US20070107738A1 - Apparatus and methods for manufacturing cigarettes - Google Patents

Apparatus and methods for manufacturing cigarettes Download PDF

Info

Publication number
US20070107738A1
US20070107738A1 US11/281,083 US28108305A US2007107738A1 US 20070107738 A1 US20070107738 A1 US 20070107738A1 US 28108305 A US28108305 A US 28108305A US 2007107738 A1 US2007107738 A1 US 2007107738A1
Authority
US
United States
Prior art keywords
wrappers
cartridge
tobacco filler
plurality
receptacles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/281,083
Inventor
Vernon Barnes
John Nelson
Timothy Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RJ Reynolds Tobacco Co
Original Assignee
RJ Reynolds Tobacco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RJ Reynolds Tobacco Co filed Critical RJ Reynolds Tobacco Co
Priority to US11/281,083 priority Critical patent/US20070107738A1/en
Assigned to R.J. REYNOLDS TOBACCO COMPANY reassignment R.J. REYNOLDS TOBACCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARNES, VERNON BRENT, NELSON, JOHN LARKIN, THOMAS, TIMOTHY FREDERICK
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: R.J. REYNOLDS TOBACCO COMPANY
Publication of US20070107738A1 publication Critical patent/US20070107738A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/02Cigarette-filling machines

Abstract

An apparatus and method for manufacturing small quantities of cigarettes in a substantially simultaneous fashion while maintaining consistent quality between the cigarettes. The apparatus provides for arranging loose tobacco into tobacco charges and simultaneously inserting the charges into pre-formed tubular cigarette wrappers.

Description

    FIELD OF THE INVENTION
  • The present invention relates to smoking articles, and in particular, to cigarettes. More specifically, the present invention relates to equipment and methods for manufacturing and handling relatively small quantities of cigarettes in an automated fashion.
  • BACKGROUND OF THE INVENTION
  • Smoking articles, such as cigarettes, have a substantially cylindrical rod-shaped structure and include a charge, roll, or column of smokable material, such as shredded tobacco, surrounded by a paper wrapper, to form a “cigarette rod,” “smokable rod,” or a “tobacco rod.” A typical cigarette has a cylindrical filter element axially aligned in an end-to-end relationship with the tobacco rod. Typically, the filter element comprises plasticized cellulose acetate tow circumscribed by a paper material known as “plug wrap.” Certain cigarettes incorporate filter elements comprising, for example, activated charcoal particles. Typically, the filter element is attached to one end of the tobacco rod using a circumscribing wrapping material known as “tipping paper.” A ventilated or air-diluted smoking article can be provided with an optional air-dilution means, such as a series of perforations, each of which extend through the tipping material and plug wrap. Conventional automated machines for making cigarette rods that have been employed for the manufacture of commercially popular packaged cigarettes are of the type commercially available from Molins PLC or Hauni-Werke Korber & Co. KG. For example, a description of a commercially available “Protos” cigarette-making machine is provided in U.S. Pat. No. 4,474,190 to Brand. Other types of equipment suitable for the manufacture of cigarettes are set forth in U.S. Pat. App. Pub. No. 2004/0129281 to Hancock et al. A cigarette-making machine for making relatively small amounts of cigarettes has been available commercially as “Hauni Baby” from Hauni-Werke Korber & Co. KG. Another type of portable cigarette-making machine has been set forth in U.S. Pat. No. 4,164,229 to Hurt.
  • A variety of hand-operated devices for manufacturing individual cigarettes have been proposed. See, for example, U.S. Pat. No. 2,376,103 to Wahl; U.S. Pat. No. 2,425,888 to Matteson et al.; U.S. Pat. No. 2,427,884 to Snodgrass; U.S. Pat. No. 2,427,957 to Getts; U.S. Pat. No. 2,496,375 to Carter; U.S. Pat. No. 2,594,747 to DuLaney; U.S. Pat. No. 2,699,788 to Kastner; U.S. Pat. No. 2,714,383 to Ming Gee; U.S. Pat. No. 2,731,971 to Kastner; U.S. Pat. No. 2,850,019 to Sosa; U.S. Pat. No. 2,868,209 to Marcotte; U.S. Pat. No. 3,006,348 to Banning, Jr.; U.S. Pat. No. 3,011,498 to Armelin; U.S. Pat. No. 4,832,056 to Bryant et al.; and U.S. Pat. No. 4,534,367 to Newsome; PCT Application Pub. No. WO 2004/110187 to Szabo; and European Patent No. EP 1,177,731 to Tinkles et al.
  • Various methods for filling paper cigarette tubes with tobacco have been proposed. See, for example, U.S. Pat. No. 2,633,133 to Higgins; U.S. Pat. No. 3,124,141 to Seitter; U.S. Pat. No. 3,202,156 to Kappeler et al.; U.S. Pat. No. 3,892,245 to Asbill, Jr.; U.S. Pat. No. 4,167,948 to Moscovitch; U.S. Pat. No. 4,572,216 to Josuttis et al.; and U.S. Pat. No. 5,072,740 to Gatschmann et al. See, also, U.S. Pat. No. 3,491,768 to Paynter and U.S. Pat. No. 3,693,313 to Sexstone which set forth manners and methods for manufacturing individual cigarettes by filling a tube, or “spill,” with a tobacco charge and a filter plug. One type of cigarette-making machine for the manufacture of one cigarette at a time using loose tobacco and a filtered cigarette tube has been marketed as “BUGLER™” filter cigarette-making machine by Brown & Williamson Tobacco Corporation. Another type of automated machine for filling pre-formed cigarette tubes with loose tobacco filler has been available commercially as “Cig-a-mat” from Jenkins & Ott, Inc. A device representative of such a machine is described in U.S. Pat. No. 3,645,272 to Jenkins et al. Yet another type of automated device for filling pre-formed cigarette tubes with tobacco filler is an electrically-operated cigarette-making machine that has been available commercially as “Easy Roller” from C. P. Rolling ApS of Denmark.
  • Another cigarette machine for filling pre-formed cigarette tubes with tobacco filler has been produced commercially by The Central Tobacco Mfg. Co. Ltd. and marketed as “PREMIER SUPERMATIC™.” Other types of cigarette machines for filling cigarette tubes with tobacco have been marketed as “Escort” and “Pressta Deluxe” by CTC Canada Inc. See, for example, the representative types of machines set forth in U.S. Pat. No. 3,127,900 to Kastner and U.S. Pat. No. 4,771,793 to Kastner.
  • U.S. Pat. No. 3,822,710 to Bramhill proposes manufacturing individual cigarettes by inserting a cartridge of tobacco into an empty filter-tip cigarette tube. Other manners and methods for manufacturing individual cigarettes are set forth in U.S. Pat. No. 4,887,617 to Ruppert et al.; U.S. Pat. No. 5,018,536 to Liebich; U.S. Pat. No. 5,105,830 to Brackmann et al.; U.S. Pat. No. 5,133,366 to Liebich; U.S. Pat. No. 5,141,000 to Ruppert et al.; U.S. Pat. No. 5,167,248 to Ruppert et al.; U.S. Pat. No. 5,197,495 to Ruppert et al.; U.S. Pat. No. 5,615,692 to Ruppert et al.; and U.S. Pat. No. 5,713,377 to Gerding et al.
  • Yet other manners and methods for fabricating cigarettes have been proposed. For example, the manufacture of cigarettes has been proposed using a dispensing-type machine, such as the machine referred to as “Cigaretterie,” marketed by National Amusement Network, Inc. A device representative of such a machine is set forth in U.S. Pat. No. 5,666,975 to Lord.
  • It would be desirable to provide for the manufacture of relatively small lots of cigarettes in an efficient and effective manner. It would be desirable that all of the cigarettes within each lot are of consistent quality. That is, it would be desirable that all of the cigarettes within such a lot be substantially identical to one another in appearance, size, shape, weight, and component materials, including tobacco filler materials. It also would be desirable that the cigarettes within such a lot exhibit similar performance characteristics, such as smoking character, puff count, and smoke yield.
  • SUMMARY OF THE INVENTION
  • The present invention relates to the manufacture of cigarettes in an automated fashion. Cigarette manufacture can be carried out such that relatively small lots of cigarettes are manufactured during a relevant period, for example, while a customer is shopping in a retail setting. Cigarette manufacture can be carried out such that substantially all of the cigarettes within a lot are of consistent quality.
  • A first aspect of the present invention relates to an apparatus or device for manufacturing cigarettes from loose tobacco and pre-formed tubular wrapping portions. The device includes a reservoir, or hopper, for receiving and containing loose tobacco filler. A plurality of receptacles can be positioned beneath the hopper. Each receptacle is adapted to receive a portion of the tobacco filler. The device may include a tray, or cartridge, for containing a plurality of pre-formed tubular wrapping portions. Each such wrapper has a hollow region, open at one end, for receiving tobacco filler. The cartridge is adapted to be positioned relative to the receptacles such that individual pre-formed tubular wrappers within the cartridge are aligned with a corresponding one of the receptacles. The device includes a means for delivering a portion of the tobacco filler from the plurality of receptacles into the hollow region of each of the wrappers. The device may further include a means for controlling the portion of the tobacco filler delivered from each receptacle into each of the wrappers.
  • In an illustrative embodiment, the hopper may include several downwardly extending passageways for downward passage of loose tobacco filler from an upper hopper region. One of the receptacles can be aligned beneath each of the plurality of downwardly extending passageways for receiving a portion of the tobacco filler from that passageway. Such a device can incorporate one or more weights or other structures adapted to provide downward force or compression on loose tobacco filler within each downwardly extending passageway. Application of force to the tobacco filler within each downwardly extending passageway using the weight provides for altered arrangement of tobacco filler within each passageway. Application of force to the tobacco filler within each downwardly extending passageway using the weight also provides for a controlled feed of tobacco filler to and within each receptacle. Accordingly, such a weight system can be utilized to control the portion of the tobacco filler delivered into the wrappers.
  • Such a device can incorporate at least one movable side wall for each downwardly extending passageway, thereby providing for altering the arrangement of tobacco filler within each passageway, as well as for controlling feed or introduction of a portion of tobacco filler within each receptacle. As a result of such a movable side wall, a pre-determined amount of tobacco filler can be supplied to, and provided within, each receptacle and wrapper. In an embodiment, the device can further include a compression mechanism for controlling the portion of the tobacco filler delivered into the wrappers. Such a compression mechanism can provide for arranging a pre-determined amount of loose tobacco filler within each receptacle into a charge of tobacco filler. The charge of tobacco can have a pre-determined shape and size, for example, a cylindrical shape that is capable of filling the hollow region of a tubular wrapper.
  • The means for delivering a portion of the tobacco filler from the receptacles into each of the tubular wrappers may comprise an insertion unit including a plurality of slidable plunger rods. Each rod is positioned for sliding movement through one of the receptacles into one of the wrappers for delivering a charge of tobacco filler from the receptacle through a nozzle into the hollow region of a corresponding tubular wrapper aligned with and adjacent to the receptacle. When the plurality of plunger rods is moved substantially simultaneously through the plurality of receptacles, a charge of tobacco filler from the receptacles is delivered substantially simultaneously into each of a pre-determined number of the wrappers aligned with the receptacles.
  • A representative embodiment of a such cigarette manufacturing apparatus includes five downwardly extending passageways, five compression regions within the compression mechanism, five receptacles for formation of five charges of tobacco filler, five insertion units, and a cartridge containing at least five hollow tubular wrappers. As such, five cigarettes can be manufactured substantially simultaneously by using the apparatus to fill each of five wrappers with a formed charge of tobacco filler. A representative lot of twenty cigarettes (e.g., a sufficient number of cigarettes to fill a traditional type of cigarette package) can be provided using such a representative cigarette manufacturing apparatus. In operation, at least a sufficient amount of tobacco filler is employed to adequately fill twenty tubular wrapping portions contained within a cartridge designed to hold twenty tubular wrapping portions. After appropriate placement of the cartridge within the apparatus, repeating the tobacco filler filling operation four times would result in manufacture of a lot of twenty cigarettes.
  • In another illustrative embodiment, the hopper may include four walls in the form of a rectangle, a bottom, and an open top. The receptacles may comprise a plurality of wells in the bottom of the hopper. In such an embodiment, the means for delivering a portion of the tobacco filler from the receptacles into each of the wrappers may include a plurality of auger conveyors. Each auger conveyor is capable of spiral movement and extends from one of the receptacles into one of the wrappers. Rotation of the auger conveyors causes a portion of the tobacco filler in each well to be delivered into the hollow region of each aligned wrapper. Such a hopper may further include a mechanism for detangling the tobacco filler.
  • In an embodiment, a delivery passageway, such as a nozzle, can be connected to each of the receptacles for guiding delivery of a portion of the tobacco filler from the receptacles into the aligned wrappers. Each of a pre-determined number of the wrappers can be mounted on the outside surface of the nozzles. The means for controlling the portion of the tobacco filler delivered into the wrappers may include an adjustable tension arm in contact with an outer surface of a wrapper mounted on a nozzle. In this manner, the rate of movement of the wrappers can be controlled as a portion of tobacco filler is being delivered into the wrappers. A pressure adjustment arm may also be connected to a plurality of the adjustable tension arms. A weight can be moved along the pressure adjustment arm for applying varying degrees of pressure to the plurality of the adjustable tension arms. As such, the pressure adjustment arm and weight provide additional control of the rate of movement of the wrappers and of the portion of tobacco filler being delivered into the wrappers.
  • In another embodiment, the means for delivering a portion of tobacco filler from the receptacles into each of the wrappers may include a plurality of toothed blades. Each blade is capable of reciprocating movement and extends from one of the receptacles into one of the wrappers. Reciprocation of the blades causes a portion of the tobacco filler in each well to be delivered into the hollow region of each aligned wrapper.
  • A second aspect of the invention relates to removal of tobacco from ends of cigarettes. Tobacco filler extending from the ends of a plurality of cigarettes can be removed by aligning a row of cigarettes and cutting that excess tobacco away from the ends of the cigarettes. After cigarettes have been manufactured using a representative embodiment of the present invention, a slight amount of tobacco filler located at the foremost lighting end of the cigarette may extend outwards from the open end of the tubular wrapper portion. That is, a slight excess amount of tobacco filler may extend beyond that region circumscribed by the tube of wrapping material. A representative embodiment of the invention can include a circular cutting blade rotating at a high speed that can be passed by the lighting end of the cigarette, at or just beyond the end of the tubular wrapper portion, in order to cut excess tobacco filler away. For example, finished cigarettes can be properly aligned in a cartridge, and a highly sharpened cutting wheel configured in a the general manner of a table saw can be aligned relative to the cartridge. The cutting wheel can be rotated at a very high rate of speed and moved past the lighting ends of those cigarettes sufficiently close so as to cut excess tobacco filler away, while not cutting or damaging the paper wrapping material at the lighting ends of those cigarettes. Thus, in one aspect of the present invention, the ends of finished cigarettes positioned in a cartridge can be trimmed while those cigarettes are positioned within that cartridge.
  • A third aspect of the present invention relates to an apparatus or device for loading a cartridge with pre-formed hollow tubular wrapping portions useful for the manufacture of cigarettes. Such a cartridge-loading device or assembly may include a region for supporting the cartridge in such a manner that at least a portion of the cartridge can be loaded with tubular wrapping portions. The device optionally includes a supply mechanism for supplying tubular wrapping portions to the cartridge. The device can be configured to fill the cartridge with a pre-determined number of tubular wrapping portions. In one embodiment, the supply mechanism includes an upper reservoir for receiving and containing a plurality of tubular wrapping portions, a hopper region including a plurality of downwardly extending passageways, a lower bed or tray located below the hopper region, and a transfer mechanism that facilitates transport of tubular wrappers from the bed to corresponding locations within the cartridge. The downwardly extending passageways are adapted so as to receive tubular wrapping portions. Thus, in an operation of such an embodiment, an individual tubular wrapping portion within the upper reservoir falls into each passageway of the hopper, and hence, several vertically extending columns of tubular wrapping portions are provided. Tubular wrapping portions positioned at the bottom of the supply mechanism are aligned with desired locations on the cartridge, which is positioned in a predetermined location adjacent the bottom region of the supply mechanism. A series of movable rods can be used to push the series of tubular wrapping portions from the lower bed into desired positions within the cartridge.
  • A fourth aspect of the present invention relates to an apparatus or device for packaging cigarettes. For example, one embodiment of the invention can include a device having a base that has a region for locating an open cigarette package. The device includes an upper region or platform, above the base, adapted to support a cartridge containing finished cigarettes. Below the upper platform is located a downwardly extending passageway for the passage of cigarettes from the cartridge and into the cigarette package. Removal of cigarettes from the cartridge can be accomplished by movement of the cartridge relative to the upper platform such that cigarettes within the cartridge are pushed from the cartridge and into the downwardly extending passageway, traveling thereby into the package.
  • A fifth aspect of the present invention is directed to the use of the various components associated with various aspects of the present invention as a system to provide a cigarette product manufacturing assembly. In an exemplary embodiment, a specific tobacco filler blend can be selected. In addition, particular pre-formed tubular wrapping portions can be selected. Empty tubular wrapping portions can be loaded into a cartridge using a cartridge-loading assembly. A cartridge carrying hollow tubular wrapping portions can be suitably positioned within the cigarette-making apparatus. Such a cigarette-making apparatus also can be fitted with a removable hopper unit containing the selected tobacco filler blend, or alternatively, the hopper unit can be appropriately positioned within the cigarette-making apparatus and then loaded with the selected tobacco filler blend. Cigarettes can be manufactured by filling tubular wrapping portions with controlled amounts of loose tobacco filler until a desired number of cigarettes are manufactured or until the cartridge is filled with manufactured cigarettes. As such, numerous cigarettes of consistent quality (e.g., in terms of components, dimensions, and weight) are produced. The cartridge, filled with manufactured cigarettes, can be removed from the cigarette-making apparatus. Any excess tobacco filler extending from the lighting ends of those cigarettes can be trimmed, in order that the various cigarettes have ends that are relatively uniform and aesthetically pleasing. The cigarettes can be transferred from the cartridge into the cigarette packaging device, where the cigarettes are loaded into a package. As such, embodiments of the present invention provide a manner or method for manufacturing and packaging relatively small quantities, lots, or batches of finished cigarettes of consistent quality in an automated fashion.
  • Although useful in many environments, a cigarette-making machine of the present invention may be utilized in combination with all or certain of the foregoing devices in a commercial setting, such as a tobacco products retail establishment. In this way, a customer can choose a type or blend of tobacco filler for a package of cigarettes, and view the production and handling of the cigarettes that are produced expressly for that customer by a representative of the retail establishment.
  • An automated cigarette-making machine, a cartridge-loading device, and a packaging device according to the present invention each can be used, for example, for the manufacture of cigarettes for personal use (e.g., for use at home), for the manufacture of specialty type cigarettes within tobacco products retail establishments (e.g., for the production of individual packages of cigarettes at tobacco shops), for the manufacture of small lots of cigarettes for quality control or regulatory related activities, or for research and development purposes.
  • Embodiments of the present invention can include a method for manufacturing cigarettes utilizing the various embodiments of a cigarette manufacturing apparatus described herein.
  • As will be realized by those of skill in the art, many different embodiments of an apparatus and methods for manufacturing cigarettes according to the present invention are possible. Additional uses, objects, advantages, and novel features of the invention are set forth in the detailed description that follows and will become more apparent to those skilled in the art upon examination of the following or by practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front perspective view of an apparatus for manufacturing a plurality of cigarettes by filling pre-formed tubular wrappers with loose tobacco filler.
  • FIG. 2 is an exploded view of various components of the hopper assembly of the apparatus shown in FIG. 1.
  • FIG. 2A is a cut-away perspective view of a movable wall of the hopper assembly shown in FIG. 2.
  • FIG. 3 is a perspective view of the base and various components of the plunger mechanism of the apparatus shown in FIG. 1.
  • FIG. 4 is an enlarged, perspective view of a tension arm of the apparatus shown in FIG. 1.
  • FIG. 5 is a perspective view of the cartridge of the apparatus shown in FIG. 1.
  • FIG. 6 is a perspective view of the cartridge of the apparatus shown in FIG. 1.
  • FIG. 7 is a perspective view of the compression assembly of the apparatus shown in FIG. 1, showing the upper portion as partially cut away, and showing the compression plates in open positions.
  • FIG. 8 is a perspective view of an alternative embodiment of a compression assembly showing the upper portion as partially cut away, and showing the compression plates in closed positions.
  • FIG. 9 is a cross-sectional view of the apparatus shown in FIG. 1 taken along lines 9-9 in FIG. 1, and showing the compression plates in closed positions.
  • FIG. 10 is a perspective view of the plunger assembly of the apparatus shown in FIG. 1.
  • FIG. 11 is a rear perspective view the apparatus shown in FIG. 1.
  • FIG. 12 is a perspective view of an apparatus for trimming tobacco filler strands from the ends of cigarettes.
  • FIG. 13 is a rear perspective view of the apparatus shown in FIG. 12.
  • FIG. 14 is a perspective view of an apparatus for filling a cartridge with pre-formed tubular wrappers, the apparatus shown in the open position.
  • FIG. 15 is a perspective view of the apparatus shown in FIG. 14, the apparatus shown in the closed position.
  • FIG. 16 is a perspective view of the base portion of the apparatus shown in FIGS. 14 and 15.
  • FIG. 17 is a perspective view of an apparatus for filling a cigarette package with manufactured cigarettes.
  • FIG. 18 is a perspective view of the apparatus shown in FIG. 17, showing the cigarette package beneath the open region of the positioning platform.
  • FIG. 19 is a perspective view of a package of cigarettes.
  • FIG. 20 is a cross-sectional view of a pre-formed tubular wrapper representative of the type used for the manufacture of a cigarette.
  • FIG. 21 is a cross-sectional view of a finished cigarette.
  • FIG. 22 is a front perspective view of another embodiment of an apparatus for manufacturing a plurality of cigarettes by filling pre-formed tubular wrappers with loose tobacco filler.
  • FIG. 23 is a rear perspective view of the embodiment of the apparatus for manufacturing a plurality of cigarettes by filling pre-formed tubular wrappers with loose tobacco filler shown in FIG. 22.
  • FIG. 24 is an enlarged, perspective view of the hopper assembly shown in FIGS. 22 and 23, having part of the front wall removed and showing the plurality of auger conveyors and nozzles.
  • FIG. 25 is a front view of the embodiment of the cigarette manufacturing apparatus shown in FIGS. 22 and 23.
  • FIG. 26 is a cross-sectional view of the embodiment of the cigarette manufacturing apparatus shown in FIG. 22, taken along lines 5-5 in FIG. 25.
  • FIG. 27 is an enlarged, front perspective view of another embodiment of an apparatus for manufacturing a plurality of cigarettes by filling pre-formed tubular wrappers with loose tobacco filler.
  • FIG. 28 is a rear perspective view of the embodiment of the apparatus for manufacturing a plurality of cigarettes by filling pre-formed tubular wrappers with loose tobacco filler shown in FIG. 27.
  • FIG. 29 is a perspective view of the blade assembly shown in the embodiment of the cigarette manufacturing apparatus in FIGS. 27 and 28, showing the plurality of reciprocating blades.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, there is shown an embodiment of an automated device or apparatus 10 of the present invention for manufacturing a plurality of cigarettes 13 by filling pre-formed filtered tubular wrappers 21 with loose tobacco filler (not shown). For the embodiment shown in FIG. 1, the automated cigarette-making apparatus is designed to simultaneously manufacture five cigarettes by simultaneously filling the hollow portions of five pre-formed tubular wrappers with five cylindrical charges formed from loose tobacco filler. The embodiments of the present invention shown in FIGS. 1-21, are described in U.S. patent application Ser. No. 11/143,889, which is incorporated herein by reference in its entirety.
  • The cigarette manufacturing apparatus 10 includes a lower base 31, which can be manufactured from a suitable material, such as metal (e.g., stainless steel, brass or aluminum), plastic (e.g., polycarbonate, polymethylmethacrylate, acrylate/butadiene/styrene or ABS type plastic, nylon, or other suitable polymeric material), composite material (e.g., a graphite-based ceramic), or like material. Preferably, the lower base 31 is manufactured from aluminum. Although the shape and dimensions of the base can vary, and can be a matter of design choice, a representative base is generally rectangular and is about 35 cm deep, about 25 cm wide, and about 2 cm high. A perspective view of the base 31 is described below with reference to FIG. 3.
  • If embodiments of the present invention, various components of the cigarette manufacturing apparatus 10 can be covered with an aesthetically pleasing cover (not shown). For example, portions of the base 31 can be adapted to support an optional formed plastic cover of a desired design and color.
  • The base 31 supports a movable tray or cartridge 38, which can be manufactured from a suitable material as described herein for the base 31. Preferably, the cartridge 38 is manufactured from a metal, such as aluminum. The cartridge 38 can be adapted to be movable from side to side relative to the base 31, along the longitudinal axis of the cartridge 38. Movement can be accomplished manually by a machine operator. Although the dimensions of the cartridge 38 can vary, and can be a matter of design choice, a representative, generally rectangular-shaped cartridge is about 7 cm deep, about 26.5 cm long, and about 2.5 cm high. Rear and front views of the cartridge 38 are shown, respectively, in FIGS. 5 and 6.
  • Referring to FIGS. 1, 5, and 6, the cartridge 38 includes a series of parallel rounded grooves 48 in its upper face, with the grooves 48 being oriented perpendicular to the longitudinal axis of the cartridge 38. The size and shape of the grooves can vary, and generally depend upon factors such as the size of a preformed tubular wrapper 21 that is properly positioned in each respective groove 48. That is, each groove 48 acts like a cradle for a pre-formed tubular wrapper 21. A representative groove is designed to hold a pre-formed tubular wrapper that is about 86 mm long with a circumference of about 24.5 mm. The representative groove has a generally semi-circular shape of about 4.4 mm radius and is about 60 mm long. As such, each tubular wrapper can extend about 30 mm beyond the rear face of the cartridge. For the embodiment shown in FIGS. 1, 5 and 6, the cartridge 38 includes twenty grooves 48, and thus the cartridge 38 can hold twenty pre-formed tubular wrappers 21 for the manufacture of twenty cigarettes.
  • The cartridge 38 can be adapted to be removable from the base 31. Thus, a cartridge 38 loaded with empty tubular wrappers 21 can be positioned on the base 31, loaded with loose tobacco filler (not shown), and—once loaded with finished cigarettes resulting from the tubular wrappers 21 having been filled with tobacco filler—can be removed from the base 31 for packaging or for use without packaging. It is preferred that the tubular wrappers 21 within the cartridge 38 are positioned lying on their sides (that is, the longitudinal axis of each tubular wrapper 21 is parallel to, or substantially parallel to, the horizontal plane). The cartridge 38 can serve as a source and holder of tubular wrappers 21 that are employed during the cigarette-manufacturing process using the cigarette-making apparatus, as well as a holder for transfer of finished cigarettes 13 manufactured using that apparatus 10 to a package filling device.
  • The cartridge 38 can be adapted to be capable of being maintained firmly in place relative to the base 31 during periods when the apparatus 10 is being used to insert loose tobacco filler into selected tubular wrappers 21. Appropriate secure positioning of the cartridge within the base 31 can be accomplished by any suitable means. For example, the cartridge 38 may be laterally secured to the base 31 using, for example, a pin or key type of design (e.g., a square key stock 834, such as is illustrated in FIG. 14) whereby a protrusion located at a predetermined position in the base 31 cooperates with a coordinating hole or slot located at a predetermined location in the bottom face of the cartridge 38. In addition, as shown in FIGS. 1 and 3, a backstop wall 68, or other suitably designed backstop means, protruding upwardly across the length of the front end of the base 31, acts to hold the cartridge (and pre-formed tubular wrappers carried thereby) in place relative to the base 31. Use of the backstop wall 68 and/or other securing means may thus minimize or prevent undesirable effects of movement (whether side-to-side or back-and-forth) during normal operation of the apparatus 10.
  • The base 31 also supports a compression assembly 75 (which is discussed in greater detail below with reference to FIGS. 7-8). The compression assembly 75, in turn, supports a hopper assembly 80. Extending upwards and supported by the base 31 is a support frame 85, which can be manufactured from a suitable material, such as aluminum. The support frame 85 is connected to the remainder of the apparatus 10 using screws. The support frame 85 provides a means by which various components of the apparatus 10 can be secured in place. For example, screws may be threaded through the compression assembly 75 and into the bottom face of the support frame 85. The support frame 85 can be adapted to support an upper weight-source assembly 92.
  • The tobacco hopper assembly 80 also includes a hopper unit 99. The hopper unit 99 is adapted to be maintained firmly in place relative to the compression assembly 75 during periods when the apparatus 10 is being used to insert loose tobacco filler into selected tubular wrappers 21. Such firm positioning of the hopper unit 99 can be accomplished by appropriately positioned coordinating locating slots and pins (not shown). The hopper unit 99 functions as a source of loose tobacco filler that is processed using the apparatus 10 to produce finished cigarettes.
  • Various components of the hopper assembly 80 can be are adapted to be removable from the compression assembly 75, in order that the relevant hopper assembly components can be serviced or cleaned. In an embodiment of the apparatus 10, individual hopper units, each containing a different blend of loose tobacco filler, can readily be removed and substituted for one another. The desired secure positioning of each removable hopper unit 99 relative to the other components of the apparatus 10 can be facilitated by placement of protruding pins on the bottom of the hopper unit and complementary mating holes in the top of the compression assembly 75. By use of the pin/hole arrangement or another suitable mechanism, the hopper unit 99 can be appropriately aligned with the other components of the apparatus.
  • Referring to FIGS. 1 and 2, the hopper unit 99 includes an open upper reservoir region 110 into which loose tobacco filler (not shown) can be deposited. A top wall 114 of an intermediate hopper portion 118 defines the bottom of the upper reservoir region. The top wall 114 can be manufactured from any suitable metallic material, such as aluminum. The top wall 114 includes a series of openings 124. For the embodiment shown, the top wall 114 includes five openings 124. The longitudinal axis of the top wall 114 preferably is generally parallel to the longitudinal axis of the cartridge 38. Each opening 124 extends transversely to the longitudinal axis of the top wall 114. Each opening 124 provides access to a vertical passageway or channel through the intermediate hopper portion 118 for the controlled transport of tobacco filler (not shown) from the upper reservoir region 110 to the bottom of the intermediate hopper portion 118. For example, for the manufacture of a cigarette having a tobacco rod length of about 56 mm, each opening preferably is about 10 mm to about 12 mm wide by about 55 mm to about 60 mm long. Each vertical passageway in the intermediate hopper portion 118 can have a volume sufficient to provide for passage of a charge of tobacco sufficient to fill about four or about five individual tubular wrappers. For the manufacture of a cigarette from a hollow tubular rod having a tobacco rod section of about 56 mm in length and about 24.5 mm in circumference, a representative preferred opening 124 has dimensions of 10.25 mm wide by about 58 mm long.
  • The dimensions of the upper reservoir region 110 may vary depending upon the amount of tobacco desired to be used with the apparatus 10. For example, the upper reservoir region 110 may have the capability of containing about 50 g to about 100 g of loose tobacco filler (not shown). A representative upper reservoir region 110 includes outwardly sloping walls 130 that extend upwards and outwards from the top wall 114 of the intermediate hopper portion 118 to a vertical height of about 2 cm to about 5 cm. Those outwardly sloping walls can be manufactured from any suitable material and preferably include a metallic material, such as stainless steel.
  • In the embodiment shown in FIGS. 1 and 2, the intermediate hopper portion 118 is defined by top wall 114, front wall 140, fixed left side wall 350, a rear wall 370, movable right side wall 360 and bottom wall 162. A representative intermediate hopper portion 118 has dimensions of about 29 cm wide, about 10.1 cm long, and about 10 cm high. Preferably, the walls of the representative intermediate hopper portion are manufactured from sheets of a clear material such as polycarbonate or polymethylmethacrylate, so that the presence or absence of loose tobacco filler in the intermediate hopper region 118 can be readily viewed.
  • A series of side walls 350, 360 extend downwardly within the intermediate hopper portion 118. That is, for each opening 124, a fixed wall 350 and a movable wall 360 extend downwardly from the bottom of the top wall 114 of the intermediate hopper portion 118, thereby forming a vertically extending passageway extending downwardly from each opening 124. Each movable wall 360 is movable relative to the other components of the intermediate hopper portion 118. That is, the movable walls 360 of the intermediate hopper portion 118 can be moved back and forth along a front-to-rear axis that is perpendicular to the longitudinal axis of the top wall 114. This front to back movement may be effected by an operator using an appropriately connected wall-moving handle 160 that extends across the front exterior region of the intermediate hopper portion 118. An appropriate connection of the wall-moving handle 160 to the movable walls 360 may include screws or bolts combined with spacers, rivets, or any other suitable connection means. A reciprocating motion of a wall-moving handle 160 may help tobacco filler to gently settle within each vertical passageway, hence providing a consistent amount of tobacco filler in each tobacco charge that is used during cigarette manufacture. The wall-moving handle 160 can be manufactured from any suitable material, such as wood, plastic, polytetrafluoroethylene, or aluminum.
  • The bottom region of hopper assembly 80 includes a bottom wall 162, which includes a series of bottom wall slots 395. A movable slat 165 is located below the bottom wall 162. The movable slat 165 is adapted to be movable back and forth along its longitudinal axis within the lower region of the hopper unit 99. An exemplary movable slat can be manufactured from any suitable material and preferably is manufactured from a metallic material, such as stainless steel. A representative movable slat is about 6.5 cm wide, about 29 cm long, and about 1.6 mm thick. The movable slat 165 includes a series of slat apertures 368 that, when the movable slat 165 is in an “open” position are aligned with the openings 124 of the top wall 114, the vertical passageways, and the bottom wall slots 395 of the bottom wall 162. As is described below with more specific reference to FIG. 2, movement of the slat 165 to one side (e.g., to the right) allows alignment of each vertical passageway and its corresponding bottom wall slot 395 with each respective slat aperture 368 in the slat 165, thus allowing tobacco filler to fall through the hopper unit 99 and into the compression assembly 75. Movement of the slat 165 to the other side (e.g., to the left) allows closure of the passageways through the hopper unit 99. As such, when the slat 165 is moved to a “closed” position tobacco filler is retained within the hopper unit 99, which can then be removed from the apparatus 10 without a resulting spillage of significant quantities of tobacco filler. Embodiments of the present invention can include other suitable configurations of the hopper assembly 80 for receiving tobacco filler and arranging the tobacco filler for delivery into the tubular wrapper portions 21.
  • Referring again to FIG. 1, above the upper region of the hopper assembly 80 is positioned a weight-source assembly 92. The weight-source assembly 92 includes several ball slides 170 or other suitable means for supplying compressive force to tobacco filler (not shown) within the intermediate hopper portion 118. A representative ball slides is available as “Del-Tron SA1-8” from Del-Tron, Inc. Each ball slide 170 is suitably connected to the support frame 85 so as to maintain the weight-source assembly 92 appropriately positioned above the hopper unit 99.
  • Each ball slide 170 is suitably adapted so as to provide for the desired movement and positioning of a series of weights 177. For the embodiment shown, the apparatus 10 includes five weights 177. Each weight 177 is appropriately attached (e.g., using fasteners such as screws) to a corresponding ball slide 170. Each weight 177 is adapted to travel up and down with each respective ball slide 170 in an appropriate channel 197. A series of spring plungers 207, or other suitable control means, within each ball slide 170 acts to hold each respective weight and ball slide in an “up” position (as shown in FIG. 1). The spring plungers 207 are releasable to allow the weight into a “down” position providing downward force to compress or compact tobacco filler in the hopper assembly 80 and provide for a generally consistent flow of the tobacco to the receptacles 641 below the hopper assembly 80.
  • Each weight 177 includes a bottom foot 217 that is adapted to fit within corresponding opening 124 below that weight 177. Preferably, each foot 217 is adapted so as to provide for ensuring compression of the tobacco filler within each corresponding vertical passageway of the hopper unit 99. In a representative embodiment, each weight preferably has a mass of about 150 g to about 400 g, more preferably about 200 g to about 300 g, and most preferably about 200 g. Optionally, the mass of each individual weight 177 can be changed (e.g., by adapting each weight so that smaller weights can be added and taken away, in order that the downward compressive force can be selected and controlled). For example, an optional, additional weight 220 can be positioned on top of weight 177 such that the degree of downward compressive force would be increased. In operation, a series of additional weights 220 optionally can be positioned on top of each weight 177, and as tobacco filler is gradually removed from each vertical passageway for cigarette manufacture, the additional weights can be removed, as desired, from each larger weight 177 to prevent a disproportionate downward pressure on a lesser volume of tobacco filler.
  • Each weight 177 can provide substantially identical downward compressive force. However, the amount of downward force provided to the tobacco material in each vertical passageway of the hopper unit 99 can be varied between individual vertical passageways, depending upon factors such as the relative amount of tobacco filler in each passageway. The weight-source assembly 92 can be configured such that the loose tobacco filler within each vertical passageway is consistently or uniformly positioned within each passageway, and the packing density of the tobacco filler within each passageway is comparable to the packing density in each other passageway. Control of the downward compressive force to the tobacco filler is desirable in order to control the amount of tobacco filler used for the manufacture of each individual cigarette. For example, a mechanism such as a set of force gauges or scales (not shown) may be positioned within each vertical passageway or attached to the top of each of the weights in order to monitor the degree of downward force applied to the tobacco filler therein.
  • Referring now to FIGS. 1 and 7, the compression assembly 75 includes a plurality of nozzles 230. For the embodiment shown in FIGS. 1-11, the apparatus 10 includes five nozzles 230. Each nozzle 230 preferably is designed such that the open end of a hollow pre-formed tubular wrapper 21 fits over that nozzle 230 such that tobacco filler (not shown) can be transported through that nozzle 230 and into a corresponding tubular wrapper 21. Representative nozzles can be manufactured from a metallic material, such as stainless steel. Each nozzle can be generally cylindrical in shape. A representative nozzle (for use in conjunction with a pre-formed tubular wrapper 21 having a circumference of about 24.5 mm) has an inner diameter of about 6.75 mm and an outer diameter of about 7.25 mm.
  • For the embodiment shown in FIGS. 1 and 7, each tubular wrapper 21 is axially aligned with a corresponding nozzle 230 and is positioned so as to be inclined at a slight angle (e.g., inclined at about a 5° angle relative to horizontal). In an embodiment, the tubular wrappers 21 located on the cartridge 38 can rest in a horizontal plane that is slightly below a central plane of the nozzles 230. Thus, when the open end of a tubular wrapper 21 extends around a nozzle 230, it (the open end) is raised slightly higher than the other (e.g., filtered) end.
  • The compression assembly 75 is located on and supported by the base 31. The compression assembly 75 can be attached securely to the base 31 using several screws, or other appropriate fastening means. The removable hopper unit 99 can be maintained in place on top of the compression assembly 75, preferably by a suitable number of appropriately positioned locating pins (not shown). That is, several positioning pins of appropriate shape and size can be located in the bottom of the hopper unit 99, and corresponding location holes can be positioned in the top face of the compression assembly. Any other suitable structure may be used to maintain the relative positions of the hopper unit 99 and the compression assembly 75.
  • As shown in FIG. 9, a plunger assembly 248 is located in the back region of the apparatus 10. The plunger assembly 248 includes several plunger arms 251 that extend forward, and are mounted on a plunger arm cross-member 257. When an operator moves the plunger assembly 248 forward, each plunger arm 251 moves correspondingly to push a charge of tobacco filler (not shown) from each corresponding receptacle area 641 located within the compression assembly 75 into each corresponding tubular wrapper 21.
  • Referring to FIGS. 1 and 7, the apparatus 10 includes two operational arms: a compression arm 260 and a plunger arm 261. The compression arm 260 is located on the left side of the apparatus. The compression arm 260 is used to arrange tobacco filler within the compression assembly 75 so as to form a plurality of cylindrical charges of tobacco filler for insertion into corresponding pre-formed tubular wrappers 21, and thereby form several cigarettes. The function of the compression arm 260 is described below with reference to FIG. 7. The plunger arm 261 is located on the right side of the apparatus. The plunger arm 261 is used to facilitate movement of the plunger assembly 248, and hence facilitate insertion of a formed cylindrical charge of tobacco filler within a corresponding pre-formed tubular wrapper 21. The function of the compression arm 260 is described below with reference to FIG. 3. Representative operational arms may be manufactured from any suitable material, and preferably are manufactured from aluminum.
  • The operational arms or handles 260, 261 that are shown are each designed to be operated within a horizontal plane. The design and selection of the operational arms are such that the operational mechanism (e.g., a gear and/or spring mechanism such as, for example the compression assembly 75 or the plunger assembly 248) can provide the appropriate amount of force to readily operate the apparatus in an efficient and effective manner. That is, the operational arms 260, 261 can be repeatedly moved back and forth to provide the desired effect of moving tobacco with relative ease of the operator. Alternatively, either or both of the operational arms can be substituted with other means for providing the desired operational effect, such as in-line toggle clamp handles.
  • Referring to FIG. 2, there is shown an exploded view of various components of a portion of the hopper unit 99 of the cigarette-making apparatus 10 previously described with reference to FIG. 1. The upper reservoir region 110 is positioned over the top wall 114. The top wall includes a series of openings 124. Beneath the top wall 114, and positioned to the left side of each respective opening 124 is fixed wall 350. Beneath the top wall 114, and positioned to the right side of each respective opening 124 is movable wall 360. The desired location of the fixed walls 350 relative to the other components of the hopper unit 99 can be accomplished by attaching the fixed walls 350 to predetermined positions on the rear wall 370 and the front wall 140 of the hopper unit, using screws or other suitable fastening means.
  • In the illustrated embodiment of FIG. 2, the movable side walls 360 each have a tongued front and rear edge 361, 362. This is shown in greater detail in FIG. 2A, which shows an enlarged cut-away perspective view along line 2A-2A of FIG. 2. The tongued rear edges 362 fit into complementary rear wall grooves 376, and the tongued front edges 361 fit into complementary front wall grooves 377. The movable walls 360 are sized and positioned between front and rear walls 140, 370 such that—with the aforementioned tongue and groove configuration—the walls 360 are movable back and forth along a front-to-rear axis. The tongued edges 361, 362 and grooves 376, 377 are sized and positioned such that, even as the walls 360 move back and forth, the tongue-and-groove maintains a patent separation of spaces on either side of each wall 360. The tolerance between each tongue and groove can be sufficiently close that tobacco is substantially prevented from getting into the space between each tongue and its corresponding groove. The front edge 361 of each movable wall 360 is attached to a wall-moving handle 160. The configuration is such that a repeated movement of the wall-moving handle 160 provides corresponding movement of each movable wall, resulting in a convenient manner or method for providing a type of reciprocating movement of each movable wall. The movable walls 360 can be attached to the wall-moving handle 160 using screws, or other suitable fastening means, that extend slidably through the front wall 140. The hopper unit 99 also includes a bottom wall 162.
  • A movable slat 165 is positioned below the bottom wall 162. The slat 165 can be moved laterally along its longitudinal axis in such a manner that slat apertures 368 therein can alternately be aligned, or not aligned, with the corresponding bottom wall slots 395 in the bottom wall 162. The slots 395 in the bottom wall 162 can generally resemble the openings 124 in the top wall 114 in overall shape. However, it is preferred that the bottom wall slots 395 be slightly larger than the corresponding openings 124 in the top wall 114. For the manufacture of a cigarette from a hollow tubular rod having a tobacco rod section of about 56 mm in length and about 24.5 mm in circumference, a representative preferred opening in the bottom wall has dimensions of 12 mm wide by about 58 mm to about 60 mm deep. It is also preferred that the dimensions of the slots 395 in the bottom wall 162 be substantially identical to those of the corresponding apertures 368 in the slat 165. Controlled movement of the slat 165 is allowed by tracking slots 411 being moveable about corresponding shoulder pins 412 or other suitable means. The slat 165 can include an optional handle aperture 415 that provides a type of handle for grasping and sliding the slat 165 back and forth.
  • In one embodiment, the major surfaces of the fixed and movable side walls 350, 360 are all substantially vertical and parallel to each other. In another embodiment, each of the fixed and movable side walls 350, 360 is broader near its top end and tapers narrower near its bottom end. This configuration provides a vertical passage between the side walls 350, 360 that is slightly broader at its bottom than at its top. For example, in one configuration, the major faces of each side wall each taper outwardly about 0.50 to about 10 from vertical from top to bottom. Alternatively, the side walls can be slightly tilted toward each other at the top to achieve this effect. A slightly less than vertical passage of such a shape is preferred in that downward movement of a column of tobacco filler within that passage is facilitated or promoted.
  • For the embodiment shown in FIG. 2, the major face or inner surface of each wall 350, 360 that makes up the right and left inner face of each vertical, or substantially vertical, passageway is generally flat; and hence the gradual increase in width of each passageway from top to bottom is linear in nature. However, in alternative embodiments, the major face of each panel may be modified so as to be slightly curved, and thereby provide a non-linear downward increase in the width of each passage.
  • FIG. 3 depicts the main base 31 of the cigarette manufacturing apparatus 10 previously described with reference to FIG. 1. The base 31 supports a tobacco filler insertion mechanism 300. The mechanism 300 includes a horizontally extending generally triangular-shaped base 310 that is, in turn, mounted on and slightly above the main base 31. The triangular base 310 can be manufactured from any suitable material, but preferably is manufactured from aluminum. A representative triangular base is about 20 cm in length, about 13 cm in width, and about 1.3 cm in height. The triangular base 310 supports three gears 316, 317, 318. The first gear 316 may be larger and the second and third gears 317, 318 are smaller than the first gear 316, but about the same size as each other. The first gear 316 is operably attached to the plunger arm 261. Representative gears can be manufactured from any suitable material, such as steel or aluminum. The gears 316, 317, 318 are substantially coplanar and each is positioned so as to rotate about a vertical axis. A representative larger gear includes 48 teeth, each of 5 mm pitch. Representative smaller gears each include 32 teeth, and each tooth has a pitch of 5 mm. In the illustrated embodiment of FIG. 3, the three gears support a belt 325 that is adapted to move in a generally horizontal plane in response to a rotation of the gears 316, 317, 318. A representative belt is a slightly elastic belt composed of neoprene, rubber, or another suitable material. A representative belt has length of about 61 cm, and includes one hundred twenty two grooves each of 5 mm pitch. Also supported by triangular-shaped base 310 is a belt tensioner 328, or other suitable means for facilitating removal, tightening and operation of the belt 325.
  • In the assembled apparatus 10, a plunger assembly 248 (shown in FIGS. 1 and 11) is located beneath the triangular-shaped base 310, and supported above the main base 31. The base 31 includes a first plunger arm stop 335 located near the rear edge of the base 31. The first plunger arm stop 335 extends upwards, and acts to limit the rearward movement of the plunger arm cross-member 257 (see FIGS. 10 and 11) of the plunger assembly 248. The base 31 also includes a second plunger arm stop 338 located forward of the first plunger arm stop 335. The second plunger arm stop 338 extends upwards, and acts to limit the forward movement of the plunger arm cross-member 257 (see FIGS. 10 and 11) of the plunger assembly 248.
  • The backstop wall 68 defines the front end of the base 31 and extends above its upper surface. The main base 31 includes several guidance grooves 346 within its upper face. The guidance grooves 346 extend longitudinally across the base 31. For the embodiment shown in FIG. 3, the upper face of the main base 31 includes five guidance grooves 346. The guidance grooves 346 serve as a track for the guides 728 of the plunger arm assembly 248 (see FIG. 10). A representative guidance groove design provides grooves each having a width of about 9.5 mm and a length of about 8.8 cm. Another representative guidance groove design provides grooves each having a width of about 12 mm and a length of about 9.4 cm.
  • The base 31 also includes a front platform portion 382 immediately rear of the backstop wall 68. The front platform portion 382 provides a region configured to support the cartridge 38 in a proper position and location for making cigarettes with the apparatus 10. The main base 31 includes an broad recess 354 at the front edge of the guidance grooves 346. The dimensions of a representative recess 354 are about 6 cm deep and about 22 cm wide. A plurality of spaced tension arms 365 is positioned within the broad recess 354. For the embodiment shown in FIG. 3, the main base 31 includes five tension arms 365. The tension arms 365 are mounted on an axle 369 that extends transversely across the broad recess 354, with its ends secured rotatably in the sides of the base 31. Each of a plurality of spacers 372 is individually positioned about the axis between adjacent tension arms 365. The tension arms 365 are designed to pivot on the axle 369.
  • In the assembled apparatus 10, tension arms 365 are located beneath filling nozzles 230 of the compression assembly 75 (see FIG. 7), and each is designed to hold a corresponding tubular wrapper 21 in position during the tobacco filling operation. This holding function helps ensure complete and consistent filling of the wrapper 21 with tobacco filler during operation of the apparatus 10. As is explained below with reference to FIGS. 1 and 4, each tension arm 365 exerts force upon a corresponding tubular wrapper 21 during the time when the tubular wrapper 21 is being filled with tobacco filler, and facilitates maintenance of the tubular wrapper in place relative to the nozzle during that period. A representative tension arm 365 has a height of about 3 cm, a width of about 9 mm, and a length of about 7.4 cm. Representative spacers 372 each are cylindrical in shape and are about 13 mm outer diameter, about 6.5 mm inner diameter, and about 4 cm long. Representative spacers 372 can be manufactured from aluminum.
  • Referring to FIGS. 3 and 4, the tension arms 365 each include a front arm portion 379. Each front arm portion 379 is located in front of the axle 369. For example, a representative front arm portion 379 extends forward about 46 mm from the center of the axle. Each front arm portion 379 can be adapted and positioned so as to have the ability to extend slightly above the upper surface of the front platform portion 382 of the base 31 (e.g., about 2 mm above the base). Each front arm portion 379 is of a size and shape, and is positioned, such that it will be pushed downward when a cartridge 38 is positioned on the upper surface of the front platform portion 382 of the base 31.
  • The tension arms 365 each include an upper arm surface 385. Each upper arm surface 385 is located in front of the axle 369. As a result, a downward movement of the front arm portion 379 of each tension arm also results in a downward movement of each respective upper arm surface 385. A representative upper arm surface 385 has a generally concave shape and is designed to act as a support for the open end of a tubular wrapper. A representative upper arm surface 385 corresponds to about one third of the circumference of the open end region of the tubular wrapper 21 that is cradled thereon. A representative upper portion extends upwards about 5 mm to about 10 mm above the upper surface of the base 31. Representative tension arms 365, and particularly the upper faces 385 of those tension arms 365, may be manufactured from nylon, or another suitable material. Representative tension arms 365, and particularly the upper surface 385 of those tension arms 365, can be manufactured from metal coated with an elastomer in order to provide a surface exhibiting some friction, thereby improving the ability of the tension arms 365 to clamp and hold a tubular wrapper 21 to a nozzle 230 of the compression assembly 75.
  • The tension arms 365 each include a rear arm portion 390. In a representative embodiment, each rear arm portion extends rearwards about 28 mm from of the center of the axle 369. Each rear arm portion 390 of each tension arm 365 preferably is located adjacent the front end of each corresponding guidance groove 346. During operation of the apparatus 10, the tension arms 365 interact with the plunger arm assembly 248, which is described below with reference to FIG. 10.
  • In FIG. 3, the foremost tension arm 365 is illustrated with a tension arm spring 400 extending upward from the upper face of the rear arm portion 390. In a preferred embodiment, each of the tension arms 365 includes a tension arm spring 400. When the tension arm 365 is assembled to the apparatus 10, each of the tension arm springs 400 extends up against the underside of the compression assembly 75 that rests thereabove. A representative spring 400, when at rest, has a diameter of about 2 mm and a length of about 15 mm. When at rest, the springs 400 hold the tension arms 365 in a “rocked-back” position. That is, the tension arm spring 400 acts to maintain the rear portion 390 of the tension arm 365 in a down position when (i) upward force is not being applied to the rear portion 390, or (ii) when downward force is not being applied to the front portion 379.
  • The front platform portion 382 can include a key stock 410 extending upwards therefrom. The key stock 410 provides for a convenient manner of positioning of a cartridge 38 securely in a desired position relative to the base 31. For the embodiment shown in FIG. 3, the key stock 410 is a longitudinal protrusion with a square cross-section that extends from front to rear of the front platform portion 382. That is, the stock is designed to align with each of a series of mating grooves 515 located at pre-determined locations on the bottom face of a cartridge 38 (see FIG. 5). As such, there is provided a precise and desired alignment of a set of five tubular wrappers 21 with five corresponding nozzles 230 extending from the compression assembly 75 of the apparatus 10 (see FIGS. 1 and 4).
  • Referring to FIG. 4, there is shown a tension arm 365 that is representative of the design of the type of tension arm 365 described previously with reference to FIG. 3. The tension arm 365 includes a axle passage 416 extending transversely therethrough, in order to provide a region for the axle 369 of the main base 31 to pass and hence provide a pivot axis. The top of the rear arm portion 390 includes a divot 418 that acts as a seat for a tension arm spring 400. The tension arm 365 also includes a front arm portion 379 that extends slightly upwards relative to the rear arm portion 390. The upper surface portion 385 that extends upwards relative to the forward and back regions preferably has an arcuate shape (e.g., covering about 120° to about 180°). The arcuate shape can be employed to support the end of a tubular wrapper portion 21 and apply pressure that holds the wrapper 21 against the lower outer surface region of a nozzle 230. This function is described below in greater detail, with reference to an operation of the apparatus 10.
  • Referring to FIGS. 5 and 6, there are shown rear and front views of a cartridge 38. As is shown in FIG. 5, the cartridge 38 can be configured to be maintained laterally in place relative to the base 31 of the cigarette manufacturing apparatus 10. Appropriate secure positioning of the cartridge 38 relative to the base 31 is accomplished in the illustrated embodiment by engaging one of the mating grooves 515 with the raised key stock 410 (see FIG. 3) located on the front platform portion 382 of the base 31. Other structures and/or methods for adjusting the location of a cartridge 38 on or within the cigarette manufacturing apparatus, and for securing the cartridge 38 at a desired location within the apparatus 10, can be employed (e.g., through the use of clamps, adjustable threaded nuts, or the like). For the embodiment shown in FIGS. 5 and 6, the cartridge 38 includes four mating grooves 515. With this configuration, a base 31 including a single protruding, cooperating key stock 410 allows for the secure alignment or registration of the cartridge 38 in at least four independent positions on the base 31 of the cigarette manufacturing apparatus 10.
  • The cartridge 38 may include at least one optional coordinating slot 535 on its bottom face at a predetermined location that is a distance apart from the location of slots 515. The coordinating slot 535 can be used to provide for a desired positioning of the cartridge within one or more other devices, such as, for example, an apparatus designed to fill an empty cartridge with pre-formed tubular wrappers 21, a device to trim the ends of tobacco charges in cigarettes on the cartridge, or a device to transfer cigarettes from the cartridge to a container. A representative device for trimming cigarette ends is described below with reference to FIGS. 12 and 13. A representative apparatus for filling a cartridge 38 with empty tubular wrappers 21 is described in greater detail below with reference to FIG. 14 through FIG. 16.
  • The cartridge 38 includes a raised region 540 on the front thereof. The raised region 540 facilitates capture and control of the filter ends of the tubular wrappers 21 within a series of preferably semi-cylindrical grooves 48 on the cartridge. As such, desired positioning of the tubular wrappers 21 on the cartridge 38 is promoted. When the cartridge 38 is loaded with pre-formed tubular wrappers 21, the filtered ends of those tubular wrappers 21 are situated at least partially within a series of cavities 541 within the raised region 540 of the cartridge, and the open ends of those tubular wrappers 21 are oriented toward the rear of the cartridge 38.
  • Referring to FIG. 6, there is shown a front view of the cartridge 38. A series of cylindrical push-through openings 550 is aligned across the front face 548 of the cartridge 38. Each opening 550 extends through the raised front region 540 of the cartridge 38 to a corresponding cavity 541, and is aligned with a corresponding groove 48. In a representative embodiment, for a cartridge 38 adapted to contain tubular wrappers having circumferences of about 7 mm to about 8.5 mm, the passageway has a diameter of about 5 mm. That is, each push-through opening is not so large as to allow a wrapper cigarette to pass therethrough. The openings 550 allow for cigarettes positioned on the cartridge 38 to be removed from the cartridge by inserting appropriately sized rods into the openings 550 so as to push the cigarettes 13 from the cartridge 38. A device for facilitating this operation is described below with reference to FIGS. 17 and 18.
  • In FIGS. 7 and 8, there is shown a tobacco filler rod-forming compression assembly 75. During operation of the compression assembly 75, loose tobacco filler is arranged into a charge of tobacco, which can be rod-shaped. The embodiments of FIGS. 7 and 8 are substantially similar, except that the embodiment of FIG. 8 incorporates an alternative handle design. Referring to FIG. 7, the compression assembly 75 includes a top plate 600 that is shown as partially cut away. The compression assembly 75 also includes a bottom plate 605. Each of the top and bottom plates 600, 605 are connected by bolts 606, rivets, or another suitable connector means so as to remain in position relative to one another. The plates 600, 605 are also configured to be held consistently in a desired position on the main base 31 of the cigarette manufacturing apparatus 10. The top plate 600 and the bottom plate 605 each can be manufactured from any suitable material, but preferably are manufactured from brass.
  • In the embodiment shown in FIG. 7, the top plate 600 includes five fill slots 608 in its top plate, and each fill slot 608 extends transversely to the longitudinal axis of the compression assembly 75. The middle three fill slots 608 are in the cutaway portion of the top plate 600 and are therefore not shown in FIGS. 7 and 8; however, the entire leftmost fill slot 608 and the interior right-side portion of the rightmost fill slot 608 are shown therein. Each fill slot 608 serves as a passageway for filling a lower receptacle area 641 with a charge of tobacco filler. For the embodiment shown in FIGS. 7 and 8, the compression assembly 75 has the capability of providing five tobacco filler charges at a given time. The size and shape of each lower receptacle area 641, and the ability of the other components of the apparatus 10 to supply tobacco filler to each lower receptacle area 641, can be such that the lower receptacle 641 can be readily filled with tobacco filler in a complete, uniform, and reproducible manner.
  • In the embodiment of FIG. 7, a compression arm 260 is positioned at the left side of the compression assembly 75. The compression arm 260 is in operable communication with a movable compression bar 621. The compression bar 621 is movable back and forth along the longitudinal axis of the base of the compression assembly, and defines a bottom surface of each receptacle 641. Five compression plates 630 are mounted to the top of the compression bar 621 and are movable with the compression bar. A counter-clockwise movement of the compression arm 260 moves the compression bar 621 and the compression plates 630 to the right. A representative compression bar is about 32 mm wide, about 33 cm long, and about 3.5 mm thick. A representative compression bar 621 may be manufactured from any suitable metallic material, such as steel. The compression plates 630 may be manufactured from any suitable material, but preferably are manufactured from aluminum, steel, or stainless steel.
  • The compression assembly 75 includes a set of compression assembly channels 638 that run transverse to the longitudinal axis of the assembly 75. The compression assembly channels 638 provide for passage of a series of plunger insertion arms 251 from the plunger assembly 248 therethrough. As is described in greater detail below, the plunger insertion arms 251 function to push compressed charges of tobacco filler from the lower receptacle area 641 into tubular wrappers 21.
  • During operation of the compression assembly 75, a charge of tobacco filler is allowed to pass from the hopper unit 99 above into the receptacle area 641. The compression arm 260 is moved so as to move the compression bar 621 to the right, such that the compression plates 630 simultaneously move toward the right. As a result, the tobacco filler in each lower receptacle 641 is formed into a cylindrical charge.
  • When the compression assembly 75 is in open position, as is shown in FIG. 7, a receptacle 641 can have a height that approximates that of each compression plate 630. The length of the receptacle 641 can approximate the length of a corresponding opening in the top face of the compression assembly 75. The width of the receptacle area 641 can be greater than that of the width of the corresponding fill slot 608 in the top plate 600 of the compression assembly 75. Preferably, the right wall of each receptacle area 641 is generally concave in shape in order to accommodate the forward and backward travel of the front semi-cylindrical extension portion 695 of a plunger insertion arm 251 of the plunger assembly 248 that is used to transfer the cylindrical tobacco filler charges or rods from the receptacle area 641 to the tubular wrappers 21. For the manufacture of a representative cigarette 13 from a hollow tubular rod having a tobacco rod section of about 56 mm in length and about 24.5 mm in circumference, a representative receptacle area 641 can have dimensions of at least about 12 mm wide, at least about 58 mm long and about 6 mm high. Larger size receptacle areas can be used for the production of cigarettes having larger tobacco rods.
  • A representative compression plate 630 can have a length of about 6 cm, a width of about 24.5 mm, and a thickness of about 6.3 mm. In an embodiment, the compression plates 630 are equally spaced from one another at a distance of about 2.5 cm. The manner that the compression plates 630 communicate with the compression bar 621 can vary. In an embodiment, the compression bar 621 and compression plates 630 extending upward therefrom can be of unitary construction. In a preferred embodiment, each compression plate 630 includes a downwardly extending pin that fits into a corresponding hole within the compression bar 621. As such, compression plates 630 can be removed for servicing of the apparatus 10, and compression plates 630 of desired sizes can be substituted within the apparatus 10.
  • Several filling nozzles 230 are positioned on the front of the compression assembly 75. Representative nozzles 230 preferably are manufactured from brass or stainless steel. For the embodiment shown in FIGS. 7 and 8, the front of the compression assembly 75 includes five filling nozzles 230. Each filling nozzle 230 (shown as partially cut away) is adapted to receive the open end of a tubular wrapping portion 21 (several of which are shown as partially cut away in order to show a preferred positional relationship of the nozzles 230 relative to the tubular wrapping portions 21). The tubular wrappers 21 preferably have a round cross-section such that the wrappers 21 fit easily about the nozzles 230. Each filling nozzle 230 can be adapted to position the tubular wrapper 21 in place about the nozzle 230 and to act as a passageway for a cylindrical charge of tobacco filler from a receptacle area 641 to within a corresponding tubular wrapping portion 21.
  • Referring to FIG. 8, there is shown a compression assembly 75 of the type described previously with reference to FIG. 7. However, the compression assembly 75 is shown with the compression plates 630 in a closed position. In closed position, the leading edge of each compression plate 630 (which preferably is concave to facilitate formation of a cylindrical tobacco filler charge) is substantially flush with the left edge of the corresponding channel 638. In addition, the compression assembly 75 shown in FIG. 8 includes an alternate handle mechanism 645 for moving the compression applying compressive force to the tobacco filler material within each receptacle 641. A representative compression handle mechanism 645 is commercially available from De-Sta-Co Industries as “Straight Line Toggle Clamp” Model 603. The use of the compression mechanism embodiments of FIGS. 7 and 8 are particularly suited for use with a cigarette-making apparatus that is bolted or otherwise affixed to a bench top.
  • Referring to FIG. 9, there is shown a cross-sectional partial view (taken along line 9-9 of FIG. 1) of the cigarette-making apparatus 10, as viewed from the front and showing the inner regions of the hopper unit 99 and the compression assembly 75. The hopper unit 99 includes the upper reservoir region 110, the top wall 114 having openings 124 extending therethrough, vertical passageways 675, bottom wall 162 having bottom wall slots 395, and the bottom slat 165 (which is shown such that the slat apertures 368 thereof are aligned with the bottom wall slots 395). The compression assembly 75 includes the top plate 600 with fill slots openings 608 that are aligned with the bottom wall slots 395 of the bottom wall 162 of the hopper unit 99. The compression assembly 75 is supported by base 31.
  • As shown in FIG. 9, the compression assembly 75 is in a closed position. As such, each compression plate 630 is shown as having been moved to the right. As described above with reference to FIGS. 7 and 8, movement of the compression plates 630 to the right is accomplished by movement of the compression arm 260, which in turn causes movement to the right of the lower compression bar 621 to which the compression plates 630 are secured. As a result, tobacco filler that has fallen into the receptacle areas 641 of the compression assembly 75 when the compression assembly 75 was in the open position is pushed to the right by movement of each respective compression plate 630.
  • When the plunger assembly 248 is assembled to the compression assembly 75, the right/leading face of each compression plate 630 and the inner/left surface of each respective plunger semi-tube 695 cooperate to form a generally cylindrical region. That is, the right/leading face of each compression plate 630 is sufficiently concave to form the general shape of a semi-circle, and each cooperating plunger semi-tube 695 has the general open shape of a semi-circle. As such, movement of these two components together and into proper alignment results in the receptacle 641 taking on a generally cylindrical shape with a generally circular cross-section. As such, for each cooperating plunger semi-tube 695 and compression plate 630 compressed into close alignment, a generally cylindrical charge of tobacco filler is formed.
  • For the hopper unit 99, each fixed wall 350 of each vertical passageway 675 is shown so as to be substantially vertical. Each movable wall 360 is positioned at a slight angle relative to vertical, such that the width of the vertical passageway 675 is slightly greater near the bottom than near the top. For example, each movable wall 360 is positioned at an angle of approximately 1° off vertical, tapering outwards toward its bottom. In other embodiments, any or all of the walls 350, 360 may be vertical or slightly angled. In a preferred embodiment, the movable walls 360 are at least slightly angled. The weights 177 of the hopper assembly 80 are shown in a lowered position, such that each weight 177 extends within the corresponding vertical passageway 675 of the hopper unit 99.
  • Referring to FIG. 10, there are shown components of the plunger assembly 248. The plunger assembly 248 includes a clamp or bracket 706, or other suitable means, for secure attachment of the assembly to the belt 325 of the tobacco filler insertion/plunger mechanism 248. Any suitable clamp or other attachment means may be used to attach the plunger assembly 248 to the belt 325. In the embodiment in FIG. 10, the clamp 706 can be secured to a cross-member 257 using screws, bolts, spot weld, or other fastening means, or through a unitary construction design.
  • Protrusions from the lower edge of the cross-member 257 support several forward-extending guides 728. The guides 728 may be manufactured from any suitable material, but preferably are manufactured from aluminum. A tension release wedge 740 is positioned at the front face of each guide 728. Each tension release wedge 740 is designed to cooperate with a corresponding tension arm 365 located on the base 31 (as described above). A representative forward facing guide 728 and release wedge 740 assembly extends forward from the cross-member 257 by about 10 cm. Such a representative wedge is about 7 mm high and about 9 mm wide. The front face of a representative release wedge 740 is configured such that the face slopes downward from back to front. That is, the shape of each tension release wedge can be designed to cooperate with a corresponding shape of the rear arm portion 390 of each tension control arm 365. In essence, the forward movement of the release wedge 740 acts as a cam to move the rear arm portion 390, which acts as a cam follower. Movement of the wedge 740 is moved forward causes an upward movement of the rear arm portion 390 of the tension arm 365.
  • A plunger arm 251 is positioned above each guide arm 728, such that each plunger arm 251 extends essentially parallel to each guide arm 728 and is supported by the cross-member 257. In the embodiment shown in FIG. 10, the plunger assembly 248 includes five plunger arms 251. A representative plunger arm can be manufactured from any suitable material, but preferably are manufactured from stainless steel. A representative plunger arm has dimensions of about 6.35 mm in diameter and about 15 cm in length.
  • Extending from the front face of each plunger arm 251 is a plunger partial tube or semi-tube 695, or other suitable means for insertion of tobacco filler into a tubular wrapper portion 21. The plunger semi-tube 695 is securely attached to the front end of the plunger arm 251, using any suitable fastening means, such as, for example, unitary construction, spot weld, recessed rivets, adhesive, or recessed nuts and bolts. In another embodiment, the plunger semi-tube 695 can include a tube portion that fits over the front end of a cooperating plunger arm 251 and is crimped thereabout.
  • The design of a plunger semi-tube 695 can vary. In an embodiment, the plunger semi-tube 695 can be a generally semi-cylindrical tube with a generally cylindrical base portion 760 attaching it to a corresponding plunger insertion arm 251. A representative plunger semi-tube is about 67 mm long; about 15 mm thereof is a generally tubular region that fits over the front end of the plunger insertion arm, and about 52 mm thereof is a generally semi-cylindrical region. A preferred semi-tube 695 incorporates a plurality of teeth 765 on each side edge thereof (i.e., the semi-tubular section includes two rows of teeth making the two sides serrated). In a representative embodiment, each row of teeth is located about 8 mm from the extreme front end of the semi-tubular section and extends about 28 mm along its length. Preferably, the teeth are angled toward the tip or front of the plunger arm assembly 248. The plunger semi-tube 695 having serrated side edges facilitates effective forward movement of tobacco filler into a tubular wrapper portion 21, and also facilitates ready removal of the plunger semi-tube 695 from the tubular wrapper portion 21 while minimizing the likelihood of tobacco filler being pulled out of the tubular wrapping portion 21.
  • Each plunger semi-tube 695 can be manufactured from any suitable material, and preferably is manufactured from a metallic material, such as stainless steel. For example, a stainless steel tube of appropriate size (e.g., having a circular cross-section of about 5.5 mm inner diameter and about 6.35 mm outer diameter) can be machined to provide the plunger semi-tube 695 of appropriate shape. Representative plunger semi-tube designs are incorporated in cigarette-making devices that have been commercially available as PREMIER SUPERMATIC™ from The Central Tobacco Mfg. Co. Ltd. The present invention can include embodiments of other suitable means for delivering tobacco filler from the hopper assembly 80 into the tubular wrappers 21.
  • Referring to FIG. 11, there is shown a rear view of the cigarette manufacturing apparatus 10 described previously with reference to FIG. 1. In operation, the apparatus 10 can be positioned firmly in place on a table, bench, counter, or the like. If desired, the bottom of the base 31 can be equipped with non-skid components (not shown), such as rubber legs, or the like. Alternatively, the apparatus 10 can be permanently affixed to components of a work station. For example, the apparatus can be bolted, clamped, or otherwise secured, to a bench top.
  • During operation of the apparatus 10, loose tobacco filler material is placed in the upper reservoir region 110 of the hopper assembly 80. The tobacco filler can have the form of cut filler of a desirable particle size. Preferably, the tobacco filler is substantially absent of tobacco dust or fines. The tobacco filler is gently moved over each opening 124 in the top wall 114 of the hopper unit 99 so that the tobacco filler falls into each corresponding vertical passageway 675, and into the lower region of the hopper unit 99. In the embodiment shown FIGS. 1 and 11, sufficient loose tobacco filler can be introduced into the hopper assembly 99 to provide for adequate manufacture of more than twenty cigarettes. Manipulation of the ball slides 170 to effect downward movement of each weight 177 into each respective opening 124 provides a desired compression of the tobacco filler in the lower region of the hopper assembly 99. Reciprocating movement of the wall-moving handle 160 moves the movable walls 360 and can promote settling of tobacco filler within each vertical passageway 675. Accordingly, consistent or uniform filling of the relevant region with a consistent or uniform amount of tobacco filler is promoted.
  • Counter-clockwise movement of the compression arm 260 provides for formation of cylindrical charges of tobacco filler in the receptacle areas 641 of the compression assembly 75, as is described above with reference to FIGS. 7, 8, and 10. As such, components of the compression assembly 75 alter the arrangement of tobacco filler within each receptacle 641 within the compression assembly 75 to form tobacco filler charges.
  • Explanation of an operation of the tension arms 365 and other components is best made with reference to FIGS. 1, 3, 5, 10, and 11. In operation, a cartridge 38 is placed on the front platform portion 382 of the base 31. Alignment of a tubular wrapper portion 21 with each nozzle 230 of the compression assembly 75 is such that the longitudinal axes of the nozzles 230 and the longitudinal axes of the tubular wrapper portions 21 are essentially parallel to one another. Such alignment is facilitated by fitting the mating groove 515 located on the bottom face of the cartridge 38 with the key stock 410 protruding from the forward upper face 382 of the base 31. However, it is preferred that, for a nozzle 230 having its bottom region protruding relative to its top region, the bottom region of a corresponding tubular wrapping portion 21 rests about 2 mm to about 3 mm below the bottom portion of the nozzle 230. The cartridge 38 is moved rearward toward the tension arms 365. Preferably, the movement of the cartridge is performed manually by an operator, and the cartridge is moved about 2 cm toward the rear of the base 31. As the cartridge 38 is moved toward the tension arms 365, each corresponding tubular wrapper portion 21 will ride up and fit over the corresponding nozzle 230. Simultaneously, movement of the cartridge 38 against the front arm portions 379 of the tension arms 365 causes the front arm portion 379 of each arm 360 to move downward. Downward movement of the front arm portion 379 of each tension arm 365 results in formation of a space between the upper arm surface 385 of each tension arm 365 and a corresponding nozzle 230, and hence provides clearance to allow the tubular wrapper portion 21 to slide over the nozzle 230. That is, as each tension arm 365 rocks forward, each corresponding concave upper arm surface 385 cradles and lifts a tubular wrapper end from the cartridge 38 and allows the open end of each tubular wrapper 21 to ride over each cooperating nozzle 230. The forward rocking movement of the tension arms 365 also compresses the tension arm springs 400. The cartridge 38 is then moved forward, away from the tension arms 365. Preferably, movement of the cartridge 38 is performed manually by the operator, such that the cartridge is moved slightly, for example, about 2 cm, toward the front of the base 31 and rests against the backstop wall 68.
  • This forward movement of the cartridge 38 away from the tension arms 365 results in release of downward force thereupon. As a result, each tension arm spring 400 uncompresses and forces pivoting of each tension arm 365 rearward such that each upper arm surface 385 thereof moves upward and pushes a portion of the tubular wrapping portion 21 against the nozzle 230 (i.e., applies a clamping force to the tubular wrapping portion). That is, release of downward force on the front portion of each tension arm 365 results in an upward movement of each upper arm surface 385, which clamps the lower inner surface of a corresponding tubular wrapper 21 against the lower outer surface of a corresponding nozzle 230. As such, each tubular wrapper 21 is held securely in place so that a cylindrical charge of tobacco filler may be transferred from the compression assembly 75 into the open end of the tubular wrapper 21.
  • Movement of the plunger arm 261 works through the gears of the insertion mechanism 300 to cause forward movement of the of the plunger insertion arms 251 of the plunger assembly 248. That is, each plunger insertion arm 251 travels forward parallel to and above each corresponding guidance groove 346 as the forward-extending guides 728 extending from the underside of the plunger arm cross-member 257 track through the guidance grooves 346. The plunger arm assembly 248 is explained in greater detail with reference to FIG. 10. Forward movement operation of the plunger assembly 248 causes the tubular wrapper portion 21 that is clamped to a nozzle 230 of the compression assembly 75 to be filled with a formed charge of tobacco filler. (Operation of the compression assembly 75 to form charges of tobacco filler is explained in greater detail with reference to FIGS. 7 and 8.)
  • When the plunger assembly 248 has been moved forward sufficiently to fill the tubular wrapper portion 21 with a charge of tobacco filler, the front face of each tension release wedge 740 at the forward end of each forward-extending guide arm 728 reaches and contacts the rear arm portion 390 of each corresponding tension arm 365. This contact causes a slight upward movement of the rear arm portion 390 of each tension arm 365. As a result, the upper arm surface 385 of each tension arm 365 is moved downwards. This downward movement of each upper arm surface 385 results in release of the clamping force on the tubular wrapping portion 21 to each corresponding nozzle 230, and each finished cigarette 13 is released from the corresponding nozzle 230. Rearward movement of the plunger assembly 248 results in release of the upward pressure on the rear arm portion 390 of each tension arm 365, and each tension arm 365 is allowed to move freely back to its original position. This completes a single manufacturing operation cycle for one sub-lot of cigarettes 13 (five cigarettes in the illustrated apparatus 10).
  • The cartridge 38 can then be moved on the base 31 to either the left or right to align five more empty tubular wrapping portions 21 with the corresponding nozzles 230 of the compression assembly 75. The manufacturing operation cycle of filling five more tubular wrapping portions 21 with five corresponding charges of tobacco filler, of a density consistent with the densities of the tobacco charges of the previous sub-lot, can then be repeated. Preferably, the cigarettes 13 are manufactured without damaging (e.g., tearing) the wrapping material at their lighting ends.
  • Referring to FIGS. 1, 3, 10, and 11, the gears 316, 317, 318 and the belt 325 are arranged on the triangular-shaped base 310 so as to undergo movement in response to movement of plunger arm 261. A counter-clockwise movement of the plunger arm 261 results in movement the larger gear 318, which consequently causes movement by the belt 325 of the plunger insertion assembly 248. Movement of the belt 325 results in forward movement of the plunger mechanism 300, which in turn, results in the transfer or injection of each respective tobacco filler charge into each respective tubular wrapper 21 as described above. As a result, substantially all of the tobacco filler contained within each receptacle area 641 formed into cylindrical charges is evacuated from the receptacle areas 641. As such, several finished cigarettes 13 are provided on the cartridge 38. A complete forward movement of the plunger arm 261 also causes release of each formed cigarette 13 from each respective nozzle 230 as the plunger insertion arms 251 push the cigarettes off. Preferably, that the extreme front end of each plunger semi-tube 695 moves forward a sufficient distance so as to very closely approach, or contact, the filter element of the tubular wrapping portions 21. As such, uniform filling of the tubular wrapper 21 with tobacco filler is facilitated.
  • A clockwise movement of the plunger arm 261 results in rearward movement of the plunger assembly 248. A clockwise movement of the compression arm 260 results in leftward movement of the compression plates 630 within the compression assembly 75. When the compression plates 630 are moved to the open position (i.e., to the left) another portion of tobacco filler from each corresponding vertical passageway is allowed to fall into each respective receptacle 641. Typically, the amount of tobacco filler within each receptacle 641 is controlled such that the tobacco filler fills the height of the receptacle 641 (e.g., the approximate height/thickness of the compression plate 630), as well as the width and depth of the receptacle area 641.
  • Weight applied to tobacco filler (not shown) in each vertical passageway 675 of the hopper unit 99, and movement of the wall-moving handle 160 located on the front of the hopper unit 99, act to promote control of a consistent amount of tobacco filler within each receptacle 641. In operation, the cartridge 38 is moved to the right, backward and forward movement of the cartridge (to affix a set of tubular wrappers 21 to corresponding nozzles 230, as described above) is repeated, and the movement of each of the compression arm 260 and plunger arm 261 is repeated. As a result, five more tubular wrappers 21 are filled with tobacco filler. The weight 177 that has been dropped into each vertically extending passageway 675 can be lifted in order to allow additional tobacco filler to be introduced into each passageway 675. In this manner, an adequate supply of tobacco filler within each receptacle 641 for formation of a tobacco filler charge of the desired density is facilitated. In an embodiment of using the apparatus, sufficient tobacco filler will be positioned within each vertically extending passageway 675 to provide for successive filling of each receptacle with an adequate and consistent amount of tobacco filler during preparation of further finished cigarettes 13.
  • In the embodiment illustrated in FIGS. 1-11, the above-described process can be repeated a total of four times, with the result being that a lot of twenty substantially identical cigarettes 13 are manufactured and contained within the cartridge 38. It is desirable to have sufficient tobacco filler in each vertically extending passageway 675 above each receptacle 641 to ensure supply of an adequate amount of tobacco filler within each receptacle 641 for a desired sub-lot of cigarettes 13, and hence to provide for consistent filling of each pre-formed tubular wrapper 21 with the desired amount of tobacco filler. That is, it is desirable that whenever tobacco filler within a receptacle 641 is compressed into a first cylindrical charge, there be adequate tobacco filler positioned in the vertically extending passageway 675 above the tobacco filler in that receptacle 641 to provide for at least three more tobacco charges substantially similar in volume and density as the first charge.
  • When complete, the cartridge 38 containing manufactured cigarettes 13 can be removed from the cigarette-making apparatus 10. In addition, the slat 165 located on the bottom of the hopper unit 99 can be shifted to the closed position, the weights 170 can be raised, and the hopper unit 99 can be refilled with tobacco filler, or removed from the cigarette-making apparatus 10 and replaced with another hopper unit 99. When the loose tobacco filler is handled and used to manufacture cigarettes 13 in accordance with the present invention, it is preferable that the various pieces of tobacco material that make up that tobacco filler undergo an extremely low degree of breakage or degradation. Accordingly, embodiments of the cigarette-making device 10 be operated so as to cause an extremely low degree of degradation of the tobacco filler.
  • For the embodiments described with reference to FIGS. 1-11, exemplary materials and designs for compression assembly components, tension arms, nozzles for tobacco filler transport and plunger assembly components also are of the type that have been incorporated in those types of cigarette-making devices that have been commercially available as “Premier Supermatic” from The Central Tobacco Mfg. Co. Ltd., and “Escort” and “Pressta Deluxe” by CTC Canada Inc. See, also, those component materials, component designs, and component operation descriptions set forth in U.S. Pat. No. 3,127,900 to Kastner and U.S. Pat. No. 4,771,793 to Kastner, each of which is incorporated herein by reference in its entirety.
  • In an embodiment of the cigarette manufacturing apparatus 10, and components thereof, described with reference to FIGS. 1-11, that apparatus 10 is designed to produce five cigarettes 13 substantially simultaneously, and the cartridge 38 thereof is designed to hold twenty cigarettes 13. Suitable alterations to the apparatus 10 and its components can be made to produce any number of cigarettes 13 at a given time (e.g., two, four, ten, twenty, or more). Suitable alterations also can be made to provide the cartridge 38 capable of supporting any number of cigarettes 13 at a given time (e.g., three, five, ten, thirty, forty, or more). Exemplary embodiments of the cigarette manufacturing apparatus 10 may include (a) at least two receptacle areas 641 and including cartridges 38 capable of holding at least ten tubular wrapping portions 21; (b) at least four receptacles 641 and cartridges 38 capable of holding at least twenty tubular wrapping portions 21; (c) at least five receptacles 641 and cartridges 38 holding at least ten tubular wrapping portions 21; (d) at least five receptacles 641 and cartridges 38 holding no more than forty tubular wrapping portions 21; or (e) no more than five receptacles 641 and cartridges 38 holding no more than twenty tubular wrapping portions 21. Furthermore, the cigarette manufacturing apparatus 10 can be designed and adapted to introduce tobacco filler into tubular wrapping portions 21 of larger or smaller size (e.g., the plunger arms 251 and receptacles 641 can be made longer to fill hollow tubular wrapper portions 21 of longer length).
  • In an embodiment of the cigarette manufacturing apparatus 10, and components thereof, described with reference to FIGS. 1-11 and 22-29, that apparatus 10 may be designed to produce small lots or batches of cigarettes 13 having consistent quality. For a particular selection of tobacco filler (e.g., as determined by factors such as composition, particle size, moisture content, and the like), and for pre-formed tubular wrappers 21 of a particular size (e.g., as determined by factors such as the length and circumference of the hollow region), a plurality of cigarettes 13 can be made to specification by appropriate control of the operation of various components of the apparatus. The size of the tobacco filler charge used to fill each hollow tubular wrapper portion 21 can be controlled, for example, by selecting appropriate dimensions of each vertical passageway 675, of each lower receptacle 641, of the compression bars 621 and associated components, and of the insertion arms 251 and associated components. The dimensions of the various nozzles 230 of the compression assembly 75 can be appropriately altered in order to produce cigarettes 13 of desired circumference. The components of the compression and insertion mechanisms 75, 248, respectively, are designed to be set and operated in order that tobacco filler charges are formed and inserted into hollow tubular wrapper portions 21 consistently and in a controlled manner. Each compression chamber can be filled with tobacco filler in an automated fashion; and hence, precise control of the amount of tobacco filler supplied to each compression chamber is achieved. Thus, supply of a consistent amount of tobacco filler within each tobacco filler charge is accomplished by controlling the density of the tobacco filler in each compression region prior to the time that the tobacco filler is compressed into the form of a cylindrical charge for insertion into the hollow tubular wrapper portion 21.
  • Other manners or methods can be employed in order to ensure that a controlled amount of tobacco filler is distributed within each vertically extending passageway 675 and each cooperating receptacle 641. For example, in an alternative embodiment (not illustrated), the bottom region of each receptacle 641 of the compression assembly 75 can be adapted so as to be composed of a fine mesh screen or foraminous material. That porous region can be adapted so as to be in communication with a slight vacuum (e.g., as can be provided by appropriate connection to a vacuum source, such as a laboratory vacuum source). As such, the negative air pressure applied to the bottom region of each receptacle can act to pull tobacco filler material downward, and hence adequately fill each receptacle with a uniform and controlled amount of tobacco filler. The degree of vacuum pulled on each column of tobacco filler within each respective vertical passageway 675 and receptacle 641 can be altered depending upon factors such as the amount of tobacco filler within each vertical passageway 675.
  • Another manner or method for ensuring that a controlled amount of tobacco filler is distributed within each vertically extending passageway 675 and each cooperating receptacle 641 involves the use of a hydraulic plunger or spring mechanism. For example, in an embodiment (not shown), a hydraulically-operated plunger can be used to apply downward force to the tobacco filler in each vertical passageway 675, and the amount of force applied to the tobacco filler can be decreased as the amount of tobacco filler in the vertical passageway 675 decreases. In another embodiment (not shown), a resistance spring can be positioned so as to vertically extend around an appropriately configured weight such that the weight can extend into the vertical passageway 675 and the spring rests on the top wall of the hopper unit. As such, as tobacco filler is removed from each vertical passageway 675 as a result of cigarette manufacture, the weight falls further into the vertical passageway 675, and the resulting compression of the spring results in the application of less downward compressive force by the weight to the tobacco filler.
  • Referring to FIGS. 12 and 13, there is shown a trimming device 790 for trimming tobacco filler from the ends of finished cigarettes 13. The various components of the frame and chassis 791 of that device 790 preferably are manufactured from a metallic material, such as aluminum. A cartridge 38 with finished cigarettes 13 lying in its grooves 48 is positioned on a cartridge-holding platform 794 in the top, front region of the device 790. The filter ends of the cigarettes 13 can, and preferably would, all extend into the cavities 541 of the inner front face of the cartridge, such that the lighting ends 796 are all aligned across the back of the cartridge 38. The ends of the cigarettes 13 in the cartridge 38 extend beyond the back edge of the cartridge. A removable tray 799 is located beneath the cutting region 800 and is used to collect tobacco particles trimmed from the lighting ends of the cigarettes 13.
  • The rear face of the cartridge 38 abuts a static lower ledger bar 808 of a ledger 804 that extends across the rear of the cartridge-holding platform 794. The grooved upper face of the lower ledger bar 808 is adapted to be aligned with the grooves 48 in the upper face of the cartridge. Thus, when the cartridge is placed on the trimming device 790, each cigarette 13 rests in a groove 48 on the cartridge 38 and a corresponding groove in the lower ledger bar 808. A movable upper ledger bar 806 has a bottom face that is configured to complement the shape of the cigarettes 13 resting in the lower ledger bar 808. The movable upper ledger bar 806 can be removable so as to be placed by hand over the lower ledger bar 808, and thereby form the top of the ledger 804. The upper ledger bar 806 can be attached in place by clips, or another suitable fastening means. The upper ledger bar 806 also can be attached in place, but movable relative to the lower ledger bar 808 by use of an appropriately positioned hinge, or other suitable means. The ledger 804 can be manufactured from a suitable metallic material, such as brass. The back faces of the lower ledger bar 808 and the upper ledger bar 806 can be vertically aligned with one another. When the cartridge 38 is in place and the ledger 804 is closed, the lighting ends 796 of the cigarettes 13 (as defined by the ends of the tubular wrappers 21) are aligned with the back faces of each of the lower and upper ledger bars 808, 806, respectively.
  • During an operation of the trimming device 790, a circular cutting blade 810 is rotated at a very high rate of speed (e.g., 1200-2000 rpm) by a motor 812. The circular cutting blade/cutter 810 optionally is covered by a blade housing 814. The motor 812 also may be covered by an optional motor housing 816. A representative motor 812 is available as an induction motor 25 W ( 1/30 HP), 115 V P/N 41K25A-AWU from Oriental Motor USA Corp. A representative cutter 810 may be constructed of tungsten carbide, and has a diameter of about 62 mm and a thickness of about 0.3 mm. The blade and motor may be securely mounted on a bar 818, or other suitable support means, such that the rotating cutter 810 can be moved back and forth. A representative bar can be ground and polished stainless steel rod of about 12 mm diameter.
  • The cutter 810 can be mounted perpendicularly to the longitudinal axes of the cigarettes 13 in the cartridge 38, and so that it rotates in a vertical plane. The cutter 810 can be positioned so as to pass very close to the lighting ends 796 of the cigarettes 13. That is, the cutter 810 is positioned so as to pass very close to the rear face of the ledger 804, and hence, very close to the lighting ends 796 of the cigarettes 13 (as defined by the ends of the tubular wrappers 21).
  • In use, the cartridge 38, containing cigarettes 13, is placed on the trimming device 790, and the ends of the cigarettes 13 extending from the rear of the cartridge 38 rest in the corresponding grooves of the lower ledger bar 808. The upper ledger bar 806 is positioned over the cigarettes 38 to hold them in place. The motor 812 is started by activating at switch 819, and the cutter 810 is rotated at a very high rate of speed (e.g., at about 1450 rpm). The cutter 810 is moved from one end of the trimming device 790 to the other such that the cutter 810 trims away tobacco filler extending from the ends of the cigarettes 13. As a result, the lighting end 796 of each cigarette 13 preferably resembles in appearance the lighting end of a mass-produced cigarette manufactured using high-speed automated cigarette-making equipment, such as the type set forth in U.S. Pat. No. 4,474,190 to Brand.
  • Referring to FIG. 13, there is shown a rear view of the cigarette trimming device 790 described previously with reference to FIG. 12. The cutter blade 810 and motor 812 are shown without coverings or housings of the type shown in FIG. 12. The trimming device 790 includes a connection 820 for attachment to an electrical power source. The lower ledger bar 808 is positioned such that the cutter 810 passes closely across its rear face. The assembly 815, including both the motor 812 and cutter 810, is mounted on a frame support 822 equipped with a pair of sleeve bearings 824, 825, preferably having a 12 mm inner diameter. The sleeve bearings 824, 825 of the frame support 822 travel along the support bar 818 (not visible in FIG. 13, see FIG. 12). The sleeve bearings 824, 825 allow the cutter and motor assembly 815 to slide back and forth across a relevant region of the device 790. If desired, the cutter and motor assembly 815 alternatively can be mounted on a rail mechanism, ball slides, or other suitable movable support means. The cutting edge of the cutter blade 810 can be positioned so as to be spaced no more than about 0.5 mm from the rear face of the lower ledger bar 808. The device 790 may include a support region for a cartridge 38. A longitudinal waste aperture 826 is located just rear of the lower ledger bar 808 on the top face of the device, and is employed such that tobacco particles trimmed from the ends of cigarettes (not shown) can fall into the lower tray 799 of the device 790 for disposal. Other mechanisms or methods for ensuring that the tobacco filler of the tobacco rod does not extend beyond the end of the rod defined by the paper wrapper 21 to any significant degree, within the scope of the present invention, will be apparent to those skilled in the art of cigarette manufacture.
  • Referring to FIG. 14, there is shown a cartridge-filling device 830 for filling a cartridge with empty pre-formed tubular wrappers 21. The cartridge-filling device 830 includes a base 831 that supports a cartridge-loading platform 832 and a tubular wrapper supply assembly 833. These components can be manufactured from any suitable material, and preferably are manufactured from a metallic material, such as aluminum. A representative preferred cartridge-loading platform includes polytetrafluoroethylene.
  • The cartridge-loading platform 832 includes a key stock 834 for maintaining a suitably configured cartridge (e.g., a cartridge 38, as shown in FIGS. 5 and 6) in place, and an upwardly extending backstop 839 for preventing undesirable forward movement of the cartridge during use of the cartridge-filling device 830. Preferably, tubular wrapper portions 21 being loaded onto the cartridge are positioned on their sides, substantially parallel to each other, and perpendicular to the longitudinal axis of the cartridge-loading platform 832. The cartridge-loading platform 832 can be disposed at a slight rear-to-front incline such that its front edge with the backstop 839 is lower than its rear edge.
  • The supply assembly 833 includes a movable upper reservoir 845 adapted to hold a container 848 of tubular wrappers (box shown as empty). A representative container 848 may be a paperboard box sized to contain a pre-determined number, for example, two hundred pre-formed filtered tubular wrappers 21. The container 848 can be sized for particular dimensions of tubular wrappers 21, for example, tubular wrappers 21 of about 24 mm in circumference and about 86 mm in length. A representative container 848 for such tubular wrappers 21 may be is about 85 mm in height, about 90 mm in width, and about 145 mm in length. For the embodiment shown, the paperboard box 848 and the upper reservoir 845 each are shown in an open position.
  • The supply assembly 833 also includes a hopper 851 that provides for alignment of a plurality of tubular wrappers 21. For the embodiment shown in FIGS. 14 and 15, the hopper 851 provides for the linear alignment of ten tubular wrappers 21. The hopper 851 is adapted to receive tubular wrappers 21 from an open container 848 when the upper reservoir 845 is rotated about a hinge 854 so as to mate the bottom face 857 of the upper reservoir 845 with the top face 858 of the hopper 851 and thereby provide the supply assembly 833 in a closed position (see FIG. 15). The bottom face 857 of the upper reservoir 845 and the top face 858 of the hopper 851 are complementary in size and shape such that tubular wrappers 21 can be readily emptied from the container 848 into the hopper 851. Each tubular wrapper 21 entering the upper region of the hopper 851 preferably falls into one of a plurality of vertical passageways 862. The walls of the passageways 862, as well as the front and side walls of the hopper 851, may be manufactured from a clear material, such as, for example, a clear plastic, so that the supply of wrappers 21 in each passageway 862 can be readily viewed. Alternatively, the inner walls can be manufactured from stainless steel, the side and back walls can be manufactured from aluminum, and the front wall can be manufactured from a clear material. Other materials and combinations of materials may be used for the construction as well. In an embodiment, the dimensions of the vertical passageways 862 are such that the tubular wrappers 21 are stored as a single-file stack, or column, within each passageway 862. The embodiment shown in FIGS. 14 and 15 includes ten vertical passageways 862. A representative vertical passageway 862 may have a width of about 11 mm. Representative walls that provide for the various vertical passageways 862 each have a width of about 1.7 mm, a height of about 6 cm, and a length of about 8.5 cm.
  • A tray 870 having a plurality of tray grooves 873 in its upper face is positioned beneath the hopper 851. Each tray groove 873 is aligned so as to correspond to and lie beneath a vertical passageway 862. In the embodiment shown in FIGS. 14-16, the tray 870 includes ten tray grooves 873, each of which extends longitudinally between the front and rear of the tray 870. The tray 870 is spaced below the hopper 851 at a distance that approximates the outer diameter of the tubular wrappers 21 that ultimately rest within each tray groove 873. Preferably, such a distance is about 7 mm to about 10 mm.
  • Referring to FIG. 15, the upper reservoir 845 of the cartridge filling apparatus 830 is shown rotated into a closed position, and the cartridge-filling device 830 is shown having a cartridge 38 appropriately positioned thereon, with a plurality of wrappers 21 placed in grooves 48 of the cartridge 38. A slider system 880 is positioned to move along the front-to-rear axis of the tray 870. The slider system illustrated in FIGS. 14-16 includes two slider handles 881. The slider system 880 includes a sliding chassis 885 that slides along a track 888 supported by the base 831. The slider system 880 also includes a pusher-rod-supporting cross-bar 891, or other suitable attachment means between the slider handles 881 to support a series of generally cylindrical pusher rods 895. The components of the slider system 880 can be manufactured from any suitable material, and preferably are manufactured from a metal, such as aluminum.
  • As illustrated, the slider system 880 includes ten generally cylindrical pusher rods 895. During operation of the slider system 880, one tubular wrapper 21 is allowed to fall into each of the tray grooves 873 when the slider handles 881 are positioned toward the rear of the cartridge-filling device 830, with the filter ends of the tubular wrappers 21 preferably oriented toward the front of the device 830. A forward movement of the slider handles 881 moves the pusher rods 895 forward against the tubular wrappers 21 within corresponding tray grooves 873 such that they are ejected from the tray 870 onto the cartridge 38. The next tubular wrapper 21 in the vertical passageway 862 is prevented by one or both of the previous tubular wrapper 21 and pusher rod 895 from falling into the tray 870 prior to ejection of that previous tubular 21 wrapper from the tray 870 to the cartridge 38. The slider handles 881 are moved back to the rear of the device 830 so that the process can be repeated. The diameter and end surface configuration of each pusher rod 895 preferably is such that it will push against the open end of a tubular wrapper 21 sufficient to move the wrapper without a substantial portion of the pusher rod 895 entering or damaging the open end.
  • In operation, the cartridge-filling device 830 is positioned firmly in place on a table, bench, counter, or the like. Alternatively, the device 830 can be permanently affixed to components of a work station. When the upper reservoir 845 is moved to an open position, a box of pre-formed tubular wrappers 21 may be placed in the reservoir 845, or tubular wrappers 21 may otherwise be loaded into the reservoir 845 (e.g., by hand). The upper reservoir 845 may then be rotated into a closed position. When the reservoir 845 is in the closed position, the tubular wrappers 21 within the upper reservoir 845 fall into the hopper 851, and each tubular wrapper 21 preferably falls into a vertical passageway 862. Thus, in the embodiment shown in FIGS. 14-15, the hopper 851 includes ten vertically aligned stacks of pre-formed tubular wrappers 21. Using the cartridge-filling device 830 as described, a plurality of tubular wrappers 21 can be transferred from the container 848 to the cartridge 38 and then on to a manufacturing assembly without the necessity of touching any of the tubular wrappers by hand.
  • During continuation of the operation described above, the cartridge 38 is moved on the cartridge-loading platform 832 such that the tray grooves 873 of the device 830 are aligned with the remaining ten empty grooves 48 of the cartridge 38. The slider system 880 is moved forward to push ten more tubular wrappers 21 into the cartridge 38, and the slider handles 881 of the slider system 880 are moved to the rear of the device 830 for later use. Thus, the cartridge 38 may be loaded with twenty tubular wrappers 21 in an efficient and effective two-step manner. The cartridge 38 containing the tubular wrappers 21 is removed from the cartridge-loading platform 832, and is introduced into the cigarette-making apparatus 10, as set forth herein with reference to FIGS. 1-11. Another empty cartridge 38 can be introduced into the cartridge filling apparatus 830, and the process can be repeated. After a requisite number of cartridges 38 have been filled, the upper reservoir 845 can be opened and reloaded with a new supply of tubular wrappers 21.
  • FIG. 16 shows the base 831 and the slider system 880 of the cartridge-filling system 830 illustrated in FIGS. 14 and 15. Preferably, each of the cylindrical pusher rods 895 has a generally cone-shaped end 900. Each cone-shaped end 900 facilitates the ability to eject a tubular wrapper 21 by pushing on the hollow end of that tubular wrapper 21. A representative cylindrical plunger rod, suitable for use for ejecting a filter tubular wrapper portion having a total length of about 83 mm and a circumference of about 24.5 mm, has a length of about 80 mm and a diameter of about 8.2 mm. The rear portion of each plunger rod 895 can be manufactured from any appropriate material such as, for example, aluminum. The cone-shaped front end 900 of each rod 895 preferably is manufactured from a soft material, such as nylon, polytetrafluoroethylene, synthetic rubber, or the like. A representative front end 900 of a plunger rod 895 covers and/or provides about 2.5 cm of the forwardmost length of that rod 895.
  • Referring to FIG. 17, there is shown a schematic illustration of a package-filling device 1051 for filling a cigarette package with manufactured cigarettes. The apparatus 1051 includes a bottom frame, or base 1054. A representative bottom frame can be about 27.5 cm wide and about 56 cm long. A representative bottom frame may be manufactured from any suitable material, but preferably is manufactured from aluminum.
  • The bottom frame 1054 supports an upper platform 1058. The upper platform 1058 is suspended above the base by left and right side walls 1060. In a representative embodiment, the clearance between the upper face of the bottom frame and the lower surface of the upper platform 1058 is about 3 cm. A representative upper platform may be manufactured from any suitable material, but preferably is manufactured from aluminum.
  • The upper platform 1058 includes an upwardly extending ejection rod-supporting cross-member 1064 that extends thereacross. Extending generally horizontally forward from the cross-member 1064 is a plurality of ejection rods 1067. In the embodiment shown, the device includes twenty forwardly-extending ejection rods 1067, each with a substantially circular cross-section. A representative ejection rod has a length of about 7.2 cm and a diameter of about 4 mm and can be manufactured from steel. The package-filling device 1051 preferably is adapted such that in a region forward of the ejection rods 1067, there is a positioning platform region 1073 for a cartridge 38 filled with twenty cigarettes 13. It is preferred that the cigarettes 13 within the cartridge 38 are positioned on their sides (that is, the longitudinal axis of each cigarette 13 is parallel to, or substantially parallel to, the horizontal plane, and aligned with the longitudinal axis of the package-filling device 1051). The central portion of the positioning platform region 1073 includes a broad space open to the structures below, as is explained hereafter.
  • Below the front portion of the cartridge positioning platform region 1073 are an inwardly sloping left panel 1076 and an inwardly sloping right panel 1077 that define the sides of an open center region 1079. Representative sloping panels can be manufactured from sheets of highly polished stainless steel. A representative open center region is generally rectangular with a width of about 8 cm and a length of about 9 cm.
  • The upper face of the bottom frame 1054 includes a broad groove 1083, channel, or other means for providing for controlled movement of a carriage 1086 from the back of the base 1054 to the front of the device 1051. A representative groove can have a vertical depth of about 4 mm to about 6 mm, a width of about 9 cm, and a length such that the groove 1083 extends to within about 1 cm of the front end of the device 1051. The arrangement of the carriage 1086 and groove 1083 preferably are such that the carriage 1086 is easily movable within the groove 1083. Typically, selection of the respective shapes and dimensions of the carriage 1086 and the groove 1083 define the arrangement of the carriage 1086 in the groove. For example, the sides of the carriage 1086 and the sides of the groove 1083 may be designed so as to cooperate in a tongue-in-groove type of arrangement.
  • The carriage 1086 includes an upwardly extending handle 1089, such that the carriage 1086 can be moved back and forth. Within a recess 1093 in the upper face of the carriage 1086 is positioned a cigarette package 1095 in an open position. A representative package 1095 can include a bottom component 1098 for holding twenty cigarettes (not shown), and a top cover 1102 that is designed to close over the bottom component 1098. A representative recess can have a vertical depth of about 4 mm to about 6 mm; and a representative recess having a length of about 19 cm and a width of about 9 cm can readily accommodate a package with a bottom component 1098 having outer dimensions of about 8.2 cm wide, about 8.9 cm long and about 18 mm high (such dimensions being measured when the box is in a closed or sealed configuration).
  • In operation, the apparatus 1051 can be positioned firmly in place on a table, bench, counter, or the like. Alternatively, the apparatus can be permanently affixed to components of a work station. Optionally, a pre-cut inner package wrapping paper, foil/paper laminate or paper-lined foil (not shown) can be placed into the package 1095. A typical foil sheet may have a width that approximates the width of the inner portion of the package 1095, and a length of about 16 cm. A forming block (not shown) having stamp face dimensions approximating those of the inner bottom 1098 face area of the package 1095 can be used to push the foil into the box. In this manner, the foil can be creased within the bottom portion of the box 1095. The forming block then is removed from the box 1095 so as to provide the box 1095 having a type of inner liner (not shown) positioned therein. In addition, the foil may be of such a length that tabs (not shown) extend from both of bottom 1098 front and back of the package 1095.
  • A backstop 1110 located at the front of the carriage 1086 assists in maintaining the package 1095 in place during operation of the apparatus 1051. On the top face of the backstop 1110 is positioned a slot 1115. The slot 1115 can be designed such that inner package wrapping paper or paper-lined foil (not shown) extending from the front bottom 1098 of the package 1095 can be fed into the slot 1115 in order that the foil is positioned out of the way when the cigarette package 1095 is filled with cigarettes 13.
  • Referring to FIGS. 17 and 18, the package-filling apparatus 1051 is shown with a cartridge 38 containing twenty cigarettes 13 appropriately positioned on the positioning region of the upper platform 1073. The carriage 1086 has been moved forward, such that a package 1095 carried thereby is positioned below the open center region 1079 beneath the cartridge. The device 1051 is designed such that the cartridge 38 can be slid on the upper surface of the upper platform 1058 towards the rear of the device 1051. When the cartridge 38 is moved rearward, each ejection rod 1067 remains still such that each rod 1067 passes through the openings 550 in the front surface of the cartridge 38 (see FIG. 6) and resists the cigarettes' 13 rearward motion by pushing against the rear face of each filter element of each respective cigarette 13. Effectively, as the cartridge 38 is moved rearward, each rod 1067 passes through the corresponding opening 550 in the front face of the cartridge 38, hence pushing the cigarettes 13 out of the cartridge 38. As such, cigarettes 13 can be removed from the cartridge 38 without the necessity of turning the cartridge 38 over to dump cigarettes 13 therefrom or of tipping the cartridge 38 upwards so that cigarettes 13 fall therefrom. The cigarettes 13 are pushed from the cartridge 38 and fall through the open center region 1079. The cigarettes 13 consequently fall into, and fill, the open package 1095 that is positioned below the open center region 1079. An operator can use his/her finger to align the cigarettes 13 within the package, but preferably the cigarettes 13 are aligned without being touched, or are moved into alignment within the package 1095 using a tool (e.g., a nylon probe) that will not mar the cigarettes 13. The handle 1089 then can be used to move the carriage 1086 rearwards in order to expose the package 1095 filled with cigarettes 13. The filled package 1095 can be removed from the carriage 1086 and closed. A new empty package 1095 can then be inserted into the carriage 1086. Meanwhile, the empty cartridge 38 can be moved forward and removed from the device 1051. A new cartridge 38 filled with cigarettes 13 can be placed into the device 1051. As such, the package filling process can be repeated. In the representative device 1051 for filling a cigarette package 1095 with manufactured cigarettes 13 described with reference to FIGS. 17-18, that device 1051 is designed to fill the package 1095 with twenty cigarettes 13. Suitable alterations to the apparatus and its components can be made to hold or transfer a greater or lesser number of cigarettes 13 contained in the cartridge 38. For example, a package 1095 designed to contain ten cigarettes 13 can be filled with the embodiment described with reference to FIGS. 17-18 by loading ten cigarettes 13 into the cartridge 38 and using the device 1051 to fill that package 1095.
  • Referring to FIG. 19, there is shown a perspective view of a representative package 1095 for cigarettes 13. The illustrated package embodiment 1095 is of the type that has been referred to as a “shoulder box.” The package 1095 is shown in an open position and is designed to contain twenty cigarettes 13. As illustrated, the cigarettes 13 are aligned within the package 1095 in two rows of ten cigarettes 13, with one row positioned over the second row. The packaged cigarettes 13 are preferably manufactured using the previously described equipment and materials. The package 1095 preferably is manufactured from folded paperboard material, and can be of any type useful for the packaging of cigarettes 13. The package 1095 includes a generally rectilinear top 1102 that opens about a hinge 1190 that extends along the back side of the box. The cigarettes 13 are contained in the bottom component 1098 of the box 1095. The bottom component 1098 also holds a foil front flap 1192 and a foil back flap 1194 that can close over the cigarettes 13, or that can be opened to expose the cigarettes 13 (as is shown). Representative types of shoulder box packages 1095 have been commercially available, and the selection thereof is a matter of choice. If desired, the shoulder box 1095 and associated wrapping materials can be embossed, printed with indicia, or the like. If desired, the package 1095 of cigarettes 13 can be wrapped in a plastic or other film (e.g., a clear polypropylene film).
  • Other representative types of cigarette packages 1095 suitable for use with the present invention includes those of the types set forth in U.S. Pat. No. 4,294,353 to Focke et al.; U.S. Pat. No. 4,534,463 to Bouchard; U.S. Pat. No. 4,852,734 to Allen et al.; and U.S. Pat. No. 5,139,140 to Burrows et al.; U.S. Pat. App. Pub. Nos. 2004/0217023 to Fagg et al. and 2004/0256253 to Henson et al.; and German Pat. App. DE 10238906 to Marx.
  • Referring to FIG. 20, there is shown a longitudinal cross-section of a pre-formed tubular wrapping portion 21. Such a wrapper portion has the general shape of a cigarette 13, but is substantially devoid of the smokable filler material that makes up a finished cigarette 13. The tubular wrapper 21 includes a hollow generally cylindrical region 1200 defined by cigarette paper wrapping material 1205 into which tobacco cut filler is inserted. That is, the tubular wrapper 21 is configured for receiving tobacco filler, and hence, for providing a wrapped, smokable tobacco rod. The tubular wrapping 21 preferably also includes a filter element 1210 positioned at one end thereof. The filter element 1210 preferably is attached to the wrapping material 1205 using a circumscribing tipping material 1215. The filter element 1210 includes filter material 1220 wrapped in a circumscribing plug wrap material 1225. The tipping material 1215 and plug wrap 1225 may optionally include a line of perforations 1230, so that during use of the cigarette 13, mainstream smoke can be air diluted. The perforations 1230 may be provided during or after cigarette manufacture using on-line laser perforation techniques, or the relevant wrapping materials may be pre-perforated.
  • Representative pre-formed tubular wrapper portions 21 include those types of filtered cigarette tubes that have been available commercially as “Premier Filter Tip Tubes” from C.T.C. Canada Inc.; “MacDonald Export ‘A’ Express Kit Medium Regular Size Cigarettes Tubes” from RJR-MacDonald Inc.; and “Escort King Size Filter Tip Tubes” from C.T.C. Canada Inc.
  • Pre-formed tubular wrapper 21 can include filter 1220 and empty paper tube components that remain upon removal of tobacco from existing cigarettes 13. For example, filter cigarettes can be manufactured using conventional automated cigarette-making techniques, and the tobacco can be ejected therefrom using, for example, the type of apparatus set forth in U.S. Pat. No. 4,763,673 to Barnes et al., which is incorporated herein by reference, or using other suitable means. As such, components used for the manufacture of commercial grade filter cigarettes can be processed to remove the tobacco blend therefrom, and the resulting pre-formed tubular wrapper 21 can be filled with a different tobacco blend in the fashion described above with reference to FIGS. 1-11. As such, it is possible to prepare lots of substantially identical cigarettes 13, except for a difference in a chosen smokable material within those cigarettes.
  • Referring to FIG. 21, there is shown a representative cigarette 13. The cigarette 13 includes cigarette wrapping material 1205 that surrounds strands or pieces of tobacco cut filler 1240, which is the smokable filler material that makes up a core of the cigarette 13. The lighting end 1245 of the cigarette 13 preferably is configured such that the cut filler 1240 does not extend to any significant extent beyond the end of the wrapping material 1205. Preferably, cut filler 1240 extends about 1 mm or less and, most preferably, about 0.5 mm or less beyond the lighting end 1245 of the wrapping material 1205 of the tubular wrapper 21.
  • Other illustrative embodiments of a cigarette manufacturing apparatus according to the present invention may include alternative configurations of the hopper assembly, the means for delivering a portion of the tobacco filler from the receptacles into each of the tubular wrappers, and the means for controlling the portion of the tobacco filler delivered into the wrappers. As shown in the embodiments in FIGS. 22-26, the cigarette manufacturing apparatus 10 includes a support platform 1310 supported by four legs 1311. The support platform 1310 can be manufactured from a suitable material, such as metal (e.g., stainless steel, brass, or aluminum), plastic (e.g., polycarbonate, polymethylmethacrylate, acrylate/butadiene/styrene or ABS type plastic, nylon, or other suitable polymeric material), composite material (e.g., a graphite-based ceramic), or like material. Preferably, the support platform 1310 is manufactured from aluminum. The hopper assembly 1380 may include four walls in the form of a rectangle, including a back wall 1381 and a front wall 1382, a bottom, and an open top. The bottom of the hopper 1380 is configured to contain a plurality of receptacles, or wells 1383. An auger conveyor 1384 extends through each well 1383 for delivering a portion of the tobacco filler from the well 1383 into one of the tubular wrappers 21 aligned with the auger conveyor 1384.
  • As shown in FIGS. 22, 23, and 26, a vertical motor mount structure 1397 is attached underneath the support platform 1310 adjacent a drive belt opening 1392. A drive roller support wall 1390 is attached to the top of the support platform 1310 adjacent the drive belt opening 1392. A motor 1396 for powering movement of the auger conveyors 1384 is mounted to the motor mount structure 1397. The hopper assembly 1380, motor mount structure 1397, and drive roller support wall 1390 can be attached securely to the support platform 1310 using several screws, or other appropriate fastening means. The hopper unit 1380 may be removable, and can be maintained in place on top of the support platform 1310 by a suitable number of appropriately positioned locating pins (not shown). That is, several positioning pins of appropriate shape and size can be located in the bottom of the hopper unit 1380, and corresponding location holes can be positioned in support platform 1310. Any other suitable structure may be used to maintain the relative positions of the hopper unit 1380 and the cartridge 38.
  • As shown in FIG. 22, the means for delivering a portion of the tobacco filler from the receptacles into each of the tubular wrappers 21 comprises an auger drive system. The auger drive system includes a plurality of auger drive rollers 1393 rotatably attached to the drive roller support wall 1390. A corresponding number of idler rollers 1394 are rotatably attached above the auger drive rollers 1393 on the drive roller support wall 1390. An auger drive belt 1391 is routed in serpentine fashion about the series of auger drive rollers 1393 and idler rollers 1394, and is routed through the drive belt opening 1392 to its connection with the motor 1396 underneath the support platform 1310. An auger drive connector shaft 1395 is connected to each drive roller 1393. One of the plurality of auger conveyors 1384 is operably connected to the end of each of the auger drive connector shafts 1395 opposite the drive rollers 1393.
  • The auger drive system is configured such that actuation of the motor 1396 causes movement of the auger drive belt 1391, which powers rotation of the auger drive rollers 1393 and thus rotation of the auger drive connector shafts 1395 and the connected auger conveyors 1384. The motor 1396 can be an electrical motor. The motor 1396 can include a variable speed control mechanism for rotating the auger conveyors 1384 at different desired speeds. Rotating speed of the auger conveyors 1384 can be preset for optimal movement of the tobacco filler into the tubular wrappers 21. In an alternative embodiment, the auger conveyors 1384 can be operated manually with a rotary handle (not shown) engaged with the auger drive belt 1391.
  • An auger is defined generally as a tool having a twisted configuration capable of spiraling motion for boring into an object. For purposes herein, an auger conveyor 1384 is defined as an element having a twisted configuration capable of spiraling motion for arranging tobacco filler within an auger well 1383 so as to form a cylindrical charge of the tobacco filler and conveying that tobacco charge into a corresponding pre-formed tubular wrapper 21. In the embodiment shown in FIGS. 22-24, there is a plurality of auger conveyors 1384 such that in a corresponding number of auger wells 1383 tobacco filler can be arranged to form cylindrical charges and those tobacco charges can be delivered into corresponding pre-formed tubular wrappers 21, thereby forming a plurality of cigarettes 13. Each auger conveyor 1384 extends from one of the drive connector shafts 1395 through the hopper 1380 and inside the length of the nozzle 230 connected to the hopper 1380. The rotary motion of the auger conveyor 1384 creates a generally rounded rod, or charge, of tobacco. Rotation of the auger conveyor 1384 causes the charge of tobacco filler to be delivered through the nozzle 230 into the tubular wrapper 21. As the tubular wrapper 21 is filled with the tobacco filler, the wrapper 21 gradually advances off the nozzle 230 and into the rounded groove 48 of the cartridge 38 from where the wrapper 21 was initially transferred.
  • The auger conveyors 1384 can be made of any suitable material, such as stainless steel, for moving tobacco filler from the hopper 1380 into the tubular wrappers 21. The auger conveyors 1384 preferably have a round cross-section; that is, the auger conveyor 1384 material itself is round. A round cross-section may be optimal for movement of tobacco filler in a smooth manner that minimizes degradation of tobacco strands. Alternatively, the auger conveyor 1384 cross-section may include sides having angles optimized for moving tobacco filler. The outside diameter of the auger conveyor 1384 spiral is determined by the inside diameter of the tubular wrappers 21 into which the auger conveyor 1384 will deliver tobacco filler. Generally, the outside diameter of the auger conveyor 1384 spiral will be slightly less, for example, 1 mm less, than the inside diameter of the tubular wrappers 21 to be filled. In embodiments, the diameter of the auger conveyor 1384 spiral can be substantially the same along the length of the auger conveyor 1384. As such, the cylindrical tobacco charge formed within each auger conveyor 1384 can be delivered into corresponding tubular wrappers 21 without further modification.
  • In an embodiment, each of the auger wells 1383 can have a “V” shape. That is, the walls of the auger wells 1383 along the longitudinal axes of the auger conveyors 1384 can be configured to have about a 90 degree angle in which the auger conveyors 1384 operate. The angle of the auger conveyor 1384 walls can have more or less than a 90 degree relationship as desired for particular sizes and shapes of tobacco charges and for particular types of tobacco.
  • In an embodiment, the apparatus 10 may further include a mechanism for detangling the tobacco filler. For example, the hopper assembly 1380 may include a detangling mechanism such as a rotary baffle (not shown). A rotary baffle can be configured as a sheet of rigid material having an axle rod through the center of the sheet and mounted between opposing end walls of the hopper 1380 parallel to the back and front walls 1381, 1382, respectively. A small electric motor can be attached to one end of the axle rod, on the outside of one of the end walls of the hopper 1380. When this motor is actuated, the blade rotates to move tobacco filler in the hopper 1380 above the wells 1383 so as to detangle the tobacco filler. Other types of detangling mechanisms may be suitable in a cigarette manufacturing apparatus according to the present invention.
  • Other hopper assemblies may be utilized in the cigarette manufacturing apparatus 10 shown in FIGS. 22-26. For example, the hopper assembly 80 as described and shown in FIGS. 1, 2, 9, and 11, may be adapted for use with the apparatus 10 shown in FIGS. 22-26. The hopper 80 comprising several downwardly extending passageways 675 for downward passage of loose tobacco filler from an upper hopper region 110 may be disposed on top of the hopper assembly 1380. Alternatively, the outer walls of the hopper assembly 80 may be integrally formed with the walls of the hopper assembly 1380. In such arrangements, one of the downwardly extending passageways 675 would be aligned above each auger well receptacle 1383 such that a portion of the tobacco filler in the upper reservoir region 110 would be delivered to each auger well 1383.
  • In such a hopper arrangement, one or more weights 177 or other structures may be adapted to provide downward force or compression on loose tobacco filler within each downwardly extending passageway 675. Application of force to the tobacco filler within each downwardly extending passageway 675 using the weight 177 provides for altered arrangement of tobacco filler within each passageway 675. Application of force to the tobacco filler within each downwardly extending passageway 675 using the weight 177 also provides for a controlled feed of tobacco filler to and within each auger well receptacle 1383. Accordingly, such a weight system can be utilized to control the portion of the tobacco filler delivered into the wrappers 21.
  • In such a hopper arrangement, each downwardly extending passageway 675 may include at least one movable side wall 360, thereby providing for altering the arrangement of tobacco filler within each passageway 675, as well as for controlling introduction of a portion of tobacco filler within each auger well 1383. As a result of such a movable side wall 360, a pre-determined amount of tobacco filler can be supplied to, and provided within, each auger well 1383 and correspondingly aligned wrapper 21.
  • As described herein with reference to FIGS. 1, 5, 6, and 11, the embodiment shown in FIGS. 22-23 and 25-26 can utilize the cartridge 38 for containing a plurality of pre-formed tubular wrappers 21. The cartridge 38 includes a series of parallel rounded supports, or grooves, 48 in its upper face, with the grooves 48 being oriented perpendicular to the longitudinal axis of the cartridge 38. That is, each semi-circular groove 48 acts as a cradle for one of the tubular wrappers 21. For the embodiment shown in FIGS. 22-23 and 25-26, the cartridge 38 includes twenty grooves 48, and thus the cartridge 38 can hold twenty tubular wrappers 21 for the manufacture of twenty cigarettes 13.
  • The cartridge 38 filled with tubular wrappers 21 can be positioned on the upper surface of the support platform 1310 such that empty tubular wrappers 21 are aligned with corresponding nozzles 230. The nozzles, or delivery passageways, 230 can be connected to each of the auger well receptacles 1384 for guiding delivery of a portion of the tobacco filler from the receptacles 1384 into the wrappers 21. When the wrappers 21 and nozzles 230 are aligned, the wrappers 21 can be mounted onto the corresponding nozzles 230. Preferably, the cartridge 38 is moved along the grooves 515 in the bottom surface of the cartridge 38 on a support on the support platform 1310 toward the nozzles 230. In this manner, the empty wrappers 21 can be manually slid over the nozzles 230 for filling with tobacco filler. Once the wrappers 21 are in position on the nozzles 230, the cartridge 230 is moved away from the nozzles 230.
  • The tubular wrappers 21 can be transferred from the cartridge 38 and mounted onto the nozzles 230 in other manners. For example, in an alternative embodiment (not shown), a platform of ejection rods, similar to the upper platform 1058 and ejection rods 1067 shown in FIGS. 17-18, can be positioned on the upper surface of the support platform 1310 adjacent to the front face 548 of the cartridge 38. In the embodiment shown in FIGS. 22-23, a platform of ten ejection rods can be utilized. The ten ejection rods can be aligned with the push-through openings 550 in the front face 548 of the cartridge corresponding to the ten tubular wrappers 21 to be mounted onto nozzles 230. The ten ejection rods may then be simultaneously inserted through the push-through openings 550 to slide the tubular wrappers 21 over corresponding nozzles 230 for filling with tobacco filler.
  • Once a sub-lot of the tubular wrappers 21 has been transferred to the nozzles 230, filled with a portion of tobacco filler, and returned to the cartridge 38, the cartridge 38 can be moved laterally to align another sub-lot of tubular wrappers 21 with the nozzles 230. This may be accomplished by lifting the cartridge 38 from the support in the support platform 1310 slidingly mated with one of the grooves 515 in the bottom surface of the cartridge 38. The cartridge 38 can be moved laterally so as to align another one of the grooves 515 with the support in the support platform, which, in turn, aligns another sub-lot of the wrappers 21 with the nozzles 230. As such, the cartridge 38 may be suitably adapted to move laterally with respect to the longitudinal axes of the tubular wrappers 21 so as to align multiple sets of tubular wrappers 21 with corresponding nozzles 230.
  • The cartridge 38 can be positioned to receive finished cigarettes 13 when they are pushed from the nozzles 230. Once the cartridge 38 is loaded with finished cigarettes 13 resulting from the tubular wrappers 21 being filled with tobacco filler, the cartridge 38 can be removed from the support platform 1310 for packaging the cigarettes 13. Thus, the cartridge 38 can serve as a source and holder of tubular wrappers 21 that are employed during the cigarette-manufacturing process using the cigarette-making apparatus 10, as well as a holder for transfer of finished cigarettes 13 manufactured using that apparatus 10 to a package filling device.
  • Embodiments of the present invention provide tobacco filler deposited into tubular wrappers 21 in a controlled manner. As a result, a cigarette manufacturing apparatus according to the present invention provides consistently-formed, uniformly-made cigarettes. Manufacturing a lot, for example, a lot of twenty, cigarettes 13 in a retail setting, for example, in which each cigarette 13 has substantially the same density overcomes the disadvantage of producing cigarettes individually, whereby individual cigarettes 13 may have non-uniformly packed tobacco rods of varying densities.
  • In the embodiment shown in FIGS. 22-26, the means for controlling the portion of the tobacco filler delivered into the wrappers 21 may include a plurality of adjustable tension arms 1323 in contact with the outer surfaces of the wrappers 21 mounted on the nozzles 230. The plurality of tension arms 1323 are mounted onto a tension arm support rod 1320 by means of a tension arm mount 1322. A first screw 1324 is threaded through the tension arm mount 1322 and the tension arm 1323 and into the tension arm support rod 1320 to secure the tension arm 1323 to the support rod 1320. The tension arm support rod 1320 extends across the support platform 1310 in front of the front wall 1382 of the hopper assembly 1380 perpendicular to the longitudinal axes of the nozzles 230. The tension arm support rod 1320 is rotatably supported on each end by a mounting block 1321. Each mounting block 1321 is secured to the support platform 1310 with an appropriate fastener. A tension arm ball 1326 is connected near the end of the tension arm 1323 adjacent the nozzle 230. The tension arm ball 1326 is connected to the tension arm 1323 with a second screw 1334. The tension arm ball 1326 may comprise a material to apply resistance to movement of the tubular wrapper 21, yet allowing the wrapper 21 to move smoothly along the nozzle 230 as it is being filled with tobacco filler. A fine adjustment screw 1325 is threaded through the front of the tension arm mount 1322 so that it can contact the tension arm 1323.
  • The tension arm 1323 can control the rate of movement of the wrappers 21 as a portion of tobacco filler is being delivered into the wrappers 21. The tension arm 1323 controls the rate of movement of the wrapper 21 by providing resistance to movement of the wrapper 21 as it advances off the nozzle 230. The tension arm 1323 may be adjusted so as to vary the pressure directly on the outside of the tubular wrapper 21 itself and provide more or less resistance on the tubular wrapper 21 as it advances off the nozzle 230. Varying the resistance to movement, and thus the rate of movement, of the tubular wrapper 21 as it is being filled provides the advantage of controlling the density, or tobacco weight, of the finished cigarette 13. Providing pressure directly on the outside of the wrapper 21 itself allows for greater control of the movement of the wrapper 21, and thus greater control of the density of the tobacco charge inside the finished cigarette 13. Tension, or pressure, on the tension arm 1323 can be adjusted with the fine adjustment screw 1325 in the tension arm 1323. Rotating the fine adjustment screw 1235 downward so that the screw exerts more pressure on the tension arm 1323 causes the tension arm 1323 to exert more pressure on the tubular wrapper 21 as it advances off the nozzle 230. Rotating the fine adjustment screw 1325 upward so that the screw 1325 exerts less pressure on the tension arm 1323 causes the tension arm 1323 to exert less pressure on the tubular wrapper 21 as it advances off the nozzle 230. Pressure on the tension arm 1323 may need to be relaxed and the tension arm ball 1326 lifted slightly from the surface of the nozzle 230 in order to transfer a tubular wrapper 21 to the nozzle 230.
  • The embodiment shown in FIGS. 22-26 may further include a pressure adjustment arm 1330 connected to a plurality of the adjustable tension arms 1323. A weight 1331 can be moved along the pressure adjustment arm 1330 for applying varying degrees of pressure to the plurality of the adjustable tension arms 1323. As such, the pressure adjustment arm 1330 and weight 1331 provide additional control of the rate of movement of the wrappers 21 and of the portion of tobacco filler being delivered into the wrappers 21.
  • The weight 1331 can be moved along the pressure adjustment arm 1330 away from the tension arm support rod 1320 to rotate the tension arm support rod 1320 and tension arms 1323 slightly in the direction of the nozzles 230 and the tubular wrappers 21 positioned around the nozzles 230. In this manner, the pressure of the tension arms 1323 on the tubular wrappers 21 can be increased, thereby causing an increased resistance to movement of the tubular wrappers 21 as they are being filled and thereby an increased density of the tobacco filler in the formed tobacco charge, or rod, inside the wrapper 21 of the finished cigarette 13. The weight 1331 can include a knob 1333 having a threaded shaft (not shown) for movably securing the weight 1331 to the pressure adjustment arm 1330. The threaded shaft of the knob 1333 extends through the weight 1331 to a groove 1332 along the length of the pressure adjustment arm 1330. By loosening and tightening the knob 1333, the weight 1331 can be movably secured in the groove 1332 in the pressure adjustment arm 1330 in a range of desired locations. Likewise, the weight 1331 can be moved along the pressure adjustment arm 1330 toward the tension arm support rod 1320 to decrease the pressure of the tension arms 1323 on the tubular wrappers 21 positioned about the nozzles 230. As a result, resistance to movement of the tubular wrappers 21 as they are being filled is decreased and the density of the tobacco filler in the formed tobacco rod inside the wrapper 21 of the finished cigarette 13 is decreased. The pressure adjustment arm 1330 can have a scale (not shown) designated along its length to gauge the relative rate of movement of the tubular wrapper 21 as it is being filled. As such, a relative density of the tobacco charge inside the finished cigarette 13 can be gauged.
  • In an alternative embodiment (not shown), the support platform 1310 adjacent the nozzles 230 can have a plurality of parallel slots aligned with the nozzles 230. Once the wrappers 21 have been transferred from the cartridge 38 to corresponding nozzles 230, the cartridge 38 is removed from the support platform 1310. A slidable weight can then be placed in each slot, or channel, behind tubular wrapper 21. As the rotational movement of the auger conveyor 1384 causes tobacco filler to fill the tubular wrappers 21, the wrappers 21 are advanced off the nozzles 230 against the slidable weights in the channel behind the wrappers 21. The movement of tobacco filler by the auger conveyor 1384 against the filter elements of the tubular wrappers 21 must overcome the frictional pressure of the slidable weights in the channels. The slower the movement of the tubular wrapper 21, the more dense would be the resulting tobacco charge inside the tubular wrapper 21.
  • The auger feed means for delivering tobacco filler into tubular wrappers 21 according to the present invention can be utilized in other configurations of a cigarette manufacturing apparatus. For example, in one embodiment (not shown), the hopper assembly 1380 can be configured to move relative to a stationary supply of the tubular wrappers 21. For example, the back wall 1381 of the hopper 1380 can be attached to the front of the drive roller support wall 1390, and the motor 1396 can be attached to the rear of the drive motor support wall 1390 and above the plurality of augers 1384. That is, rather than the motor 1396, auger drive belt 1391, and rollers 1393, 1394 being positioned below the plurality of auger conveyors 1384 as shown in the embodiment in FIGS. 22-26, the motor and drive mechanism would be positioned above the augers conveyors 1384. The entire hopper unit-motor assembly can be movably mounted on a carriage above the top surface of the support platform 1310. This embodiment further includes a hopper of tubular wrappers 21 positioned apart from, and in line with, the hopper unit-motor assembly along the longitudinal axes of the auger conveyors 1384 and nozzles 230. The hopper of tubular wrappers 21 is in alignment with the hopper unit-motor assembly such that the nozzles 230 at the bottom of the hopper 1380 would align with the bottom of the hopper of tubular wrappers 21. A tubular wrapper 21 corresponding to each nozzle 230 is positioned in the bottom of the hopper of tubular wrappers 21.
  • In operation, the hopper unit-motor assembly can be moved along its carriage toward the hopper of wrappers 21, and the tubular wrappers 21 in the bottom of the wrapper hopper are guided onto the outside of the corresponding nozzles 230. As the hopper unit-motor assembly moves toward the hopper of wrappers, the nozzles 230 aligned with the bottom row of wrappers 21 are inserted inside the hollow portion of that row of wrappers 21. The back of the hopper of wrappers 21 provides a means by which movement of the bottom row of wrappers 21 is stopped as the nozzles 230 are inserted into the wrappers 21. The hopper of wrappers 21 can have a capacity to contain multiple rows of tubular wrappers 21 stacked in vertical relationship. In this manner, once the bottom row of wrappers 21 is placed on corresponding nozzles 230, the next above row of wrappers 21 is dropped by gravity down to the position of the bottom row of wrappers 21, whereby subsequent rows of wrappers 21 become properly positioned to receive the nozzles 230 during further operation of the apparatus. A stop plate can be affixed to the top of the support platform 1310 adjacent the hopper of wrappers such that movement of the hopper unit-motor assembly stops at a point when the tubular wrappers 21 are in position on the outside of the nozzles 230.
  • Once the tubular wrappers 21 are in the appropriate position on the nozzles 230, the hopper unit-motor assembly can be moved away from the hopper of wrappers 21. The auger drive mechanism can then be actuated to rotate the auger conveyors 1384 such that a portion of tobacco filler is delivered from each auger well 1383 through the corresponding nozzle 230 and into the hollow portion of each tubular wrapper 21 on the nozzle 230. As the tubular wrappers 21 on the nozzles 230 are filled with tobacco filler, those tubular wrappers 21 are pushed off the nozzles 230.
  • A receptacle for receiving the finished cigarettes 13 is positioned on the top of the support platform 1310 between the hopper unit-motor assembly and the hopper of wrappers 21. The receiving receptacle is positioned such that as the finished cigarettes 13 are pushed off the nozzles 230, the cigarettes 13 drop into the receptacle. The receiving receptacle can be the cartridge 38 having rounded grooves 48. In this embodiment, each finished cigarette 13 is dropped off the nozzle 230 to a rounded groove 48 in the cartridge 38. In other embodiments, the receiving receptacle can be any other container suitable for receiving the finished cigarettes 13. For example, the container for receiving the finished cigarettes 13 can be a package for containing a lot of cigarettes 13 for use by a customer. However, when the cartridge 38 is utilized to receive the finished cigarettes 13 in this manner, the cartridge 38 can be used in conjunction with the trimming device 790 and with the packaging apparatus 1051, as described herein.
  • In another embodiment, the means for delivering a portion of tobacco filler from the receptacles into each of the wrappers 21 may include a plurality of reciprocating toothed blades 1450. As shown in FIGS. 27-29, the cigarette manufacturing apparatus 10 includes the support platform 1310, the cartridge 38, and tension arms 1323 as in FIGS. 22-26, and a hopper assembly 1380 similar to the hopper assembly 1380 in FIGS. 22-26. In the embodiment in FIGS. 27-29, the hopper assembly 1380 includes a plurality of hopper wells 1440, each of which is configured as a rectangular channel in alignment with one of the nozzles 230. A blade assembly 1400 including a blade assembly carriage 1410 connected to a blade support bar 1420 is disposed behind the back wall 1381 of the hopper 1380. A plurality of the reciprocating blades 1450 extends from the blade support bar 1420 through openings in the back wall 1381 of the hopper 1380. Each of the reciprocating blades 1450 extends through one of the hopper wells 1440 and into one of the nozzles 230. Each blade 1450 includes a plurality of teeth 1451 angled toward one of the nozzles 230. Reciprocation of the blades 1450 causes a portion of the tobacco filler in each hopper well 1440 to be delivered into the hollow region of each aligned wrapper 21.
  • In this embodiment, the motor 1396 is mounted through the support platform 1310 to a first gear 1470. A second gear 1480 is rotatably mounted to the support platform 1310 adjacent the blade assembly 1400. A drive belt 1490 connects the first and second gears 1470, 1480, respectively, such that rotation of the motor 1396 causes rotation of the first gear 1470 and, in turn, rotation of the second gear 1480. The blade assembly carriage 1410 includes an arcuate gear guide 1430 in the form of a curved opening in the rear of the blade assembly carriage 1410. The second gear 1480 includes a downwardly projecting pin (not shown) that is eccentric with respect to the rotary motion of the second gear 1480. As the motor 1396 rotates, the rotary motion of the pin in the arcuate gear guide 1430 thereby causes the blade assembly carriage 1410 to move back and forth in a reciprocating manner. Accordingly, the reciprocating blades 1450 reciprocate through the hopper wells 1440 into each nozzle 230, pushing the tobacco filler in each respective hopper well 1440 into the tubular wrappers 21 positioned around the nozzles 230. The reciprocatory blades 1450 comprises teeth 1451 that are designed so as to convey the tobacco filler in only one direction, that is, in the direction of the tubular wrappers 21.
  • In this embodiment, an agitator pin 1460 on each side of each reciprocating blade 1450 is attached at its base to the blade support bar 1420. The agitator pins 1460 are attached to the blade support bar 1420 such that they can rotate slightly upward in a “camming” motion. As the blade assembly carriage 1410 moves back and forth in a reciprocatory manner, the agitator pins 1460 cause agitation of the loose tobacco filler within the hopper 1380. Such “camming” motion of the agitator pins 1460 helps prevent “bridging” of tobacco filler over individual hopper wells 1440 and to guide a continuous flow of tobacco filler into the hopper wells 1440.
  • The embodiments described and shown in FIGS. 22-26 and in FIGS. 27-29 can utilize the same cartridge 38 as shown in FIGS. 1, 5, 6, and 11. Accordingly, these embodiments of a cigarette manufacturing apparatus 10 can be utilized with the trimming apparatus 790 (shown in FIGS. 12 and 13), with the cartridge-filling apparatus 830 (shown in FIGS. 14-16), and with the packaging apparatus 1051 (shown in FIGS. 17-18).
  • In the embodiments described and shown in FIGS. 22-26 and in FIGS. 27-29, multiple cigarettes 13 can be manufactured simultaneously. For example, in the embodiment shown, a first sub-lot of up to ten cigarettes 13 can be manufactured simultaneously, the cartridge 38 can be move laterally to align the remaining unfilled tubular wrappers 21 with corresponding nozzles 230, and a second sub-lot of up to ten cigarettes 13 can be manufactured simultaneously. As a result, a lot of 20 consistently-formed cigarettes 13 can be manufactured to fill a typical consumer package in a relatively short time. The cartridge 38 is designed to hold twenty cigarettes 13. Suitable alterations to the apparatus 10 and its components can be made to produce any number of cigarettes 13 at a given time (e.g., two, four, ten, twenty, or more). Suitable alterations also can be made to provide the cartridge 38 capable of supporting any number of cigarettes 13 at a given time (e.g., three, five, ten, thirty, forty, or more).
  • The present invention can include a method for manufacturing cigarettes utilizing the various embodiments of a cigarette manufacturing apparatus 10 described herein. In one illustrative method, at least one loose tobacco filler can be introduced into the hopper 80 or 1380. A plurality of receptacles 641, 1384, or 1440 is provided beneath the hopper 80 or 1380. Each receptacle 641, 1384, or 1440 is adapted to receive a portion of the tobacco filler. The cartridge 38 capable of supporting a plurality of pre-formed tubular wrappers 21 is positioned relative to the receptacles 641, 1384, or 1440 such that a pre-determined number of the wrappers 21 is aligned with and adjacent to one of the receptacles 641, 1384, or 1440. A portion of the tobacco filler is then delivered from the receptacles 641, 1384, or 1440 into the hollow region of each of the pre-determined number of the wrappers 21. The steps of positioning the cartridge 38 to align wrappers 21 with the receptacles 641, 1384, or 1440 and delivering a portion of the tobacco filler into the wrappers 21 can be repeated to form a desired plurality of cigarettes 13.
  • The dimensions of a representative cigarette 13 can vary. Cigarettes 13 may be substantially rod shaped, with, or example, diameters of about 7.5 mm (e.g., circumferences of about 22.5 mm to about 25 mm), and total lengths of about 80 mm to about 100 mm. The length of the filter element 1210 can also vary. Typical filter elements 1210 can have lengths of about 20 mm to about 40 mm. In one preferred embodiment, the length of the filter element 1210 is about 27 mm and the length of the tobacco rod is about 56 mm. Preferably the tipping paper 1215 circumscribes the entire filter element 1210 and extends about 4 mm of the length of the tobacco rod in the region adjacent to the filter element 1210.
  • Preferred wrapping materials 1205 of the cigarettes 13 described herein encompass a wide range of compositions and properties. The selection of a particular wrapping material 1205 will be readily apparent to those skilled in the art of cigarette design and manufacture. The most preferred cigarettes 13 have a single layer of wrapping material 1205. Exemplary types of wrapping materials 1205, wrapping material components, and treated wrapping materials 1205 are described in U.S. Pat. No. 5,220,930 to Gentry; U.S. Pat. App. Pub. Nos. 2004/0129281 to Hancock et al. and 2005/0039764 to Barnes et al.; and PCT Application Pub. Nos. WO 2004/057986 to Hancock et al. and WO 2004/047572 to Ashcraft et al.; each of which is incorporated herein by reference in its entirety.
  • Tobacco materials useful within cigarettes 13 of the present invention may vary significantly. Tobacco materials can be derived from various types of tobacco, such as flue-cured tobacco, burley tobacco, Oriental tobacco or Maryland tobacco, dark tobacco, dark-fired tobacco and Rustica tobaccos, as well as other rare or specialty tobaccos, or blends thereof. Descriptions of various types of tobaccos, growing practices, harvesting practices and curing practices are set for in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Most preferably, the tobaccos used with the present invention are those that have been appropriately cured and aged.
  • Tobacco materials for cigarette manufacture can be used in a “single strain” form. That is, the tobacco material used to manufacture the cigarette 13 is composed of one type of tobacco (e.g., all of the tobacco filler is a flue-cured tobacco). Typically, tobacco materials for cigarette manufacture are used in a so-called “blended” form. For example, certain popular tobacco blends, commonly referred to as “American blends,” comprise mixtures of flue-cured tobacco, burley tobacco, and Oriental tobacco. Such blends, in many cases, contain tobacco materials that have a processed form, such as processed tobacco stems (e.g., cut-rolled or cut-puffed stems), volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET), preferably in cut filler form). Tobacco materials also can have the form of reconstituted tobaccos (e.g., reconstituted tobaccos manufactured using paper-making type or cast sheet type processes). The precise amount of each type of tobacco within a tobacco blend used for the manufacture of a particular cigarette brand varies from brand to brand. See, for example, Tobacco Encyclopedia, Voges (Ed.) p. 44-45 (1984), Browne, The Design of Cigarettes, 3rd Ed., p. 43 (1990) and Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) p. 346 (1999). Other representative tobacco types and types of tobacco blends also are set forth in U.S. Pat. No. 4,836,224 to Lawson et al.; U.S. Pat. No. 4,924,888 to Perfetti et al.; U.S. Pat. No. 5,056,537 to Brown et al.; U.S. Pat. No. 5,220,930 to Gentry; and U.S. Pat. No. 5,360,023 to Blakley et al.; U.S. Pat. App. Pub. Nos. 2002/0000235 to Shafer et al.; 2004/0084056 to Lawson et al.; 2004/0255965 to Perfetti et al; 2004/0261807 to Dube et al.; and 2005/0066986 to Nestor et al; PCT Application Pub. No. WO 2002/37990; and Bombick et al., Fund. Appl. Toxicol., 39, p. 11-17 (1997).
  • Tobacco materials employed for manufacture of cigarettes 13 in accordance with the present invention typically have forms, and are used in manners, that are traditional for the manufacture of smoking articles, such as cigarettes 13. The tobacco normally is used in cut filler form (e.g., shreds or strands of tobacco filler cut into widths of about 1/20 inch to about 1/60 inch, often about 1/25 inch to about 1/50 inch, frequently about 1/30 inch to about 1/45 inch, and in lengths of about ¼ inch to about 3 inches). One preferred form of cut filler has a cut width of about 40 cuts per inch. Tobacco cut filler is used in a loose form, that is, as a mixture of pieces of tobacco filler.
  • The amount of tobacco filler normally used within the tobacco rod of a cigarette 13 of the present invention preferably ranges from about 0.6 g to about 1 g. The tobacco filler normally is employed so as to fill the tobacco rod at a packing density of about 100 mg/cm3 to about 300 mg/cm3, and preferably about 150 mg/cm3 to about 275 mg/cm3.
  • If desired, the tobacco materials of the tobacco rod can also include other components. Other components may include casing materials (e.g., sugars, glycerin, cocoa and licorice) and top dressing materials (e.g., flavoring materials, such as menthol). The selection of particular casing and top dressing components is dependent upon factors such as the sensory characteristics that are desired, and the selection of those components will readily be apparent to those skilled in the art of cigarette design and manufacture. See, Gutcho, Tobacco Flavoring Substances and Methods, Noyes Data Corp. (1972) and Leffingwell et al., Tobacco Flavoring for Smoking Products (1972).
  • It is desirable that the moisture content of the tobacco filler be sufficiently high so that the tobacco filler does not undergo an undesirable degree of degradation during handling and processing associated with cigarette manufacture in accordance with the present invention. It also is desirable that the moisture content of the tobacco filler not be so high that the tobacco filler would exhibit undesirable clumping during handling and processing associated with cigarette manufacture in accordance with the present invention. Preferably, cigarettes 13 are manufactured using tobacco filler having a moisture content of about 12 weight percent to about 13 weight percent. Tobacco filler most preferably is purchased immediately prior to use, and stored and handled in a manner such that moisture is not lost. For example, tobacco filler can be stored in sealed plastic bags, in sealed metal drums, or the like. Typically, for normal situations of tobacco filler handling, tobacco filler can be shipped, handled, and stored in sealed containers or plastic bags in amounts of about 5 kilograms.
  • Tobacco filler can be provided using techniques familiar in the art of tobacco blend formulation and preparation. Tobacco filler can be provided using blending drums, air transport devices, or other suitable means that provides adequate physical mixing of pieces of tobacco filler material. It is highly desirable that the tobacco filler, whether as single strain or blended form, have the form of a consistent mixture in terms of distribution of particle size, density of components and composition of components.
  • A small lot of cigarettes 13 can be manufactured in accordance with the present invention as described above during a relatively short time period. For example, for a lot of cigarettes 13 numbering approximately twenty, an appropriate amount of tobacco filler is selected, blended—if multiple tobacco types are selected—and loaded into a cigarette-making machine 10. Approximately twenty pre-formed tubular wrapper portions 21 that have been loaded within the cartridge 38 are introduced to the cigarette-making machine 10, and those wrapper portions 21 within the cartridge 38 are loaded with tobacco filler such that approximately twenty finished cigarettes 13 are be manufactured. Excess tobacco filler can be trimmed from those cigarettes 13, and those cigarettes 13 can be packaged. All of the foregoing, can be carried out in less than about three minutes, and preferably can be carried out in less than about two minutes.
  • A tobacco rod in a cigarette 13 of the present invention preferably exhibits good firmness and good integrity. Specifically, when measured at 76° F. and 60 percent relative humidity using a Cigarette Firmness Tester Model No. CFTA supplied by Fairchild Industries, Winston-Salem, N.C., typical rods of 24.5 mm circumference and made by a conventional high-speed cigarette-making machine yield firmness values of about 2 to about 7 units. See, e.g., U.S. Pat. No. 4,962,773 to White et al. at col. 5, lines 10-24. Cigarettes 13 manufactured in accordance with the present invention typically are firmer than comparable cigarettes 13 (in terms of comparable component materials, sizes, formats and weights) that are manufactured using conventional automated cigarette manufacturing techniques, such as the type of cigarette-manufacturing machine available as “Protos” from Hauni-Werke Korber & Co. KG. For example, cigarettes 13 manufactured in accordance with the present invention typically are firmer than comparable cigarettes 13 manufactured using a “Protos”-type of cigarette-manufacturing machine by as much as about 5 to about 7 units.
  • The selection of a particular filter element 1210, including or in addition to a desired degree of air dilution, will be readily apparent to those skilled in the art of cigarette design and manufacture. Properties such as the composition and size of the filter element 1210, and the format and configuration of the filter element 1210, can be a matter of design choice. Preferred filter elements 1210 are composed of plasticized cellulose acetate tow. Filter elements 1210 also can be composed of materials such as polypropylene tow, gathered polypropylene web, gathered cellulose acetate web or gathered paper. Filter elements 1210 can be segmented in nature. Filter elements 1210 can incorporate flavors, flavored pellets, breakable capsules, resin particles, activated carbon particles, and the like. Preformed tubular wrapping portions 21 incorporating filter elements 1210 containing volatile flavoring agents can be used promptly after production, or stored in sealed containers until use is desired.
  • Preferred cigarettes 13 of the present invention exhibit desirable resistance to draw. For example, an exemplary cigarette 13 exhibits a pressure drop of between about 50 and about 200 mm water pressure drop at 17.5 cc/sec. air flow. Preferred cigarettes 13 exhibit pressure drop values of between about 70 mm and about 180, more preferably between about 80 mm to about 150 mm, water pressure drop at 17.5 cc/sec. air flow. Typically, pressure drop values of cigarettes 13 are measured using a “Filtrona Filter Test Station” (CTS Series) available from Filtrona Instruments and Automation Ltd.
  • Preferably, each tobacco rod is uniformly filled with tobacco filler. That is, it is preferred that each tobacco rod of each cigarette 13 of the present invention (i) include a sufficient amount of tobacco filler, (ii) not contain tobacco fines that fall from the cigarette 13, (iii) not include what can be characterized as a “loose end,” (iv) have good integrity throughout, and (v) not include low density or void regions.
  • Preferably, cigarettes 13 are manufactured such that substantially all of the cigarettes 13 within a lot are of consistent quality. It is preferred that cigarettes 13 of a particular lot are comparable to one another in terms of appearance, size, shape, component materials, weight, tobacco filler particle size distribution, tobacco rod firmness, smoking properties, puff count, smoke yield, and the like. Preferred cigarettes 13 within a lot each incorporate tobacco filler from a comparable source, and the weight of tobacco filler within each cigarette 13 differs by not more that 10 percent, more preferably by not more than about 5 percent, and most preferably by not more than about 2.5 percent. In a preferred cigarette-making operation using each of the above-described devices, an operator never touches the tubular wrappers 21 directly with her hands. This preferred mode of operation prevents moisture, skin oils, or other materials on the operator's hands from soiling or marring the aesthetic appearance of the tubular wrappers 21.
  • In another aspect, the invention includes a method comprising the steps of: providing a selection of tobacco appropriate for use in cigarettes 13; allowing a customer to select a tobacco or blend of several tobaccos; assembling the selected tobacco or blend of tobaccos substantially simultaneously into a plurality of cigarettes 13 having substantially consistent quality (including at least density and tobacco mass); and providing at least some of the plurality of cigarettes 13 to the customer. The method may further include packaging the plurality of cigarettes 13.
  • Although the present invention has been described with reference to particular embodiments, it should be recognized that these embodiments are merely illustrative of the principles of the present invention. Those of ordinary skill in the art will appreciate that an apparatus and methods for manufacturing cigarettes of the present invention may be constructed and implemented in other ways and embodiments. Accordingly, the description herein should not be read as limiting the present invention, as other embodiments also fall within the scope of the present invention.

Claims (51)

1. A cigarette manufacturing apparatus, comprising:
a hopper for containing loose tobacco filler;
a plurality of receptacles beneath the hopper, each receptacle adapted to receive a portion of the tobacco filler;
a cartridge adapted to support a plurality of pre-formed tubular wrappers, each wrapper having a hollow region at one end for receiving the tobacco filler, the cartridge adapted to be placed adjacent the plurality of receptacles such that each of a pre-determined number of the wrappers is aligned with one of the plurality of receptacles; and
a means for delivering the portion of the tobacco filler from the plurality of receptacles into the hollow region of each of the pre-determined number of the wrappers.
2. The apparatus of claim 1, wherein the hopper comprises four walls in the form of a rectangle, an open top, and a bottom, wherein the plurality of receptacles comprises a plurality of wells in the bottom of the hopper.
3. The apparatus of claim 2, wherein each of the plurality of wells comprises a V shape.
4. The apparatus of claim 2, wherein the hopper further comprises a mechanism for detangling the tobacco filler.
5. The apparatus of claim 1, further comprising a delivery passageway connected to each of the plurality of receptacles for guiding delivery of the portion of the tobacco filler from the receptacles into the aligned wrappers.
6. The apparatus of claim 5, wherein the cartridge further comprises a support configured to maintain the cartridge in a position adjacent the delivery passageways such that each of the pre-determined number of the wrappers can be transferred to the delivery passageways and back to the cartridge after delivery of the portion of the tobacco filler into the pre-determined number of the wrappers.
7. The apparatus of claim 6, wherein the cartridge is movable upon the support and is removable from the support.
8. The apparatus of claim 1, wherein the cartridge is removable from the apparatus.
9. The apparatus of claim 1, wherein the cartridge further comprises a plurality of parallel surface grooves, each groove configured to support one of the tubular wrappers.
10. The apparatus of claim 1, wherein the apparatus comprises a particular number of the receptacles, and wherein the cartridge comprises a plurality of surface grooves for supporting at least the same number of the wrappers as the number of receptacles.
11. The apparatus of claim 11, wherein the number of receptacles is at least two.
12. The apparatus of claim 1, wherein the means for delivering the portion of the tobacco filler from the plurality of receptacles into each of the pre-determined number of the wrappers comprises a plurality of auger conveyors, each auger conveyor capable of spiral movement and extending from one of the receptacles into one of the pre-determined number of the wrappers.
13. The apparatus of claim 1, wherein the means for delivering the portion of the tobacco filler from the plurality of receptacles into each of the pre-determined number of the wrappers comprises a plurality of toothed blades, each blade capable of reciprocating movement and extending from one of the receptacles into one of the pre-determined number of the wrappers.
14. The apparatus of claim 1, further comprising a means for controlling the portion of the tobacco filler delivered from each receptacle into each of the pre-determined number of the wrappers.
15. The apparatus of claim 14, wherein the means for controlling the portion of the tobacco filler delivered into the wrappers comprises an adjustable tension arm in contact with an outer surface of each of the pre-determined number of the wrappers for controlling the rate of movement of the wrappers as the portion of the tobacco filler is being delivered therein.
16. The apparatus of claim 15, further comprising a pressure adjustment arm connected to a plurality of the adjustable tension arms and a weight movable on the pressure adjustment arm for simultaneously applying varying degrees of pressure to the plurality of the adjustable tension arms.
17. The apparatus of claim 1,
wherein the cartridge is stationary, and
wherein the hopper, the plurality of receptacles, and the means for delivering the portion of the tobacco filler from the plurality of receptacles into the wrappers are movable as a unit toward and away from the cartridge for transferring the pre-determined number of the wrappers from the cartridge into operative adjacency with the receptacles for receiving the portion of the tobacco filler from the receptacles.
18. The apparatus of claim 17, wherein the cartridge is configured to contain vertical rows of the pre-determined number of the wrappers, each of the wrappers in a bottom row of the wrappers aligned with one of the plurality of receptacles.
19. The apparatus of claim 17, further comprising a container for receiving each of the predetermined number of the wrappers after each of those wrappers receives the portion of the tobacco filler from an adjacent receptacle.
20. The apparatus of claim 1, further comprising a motor for powering delivery of the portion of the tobacco filler from each of the plurality of receptacles into the wrappers.
21. The apparatus of claim 1, further comprising a trimming device for trimming tobacco filler extending beyond the receiving ends of the wrappers in the cartridge.
22. The apparatus of claim 21, the trimming device further comprising:
a ledger bar having support surfaces adapted to support the receiving ends of a plurality of the wrappers and against which the cartridge can be abutted so as to align each of the wrappers in the cartridge with one of the support surfaces on the ledger bar;
a circular cutting blade rotatable in a vertical plane and movable back and forth perpendicularly to the longitudinal axes of the wrappers to trim the receiving ends of the wrappers extending beyond an edge of the ledger bar; and
a motor to rotate the cutting blade at a high speed.
23. The apparatus of claim 1, further comprising a cartridge filling device for filling the cartridge with the plurality of wrappers without human contact directly with the wrappers.
24. The apparatus of claim 23, the cartridge filling device further comprising:
a wrapper supply assembly having a movable upper reservoir adapted to hold a pre-packaged container of the wrappers;
a wrapper hopper adapted to receive the wrappers from the upper reservoir and comprising a plurality of vertical passageways for guiding downwardly a vertically aligned stack of the wrappers one at a time;
a tray positioned beneath the wrapper hopper and comprising an upper surface having a plurality of grooves, each groove adapted to support one of the wrappers and aligned beneath one of the vertical passageways;
a cartridge loading platform configured to maintain the cartridge in alignment with the tray; and
a slider system comprising a plurality of pusher rods adapted to slide and push the wrappers from the tray onto the cartridge.
25. The apparatus of claim 1, further comprising a package filling device for filling an open cigarette package directly from the cartridge.
26. The apparatus of claim 25, the cartridge further comprising a plurality of support surfaces, each of which is adapted to support one filled cigarette, and a push through opening in alignment with each of the support surfaces, the package filling device further comprising:
an upper platform suspended above a bottom frame at a distance to allow the cigarette package beneath the upper platform;
a plurality of substantially horizontal ejection rods mounted on the upper platform;
a cartridge positioning platform adjacent the ejection rods;
an inwardly sloping panel on each side of the positioning platform spaced apart to provide an opening sized to allow a pre-determined number of the cigarettes to drop substantially simultaneously through the opening; and
a carriage mechanism for controlling movement of the open cigarette package beneath the opening in the positioning platform,
wherein when the cartridge is moved on the positioning platform toward the ejection rods, the cigarettes in the cartridge are ejected onto the inwardly sloping panels, through the opening, and into the cigarette package.
27. A cigarette manufacturing apparatus, comprising:
a hopper for containing loose tobacco filler, the hopper comprising four walls in the form of a rectangle, an open top, and a bottom;
a plurality of receptacles beneath the hopper, each receptacle comprising a plurality of V-shaped wells in the bottom of the hopper and adapted to receive a portion of the tobacco filler;
a removable cartridge comprising a plurality of parallel surface grooves, each groove configured to support one of a plurality of pre-formed tubular wrappers, each wrapper having a hollow region at one end for receiving the tobacco filler, the cartridge adapted to be placed and movably maintained adjacent the plurality of receptacles such that each of a pre-determined number of the wrappers is aligned with one of the plurality of receptacles;
a delivery passageway connected to each of the plurality of receptacles for guiding delivery of the portion of the tobacco filler from the receptacles into the wrappers; and
a plurality of auger conveyors, each auger conveyor capable of spiral movement, extending from one of the receptacles into one of the pre-determined number of the wrappers, and adapted for delivering the portion of the tobacco filler from one of the receptacles into the hollow region of one of the pre-determined number of the wrappers.
28. The apparatus of claim 27, wherein the apparatus comprises a particular number of the receptacles, and wherein the cartridge comprises at least the same number of surface grooves as the number of receptacles for supporting at least the same number of the wrappers as the number of receptacles.
29. The apparatus of claim 27, wherein the hopper further comprises a mechanism for detangling the tobacco filler.
30. The apparatus of claim 27, further comprising a means for controlling the portion of the tobacco filler delivered into the wrappers comprising an adjustable tension arm in contact with an outer surface of each of the pre-determined number of the wrappers for controlling the rate of movement of the wrappers as the portion of the tobacco filler is being delivered therein.
31. The apparatus of claim 27, further comprising a means for aligning the receiving ends of the wrappers in the cartridge and a motorized cutting blade for trimming the tobacco filler extending beyond the receiving ends of the wrappers in the cartridge.
32. The apparatus of claim 27, further comprising a cartridge filling device for filling the cartridge with the plurality of wrappers without human contact directly with the wrappers.
33. The apparatus of claim 27, further comprising a package filling device for filling an open cigarette package directly from the cartridge.
34. A method for manufacturing cigarettes, comprising:
introducing at least one loose tobacco filler into a hopper;
providing a plurality of receptacles beneath the hopper, each receptacle adapted to receive a portion of the tobacco filler;
providing a cartridge supporting a plurality of pre-formed tubular wrappers, each wrapper having a hollow region at one end for receiving the portion of the tobacco filler;
positioning the cartridge relative to the receptacles such that a pre-determined number of the wrappers is aligned with and adjacent to one of the plurality of receptacles;
delivering the portion of the tobacco filler from the plurality of receptacles into the hollow region of each of the pre-determined number of the wrappers.
35. The method of claim 34, further comprising repeating the positioning and delivering steps to form a desired plurality of cigarettes.
36. The method of claim 34, wherein the hopper comprises four walls in the form of a rectangle, an open top, and a bottom, and wherein the plurality of receptacles comprises a plurality of wells in the bottom of the hopper, the method further comprising introducing the portion of the tobacco filler into each of the plurality of receptacles.
37. The method of claim 34, further comprising guiding delivery of the portion of the tobacco filler from the receptacles through a delivery passageway connected to each of the plurality of receptacles and into the correspondingly aligned wrappers.
38. The method of claim 37, further comprising maintaining the cartridge in a position adjacent the delivery passageways such that each of the pre-determined number of the wrappers can be transferred to the delivery passageways and back to the cartridge after delivery of the portion of the tobacco filler into the pre-determined number of the wrappers.
39. The method of claim 34, further comprising detangling the tobacco filler.
40. The method of claim 34, wherein delivering the portion of the tobacco filler from the receptacles into the wrappers further comprises rotating simultaneously each of a plurality of auger conveyors extending from one of the plurality of receptacles into one of the pre-determined number of the wrappers, wherein the portion of the tobacco filler from the receptacles is delivered substantially simultaneously into each of the pre-determined number of the wrappers.
41. The method of claim 34, wherein delivering the portion of the tobacco filler from the receptacles into the wrappers further comprises reciprocating simultaneously each of a plurality of toothed blades extending from one of the plurality of receptacles into one of the pre-determined number of the wrappers, wherein the portion of the tobacco filler from the receptacles is delivered substantially simultaneously into each of the pre-determined number of the wrappers.
42. The method of claim 34, further comprising controlling the portion of the tobacco filler delivered from each receptacle into each of the pre-determined number of the wrappers.
43. The method of claim 42, wherein controlling the portion of the tobacco filler delivered into the wrappers comprises placing an adjustable tension arm in contact with an outer surface of each of the pre-determined number of the wrappers for controlling the rate of movement of the wrappers as the portion of the tobacco filler is being delivered therein.
44. The method of claim 43, further comprising applying varying degrees of pressure to the adjustable tension arms by moving a weight on a pressure adjustment arm connected to the adjustable tension arms.
45. The method of claim 34, further comprising powering with a motor the delivery of the portion of the tobacco filler from each of the plurality of receptacles into the wrappers.
46. The method of claim 34, further comprising trimming tobacco filler extending beyond the receiving ends of the wrappers in the cartridge.
47. The method of claim 46, wherein trimming the tobacco filler comprises:
aligning the receiving ends of the wrappers to extend beyond an edge of the cartridge; and
moving a rotating cutting blade perpendicularly across the receiving ends of the wrappers extending beyond the edge of the cartridge.
48. The method of claim 34, further comprising loading the cartridge with the plurality of wrappers without direct human contact with the wrappers.
49. The method of claim 48, wherein loading the cartridge with the plurality of wrappers comprises:
emptying a pre-packaged container of the wrappers into a wrapper hopper having a plurality of vertical passageways;
guiding downwardly through each vertical passageways a vertically aligned stack of the wrappers one at a time into a tray positioned beneath the wrapper hopper and comprising an upper surface having a plurality of grooves, each groove adapted to support one of the wrappers;
aligning the cartridge with the tray; and
sliding one of a plurality of pusher rods across each of the plurality of grooves in the tray to push the wrappers from the tray onto the cartridge.
50. The method of claim 34, further comprising filling an open cigarette package directly from the cartridge.
51. The method of claim 50, wherein filling an open cigarette package directly from the cartridge comprises:
placing the cartridge adjacent an angled surface;
positioning the cigarette package below the angled surface; and
ejecting the cigarettes from the cartridge with a plurality of ejection rods and onto the angled surface such that the ejected cigarettes are directed into the cigarette package.
US11/281,083 2005-11-17 2005-11-17 Apparatus and methods for manufacturing cigarettes Abandoned US20070107738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/281,083 US20070107738A1 (en) 2005-11-17 2005-11-17 Apparatus and methods for manufacturing cigarettes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/281,083 US20070107738A1 (en) 2005-11-17 2005-11-17 Apparatus and methods for manufacturing cigarettes
PCT/US2006/043201 WO2007058811A1 (en) 2005-11-17 2006-11-07 Apparatus and methods for manufacturing cigarettes

Publications (1)

Publication Number Publication Date
US20070107738A1 true US20070107738A1 (en) 2007-05-17

Family

ID=37720422

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/281,083 Abandoned US20070107738A1 (en) 2005-11-17 2005-11-17 Apparatus and methods for manufacturing cigarettes

Country Status (2)

Country Link
US (1) US20070107738A1 (en)
WO (1) WO2007058811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060272654A1 (en) * 2005-06-01 2006-12-07 Barnes Vernon B Apparatus and methods for manufacturing cigarettes
US20160120212A1 (en) * 2013-05-24 2016-05-05 Raoul John HEIDTMANN Tube filling apparatus
US10638789B2 (en) * 2017-02-16 2020-05-05 Eleanya Eke Onuma Herb dispenser and roller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039314B2 (en) 2014-10-07 2018-08-07 David A Greene Centripetally assisted pre-formed cigarette wrapper filler

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15535A (en) * 1856-08-12 Spinning-frame
US29777A (en) * 1860-08-28 Improvement in corn-planters
US636625A (en) * 1898-06-23 1899-11-07 Guido Ferrari Cigarette-machine.
US638887A (en) * 1898-10-19 1899-12-12 Edward I Root Cigarette-making device.
US646938A (en) * 1898-05-14 1900-04-10 William Andstem Cigarette-filling machine.
US760800A (en) * 1903-09-12 1904-05-24 Frank R Nice Rubber-dam holder and cutter.
US828611A (en) * 1905-02-20 1906-08-14 Jasper Fred Kobler Capsule-filling machine.
US969376A (en) * 1910-04-30 1910-09-06 Edgar E Sellers Package-filler.
US1064568A (en) * 1909-07-26 1913-06-10 William George Toplis Capsule-filling device.
US1075050A (en) * 1912-09-06 1913-10-07 Merrick A Mihills Letter-opening machine.
US1196387A (en) * 1915-04-02 1916-08-29 William J Noon Tube-filling apparatus.
US1267201A (en) * 1918-01-24 1918-05-21 Paul Joseph Fleming Capsule-filler.
US1735520A (en) * 1926-12-27 1929-11-12 Frank M Williams Cutting or trimming device
US2296772A (en) * 1940-12-20 1942-09-22 Jere E Crist Cigarette making device
US2376103A (en) * 1942-10-23 1945-05-15 Leslie Chambers A Cigarette-making machine
US2425888A (en) * 1945-01-22 1947-08-19 Arch R Matteson Cigarette maker
US2427884A (en) * 1945-02-26 1947-09-23 Robert W Snodgrass Cigarette making device
US2427957A (en) * 1945-08-23 1947-09-23 Jr Sidney A Getts Cigarette rolling device
US2496375A (en) * 1945-10-12 1950-02-07 Harry W Carter Cigarette making device
US2503353A (en) * 1949-01-27 1950-04-11 Darius B Pennington Cloth cutting apparatus
US2551095A (en) * 1943-05-11 1951-05-01 Chaze Paul Feeding device for cigarettemaking machines
US2594747A (en) * 1948-12-29 1952-04-29 Laney George W Du Cigarette maker
US2633133A (en) * 1950-02-15 1953-03-31 Claude S Hay Cigarette making machine
US2699788A (en) * 1952-06-04 1955-01-18 Kastner Karl Cigarette making machine
US2714383A (en) * 1951-12-07 1955-08-02 Gee Ming Cigarette making machine
US2731971A (en) * 1956-01-24 Cigarette making machine
US2850019A (en) * 1956-10-03 1958-09-02 Sosa Joseph Hand operated cigarette rolling machine
US2868209A (en) * 1957-05-29 1959-01-13 Oswald J Marcotte Cigarette maker
US3006348A (en) * 1958-09-10 1961-10-31 Jr Thomas A Banning Cigarette rolling machines and the like
US3011498A (en) * 1959-12-07 1961-12-05 Armelin Edouard Roger Manually-operated machines for rolling cigarettes
US3124141A (en) * 1964-03-10 Seitter
US3127900A (en) * 1961-01-25 1964-04-07 Kastner Arnold Cigarette machine
US3202156A (en) * 1963-01-19 1965-08-24 Efka Werke Kiehn Gmbh Fritz Apparatus for filling paper cigarette tubes with tobacco
US3491768A (en) * 1968-08-05 1970-01-27 Julian L Paynter Cigarette making apparatus
US3645272A (en) * 1969-10-13 1972-02-29 Jenkins & Ott Inc Automatic cigarette-making machine
US3688777A (en) * 1970-02-23 1972-09-05 Arnold Kastner Cigarette making machines
US3693630A (en) * 1970-05-11 1972-09-26 Arnold Kastner Cigarette making machine
US3693313A (en) * 1970-07-29 1972-09-26 Brown & Williamson Tobacco Cigarette paper tube manufacture
US3732873A (en) * 1971-05-20 1973-05-15 Perkins M Tamping tool
US3821915A (en) * 1972-07-11 1974-07-02 Paper Pak Prod Inc Fiber cutting apparatus with self-contained blade sharpener
US3822710A (en) * 1973-02-23 1974-07-09 P Bramhill Apparatus for making cigarettes
US3840028A (en) * 1972-05-15 1974-10-08 G Yatrides Apparatus for producing blind conduits in cigarettes
US3884013A (en) * 1970-10-02 1975-05-20 British & Foreign Tobacco Co Method of assembling and filling hinged containers
US3892245A (en) * 1973-10-11 1975-07-01 Jr Clarence M Asbill Cigarette machine
US4164229A (en) * 1977-03-18 1979-08-14 Hurt James S Portable cigarette making machine
US4167948A (en) * 1978-03-02 1979-09-18 Herman Moscovitch Cigarette making machine
US4474190A (en) * 1981-03-21 1984-10-02 Hauni-Werke Korber & Co. Kg Method and apparatus for regulating the operation of machines for the production of cigarettes or the like
US4534367A (en) * 1983-05-19 1985-08-13 Philip Morris Incorporated Roll-your-own cigarette maker
US4554931A (en) * 1982-10-15 1985-11-26 Hauni-Werke Korber & Co. Kg Apparatus for severing rod-shaped articles of the tobacco processing industry
US4572216A (en) * 1982-12-22 1986-02-25 Harting Elektronik Gmbh Apparatus for filling cigarette papers with tobacco
US4760853A (en) * 1982-12-22 1988-08-02 G.D. Societa Per Azioni Device for feeding cigarettes to the wrapping line of a packaging machine
US4763673A (en) * 1985-02-04 1988-08-16 R. J. Reynolds Tobacco Company Method and apparatus for ejecting tobacco from filter cigarettes
US4771793A (en) * 1987-03-20 1988-09-20 Arnold Kastner Compact cigarette making machine
US4832056A (en) * 1986-02-25 1989-05-23 Imperial Tobacco Limited Apparatus for making cigarettes
US4884602A (en) * 1987-06-18 1989-12-05 Nippon Elanco Kabushiki Kaisha Apparatus for filling granular substance into hard gelatin capsules
US4887617A (en) * 1986-12-22 1989-12-19 Efka-Werke Fritz Kiehn Gmbh Tobacco product for the personal preparation of a cigarette, in particular filter cigarette
US4962773A (en) * 1987-08-13 1990-10-16 R. J. Reynolds Tobacco Company Process for the manufacture tobacco rods containing expanded tobacco material
US5018536A (en) * 1983-03-28 1991-05-28 Max Liebich Method and tobacco product for use by the consumer for making cigarettes
US5072740A (en) * 1989-05-22 1991-12-17 Efka-Werke Fritz Kiehn Gmbh Device for filling prefabricated cigarette tubes, especially filter tipped cigarette tubes
US5088506A (en) * 1988-05-16 1992-02-18 Arnold Kastner Portable manually operable cigarette making machine
US5105830A (en) * 1989-03-08 1992-04-21 Rothmans, Benson & Hedges Inc. Device and method for assembly of cigarettes
US5133366A (en) * 1984-10-16 1992-07-28 Max Liebich System for the making of cigarettes by the consumer himself
US5135008A (en) * 1990-03-16 1992-08-04 Korber Ag Method of and apparatus for making filter cigarettes
US5139140A (en) * 1991-06-19 1992-08-18 R. J. Reynolds Tobacco Company Cigarette package
US5141000A (en) * 1984-02-29 1992-08-25 Ruppert Heinrich W Tobacco product consisting of a preformed tobacco strand and a preformed tubular cigarette wrapper
US5167241A (en) * 1984-02-29 1992-12-01 Ruppert Heinrich W Tobacco product consisting of a pre-portioned tobacco supply surrounded by cigarette paper of tubular shape, and method of and device for preparing such a tobacco product
US5167248A (en) * 1991-12-09 1992-12-01 Maytag Corporation Dishwasher relief valve
US5197495A (en) * 1988-04-28 1993-03-30 Efka-Werke Fritz Kiehn Gmbh Make-your-own system for making a cigarette, especially a filter-tipped cigarette
US5425215A (en) * 1993-04-16 1995-06-20 Brown & Williamson Tobacco Corporation Apparatus for packaging loose leaf material
US5524515A (en) * 1993-05-28 1996-06-11 Fiskars Oy Ab Support panel for a rotary paper cutter
US5615692A (en) * 1993-12-23 1997-04-01 Efka-Werke Fritz Kiehn Gmbh Method and apparatus for filling cigarette-paper tubes with tobacco
US5617943A (en) * 1993-12-23 1997-04-08 G.D Societa' Per Azioni Group forming device for cigarette packing machines
US5666975A (en) * 1994-06-15 1997-09-16 Cigaretterie Int Inc Method of fabricating cigarettes in a dispensing-type machine operated by a user person
US5687747A (en) * 1994-09-22 1997-11-18 Chilinov S.A.R.L. Method of and apparatus for assembling accumulations of particulate materials
US5713377A (en) * 1994-07-19 1998-02-03 British-American Tobacco (Germany) Gmbh Tobacco cartridge
US5730159A (en) * 1995-12-14 1998-03-24 G.D Societa' Per Azioni Unit for supplying layers of cigarettes
US5979458A (en) * 1997-01-31 1999-11-09 Topack Verpackungstechnik Gmbh Apparatus for transferring layers of rod-shaped articles of the tobacco processing industry
US6345624B1 (en) * 2000-01-03 2002-02-12 Ctc Canada Inc. Compact cigarette making machine
US6360751B1 (en) * 1999-12-01 2002-03-26 R. J. Reynolds Tobacco Company Asymmetrical trimmer disk apparatus
US6431812B1 (en) * 1999-02-20 2002-08-13 Hauni Maschinenbau Ag Apparatus for removing rod-shaped articles of the tobacco processing industry from receptacles
US6484867B2 (en) * 2000-05-30 2002-11-26 G. D S.P.A. Device for forming groups of cigarettes
US6571800B1 (en) * 2002-03-20 2003-06-03 Chin-Tung Yu Tobacco filling device
US6739343B1 (en) * 1998-03-23 2004-05-25 British-American Tobacco (Germany) Gmbh Do-it-yourself cigarette maker and component assemblies
US20040099277A1 (en) * 2002-11-21 2004-05-27 Moser Larry E. Device for filling a cigarette tube with a metered amount of tobacco
US20040129281A1 (en) * 2001-06-27 2004-07-08 Hancock Lloyd Harmon Equipment and methods for manufacturing cigarettes
US6786123B1 (en) * 2003-04-03 2004-09-07 Chieh-Tang Chen Portable precision cutting device
US20050103175A1 (en) * 1998-11-02 2005-05-19 O'banion Michael L. Tile saw
US20060272655A1 (en) * 2005-06-01 2006-12-07 Thomas Timothy F Apparatus and methods for manufacturing cigarettes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE464347C (en) * 1928-08-15 Muller J C & Co After Tabakausbreiter Leading Tabakrueckfoerdervorrichtung
DE287642C (en) * 1913-06-20 1915-09-30 Cigarette filling machine with a plurality of stop bodies
GB191315535A (en) * 1913-07-05 1914-03-12 Richard Reach Improvements in Cigarette Making Machines.
GB106135A (en) * 1916-05-10 1917-05-10 Leonard Lindeloef Improvements in Cigarette Filling Machines.
DE8711945U1 (en) * 1987-09-03 1988-01-14 Chbouki, Habib, 2300 Kiel, De
WO2002056714A1 (en) * 2001-01-21 2002-07-25 John Player & Sons Limited Method and apparatus for the self-production of cigarettes

Patent Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15535A (en) * 1856-08-12 Spinning-frame
US29777A (en) * 1860-08-28 Improvement in corn-planters
US2731971A (en) * 1956-01-24 Cigarette making machine
US3124141A (en) * 1964-03-10 Seitter
US646938A (en) * 1898-05-14 1900-04-10 William Andstem Cigarette-filling machine.
US636625A (en) * 1898-06-23 1899-11-07 Guido Ferrari Cigarette-machine.
US638887A (en) * 1898-10-19 1899-12-12 Edward I Root Cigarette-making device.
US760800A (en) * 1903-09-12 1904-05-24 Frank R Nice Rubber-dam holder and cutter.
US828611A (en) * 1905-02-20 1906-08-14 Jasper Fred Kobler Capsule-filling machine.
US1064568A (en) * 1909-07-26 1913-06-10 William George Toplis Capsule-filling device.
US969376A (en) * 1910-04-30 1910-09-06 Edgar E Sellers Package-filler.
US1075050A (en) * 1912-09-06 1913-10-07 Merrick A Mihills Letter-opening machine.
US1196387A (en) * 1915-04-02 1916-08-29 William J Noon Tube-filling apparatus.
US1267201A (en) * 1918-01-24 1918-05-21 Paul Joseph Fleming Capsule-filler.
US1735520A (en) * 1926-12-27 1929-11-12 Frank M Williams Cutting or trimming device
US2296772A (en) * 1940-12-20 1942-09-22 Jere E Crist Cigarette making device
US2376103A (en) * 1942-10-23 1945-05-15 Leslie Chambers A Cigarette-making machine
US2551095A (en) * 1943-05-11 1951-05-01 Chaze Paul Feeding device for cigarettemaking machines
US2425888A (en) * 1945-01-22 1947-08-19 Arch R Matteson Cigarette maker
US2427884A (en) * 1945-02-26 1947-09-23 Robert W Snodgrass Cigarette making device
US2427957A (en) * 1945-08-23 1947-09-23 Jr Sidney A Getts Cigarette rolling device
US2496375A (en) * 1945-10-12 1950-02-07 Harry W Carter Cigarette making device
US2594747A (en) * 1948-12-29 1952-04-29 Laney George W Du Cigarette maker
US2503353A (en) * 1949-01-27 1950-04-11 Darius B Pennington Cloth cutting apparatus
US2633133A (en) * 1950-02-15 1953-03-31 Claude S Hay Cigarette making machine
US2714383A (en) * 1951-12-07 1955-08-02 Gee Ming Cigarette making machine
US2699788A (en) * 1952-06-04 1955-01-18 Kastner Karl Cigarette making machine
US2850019A (en) * 1956-10-03 1958-09-02 Sosa Joseph Hand operated cigarette rolling machine
US2868209A (en) * 1957-05-29 1959-01-13 Oswald J Marcotte Cigarette maker
US3006348A (en) * 1958-09-10 1961-10-31 Jr Thomas A Banning Cigarette rolling machines and the like
US3011498A (en) * 1959-12-07 1961-12-05 Armelin Edouard Roger Manually-operated machines for rolling cigarettes
US3127900A (en) * 1961-01-25 1964-04-07 Kastner Arnold Cigarette machine
US3202156A (en) * 1963-01-19 1965-08-24 Efka Werke Kiehn Gmbh Fritz Apparatus for filling paper cigarette tubes with tobacco
US3491768A (en) * 1968-08-05 1970-01-27 Julian L Paynter Cigarette making apparatus
US3645272A (en) * 1969-10-13 1972-02-29 Jenkins & Ott Inc Automatic cigarette-making machine
US3688777A (en) * 1970-02-23 1972-09-05 Arnold Kastner Cigarette making machines
US3693630A (en) * 1970-05-11 1972-09-26 Arnold Kastner Cigarette making machine
US3693313A (en) * 1970-07-29 1972-09-26 Brown & Williamson Tobacco Cigarette paper tube manufacture
US3884013A (en) * 1970-10-02 1975-05-20 British & Foreign Tobacco Co Method of assembling and filling hinged containers
US3732873A (en) * 1971-05-20 1973-05-15 Perkins M Tamping tool
US3840028A (en) * 1972-05-15 1974-10-08 G Yatrides Apparatus for producing blind conduits in cigarettes
US3821915A (en) * 1972-07-11 1974-07-02 Paper Pak Prod Inc Fiber cutting apparatus with self-contained blade sharpener
US3822710A (en) * 1973-02-23 1974-07-09 P Bramhill Apparatus for making cigarettes
US3892245A (en) * 1973-10-11 1975-07-01 Jr Clarence M Asbill Cigarette machine
US4164229A (en) * 1977-03-18 1979-08-14 Hurt James S Portable cigarette making machine
US4167948A (en) * 1978-03-02 1979-09-18 Herman Moscovitch Cigarette making machine
US4474190A (en) * 1981-03-21 1984-10-02 Hauni-Werke Korber & Co. Kg Method and apparatus for regulating the operation of machines for the production of cigarettes or the like
US4554931A (en) * 1982-10-15 1985-11-26 Hauni-Werke Korber & Co. Kg Apparatus for severing rod-shaped articles of the tobacco processing industry
US4572216A (en) * 1982-12-22 1986-02-25 Harting Elektronik Gmbh Apparatus for filling cigarette papers with tobacco
US4760853A (en) * 1982-12-22 1988-08-02 G.D. Societa Per Azioni Device for feeding cigarettes to the wrapping line of a packaging machine
US5018536A (en) * 1983-03-28 1991-05-28 Max Liebich Method and tobacco product for use by the consumer for making cigarettes
US4534367A (en) * 1983-05-19 1985-08-13 Philip Morris Incorporated Roll-your-own cigarette maker
US5167241A (en) * 1984-02-29 1992-12-01 Ruppert Heinrich W Tobacco product consisting of a pre-portioned tobacco supply surrounded by cigarette paper of tubular shape, and method of and device for preparing such a tobacco product
US5141000A (en) * 1984-02-29 1992-08-25 Ruppert Heinrich W Tobacco product consisting of a preformed tobacco strand and a preformed tubular cigarette wrapper
US5133366A (en) * 1984-10-16 1992-07-28 Max Liebich System for the making of cigarettes by the consumer himself
US4763673A (en) * 1985-02-04 1988-08-16 R. J. Reynolds Tobacco Company Method and apparatus for ejecting tobacco from filter cigarettes
US4832056A (en) * 1986-02-25 1989-05-23 Imperial Tobacco Limited Apparatus for making cigarettes
US4887617A (en) * 1986-12-22 1989-12-19 Efka-Werke Fritz Kiehn Gmbh Tobacco product for the personal preparation of a cigarette, in particular filter cigarette
US4771793A (en) * 1987-03-20 1988-09-20 Arnold Kastner Compact cigarette making machine
US4884602A (en) * 1987-06-18 1989-12-05 Nippon Elanco Kabushiki Kaisha Apparatus for filling granular substance into hard gelatin capsules
US4962773A (en) * 1987-08-13 1990-10-16 R. J. Reynolds Tobacco Company Process for the manufacture tobacco rods containing expanded tobacco material
US5197495A (en) * 1988-04-28 1993-03-30 Efka-Werke Fritz Kiehn Gmbh Make-your-own system for making a cigarette, especially a filter-tipped cigarette
US5088506A (en) * 1988-05-16 1992-02-18 Arnold Kastner Portable manually operable cigarette making machine
US5105830A (en) * 1989-03-08 1992-04-21 Rothmans, Benson & Hedges Inc. Device and method for assembly of cigarettes
US5072740A (en) * 1989-05-22 1991-12-17 Efka-Werke Fritz Kiehn Gmbh Device for filling prefabricated cigarette tubes, especially filter tipped cigarette tubes
US5135008A (en) * 1990-03-16 1992-08-04 Korber Ag Method of and apparatus for making filter cigarettes
US5139140A (en) * 1991-06-19 1992-08-18 R. J. Reynolds Tobacco Company Cigarette package
US5167248A (en) * 1991-12-09 1992-12-01 Maytag Corporation Dishwasher relief valve
US5425215A (en) * 1993-04-16 1995-06-20 Brown & Williamson Tobacco Corporation Apparatus for packaging loose leaf material
US5465554A (en) * 1993-04-16 1995-11-14 Brown & Williamson Tobacco Corporation Package, and method for packaging loose leaf material
US5524515A (en) * 1993-05-28 1996-06-11 Fiskars Oy Ab Support panel for a rotary paper cutter
US5615692A (en) * 1993-12-23 1997-04-01 Efka-Werke Fritz Kiehn Gmbh Method and apparatus for filling cigarette-paper tubes with tobacco
US5617943A (en) * 1993-12-23 1997-04-08 G.D Societa' Per Azioni Group forming device for cigarette packing machines
US5666975A (en) * 1994-06-15 1997-09-16 Cigaretterie Int Inc Method of fabricating cigarettes in a dispensing-type machine operated by a user person
US5713377A (en) * 1994-07-19 1998-02-03 British-American Tobacco (Germany) Gmbh Tobacco cartridge
US5687747A (en) * 1994-09-22 1997-11-18 Chilinov S.A.R.L. Method of and apparatus for assembling accumulations of particulate materials
US5730159A (en) * 1995-12-14 1998-03-24 G.D Societa' Per Azioni Unit for supplying layers of cigarettes
US5979458A (en) * 1997-01-31 1999-11-09 Topack Verpackungstechnik Gmbh Apparatus for transferring layers of rod-shaped articles of the tobacco processing industry
US6739343B1 (en) * 1998-03-23 2004-05-25 British-American Tobacco (Germany) Gmbh Do-it-yourself cigarette maker and component assemblies
US20050103175A1 (en) * 1998-11-02 2005-05-19 O'banion Michael L. Tile saw
US6431812B1 (en) * 1999-02-20 2002-08-13 Hauni Maschinenbau Ag Apparatus for removing rod-shaped articles of the tobacco processing industry from receptacles
US6360751B1 (en) * 1999-12-01 2002-03-26 R. J. Reynolds Tobacco Company Asymmetrical trimmer disk apparatus
US6345624B1 (en) * 2000-01-03 2002-02-12 Ctc Canada Inc. Compact cigarette making machine
US6484867B2 (en) * 2000-05-30 2002-11-26 G. D S.P.A. Device for forming groups of cigarettes
US20040129281A1 (en) * 2001-06-27 2004-07-08 Hancock Lloyd Harmon Equipment and methods for manufacturing cigarettes
US6571800B1 (en) * 2002-03-20 2003-06-03 Chin-Tung Yu Tobacco filling device
US20040255962A1 (en) * 2002-11-21 2004-12-23 Cousins Distributing, Inc. Device for filing a cigarette tube with a metered amount of tobacco
US6913022B2 (en) * 2002-11-21 2005-07-05 Cousins Distributing, Inc. Device for filling a cigarette tube with a metered amount of tobacco
US20040099277A1 (en) * 2002-11-21 2004-05-27 Moser Larry E. Device for filling a cigarette tube with a metered amount of tobacco
US6786123B1 (en) * 2003-04-03 2004-09-07 Chieh-Tang Chen Portable precision cutting device
US20060272655A1 (en) * 2005-06-01 2006-12-07 Thomas Timothy F Apparatus and methods for manufacturing cigarettes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060272654A1 (en) * 2005-06-01 2006-12-07 Barnes Vernon B Apparatus and methods for manufacturing cigarettes
US7597105B2 (en) * 2005-06-01 2009-10-06 R.J. Reynolds Tobacco Co. Apparatus for manufacturing cigarettes
US20160120212A1 (en) * 2013-05-24 2016-05-05 Raoul John HEIDTMANN Tube filling apparatus
US10154686B2 (en) * 2013-05-24 2018-12-18 Pt Mitra Prodin Tube filling apparatus
US10638789B2 (en) * 2017-02-16 2020-05-05 Eleanya Eke Onuma Herb dispenser and roller

Also Published As

Publication number Publication date
WO2007058811A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
US20190335804A1 (en) Apparatus for inserting objects into a filter component of a smoking article and associated method
KR20180059497A (en) A machine for manufacturing an electronic cigarette cartridge
DK3033950T3 (en) Closes for use in smoking goods
JP5121945B2 (en) How to make a smoking article
DE69731953T2 (en) Device and method for producing pizza
US3036581A (en) Apparatus for making cigarettes
AU664239B2 (en) Metering device
DK2854577T3 (en) Electrically operated aerosol generating system
US20190029316A1 (en) Equipment for insertion of objects into smoking articles
US20150150302A1 (en) Blended rods for use in aerosol-generating articles
US20180295872A1 (en) Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US4572216A (en) Apparatus for filling cigarette papers with tobacco
US4185644A (en) Distributor for cigarette makers or the like
US20100018883A1 (en) Smokeless tobacco products and processes
EP1071344B1 (en) Device for self-rolling cigarettes and corresponding components
EP0765604B1 (en) Process and apparatus for flavouring tea and similar products
DE10155292B4 (en) Device for assembling groups of filter segments for the production of multi-segment filters of the tobacco-processing industry and hollow drum
JP5281652B2 (en) Method for compiling a group of segments in the process of producing a multi-segment filter and apparatus for preparing and compiling segments in a group in the process of producing a multi-segment filter
EP0694009B1 (en) Apparatus and method for packaging loose leaf material
CA2814887C (en) Arrangement for manufacturing of portion packets
CN102404999B (en) Apparatus for inserting objects into a filter component of a smoking article, and associated method
RU2560354C2 (en) Filter rod making machine
US8308623B2 (en) Apparatus for enhancing a filter component of a smoking article, and associated method
US20010053321A1 (en) Coin box cassette loading system
EP0921978B1 (en) Device for packing of finely divided, moistened tobacco material

Legal Events

Date Code Title Description
AS Assignment

Owner name: R.J. REYNOLDS TOBACCO COMPANY,NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARNES, VERNON BRENT;NELSON, JOHN LARKIN;THOMAS, TIMOTHY FREDERICK;REEL/FRAME:017501/0590

Effective date: 20060112

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT,NEW

Free format text: SECURITY INTEREST;ASSIGNOR:R.J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:017906/0671

Effective date: 20060526

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: SECURITY INTEREST;ASSIGNOR:R.J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:017906/0671

Effective date: 20060526

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION