thin film was cooled and thereafter exposed in the above described humidification environment to be subsequently subjected to optical microscopic observation of the surface appearance thereof. The surface condition of a silver thin film immediately after the production thereof was taken as a reference to be graded as “level 1,” and the surface condition evaluation was carried out in terms of 5 grades in the degrading order of the surface condition from level 1 (in the order of increasing number of the black spots) in such a way that the properties of the films were assessed through classification into level 1 to level 5. The results thus obtained are shown in Table 4.
    TABLE 4
    Samples (at %)
    Level Binary alloy Ternary alloy
    Film thickness: 1200
    1 Ag-1.0 Pt Ag-2.0 Pd Ag-1.0 Pd-1.0 Dy
    2 Ag-0.5 Pt-2.0 Ga
    3 Ag-1.0 Au
    4
    5 Ag-1.0 Ir Ag-1.0 Rh
    Ag-1.0 Ru Ag-1.0 Os
    Film thickness: 120 Å
    1 Ag-1.0 Pd-1.0 Dy
    Ag-0.5 Pt-2.0 Ga
    2 Ag-1.0 Au
    3 Ag-2.0 Pd
    4
    5 Ag-1.0 Ir Ag-1.0 Rh
    Ag-1.0 Ru Ag-1.0 Os

    Level 1 refers to the surface condition of silver immediately after deposition.
  • As a result of the simulated test, it is inferred that excellent, in properties, among the binary alloys are those containing platinum, palladium or gold, and excellent, in properties, among the ternary alloys is that containing dysprosium or gallium as the second dopant element.
  • Next, DVD-R media having as a reflective layer thin films made of the silver alloys according to the present invention were actually produced and were evaluated for the properties as the reflective film of an optical recording medium. In this test, there were used as substrates polycarbonate substrates (120 mm in diameter, 0.6 mm in plate thickness, 0.17 μm in groove depth, 0.3 μm in groove width, and 0.74 μm in groove pitch) with preformatted pattern formed thereon, produced with an injection molding machine equipped with a stamper. On the upper side of each substrate, a metal-containing azo recording ink was coated by way of spin coating and dried, and thereafter, a reflective film was formed so as to have a film thickness of 1200 Å with a sputtering target produced in the present embodiment. To each substrate, a polycarbonate substrate the same in size as the substrate concerned was bonded with an ultraviolet curable resin to produce a DVD-R medium.
  • Then, with an optical disk evaluation apparatus (optical disk evaluation apparatus, ODU1000, manufactured by Pulstec Industrial Co., Ltd.), the jitter values, PI8 errors and PO errors of the thus produced DVD-R media in the initial condition subsequent to the production thereof were measured, and were verified to fall within the ranges of the DVD specifications. After the verification, the DVD-R media were subjected to an accelerated environment test in which the DVD-R media were exposed in an environment at a temperature of 80° C. and with a relative humidity of 85%, and the DVD-R media after the accelerated environment test were subjected to the measurement of the individual values by means of the evaluation apparatus.
  • FIGS. 1 to 3 show relations between humidification time and jitter value, PI8 error value and PO error, respectively, which were all measured in this test. These figures also show the results obtained by applying the same tests to a DVD-R medium having a reflective film made of pure silver and commercially available DVD-R media.
  • As can be seen from these figures, it has been verified that the recording media each provided with a reflective film made of a silver alloy according to the present invention each clear the specifications for the individual values, and have a long-term stability, even after a long time humidification. On the contrary, the recording medium provided with a reflective film made of pure silver failed to be recognized by the recording device and became unusable after humidification for 150 hours. It was also verified that the jitter values of the commercially available products exceeded the specification, and although the error values of these commercial products were able to clear the specifications, the properties of these commercial products were inferior to those of the recording media according to the present embodiment.
  • Additionally, Table 5 shows results obtained as follows: DVD-R media each provided with a reflective film made of a silver alloy different in composition from those examined above were produced; the DVD-R media thus produced were exposed in a humidification environment in the same manner as described above; and thereafter, the results shown in Table 6, namely, the jitter values, PI8 errors and PO errors thereof were measured.
    TABLE 5
    Jitter value PI8 error PO error
    After After After
    expo- expo- expo-
    sure to sure to sure to
    Initi- humid- Initi- humid- Initi- humid-
    ally ity ally ity ally ity
    Examples
    Ag-0.5 Pt-0.1 Zn 7.7 7.8 47 211 2 14
    Ag-1.0 Au-0.2 Mo 7.7 7.9 51 251 3 17
    Ag-1.0 Pd-1.0 Pr 7.8 7.9 59 252 3 12
    Ag 8.2 11.7 207 299 25 83
    Comparative Examples
    Commercial product 8.6 10.7 224 305 31 73
    from Company A
    Commercial product 8.3 ≧11.9 185 ≧318 45 ≧104
    from Company B
    Specification 8.00 or less 280 or less 182 or less
  • Also from this table, it was verified that the individual values of the recording media each provided with a silver alloy according to the present invention as a reflective layer cleared the specifications even after the humidification, and each had a long-term stability. The evaluations carried out by producing these media coincided with the already performed, simulated test, and the long-term stability was owned by each of the recording media, anticipated to have satisfactory properties in the simulated test, each provided with a reflective film containing at least any one of platinum, palladium, gold, dysprosium and gallium. Consequently, it has been verified that the simulated test carried out in the present embodiment is a convenient method for assessing the properties of a silver alloy without actually producing a recording medium.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing the results (jitter values) of an accelerated environment test carried out on DVD-R media each provided with one of the reflective films according to present Embodiment;
  • FIG. 2 is a graph showing the results (PI8 error values) of the accelerated environment test carried out on the DVD-R media each provided with one of the reflective films according to present Embodiment; and
  • FIG. 3 is a graph showing the results (PO error values) of the accelerated environment test carried out on the DVD-R media each provided with one of the reflective films according to present Embodiment.

Claims (20)

1. A silver alloy for use in a reflective film, comprising silver as a main element and at least one precious metal element as a first dopant element.
2. The silver alloy for use in a reflective film according to claim 1, wherein the first dopant element is at least any one of platinum, palladium, gold, rhodium, ruthenium and iridium.
3. The silver alloy for use in a reflective film according to claim 1, comprising as a second dopant element at least one element selected from gallium, dysprosium and thulium.
4. The silver alloy for use in a reflective film according to claim 1, comprising as a second dopant element at least one element selected from magnesium, zinc, nickel, molybdenum, terbium, gadolinium and erbium.
5. The silver alloy for use in a reflective film according to claim 1, comprising as a second dopant element at least one element selected from aluminum, neodymium and holmium.
6. The silver alloy for use in a reflective film according to claim 1, comprising as a second dopant element at least one element selected from copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium and manganese.
7. The silver alloy for use in a reflective film according to claim 1, comprising as a second dopant element at least one element selected from germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium.
8. The silver alloy for use in a reflective film according to claim 1, wherein a total of the concentration of the first dopant element and the concentration of the second dopant element are 0.01 to 5.0 atomic %.
9. The silver alloy for use in a reflective film according to claim 8, wherein the total of the concentration of the first dopant element and the concentration of the second dopant element are 0.01 to 2.0 atomic %.
10. A sputtering target, comprising the silver alloy as defined in claim 1.
11. The silver alloy for use in a reflective film according to claim 2, comprising as a second dopant element at least one element selected from gallium, dysprosium and thulium.
12. The silver alloy for use in a reflective film according to claim 2, comprising as a second dopant element at least one element selected from magnesium, zinc, nickel, molybdenum, terbium, gadolinium and erbium.
13. The silver alloy for use in a reflective film according to claim 2, comprising as a second dopant element at least one element selected from aluminum, neodymium and holmium.
14. The silver alloy for use in a reflective film according to claim 2, comprising as a second dopant element at least one element selected from copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium and manganese.
15. The silver alloy for use in a reflective film according to claim 2, comprising as a second dopant element at least one element selected from germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium.
16. The silver alloy for use in a reflective film according to claim 2, wherein a total of the concentration of the first dopant element and the concentration of the second dopant element are 0.01 to 5.0 atomic %.
17. The silver alloy for use in a reflective film according to claim 3, wherein a total of the concentration of the first dopant element and the concentration of the second dopant element are 0.01 to 5.0 atomic %.
18. The silver alloy for use in a reflective film according to claim 4, wherein a total of the concentration of the first dopant element and the concentration of the second dopant element are 0.01 to 5.0 atomic %.
19. An optical recording medium comprising a substrate and a silver alloy on the substrate which silver alloy comprises silver and at least one of platinum, palladium, gold, rhodium, ruthenium and iridium as a first dopant element, and as a optional second dopant element at least of gallium, dysprosium, thulium, magnesium, zinc, nickel, molybdenum, terbium, gadolinium, erbium, aluminum, neodymium, holmium, copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium, manganese, germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium.
20. A method for producing an optical recording medium which comprises forming a film of a silver alloy on a substrate, which silver alloy comprises a first dopant element selected from at least one of platinum, palladium, gold, rhodium, ruthenium and iridium; and which silver alloy optionally further comprises a second dopant element selected from at least one of gallium, dysprosium, thulium, magnesium, zinc, nickel, molybdenum, terbium, gadolinium, erbium, aluminum, neodymium, holmium, copper, cobalt, tin, titanium, bismuth, scandium, yttrium, praseodymium, manganese, germanium, indium, samarium, ytterbium, strontium, boron, silicon, chromium, iron, zirconium, niobium, tantalum, tungsten, rhodium, lead, calcium, antimony, hafnium, lanthanum and cerium.
US10/580,294 2003-12-10 2004-12-09 Silver alloy excellent in reflectance maintenance property Abandoned US20070148033A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003411720 2003-12-10
JP2003-411720 2003-12-10
PCT/JP2004/018368 WO2005056851A1 (en) 2003-12-10 2004-12-09 Silver alloy excelling in performance of reflectance maintenance

Publications (1)

Publication Number Publication Date
US20070148033A1 true US20070148033A1 (en) 2007-06-28

Family

ID=34675003

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/580,294 Abandoned US20070148033A1 (en) 2003-12-10 2004-12-09 Silver alloy excellent in reflectance maintenance property

Country Status (4)

Country Link
US (1) US20070148033A1 (en)
EP (1) EP1734140A4 (en)
JP (1) JPWO2005056851A1 (en)
WO (1) WO2005056851A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154104A1 (en) * 2002-08-08 2006-07-13 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US20070020138A1 (en) * 2003-12-10 2007-01-25 Tomokazu Obata Silver alloy excellent inreflectance maintenance property
US20150093500A1 (en) * 2013-09-30 2015-04-02 Intermolecular, Inc. Corrosion-Resistant Silver Coatings with Improved Adhesion to III-V Materials
US20160057858A1 (en) * 2013-04-09 2016-02-25 3M Innovative Properties Company Touch panel, preparing method thereof, and ag-pd-nd alloy for touch panel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889933A4 (en) * 2005-06-10 2011-09-07 Tanaka Precious Metal Ind Silver alloy excellent in reflectance/transmittance maintaining characteristics
JP4201006B2 (en) * 2005-10-31 2008-12-24 ソニー株式会社 Optical recording medium
CN100439527C (en) * 2006-11-29 2008-12-03 昆明贵金属研究所 Gold- silver lead based alloy material containing yttrium
JP4978286B2 (en) * 2007-04-16 2012-07-18 ソニー株式会社 Silver-based thin film alloy
JP5151379B2 (en) * 2007-10-10 2013-02-27 トヨタ自動車株式会社 Optical film for solar cell module and solar cell module
JP5666156B2 (en) * 2010-03-25 2015-02-12 株式会社徳力本店 Trace element-added Ag alloy and method for producing the same
JP2013108574A (en) * 2011-11-22 2013-06-06 Kobe Steel Ltd Reflective heat insulation material, heat insulation container, and very low temperature device
JP6611114B2 (en) * 2012-12-07 2019-11-27 三菱マテリアル株式会社 Ag alloy film, Ag alloy conductive film, Ag alloy reflective film, Ag alloy semipermeable film, and sputtering target for forming an Ag alloy film
JP5929983B2 (en) * 2014-08-18 2016-06-08 Tdk株式会社 Sputtering target, method for producing Ag alloy film, and method for producing conductive film
CN110951987A (en) * 2019-12-18 2020-04-03 浙江皇城工坊文化发展有限公司 Silver alloy with anti-sulfuration performance and preparation process thereof
CN115976478B (en) * 2022-12-13 2023-11-28 江苏迪纳科精细材料股份有限公司 Silver sulfide resistant alloy target and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494833A (en) * 1981-04-15 1985-01-22 Nippon Gakki Seizo Kabushiki Kaisha Eyeglass-frame
US6451402B1 (en) * 1998-06-22 2002-09-17 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6514628B1 (en) * 1999-11-26 2003-02-04 Furuya Metal Co., Ltd. Reflector
US20040055882A1 (en) * 2001-03-16 2004-03-25 Koichi Hasegawa Sputtering target material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105575A (en) * 1993-10-07 1995-04-21 Mitsubishi Chem Corp Optical recording medium
JP4632519B2 (en) * 1999-11-26 2011-02-16 株式会社フルヤ金属 Reflector
JP4638014B2 (en) * 2000-10-31 2011-02-23 株式会社フルヤ金属 High heat-resistant reflective film, laminate using the same, reflective plate for liquid crystal display element, and building glass
JP2002319185A (en) * 2001-04-23 2002-10-31 Sumitomo Metal Mining Co Ltd Silver alloy for reflection film for optical recording disk
JP4801279B2 (en) * 2001-05-09 2011-10-26 石福金属興業株式会社 Sputtering target material
JP2003248969A (en) * 2001-12-20 2003-09-05 Matsushita Electric Ind Co Ltd Optical disc and optical disc manufacturing method
JP2003293055A (en) * 2002-04-08 2003-10-15 Sumitomo Metal Mining Co Ltd Silver alloy thin film and silver alloy for forming thin film
JP4069661B2 (en) * 2002-04-17 2008-04-02 三菱マテリアル株式会社 Silver alloy sputtering target for reflection film formation of optical recording media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494833A (en) * 1981-04-15 1985-01-22 Nippon Gakki Seizo Kabushiki Kaisha Eyeglass-frame
US6451402B1 (en) * 1998-06-22 2002-09-17 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6514628B1 (en) * 1999-11-26 2003-02-04 Furuya Metal Co., Ltd. Reflector
US20040055882A1 (en) * 2001-03-16 2004-03-25 Koichi Hasegawa Sputtering target material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154104A1 (en) * 2002-08-08 2006-07-13 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7566417B2 (en) * 2002-08-08 2009-07-28 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US20070020138A1 (en) * 2003-12-10 2007-01-25 Tomokazu Obata Silver alloy excellent inreflectance maintenance property
US20160057858A1 (en) * 2013-04-09 2016-02-25 3M Innovative Properties Company Touch panel, preparing method thereof, and ag-pd-nd alloy for touch panel
US10104770B2 (en) * 2013-04-09 2018-10-16 3M Innovative Properties Company Touch panel, preparing method thereof, and Ag—Pd—Nd alloy for touch panel
US20150093500A1 (en) * 2013-09-30 2015-04-02 Intermolecular, Inc. Corrosion-Resistant Silver Coatings with Improved Adhesion to III-V Materials

Also Published As

Publication number Publication date
EP1734140A1 (en) 2006-12-20
EP1734140A4 (en) 2009-06-24
WO2005056851A1 (en) 2005-06-23
JPWO2005056851A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US7413618B2 (en) Silver alloy for reflective film
KR100445083B1 (en) Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
US20070148033A1 (en) Silver alloy excellent in reflectance maintenance property
US7790263B2 (en) Ag alloy reflective film for optical information recording medium, optical information recording medium and Ag alloy sputtering target for forming Ag alloy reflective film for optical information recording medium
US7833604B2 (en) Ag alloy reflective layer for optical information recording medium, optical information recording medium, and sputtering target for forming Ag alloy reflective layer for optical information recording medium
EP1746591B1 (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7575714B2 (en) Silver alloy excellent in reflectance maintenance property and method for producing an optical recording medium
US20050089439A1 (en) Silver alloy for reflective film of optical recording medium
EP1736559A1 (en) Silver alloy with excellent reflectance-maintaining characteristics
US20040101781A1 (en) Reflecting layer, optical recording medium and sputtering target for forming reflecting layer
TWI381377B (en) Optical information recording media
JP4351144B2 (en) Silver alloy
US8092889B2 (en) Silver alloy reflective film for optical information storage media, optical information storage medium, and sputtering target for the deposition of silver alloy reflective film for optical information storage media
JP3765540B2 (en) Silver alloy for reflective film of optical recording media
WO2007074895A1 (en) TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM FOR OPTICAL RECORDING MEDIUM, AND Ag ALLOY SPUTTERING TARGET FOR FORMING SUCH TRANSLUCENT REFLECTIVE FILM AND REFLECTIVE FILM
JP2006252746A (en) Silver alloy for reflection film
WO2006118266A1 (en) Optical recording medium, spattering target, and azo-metal chelate dye
US7910190B2 (en) Thin film for reflection film or for semi-transparent reflection film, sputtering target and optical recording medium
JP2007185810A (en) Optical information recording medium and sputtering target for forming recording layer of optical information recording medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: TANAKA KIKINZOKU KOGYO K.K., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OBATA, TOMOKAZU;YANAGIHARA, HIROSHI;REEL/FRAME:017935/0917

Effective date: 20060425

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION