US20070085049A1 - Stopcock Valve - Google Patents

Stopcock Valve Download PDF

Info

Publication number
US20070085049A1
US20070085049A1 US11/559,792 US55979206A US2007085049A1 US 20070085049 A1 US20070085049 A1 US 20070085049A1 US 55979206 A US55979206 A US 55979206A US 2007085049 A1 US2007085049 A1 US 2007085049A1
Authority
US
United States
Prior art keywords
valve
fluid
rigid member
rigid
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/559,792
Inventor
Philip Houle
William Larkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deka Research and Development Corp
Original Assignee
Deka Research and Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/917,537 external-priority patent/US6165154A/en
Application filed by Deka Research and Development Corp filed Critical Deka Research and Development Corp
Priority to US11/559,792 priority Critical patent/US20070085049A1/en
Publication of US20070085049A1 publication Critical patent/US20070085049A1/en
Priority to US11/851,276 priority patent/US20080073610A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14224Diaphragm type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/24Check- or non-return valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1407Infusion of two or more substances
    • A61M5/1409Infusion of two or more substances in series, e.g. first substance passing through container holding second substance, e.g. reconstitution systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16809Flow controllers by repeated filling and emptying of an intermediate volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16827Flow controllers controlling delivery of multiple fluids, e.g. sequencing, mixing or via separate flow-paths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/16854Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • A61M5/365Air detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/50Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for preventing re-use, or for indicating if defective, used, tampered with or unsterile
    • A61M5/5086Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for preventing re-use, or for indicating if defective, used, tampered with or unsterile for indicating if defective, used, tampered with or unsterile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0414Plug channel at 90 degrees to the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0457Packings
    • F16K5/0478Packings on the plug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1402Priming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1403Flushing or purging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M2005/14208Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/123General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • A61M2205/128General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit with incorporated valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/22Flow characteristics eliminating pulsatile flows, e.g. by the provision of a dampening chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1413Modular systems comprising interconnecting elements

Definitions

  • the present invention is a continuation of application Ser. No. 11/455,494 filed Jun. 19, 2006, which is a divisional of application Ser. No. 10/803,049 filed Mar. 16, 2004, which is a continuation of application Ser. No. 10/266,997, now U.S. Pat. No. 6,726,656 filed Oct. 8, 2002, which is a continuation of application Ser. No. 09/359,232, now U.S. Pat. No. 6,464,667 filed Jul. 22, 1999, which is a divisional of application Ser. NO. 09/137,025, now U.S. Pat. No. 6,210,361 filed Aug. 20, 1998, which is a continuation-in-part of application Ser. Nos.
  • the present invention relates to apparatus and methods for controlling flow through an intravenous line.
  • the invention is directed to a cassette for controlling the flow of IV fluid from a patient to a source.
  • the cassette preferably includes, along the fluid passage through the cassette, first and second membrane-based valves on either side of a pressure-conduction chamber, and a stopcock-type valve.
  • the stopcock valve is preferably located downstream of the second membrane-based valve, which is preferably located downstream of the pressure-conduction chamber.
  • a stopcock control valve of the type having a first rigid member (preferably cylindrical) having a first surface (preferably the cylinder's circumferential surface), and a second rigid member (also preferably cylindrical) having a second surface that complements the first surface.
  • the first rigid member defines a first fluid-path portion with a first terminus at the first surface, and the second rigid member defining a second fluid-path portion with a second terminus at the second surface.
  • the first terminus preferably includes a groove defined on the first surface, the groove tapering from a large cross-sectional area to a small cross-sectional area.
  • the first and second rigid members are capable of being rotated with respect to each other from a fully open position continuously through partially open positions to a closed position.
  • the first and second surfaces define a space therebetween, instead of having an interference fit typical of prior-art valves.
  • the improved valve includes a resilient sealing member disposed in the space between the first and second surfaces and extending from the second surface to the first surface.
  • the sealing member defines an aperture through which fluid communication is provided between the first and second fluid-path portions when the first and second rigid members are in an open position with respect to each other.
  • the sealing member is sealingly mounted to the second surface so that, when the first and second rigid members are in the closed position with respect to each other, the sealing member provides a seal preventing flow between the first and second fluid-path portions.
  • the sealing member is located with respect to the groove such that, when the first and second rigid members are in a partially open position with respect to each other, fluid flowing between the first and second fluid-path portions flows through the groove as well as the sealing member's aperture.
  • the improved valve further includes seal means disposed with respect to the space defined by the first and second surfaces for preventing flow of fluid out of the space except through the first fluid-path portion.
  • the seal means includes an O-ring made of resilient material disposed around the second rigid member's circumference. It is also preferred that the sealing member and the O-ring be formed from a single integral piece of resilient material.
  • the groove when the first and second members are in at least one partially open position with respect to each other, extends beyond two sides of the sealing member, so that fluid can flow through the sealing member's aperture and in two different directions in the groove.
  • valve be made by molding a resilient material about and to the second rigid member so as to form an aperture sealing member about the port on the complementing surface of the second rigid member, and then assembling the first and second rigid members, which are preferably molded out of rigid material, so as to bring the complementing surfaces adjacent each other and so that the sealing member is urged against the complementing surface of the first rigid surface.
  • the membrane for the second membrane-based valve is disposed adjacent the housing, such that the rigid housing and the membrane define a valving chamber.
  • One passage enters the valving chamber at a first mouth located at the end of a protrusion of the rigid housing into the valving chamber towards the membrane, and the valve may prevent the flow of fluid therethrough when the membrane is forced against the first mouth, by the control unit.
  • the control valve restricts the flow of intravenous fluid from the valving chamber to the patient, since it is located downstream of the valving chamber.
  • the membrane defining the valving chamber is preferably large and resilient, so that the valving chamber may provide a supply of pressurized intravenous fluid to the patient, when the first mouth is sealed closed and when there is a restriction downstream of the valving chamber.
  • a membrane is preferably disposed adjacent the rigid housing, so as to define a pressure-conduction chamber, wherein the rigid housing portion that defines the pressure-conduction chamber is generally dome-shaped.
  • the membrane has a filled-chamber position, in which position the pressure-conduction chamber is substantially at its greatest volume, and an empty-chamber position, in which position the pressure-conduction chamber is at its smallest volume, and in which position the second membrane rests against the rigid housing and assumes the dome shape of the rigid housing.
  • the second membrane preferably has a structure causing the membrane to be stable in the empty-chamber position but relatively unstable in the filled chamber position.
  • the rigid housing and the second membrane in the empty-chamber position preferably define an unobstructed fluid passageway through the pressure-conduction chamber from the first to the second pressure-conduction chamber mouth.
  • the membrane has a structure that causes the second membrane, when its at its full-chamber position, to collapse in the region of the pressure-conduction chamber's outlet mouth before collapsing nearer the inlet mouth. This structure helps force bubbles in the fluid upward toward the inlet mouth and the IV fluid source during a bubble-purge cycle.
  • FIG. 1 shows a top view of a cassette according to a preferred embodiment A the present invention.
  • FIGS. 2 and 3 show front and bottom views respectively of the cassette of FIG. 1 .
  • FIG. 4 shows a control unit for receiving and controlling a cassette, such as the cassette of FIGS. 1-3 .
  • FIG. 5 shows a cross-section of the cassette of FIGS. 1-3 .
  • FIG. 6 shows a rear view of the cassette and shows the fluid paths through the cassette.
  • FIG. 7 shows a front view of the middle rigid panel of the cassette of FIGS. 1-3 .
  • FIGS. 8 and 9 show side and rear views respectively of the middle panel of FIG. 7 .
  • FIG. 10 shows a partial cross-section of the middle panel of FIG. 7 .
  • FIG. 11 is a cross-sectional detail of the control valve of the cassette according to a preferred embodiment of the invention.
  • FIG. 12 shows a side view of an outer cylinder (a valve-seat member) having rigid and resilient elements that may be used in the control valve.
  • FIG. 13 shows a cross-sectional view of the cylinder of FIG. 12 .
  • FIG. 14 depicts the relationship between the aperture of the FIG. 12 cylinder and the groove used in the control valve.
  • FIG. 15 shows a cross-sectional view of the membrane used in the pressure-conduction chamber of the present invention.
  • FIGS. 16 and 17 show front and rear views respectively of the FIG. 15 membrane.
  • FIG. 18 shows a front view of the membrane used in the valve located downstream of the pressure-conduction chamber and upstream of the control valve.
  • FIG. 19 shows a cross-section of the FIG. 18 membrane.
  • FIG. 20 is a schematic representing how the compliant membrane of FIG. 18 may be used to regulate the pressure of fluid to the patient.
  • FIG. 21 is a graph depicting the advantage of using a compliant membrane such as that shown in FIG. 18 .
  • FIGS. 22 and 23 depict the preferred shape of the inlet valve to the pressure conduction chamber.
  • FIG. 24 shows a cross-sectional view of the inlet valve to the pressure conduction chamber.
  • FIG. 25 shows a preferred arrangement of teeth around the circumference of the control wheel.
  • the present invention includes a cassette for use in a system for controlling the flow of IV fluid to a patient, along the lines of the cassettes disclosed in U.S. Pat. Nos. 5,088,515 and 5,195,986.
  • a preferred embodiment of the cassette is depicted in FIGS. 1-3 , which respectively depict top, front and bottom views of the cassette.
  • the cassette is used in a control unit, such as that described in application Ser. No. 08/472,212, now U.S. Pat. No. 5,772,637, which is hereby incorporated by reference herein in its entirety, which is similar to the control unit described in U.S. Pat. No.
  • Control unit 10 which has a user-interface panel 103 containing a key pad and a display so that the status of the IV fluid delivery may be monitored and modified by medical personnel.
  • the cassette is slipped behind door 102 , and by turning handle 101 the door is pressed against the cassette, which in turn is then pressed against the main housing of the control unit 10 .
  • the main housing 104 preferably includes mechanical means for actuating membrane-covered valves and for applying a pressure against the membrane of the pressure-conduction chamber.
  • the main housing 104 also includes means for turning the control wheel of the cassette.
  • the main components of the preferred embodiment of the cassette are a first membrane-based valve 6 , a pressure-conduction chamber 50 , a second membrane based valve 7 and a stopcock-type control valve 2 .
  • Valve 6 controls the flow to the pressure-conduction chamber 50 from the inlet 31 to the cassette, which is connected to an IV line, which in turn is connected to a source of IV fluid.
  • the second membrane-based valve 7 and the control valve 2 together are used to control the flow of fluid from the pressure-conduction chamber 50 to the outlet to the cassette 33 , which is connected to the IV line leading to the patient.
  • the rigid housing 15 of the cassette is made primarily from three rigid panels.
  • the front panel is preferably molded integrally with the outer collar 21 of the control valve 2 .
  • the wheel 20 of the control valve 2 preferably includes ribs 281 and/or teeth mounted along the circumference 29 of the knob 20 . ( FIG. 25 shows a preferred arrangement of teeth around the circumference 29 of the control knob 20 .)
  • the teeth and/or ribs 281 may be engaged by the main housing 104 of the control unit 10 , so that the control unit 10 may change the resistance that the control valve 2 exerts on the IV fluid passing through the valve.
  • the cassette may also be used without the control unit 10 .
  • the control wheel 20 may be turned by hand.
  • the membrane of the pressure-conduction chamber 50 is preferably collapsed so that it rests against the rigid rear wall 50 of the pressure-conduction chamber 50 .
  • IV fluid may still easily flow through the pressure-conduction chamber 50 through a raised portion 35 of the rear wall 59 .
  • This raised portion 35 defines a conduit 36 leading from the inlet mouth of the pressure conduction chamber 50 to the outlet mouth of the pressure conduction chamber, as can be seen in FIG. 4 .
  • FIG. 6 shows the fluid paths leading through the cassette.
  • fluid enters the cassette through the inlet 31 , whence it flows through a fluid path to valve 6 .
  • the fluid then enters the valving chamber of valve 6 through a port 62 .
  • the outlet port 61 is preferably mounted on a protrusion so that pressure from the pressure-conduction chamber 50 is less likely to force the membrane to lift from the outlet valve 61 .
  • From valve 6 the fluid passes to the inlet mouth 56 of the pressure-conduction chamber 50 .
  • the pressure-conduction chamber is seen in the cross-sectional view of FIG. 5 .
  • a membrane 41 allows pressure from the control unit 10 to be applied to the fluid in the pressure-conduction chamber 50 without the fluid coming into contact with the control unit 10 .
  • the inlet mouth 73 may be closed by the application of pressure by the control unit 10 on a membrane; the portion of the membrane 71 that closes off the inlet valve 73 can be seen in FIG. 5 .
  • the fluid After passing through the outlet mouth 76 of the second membrane-based valve, the fluid passes to the inlet 77 of the stopcock-type control valve, which inlet can be seen in both FIGS. 5 and 6 .
  • the fluid After passing through the control valve and the fluid path 78 exiting from the control valve, the fluid passes to the outlet of the cassette 33 and to the IV line leading to the patient.
  • FIG. 7 shows a front view of the rigid middle panel 18 of the cassette
  • FIG. 8 shows a side view of the middle rigid panel 18
  • the middle rigid panel 18 defines the cassette inlet 31 and outlet 33 , a circumferential portion of the pressure-conduction chamber 50 , and the inlet and outlet ports 62 , 73 , 61 and 76 , of the two membrane-based valves 6 and 7 .
  • the protrusions 63 and 72 of the ports 61 and 73 can also be seen in FIG. 7 .
  • FIG. 9 shows a rear view of the middle rigid portion shown in FIGS. 7 and 8 .
  • the ports 61 , 62 , 73 , 76 can also be seen in FIG. 9 .
  • FIG. 9 shows a rear view of the middle rigid portion shown in FIGS. 7 and 8 .
  • the ports 61 , 62 , 73 , 76 can also be seen in FIG. 9 .
  • the 10 shows a partial cross-section of the middle rigid portion.
  • the cross-section shows the outer collar 21 of the control valve, which is integrally molded with the rest of the middle rigid portion.
  • the outer collar 21 defines a hollow area 22 ′ and a fluid path 23 leading from the hollow area 22 ′.
  • FIG. 11 shows a cross-section of an assembled control valve 2 that may be used in a cassette according to the present invention.
  • a valve-seat member 22 Fixedly attached to the outer collar 21 so that the valve-seat member 22 does not rotate with respect to the rest of the cassette.
  • the valve-seat member 22 is depicted in greater detail in FIG. 12 and in cross-section in FIG. 13 .
  • the valve-seat member 22 also defines a hollow area, which accepts the shaft 220 of the control wheel 20 , so that the control wheel's shaft 220 rotates with the control wheel 20 .
  • the valve-seat member 22 is comprised mostly of rigid material, but importantly it also includes molded-over resilient material, which is used to form sealing O-rings.
  • This resilient material forms an O-ring 26 around the base of the valve-seat member 22 ; the rigid portion of the base defines a passage 222 , connecting the valve inlet 77 to passage 24 .
  • the resilient material 25 also provides a seal around an aperture 251 in the circumferential surface of the member 22 .
  • an inner O-ring 27 which forms the seal between the control wheel's shaft 220 and the valve-seat member 22 .
  • the O-ring 26 around the exterior circumference of the base provides a seal between the outer circumferential wall of the valve-seat member 22 and the inner circumferential wall of the outer collar 21 .
  • the O-ring 25 around the circumferential port 251 may provide a seal between the outer circumferential wall of the valve-seat member 22 and the inner circumferential wall of the outer collar 21 . Together, O-rings 25 , 26 prevent fluid from leaking between the valve-seat member 22 and the outer collar 21 . Importantly, the O-ring 25 of port 251 also provides a seal between the valve-seat member 22 and the shaft 220 , so that when the valve is in the fully closed position no flow is permitted between passageway 24 of shaft 220 and the port 251 of the valve-seat member 22 .
  • the advantage of this design over previous stopcock valves is that the outer diameter of the shaft 220 may be slightly less than the inner diameter of the valve-seat member 22 , whereas previous stopcock valves required an interference fit between the inner and outer components.
  • the stopcock valve of the present invention may use frusto-conical-shaped members instead of cylindrical members.
  • the interference fit of prior-art devices created a great deal of resistance when the stopcock valves were turned.
  • the use of O-rings in the stopcock valve of the present invention avoids the need for this interference fit and the greater torque required for turning the valve resulting from the interference fit.
  • O-ring 27 prevents leaking from the space between the valve-seat member 22 and the shaft of the control wheel 20 .
  • the valve-seat member is preferably made in a two-part molding process, wherein the rigid portion is first molded and then the softer resilient material is over-molded onto the rigid portion. Channels may be provided in the initially molded rigid portion so that the resilient material may flow to all the desired locations; this results in columns of resilient material 28 connecting the areas of resilient material through these channels.
  • the valve-seat member 22 is preferably molded separately from the rest of the cassette, and when the cassette is assembled the valve-seat member 22 is placed in the hollow area 22 ′ defined by the outer collar 21 of the middle panel 18 , and aligned so that aperture 251 lines up with passageway 23 .
  • the shape of the outer diameter of the valve-seat member 22 and the inner diameter of the outer collar 21 may be complementarily shaped so that the valve-seat member must align properly with the aperture 251 and the passageway 23 lines up.) Then, the front rigid panel 17 is ultrasonically welded (along with the rear rigid panel 16 ) to the middle rigid panel 18 , and the valve-seat member 22 is then held in place in the hollow area defined by the outer collar 21 .
  • the outer circumference of the valve-seat member 22 may be a bit smaller than the inner diameter of the outer collar 21 ; O-rings 25 , 26 prevent fluid from flowing from the passages 77 or 23 to point 19 .
  • valve-seat member 22 avoids the need for tight tolerances in the various components of the valve 2 .
  • the control wheel's shaft 220 may be inserted into the hollow area defined by valve-seat member 22 after the rest of the valve has been assembled.
  • the shaft 220 is held in place by a lip 161 around the inner circumference of the hollow area defined by the rear rigid panel 16
  • the outer circumferential surface of the shaft 220 preferably includes a groove extending circumferentially around the shaft's outer circumferential wall from the terminus of the fluid passage 24 at the outer circumferential wall; the groove tapers in cross-sectional area and does not extend all the way around the outer circumference of the shaft 220 .
  • the groove provides greater control of the flow rate.
  • FIG. 14 shows the respective locations of the groove 231 , which is located on the outer circumference of the shaft 220 and the circumferential aperture 251 of the valve seat member 22 .
  • the resistance to flow increases, until the groove 231 ends and the aperture 251 loses fluid communication with the groove 231 , at which point flow is completely shut off through the control valve 2 .
  • the resistance to flow decreases.
  • the groove 231 is longer than the diameter of the aperture 251 , so that the flow rate may be controlled more finely.
  • the cassette may be used independently of the control unit 10 .
  • the membrane 41 rest against the rigid back 59 of the pressure-conduction chamber 50 so as to minimize the volume of the conduit 36 for fluid passing through the pressure conduction chamber 50 . If the membrane 41 were too flexible and the volume of the pressure-conduction chamber 50 varied widely, medical personnel would be unable to rely on a quick visual inspection of the rate of dripping in the drip chamber to indicate a steady, desired flow rate through the IV line. Thus, it is desired that the structure of the membrane 41 be such that it tends to rest against wall 59 unless and until a sufficient pressure differential is created across the diaphragm 41 .
  • This pressure differential is preferably caused by a negative gas pressure caused by the control unit 10 .
  • a negative gas pressure caused by the control unit 10 .
  • the measurement gas provided by the control unit 10 against the outer face of the membrane 41 be at substantially the same pressure as the fluid on the inner side of the membrane 41 in the pressure-conduction chamber 50 .
  • the diaphragm 41 By molding the diaphragm 41 in the shape of a dome corresponding to that of the rigid wall 59 , the diaphragm will have a tendency to remain in its position, as shown in FIG. 5 , resting against wall 59 when the chamber 50 is at its lowest volume, the “empty-chamber” position. However, when the diaphragm 41 is molded in this way, it also tends to remain in the filled-chamber position, in other words, when the diaphragm 41 is bulging convexly outward from the cassette.
  • the convex, filled-chamber position can be made unstable by adding additional material on the outer, usually concave surface of the diaphragm 41 .
  • This additional material 43 can be seen in the cross-section of a preferred embodiment of the diaphragm as shown in FIG. 15 .
  • the diaphragm 41 shown in FIG. 15 is molded in the position shown and has a tendency to remain in that position. When the chamber is filled with fluid, the normally concave side of the diaphragm becomes convex, and the additional material 43 is subject to an additional amount of strain since it is at the outer radius of this convex, filled-chamber position.
  • the diaphragm 41 shown in FIG. 15 also includes an integrally molded O-ring 44 around its circumference for mounting and sealing the diaphragm 41 in the cassette.
  • FIG. 16 shows a view of the exterior side of the diaphragm 41 of FIG. 15 .
  • This surface of the diaphragm 41 is normally concave when the diaphragm is in the empty-chamber position.
  • the additional material 43 can be seen in the view of FIG. 16 .
  • FIG. 17 shows the interior side of the diaphragm 41 of FIG. 15 . This side is normally convex when the diaphragm 41 is in the empty-chamber position.
  • the collapse of the diaphragm 41 from its filled-chamber can be somewhat controlled so that the diaphragm tends to collapse first and the lower portion of the pressure-conduction chamber near the outer mouth 57 before further collapsing in the upper region of the pressure conduction chamber nearer the inlet mouth 56 .
  • the cassette is preferably mounted in the control unit with a slight tilt so that the passage 36 is vertical and the inlet mouth 56 is at the very top of the chamber 50 and the outlet mouth 57 is at the very bottom of the chamber 50 . This orientation permits the bubbles that may be present in the chamber 50 to gravitate towards the inlet mouth 56 , which is at the top of the chamber.
  • any bubbles that are detected by the control unit in the pressure conduction chamber 50 are forced by pressure from the control unit against the external surface of the membrane 41 up to the inlet mouth 56 to the cassette inlet 31 up the IV line to the fluid source, sometimes after several purging and filling cycles.
  • purging the bubbles from the chamber 50 through the inlet mouth 56 it is preferred that the chamber collapse at its bottom first so that the membrane does not interfere with bubbles moving upwards through the chamber 50 .
  • FIGS. 18 and 19 show a preferred membrane design for the second membrane-based valve 7 .
  • This membrane has an O-ring 78 for mounting and sealing the membrane onto the cassette (like the lip 44 on the membrane 41 for the pressure-conduction chamber, and like the circular membrane, which is not shown, for the first membrane-based valve 6 ).
  • This membrane has a first portion 71 , which is used to seal off the mouth 73 located on protrusion 72 (see FIG. 5 ).
  • the control unit 10 exerts a pressure against this portion of the membrane 71 mechanically, in order to close off the valve.
  • the second portion 74 of the membrane is sufficiently compliant so that when the control valve 2 is sufficiently restricting flow out of the outlet 76 of the second membrane-based valve 7 the compliant portion 74 of the membrane will expand outwardly so as to hold under pressure a volume of IV fluid.
  • This design is desirable so that when the inlet mouth 73 is closed, because the pressure-conduction chamber needs to be refilled, the fluid stored in the valving chamber (item 75 in FIG. 5 ) is available to be dispensed through the control valve 2 .
  • FIG. 20 shows a schematic for an electrical model of the operation of the second membrane-based valve 7 working in conjunction with the stopcock-type control valve 20 .
  • FIG. 21 shows a graph depicting the pressure of the IV fluid being delivered to a patient over time as outlet valve 71 , 73 is closed at time t 1 and reopened at t 2 .
  • a solid line depicts the pressure to the patient without a compliant membrane 74 design. With a compliant membrane 74 , the sharp drop off in pressure at t 1 is eliminated or ameliorated. If the stopcock valve is nearly closed so that only a small trickle of fluid is allowed to flow through it the design of the compliant membrane 74 will greatly smooth out the delivery of fluid, as long as the time between t 1 and t 2 is not too long. When the stopcock valve 2 is fully open a sharp drop in pressure may still be expected at time t 1 .
  • the inlet port 56 is shaped so that a small bubble will not tend to stick to an edge of the port while allowing liquid to flow past it.
  • the port 56 preferably flares out so that the corner where the port 56 meets the inner wall of the pressure-conduction chamber 50 is greater than 90°, making the corner less likely a place where the bubble will stick.
  • the mouth of the port 56 cannot be so large that liquid can easily flow by the bubble when fluid is exiting the pressure-conduction through the port 56 .
  • the port In order to accomplish this, the port must be sized and shaped so that the surface tension of the IV fluid being forced upward from the pressure-conduction chamber 50 forces a bubble located at the port 56 up through the inlet valve 6 . It is also preferable that the port 56 be sized and shaped so that when liquid is pulled back into the pressure-conduction chamber 50 , the bubble can hover near the port as liquid passes around it.
  • a preferred inlet port 56 shape is shown in FIGS. 22 and 23 . The port's size increases from the end 57 that connects to the IV line's upper portion to the end 58 leading into the pressure-conduction chamber. FIG.
  • FIGS. 22-24 shows a cross-section of the inlet valve 56 . It has been found that providing an inlet portion to the pressure-conduction chamber with this shape improves the air-elimination system's ability to purge bubbles from the chamber. Using a port such as that shown in FIGS. 22-24 in conjunction with the membrane 41 of FIGS. 15-17 helps force bubbles more quickly out of the pressure-conduction chamber when attempting to purge the bubbles back through the cassette's inlet 31 to the IV source.
  • FIG. 25 shows a preferred arrangement of teeth around the circumference 29 of the control wheel 20 .
  • the teeth provide means for a gear in the control unit 10 to engage securely the control wheel's circumference—in particular, a gear that is used to prevent the free flow of fluid through the cassette when the cassette is removed from the control unit 10 .
  • the gear turns the control wheel 20 to close the stopcock-type valve 2 , thereby stopping all flow through the cassette and preventing free flow.
  • a sector 92 along the wheel's circumference is left free of teeth.
  • the valve 2 is fully closed. The lack of teeth prevents the gear from continuing to turn the wheel; thus, the wheel cannot be turned too much.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pulmonology (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A cassette for controlling the flow of IV fluid from a patient to a source. The cassette preferably includes, along the fluid passage through the cassette, first and second membrane-based valves on either side of a pressure-conduction chamber, and a stopcock-type valve. The stopcock valve is preferably located downstream of the second membrane-based valve, which is preferably located downstream of the pressure-conduction chamber. The stopcock control valve preferably has two rigid cylindrical members with complementary surfaces, wherein one member includes a tapered groove defined on its complementary surface. The two complementary surfaces define a space therebetween, instead of having an interference fit, and a resilient sealing member is disposed in this space. When the first and second rigid members are in an open position with respect to each other, the sealing member defines an aperture through which fluid communication is provided between the fluid-path portions defined respectively by the two rigid members. When the first and second rigid members are in the closed position with respect to each other, the sealing member provides a seal preventing flow between the fluid-path portions. The membrane defining the valving chamber of the second membrane-based valve is preferably large and resilient, so that the valving chamber may provide a supply of pressurized intravenous fluid to the patient, when the valve is closed and the stopcock valve provides a restriction downstream of the valve. The pressure-conduction chamber preferably has a membrane that is stable in the empty-chamber position but relatively unstable in the filled-chamber position.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present invention is a continuation of application Ser. No. 11/455,494 filed Jun. 19, 2006, which is a divisional of application Ser. No. 10/803,049 filed Mar. 16, 2004, which is a continuation of application Ser. No. 10/266,997, now U.S. Pat. No. 6,726,656 filed Oct. 8, 2002, which is a continuation of application Ser. No. 09/359,232, now U.S. Pat. No. 6,464,667 filed Jul. 22, 1999, which is a divisional of application Ser. NO. 09/137,025, now U.S. Pat. No. 6,210,361 filed Aug. 20, 1998, which is a continuation-in-part of application Ser. Nos. 08/916,890 (abandoned) and 08/917,537 (now U.S. Pat. No. 6,165,154) both of which were filed Aug. 22, 1997. All of these above referenced applications and patents are hereby incorporated herein, in their entirety, by reference.
  • TECHNICAL FIELD
  • The present invention relates to apparatus and methods for controlling flow through an intravenous line.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a cassette for controlling the flow of IV fluid from a patient to a source. The cassette preferably includes, along the fluid passage through the cassette, first and second membrane-based valves on either side of a pressure-conduction chamber, and a stopcock-type valve. The stopcock valve is preferably located downstream of the second membrane-based valve, which is preferably located downstream of the pressure-conduction chamber.
  • It is preferred to use a stopcock control valve of the type having a first rigid member (preferably cylindrical) having a first surface (preferably the cylinder's circumferential surface), and a second rigid member (also preferably cylindrical) having a second surface that complements the first surface. The first rigid member defines a first fluid-path portion with a first terminus at the first surface, and the second rigid member defining a second fluid-path portion with a second terminus at the second surface. The first terminus preferably includes a groove defined on the first surface, the groove tapering from a large cross-sectional area to a small cross-sectional area. The first and second rigid members are capable of being rotated with respect to each other from a fully open position continuously through partially open positions to a closed position.
  • In an improved version of this type of stopcock valve, according the present invention, the first and second surfaces define a space therebetween, instead of having an interference fit typical of prior-art valves. Also, the improved valve includes a resilient sealing member disposed in the space between the first and second surfaces and extending from the second surface to the first surface. The sealing member defines an aperture through which fluid communication is provided between the first and second fluid-path portions when the first and second rigid members are in an open position with respect to each other. The sealing member is sealingly mounted to the second surface so that, when the first and second rigid members are in the closed position with respect to each other, the sealing member provides a seal preventing flow between the first and second fluid-path portions. The sealing member is located with respect to the groove such that, when the first and second rigid members are in a partially open position with respect to each other, fluid flowing between the first and second fluid-path portions flows through the groove as well as the sealing member's aperture. The improved valve further includes seal means disposed with respect to the space defined by the first and second surfaces for preventing flow of fluid out of the space except through the first fluid-path portion. Preferably, the seal means includes an O-ring made of resilient material disposed around the second rigid member's circumference. It is also preferred that the sealing member and the O-ring be formed from a single integral piece of resilient material.
  • Preferably, the groove, when the first and second members are in at least one partially open position with respect to each other, extends beyond two sides of the sealing member, so that fluid can flow through the sealing member's aperture and in two different directions in the groove.
  • It is also preferred that the valve be made by molding a resilient material about and to the second rigid member so as to form an aperture sealing member about the port on the complementing surface of the second rigid member, and then assembling the first and second rigid members, which are preferably molded out of rigid material, so as to bring the complementing surfaces adjacent each other and so that the sealing member is urged against the complementing surface of the first rigid surface.
  • In a preferred version of the cassette, which is primarily made out of rigid material, the membrane for the second membrane-based valve is disposed adjacent the housing, such that the rigid housing and the membrane define a valving chamber. One passage enters the valving chamber at a first mouth located at the end of a protrusion of the rigid housing into the valving chamber towards the membrane, and the valve may prevent the flow of fluid therethrough when the membrane is forced against the first mouth, by the control unit. The control valve restricts the flow of intravenous fluid from the valving chamber to the patient, since it is located downstream of the valving chamber. The membrane defining the valving chamber is preferably large and resilient, so that the valving chamber may provide a supply of pressurized intravenous fluid to the patient, when the first mouth is sealed closed and when there is a restriction downstream of the valving chamber.
  • For the pressure-conduction chamber, a membrane is preferably disposed adjacent the rigid housing, so as to define a pressure-conduction chamber, wherein the rigid housing portion that defines the pressure-conduction chamber is generally dome-shaped. The membrane has a filled-chamber position, in which position the pressure-conduction chamber is substantially at its greatest volume, and an empty-chamber position, in which position the pressure-conduction chamber is at its smallest volume, and in which position the second membrane rests against the rigid housing and assumes the dome shape of the rigid housing. The second membrane preferably has a structure causing the membrane to be stable in the empty-chamber position but relatively unstable in the filled chamber position. The rigid housing and the second membrane in the empty-chamber position preferably define an unobstructed fluid passageway through the pressure-conduction chamber from the first to the second pressure-conduction chamber mouth. Preferably, the membrane has a structure that causes the second membrane, when its at its full-chamber position, to collapse in the region of the pressure-conduction chamber's outlet mouth before collapsing nearer the inlet mouth. This structure helps force bubbles in the fluid upward toward the inlet mouth and the IV fluid source during a bubble-purge cycle.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a top view of a cassette according to a preferred embodiment A the present invention.
  • FIGS. 2 and 3 show front and bottom views respectively of the cassette of FIG. 1.
  • FIG. 4 shows a control unit for receiving and controlling a cassette, such as the cassette of FIGS. 1-3.
  • FIG. 5 shows a cross-section of the cassette of FIGS. 1-3.
  • FIG. 6 shows a rear view of the cassette and shows the fluid paths through the cassette.
  • FIG. 7 shows a front view of the middle rigid panel of the cassette of FIGS. 1-3.
  • FIGS. 8 and 9 show side and rear views respectively of the middle panel of FIG. 7.
  • FIG. 10 shows a partial cross-section of the middle panel of FIG. 7.
  • FIG. 11 is a cross-sectional detail of the control valve of the cassette according to a preferred embodiment of the invention.
  • FIG. 12 shows a side view of an outer cylinder (a valve-seat member) having rigid and resilient elements that may be used in the control valve.
  • FIG. 13 shows a cross-sectional view of the cylinder of FIG. 12.
  • FIG. 14 depicts the relationship between the aperture of the FIG. 12 cylinder and the groove used in the control valve.
  • FIG. 15 shows a cross-sectional view of the membrane used in the pressure-conduction chamber of the present invention.
  • FIGS. 16 and 17 show front and rear views respectively of the FIG. 15 membrane.
  • FIG. 18 shows a front view of the membrane used in the valve located downstream of the pressure-conduction chamber and upstream of the control valve.
  • FIG. 19 shows a cross-section of the FIG. 18 membrane.
  • FIG. 20 is a schematic representing how the compliant membrane of FIG. 18 may be used to regulate the pressure of fluid to the patient.
  • FIG. 21 is a graph depicting the advantage of using a compliant membrane such as that shown in FIG. 18.
  • FIGS. 22 and 23 depict the preferred shape of the inlet valve to the pressure conduction chamber.
  • FIG. 24 shows a cross-sectional view of the inlet valve to the pressure conduction chamber.
  • FIG. 25 shows a preferred arrangement of teeth around the circumference of the control wheel.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • The present invention includes a cassette for use in a system for controlling the flow of IV fluid to a patient, along the lines of the cassettes disclosed in U.S. Pat. Nos. 5,088,515 and 5,195,986. A preferred embodiment of the cassette is depicted in FIGS. 1-3, which respectively depict top, front and bottom views of the cassette. The cassette is used in a control unit, such as that described in application Ser. No. 08/472,212, now U.S. Pat. No. 5,772,637, which is hereby incorporated by reference herein in its entirety, which is similar to the control unit described in U.S. Pat. No. 5,088,515, which describe the use of pressure, preferably pneumatic pressure, for controlling the actuation of valves and the urging of fluid into and out of a pressure-conduction chamber. In addition to performing the function of a pump urging fluid through the IV line, the pressure-conduction chamber can measure the amount of IV fluid being delivered to the patient as well as detect the presence of bubbles in the IV fluid in the pressure-conduction chamber. Preferred methods of detecting and eliminating air bubbles from the IV fluid are discussed in patent application Ser. Nos. 08/477,380 and 08/481,606, now U.S. Pat. Nos. 5,641,892 and 5,713,865, respectively, which are hereby incorporated by reference herein in their entirety. FIG. 4 depicts a preferred version of a control unit 10. Control unit 10, which has a user-interface panel 103 containing a key pad and a display so that the status of the IV fluid delivery may be monitored and modified by medical personnel. The cassette is slipped behind door 102, and by turning handle 101 the door is pressed against the cassette, which in turn is then pressed against the main housing of the control unit 10. The main housing 104 preferably includes mechanical means for actuating membrane-covered valves and for applying a pressure against the membrane of the pressure-conduction chamber. The main housing 104 also includes means for turning the control wheel of the cassette.
  • Referring to FIG. 2, the main components of the preferred embodiment of the cassette are a first membrane-based valve 6, a pressure-conduction chamber 50, a second membrane based valve 7 and a stopcock-type control valve 2. Valve 6 controls the flow to the pressure-conduction chamber 50 from the inlet 31 to the cassette, which is connected to an IV line, which in turn is connected to a source of IV fluid. The second membrane-based valve 7 and the control valve 2 together are used to control the flow of fluid from the pressure-conduction chamber 50 to the outlet to the cassette 33, which is connected to the IV line leading to the patient.
  • The rigid housing 15 of the cassette is made primarily from three rigid panels. A front panel 17, a middle panel 18, and a rear panel 16, all three of which can be seen in FIGS. 1 and 3. The front panel is preferably molded integrally with the outer collar 21 of the control valve 2. The wheel 20 of the control valve 2 preferably includes ribs 281 and/or teeth mounted along the circumference 29 of the knob 20. (FIG. 25 shows a preferred arrangement of teeth around the circumference 29 of the control knob 20.) The teeth and/or ribs 281 may be engaged by the main housing 104 of the control unit 10, so that the control unit 10 may change the resistance that the control valve 2 exerts on the IV fluid passing through the valve.
  • The cassette may also be used without the control unit 10. In that case, the control wheel 20 may be turned by hand. When disengaged from the control unit 10, the membrane of the pressure-conduction chamber 50 is preferably collapsed so that it rests against the rigid rear wall 50 of the pressure-conduction chamber 50. With the membrane in this collapsed state, IV fluid may still easily flow through the pressure-conduction chamber 50 through a raised portion 35 of the rear wall 59. This raised portion 35 defines a conduit 36 leading from the inlet mouth of the pressure conduction chamber 50 to the outlet mouth of the pressure conduction chamber, as can be seen in FIG. 4. FIG. 6 shows the fluid paths leading through the cassette. As noted above, fluid enters the cassette through the inlet 31, whence it flows through a fluid path to valve 6. The fluid then enters the valving chamber of valve 6 through a port 62. The outlet port 61 is preferably mounted on a protrusion so that pressure from the pressure-conduction chamber 50 is less likely to force the membrane to lift from the outlet valve 61. From valve 6 the fluid passes to the inlet mouth 56 of the pressure-conduction chamber 50. The pressure-conduction chamber is seen in the cross-sectional view of FIG. 5. A membrane 41 allows pressure from the control unit 10 to be applied to the fluid in the pressure-conduction chamber 50 without the fluid coming into contact with the control unit 10. When the membrane 41 is in its collapsed position resting against rigid wall 59, as shown in FIG. 5, fluid can still pass from inlet valve 56 through conduit 36 to the outlet valve 57. After passing through the pressure-conduction chamber 50, the fluid flows to the second membrane-based valve 7, which included an inlet mouth 73, which is mounted on a protrusion like the outlet mouth of the first membrane-based valve 6. The second membrane-based valve's inlet mouth 73 and the protrusion 72 on which it is mounted can be seen in the cross-sectional view of FIG. 5. Like the outlet mouth 61 of the first membrane-based valve, the inlet mouth 73 may be closed by the application of pressure by the control unit 10 on a membrane; the portion of the membrane 71 that closes off the inlet valve 73 can be seen in FIG. 5. After passing through the outlet mouth 76 of the second membrane-based valve, the fluid passes to the inlet 77 of the stopcock-type control valve, which inlet can be seen in both FIGS. 5 and 6. After passing through the control valve and the fluid path 78 exiting from the control valve, the fluid passes to the outlet of the cassette 33 and to the IV line leading to the patient.
  • FIG. 7 shows a front view of the rigid middle panel 18 of the cassette, and FIG. 8 shows a side view of the middle rigid panel 18. The middle rigid panel 18 defines the cassette inlet 31 and outlet 33, a circumferential portion of the pressure-conduction chamber 50, and the inlet and outlet ports 62, 73, 61 and 76, of the two membrane-based valves 6 and 7. The protrusions 63 and 72 of the ports 61 and 73 can also be seen in FIG. 7. FIG. 9 shows a rear view of the middle rigid portion shown in FIGS. 7 and 8. The ports 61, 62, 73, 76 can also be seen in FIG. 9. FIG. 10 shows a partial cross-section of the middle rigid portion. The cross-section shows the outer collar 21 of the control valve, which is integrally molded with the rest of the middle rigid portion. The outer collar 21 defines a hollow area 22′ and a fluid path 23 leading from the hollow area 22′.
  • FIG. 11 shows a cross-section of an assembled control valve 2 that may be used in a cassette according to the present invention. Just inside of the outer collar 21 is a valve-seat member 22 fixedly attached to the outer collar 21 so that the valve-seat member 22 does not rotate with respect to the rest of the cassette. The valve-seat member 22 is depicted in greater detail in FIG. 12 and in cross-section in FIG. 13. The valve-seat member 22 also defines a hollow area, which accepts the shaft 220 of the control wheel 20, so that the control wheel's shaft 220 rotates with the control wheel 20. The valve-seat member 22 is comprised mostly of rigid material, but importantly it also includes molded-over resilient material, which is used to form sealing O-rings. This resilient material forms an O-ring 26 around the base of the valve-seat member 22; the rigid portion of the base defines a passage 222, connecting the valve inlet 77 to passage 24. The resilient material 25 also provides a seal around an aperture 251 in the circumferential surface of the member 22. At the end of the member 22 opposite the inlet passage 222 is an inner O-ring 27 which forms the seal between the control wheel's shaft 220 and the valve-seat member 22. The O-ring 26 around the exterior circumference of the base provides a seal between the outer circumferential wall of the valve-seat member 22 and the inner circumferential wall of the outer collar 21. Likewise, the O-ring 25 around the circumferential port 251 may provide a seal between the outer circumferential wall of the valve-seat member 22 and the inner circumferential wall of the outer collar 21. Together, O- rings 25, 26 prevent fluid from leaking between the valve-seat member 22 and the outer collar 21. Importantly, the O-ring 25 of port 251 also provides a seal between the valve-seat member 22 and the shaft 220, so that when the valve is in the fully closed position no flow is permitted between passageway 24 of shaft 220 and the port 251 of the valve-seat member 22.
  • The advantage of this design over previous stopcock valves is that the outer diameter of the shaft 220 may be slightly less than the inner diameter of the valve-seat member 22, whereas previous stopcock valves required an interference fit between the inner and outer components. It will be appreciated that the stopcock valve of the present invention may use frusto-conical-shaped members instead of cylindrical members. The interference fit of prior-art devices created a great deal of resistance when the stopcock valves were turned. The use of O-rings in the stopcock valve of the present invention avoids the need for this interference fit and the greater torque required for turning the valve resulting from the interference fit. O-ring 27 prevents leaking from the space between the valve-seat member 22 and the shaft of the control wheel 20.
  • The valve-seat member is preferably made in a two-part molding process, wherein the rigid portion is first molded and then the softer resilient material is over-molded onto the rigid portion. Channels may be provided in the initially molded rigid portion so that the resilient material may flow to all the desired locations; this results in columns of resilient material 28 connecting the areas of resilient material through these channels. The valve-seat member 22 is preferably molded separately from the rest of the cassette, and when the cassette is assembled the valve-seat member 22 is placed in the hollow area 22′ defined by the outer collar 21 of the middle panel 18, and aligned so that aperture 251 lines up with passageway 23. (The shape of the outer diameter of the valve-seat member 22 and the inner diameter of the outer collar 21 may be complementarily shaped so that the valve-seat member must align properly with the aperture 251 and the passageway 23 lines up.) Then, the front rigid panel 17 is ultrasonically welded (along with the rear rigid panel 16) to the middle rigid panel 18, and the valve-seat member 22 is then held in place in the hollow area defined by the outer collar 21. The outer circumference of the valve-seat member 22 may be a bit smaller than the inner diameter of the outer collar 21; O- rings 25, 26 prevent fluid from flowing from the passages 77 or 23 to point 19. This design of the valve-seat member 22 avoids the need for tight tolerances in the various components of the valve 2. The control wheel's shaft 220 may be inserted into the hollow area defined by valve-seat member 22 after the rest of the valve has been assembled. The shaft 220 is held in place by a lip 161 around the inner circumference of the hollow area defined by the rear rigid panel 16
  • When the valve 2 is fully opened, the circumferential aperture 251 is lined up with the fluid passage 24 in the shaft 220. When the valve is fully closed there is no fluid communication between the aperture 251 and the fluid passage 24. The outer circumferential surface of the shaft 220 preferably includes a groove extending circumferentially around the shaft's outer circumferential wall from the terminus of the fluid passage 24 at the outer circumferential wall; the groove tapers in cross-sectional area and does not extend all the way around the outer circumference of the shaft 220. The groove provides greater control of the flow rate. FIG. 14 shows the respective locations of the groove 231, which is located on the outer circumference of the shaft 220 and the circumferential aperture 251 of the valve seat member 22. As the aperture 251 rotates to the right, in the FIG. 14 perspective, the resistance to flow increases, until the groove 231 ends and the aperture 251 loses fluid communication with the groove 231, at which point flow is completely shut off through the control valve 2. As the aperture 251 rotates to the left, in the FIG. 14 perspective, the resistance to flow decreases. Preferably, the groove 231 is longer than the diameter of the aperture 251, so that the flow rate may be controlled more finely.
  • As noted above, the cassette may be used independently of the control unit 10. When the cassette is used in this manner it is preferable that the membrane 41 rest against the rigid back 59 of the pressure-conduction chamber 50 so as to minimize the volume of the conduit 36 for fluid passing through the pressure conduction chamber 50. If the membrane 41 were too flexible and the volume of the pressure-conduction chamber 50 varied widely, medical personnel would be unable to rely on a quick visual inspection of the rate of dripping in the drip chamber to indicate a steady, desired flow rate through the IV line. Thus, it is desired that the structure of the membrane 41 be such that it tends to rest against wall 59 unless and until a sufficient pressure differential is created across the diaphragm 41. This pressure differential is preferably caused by a negative gas pressure caused by the control unit 10. Although it is desired to manufacture the diaphragm 41 so that it has some tendency to rest against wall 59, it is desired to make the diaphragm 41 so floppy in the other direction so that less pressure is required to move it from its position when the pressure-conduction chamber 50 is full, the “filled-chamber” position. It is also desired that the measurement gas provided by the control unit 10 against the outer face of the membrane 41 be at substantially the same pressure as the fluid on the inner side of the membrane 41 in the pressure-conduction chamber 50.
  • By molding the diaphragm 41 in the shape of a dome corresponding to that of the rigid wall 59, the diaphragm will have a tendency to remain in its position, as shown in FIG. 5, resting against wall 59 when the chamber 50 is at its lowest volume, the “empty-chamber” position. However, when the diaphragm 41 is molded in this way, it also tends to remain in the filled-chamber position, in other words, when the diaphragm 41 is bulging convexly outward from the cassette. The convex, filled-chamber position can be made unstable by adding additional material on the outer, usually concave surface of the diaphragm 41. This additional material 43 can be seen in the cross-section of a preferred embodiment of the diaphragm as shown in FIG. 15. The diaphragm 41 shown in FIG. 15 is molded in the position shown and has a tendency to remain in that position. When the chamber is filled with fluid, the normally concave side of the diaphragm becomes convex, and the additional material 43 is subject to an additional amount of strain since it is at the outer radius of this convex, filled-chamber position. The diaphragm 41 shown in FIG. 15 also includes an integrally molded O-ring 44 around its circumference for mounting and sealing the diaphragm 41 in the cassette. FIG. 16 shows a view of the exterior side of the diaphragm 41 of FIG. 15. This surface of the diaphragm 41 is normally concave when the diaphragm is in the empty-chamber position. The additional material 43 can be seen in the view of FIG. 16. FIG. 17 shows the interior side of the diaphragm 41 of FIG. 15. This side is normally convex when the diaphragm 41 is in the empty-chamber position. Thus, as a result of molding the diaphragm so that its inner surface has a smooth constant radius and the outer surface has additional material, which thereby interrupts the smoothness and constant radius of the rest of the outer face of the diaphragm, the diaphragm 41 has the desired tendency to remain in the empty-chamber position while being unstable in the filled-chamber position.
  • By positioning this additional material 43 near the outlet mouth 57 of the pressure-conduction chamber 50, the collapse of the diaphragm 41 from its filled-chamber can be somewhat controlled so that the diaphragm tends to collapse first and the lower portion of the pressure-conduction chamber near the outer mouth 57 before further collapsing in the upper region of the pressure conduction chamber nearer the inlet mouth 56. The cassette is preferably mounted in the control unit with a slight tilt so that the passage 36 is vertical and the inlet mouth 56 is at the very top of the chamber 50 and the outlet mouth 57 is at the very bottom of the chamber 50. This orientation permits the bubbles that may be present in the chamber 50 to gravitate towards the inlet mouth 56, which is at the top of the chamber. In a preferred method of eliminating the bubbles from the IV fluid, as described in application Ser. No. 08/481,606, now U.S. Pat. No. 5,713,865, any bubbles that are detected by the control unit in the pressure conduction chamber 50 are forced by pressure from the control unit against the external surface of the membrane 41 up to the inlet mouth 56 to the cassette inlet 31 up the IV line to the fluid source, sometimes after several purging and filling cycles. When purging the bubbles from the chamber 50 through the inlet mouth 56 it is preferred that the chamber collapse at its bottom first so that the membrane does not interfere with bubbles moving upwards through the chamber 50.
  • FIGS. 18 and 19 show a preferred membrane design for the second membrane-based valve 7. This membrane has an O-ring 78 for mounting and sealing the membrane onto the cassette (like the lip 44 on the membrane 41 for the pressure-conduction chamber, and like the circular membrane, which is not shown, for the first membrane-based valve 6). This membrane has a first portion 71, which is used to seal off the mouth 73 located on protrusion 72 (see FIG. 5). The control unit 10 exerts a pressure against this portion of the membrane 71 mechanically, in order to close off the valve. The second portion 74 of the membrane is sufficiently compliant so that when the control valve 2 is sufficiently restricting flow out of the outlet 76 of the second membrane-based valve 7 the compliant portion 74 of the membrane will expand outwardly so as to hold under pressure a volume of IV fluid. This design is desirable so that when the inlet mouth 73 is closed, because the pressure-conduction chamber needs to be refilled, the fluid stored in the valving chamber (item 75 in FIG. 5) is available to be dispensed through the control valve 2.
  • FIG. 20 shows a schematic for an electrical model of the operation of the second membrane-based valve 7 working in conjunction with the stopcock-type control valve 20. When the valve leading from the outlet 57 of the pressure-conduction chamber 50 is open, permitting flow from the pressure-conduction chamber through valve 7, and if the stopcock valve is set to provide a large amount of resistance to the flow from valve 7 to the patient, the valving chamber 75 and its corresponding membrane portion 74 can accumulate a “charge” of fluid, much like a capacitor, as shown in FIG. 20. When membrane 71 is then urged against mouth 73 closing off flow from the pressure-conduction chamber 50, the charge of fluid in the valving chamber 75 is urged by the compliant membrane 74 to continue flow through the stopcock valve 20. As fluid exists the valving chamber 75, the pressure of the fluid decreases as the compliant portion 74 of the membrane returns to its unstretched state. FIG. 21 shows a graph depicting the pressure of the IV fluid being delivered to a patient over time as outlet valve 71, 73 is closed at time t1 and reopened at t2. A solid line depicts the pressure to the patient without a compliant membrane 74 design. With a compliant membrane 74, the sharp drop off in pressure at t1 is eliminated or ameliorated. If the stopcock valve is nearly closed so that only a small trickle of fluid is allowed to flow through it the design of the compliant membrane 74 will greatly smooth out the delivery of fluid, as long as the time between t1 and t2 is not too long. When the stopcock valve 2 is fully open a sharp drop in pressure may still be expected at time t1.
  • As noted above (and as described in application Ser. No. 08/481,606, now U.S. Pat. No. 5,713,865), when an air bubble is being purged from the pressure-conduction chamber 50, it is preferably forced up through the chamber's inlet valve 56 (which in this air-elimination mode is acting as an outlet). Preferably, the inlet port 56 is shaped so that a small bubble will not tend to stick to an edge of the port while allowing liquid to flow past it. To prevent such sticking of a small bubble, the port 56 preferably flares out so that the corner where the port 56 meets the inner wall of the pressure-conduction chamber 50 is greater than 90°, making the corner less likely a place where the bubble will stick. However, the mouth of the port 56 cannot be so large that liquid can easily flow by the bubble when fluid is exiting the pressure-conduction through the port 56. In order to accomplish this, the port must be sized and shaped so that the surface tension of the IV fluid being forced upward from the pressure-conduction chamber 50 forces a bubble located at the port 56 up through the inlet valve 6. It is also preferable that the port 56 be sized and shaped so that when liquid is pulled back into the pressure-conduction chamber 50, the bubble can hover near the port as liquid passes around it. A preferred inlet port 56 shape is shown in FIGS. 22 and 23. The port's size increases from the end 57 that connects to the IV line's upper portion to the end 58 leading into the pressure-conduction chamber. FIG. 24 shows a cross-section of the inlet valve 56. It has been found that providing an inlet portion to the pressure-conduction chamber with this shape improves the air-elimination system's ability to purge bubbles from the chamber. Using a port such as that shown in FIGS. 22-24 in conjunction with the membrane 41 of FIGS. 15-17 helps force bubbles more quickly out of the pressure-conduction chamber when attempting to purge the bubbles back through the cassette's inlet 31 to the IV source.
  • FIG. 25 shows a preferred arrangement of teeth around the circumference 29 of the control wheel 20. The teeth provide means for a gear in the control unit 10 to engage securely the control wheel's circumference—in particular, a gear that is used to prevent the free flow of fluid through the cassette when the cassette is removed from the control unit 10. When the door 102 of the control unit 10 is being opened, the gear turns the control wheel 20 to close the stopcock-type valve 2, thereby stopping all flow through the cassette and preventing free flow. To ensure that the gear does not continue turning the wheel 20 one the valve 2 has been closed off entirely, a sector 92 along the wheel's circumference is left free of teeth. When the wheel 20 is turned enough so that the gear is adjacent this toothless sector 92, the valve 2 is fully closed. The lack of teeth prevents the gear from continuing to turn the wheel; thus, the wheel cannot be turned too much.
  • Although the invention has been described with reference to several preferred embodiments, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and scope of the invention, as set forth in the claims hereinbelow.

Claims (20)

1. A stopcock control valve comprising:
a first rigid member having a first surface, the first rigid member defining a first fluid-path portion with a first terminus at the first surface;
a second rigid member having a second surface, the second rigid member defining a second fluid-path portion with a second terminus at the second surface,
wherein the first terminus includes a groove defined on the first surface, the groove tapering from a large cross-sectional area to a small cross-sectional area,
wherein the first and second rigid members are capable of being rotated with respect to each other from a fully open position continuously through partially open positions to a closed position, and
wherein the first and second surfaces define a space therebetween;
an aperture in the second rigid member through which fluid communication is provided between the first and second fluid-path portions when the first and second rigid members are in the fully open position or in one of the partially open positions with respect to each other, wherein fluid flowing between the first and second fluid-path portions flows through the groove as well as the aperture; and
a sealing means disposed between the first and second surfaces to provide a seal between the first and second rigid members for preventing fluid from leaking out of the space.
2. A valve according to claim 1, wherein the groove, when the first and second members are in one of the partially open positions with respect to each other, extends beyond a diameter of the aperture.
3. A valve according to claim 1, wherein the first and second surfaces are circumferential cylindrical surfaces which may be rotated with respect to each other.
4. A valve according to claim 3, wherein the first rigid member is a cylinder and the first surface is an outer circumferential surface of the cylinder, the second rigid member defines a cylindrical hollow area for receiving the first rigid member and the second surface is an inner circumferential surface of the second rigid member.
5. A valve according to claim 4, wherein the sealing means includes an O-ring made of resilient material.
6. A valve according to claim 5, further comprising a second sealing means, wherein the second sealing means includes an O-ring made of resilient material disposed around an outer circumference of the second rigid member.
7. A valve according to claim 1, wherein the first member is connected to a control knob for rotating the first rigid member.
8. A valve according to claim 1, wherein the sealing means includes an O-ring made of resilient material.
9. A valve according to claim 1, wherein the second rigid member includes a third surface, the valve further comprising a second sealing means disposed on the third surface of the second rigid member.
10. A stopcock control valve comprising:
a first rigid member having a first surface, the first rigid member defining a first fluid-path portion with a first terminus at the first surface;
a second rigid member having a second surface, the second rigid member defining a second fluid-path portion with a second terminus at the second surface,
wherein the first terminus includes a groove defined on the first surface, the groove tapering from a large cross-sectional area to a small cross-sectional area,
wherein the first and second rigid members are capable of being rotated with respect to each other from a fully open position continuously through partially open positions to a closed position, and
wherein the first and second surfaces define a space therebetween;
an aperture in the second rigid member through which fluid communication is provided between the first and second fluid-path portions when the first and second rigid members are in the fully open position or in one of the partially open positions with respect to each other, wherein fluid flowing between the first and second fluid-path portions flows through the groove as well as the aperture; and
a seal disposed between the first and second surfaces for preventing fluid from leaking out of the space between the first and second rigid members.
11. A valve according to claim 10, wherein the groove, when the first and second members are in one of the partially open positions with respect to each other, extends beyond a diameter of the aperture.
12. A valve according to claim 10, wherein the first and second surfaces are circumferential cylindrical surfaces which may be rotated with respect to each other.
13. A valve according to claim 12, wherein the first rigid member is a cylinder and the first surface is an outer circumferential surface of the cylinder, the second rigid member defines a cylindrical hollow area for receiving the first rigid member and the second surface is an inner circumferential surface of the second rigid member.
14. A valve according to claim 13, wherein the seal includes an O-ring made of resilient material.
15. A valve according to claim 14, further comprising a second seal, wherein the second seal includes an O-ring made of resilient material disposed around an outer circumference of the second rigid member.
16. A valve according to claim 10, wherein the first member is connected to a control knob for rotating the first rigid member.
17. A valve according to claim 10, wherein the seal includes an O-ring made of resilient material.
18. A valve according to claim 10, wherein the second rigid member includes a third surface, the valve further comprising a second seal disposed on the third surface of the second rigid member.
19. A stopcock control valve comprising:
a valve seat member defining a hollow area, said valve seat member having an aperture;
a rigid member having an outer circumferential surface, wherein said outer circumferential surface having a groove defined thereon, said groove tapering from a large volume to a small volume, wherein said rigid member rotatably fits within said hollow area of said valve seat member; and
two o-rings on said valve seat member.
20. A valve according to claim 19, wherein said o-rings comprising molded-over resilient material.
US11/559,792 1997-08-22 2006-11-14 Stopcock Valve Abandoned US20070085049A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/559,792 US20070085049A1 (en) 1997-08-22 2006-11-14 Stopcock Valve
US11/851,276 US20080073610A1 (en) 1997-08-22 2007-09-06 Stopcock valve

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US91689097A 1997-08-22 1997-08-22
US08/917,537 US6165154A (en) 1995-06-07 1997-08-22 Cassette for intravenous-line flow-control system
US09/137,025 US6210361B1 (en) 1997-08-22 1998-08-20 System for delivering intravenous drugs
US09/359,232 US6464667B1 (en) 1997-08-22 1999-07-22 Method and cassette for delivering intravenous drugs
US10/266,997 US6726656B2 (en) 1997-08-22 2002-10-08 System for controlling flow through a line during intravenous drug delivery
US10/803,049 US7214210B2 (en) 1997-08-22 2004-03-16 Cassette and method for drug preparation and delivery
US11/455,494 US7798997B2 (en) 1997-08-22 2006-06-19 Cassette and method for drug preparation and delivery
US11/559,792 US20070085049A1 (en) 1997-08-22 2006-11-14 Stopcock Valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/455,494 Continuation US7798997B2 (en) 1995-06-07 2006-06-19 Cassette and method for drug preparation and delivery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/851,276 Continuation-In-Part US20080073610A1 (en) 1997-08-22 2007-09-06 Stopcock valve

Publications (1)

Publication Number Publication Date
US20070085049A1 true US20070085049A1 (en) 2007-04-19

Family

ID=25438008

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/137,025 Expired - Lifetime US6210361B1 (en) 1995-06-07 1998-08-20 System for delivering intravenous drugs
US09/359,237 Expired - Lifetime US6234997B1 (en) 1995-06-07 1999-07-22 System and method for mixing and delivering intravenous drugs
US09/359,232 Expired - Lifetime US6464667B1 (en) 1995-06-07 1999-07-22 Method and cassette for delivering intravenous drugs
US09/793,930 Abandoned US20010007932A1 (en) 1997-08-22 2001-02-27 System for controlling flow through a line during intravenous drug delivery
US10/266,997 Expired - Lifetime US6726656B2 (en) 1995-06-07 2002-10-08 System for controlling flow through a line during intravenous drug delivery
US10/803,049 Expired - Fee Related US7214210B2 (en) 1995-06-07 2004-03-16 Cassette and method for drug preparation and delivery
US11/455,494 Expired - Fee Related US7798997B2 (en) 1995-06-07 2006-06-19 Cassette and method for drug preparation and delivery
US11/559,792 Abandoned US20070085049A1 (en) 1997-08-22 2006-11-14 Stopcock Valve
US12/886,235 Expired - Fee Related US8251953B2 (en) 1995-06-07 2010-09-20 System and method for drug preparation and delivery
US13/594,374 Expired - Fee Related US8968244B2 (en) 1995-06-07 2012-08-24 System and method for drug preparation and delivery
US14/451,904 Expired - Fee Related US9408966B2 (en) 1997-08-22 2014-08-05 System and method for drug preparation and delivery

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US09/137,025 Expired - Lifetime US6210361B1 (en) 1995-06-07 1998-08-20 System for delivering intravenous drugs
US09/359,237 Expired - Lifetime US6234997B1 (en) 1995-06-07 1999-07-22 System and method for mixing and delivering intravenous drugs
US09/359,232 Expired - Lifetime US6464667B1 (en) 1995-06-07 1999-07-22 Method and cassette for delivering intravenous drugs
US09/793,930 Abandoned US20010007932A1 (en) 1997-08-22 2001-02-27 System for controlling flow through a line during intravenous drug delivery
US10/266,997 Expired - Lifetime US6726656B2 (en) 1995-06-07 2002-10-08 System for controlling flow through a line during intravenous drug delivery
US10/803,049 Expired - Fee Related US7214210B2 (en) 1995-06-07 2004-03-16 Cassette and method for drug preparation and delivery
US11/455,494 Expired - Fee Related US7798997B2 (en) 1995-06-07 2006-06-19 Cassette and method for drug preparation and delivery

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/886,235 Expired - Fee Related US8251953B2 (en) 1995-06-07 2010-09-20 System and method for drug preparation and delivery
US13/594,374 Expired - Fee Related US8968244B2 (en) 1995-06-07 2012-08-24 System and method for drug preparation and delivery
US14/451,904 Expired - Fee Related US9408966B2 (en) 1997-08-22 2014-08-05 System and method for drug preparation and delivery

Country Status (7)

Country Link
US (11) US6210361B1 (en)
EP (1) EP1003579B1 (en)
JP (4) JP4291506B2 (en)
AU (1) AU9028498A (en)
DE (1) DE69828619T2 (en)
TW (1) TW394695B (en)
WO (1) WO1999010028A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054837A1 (en) * 2006-03-06 2008-03-06 Beavis Russell H System and method for generating a drive signal
US20080073610A1 (en) * 1997-08-22 2008-03-27 Manning Casey P Stopcock valve
US20090159612A1 (en) * 2007-09-06 2009-06-25 Deka Research & Development Corp. Product dispensing system
US20090277516A1 (en) 2006-03-06 2009-11-12 Felix Winkler Product Dispensing System
US20100005903A1 (en) * 2007-09-06 2010-01-14 Deka Products Limited Partnership Product Dispensing System
WO2011106666A1 (en) 2010-02-26 2011-09-01 Deka Products Limited Partnership Rfid system with an eddy current trap
WO2013063463A1 (en) 2011-10-28 2013-05-02 Deka Products Limited Partnership Product dispensing system with pwm controlled solenoid pump
USD698019S1 (en) 2013-03-05 2014-01-21 Alcon Research, Ltd. Ophthalmic surgical cassette
WO2014159624A1 (en) 2013-03-14 2014-10-02 Deka Products Limited Partnership Product dispensing system
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US9561321B2 (en) 2011-12-08 2017-02-07 Alcon Research, Ltd. Selectively moveable valve elements for aspiration and irrigation circuits
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US11135345B2 (en) 2017-05-10 2021-10-05 Fresenius Medical Care Holdings, Inc. On demand dialysate mixing using concentrates
US11427462B2 (en) 2007-09-06 2022-08-30 Deka Products Limited Partnership Product dispensing system
US11504458B2 (en) 2018-10-17 2022-11-22 Fresenius Medical Care Holdings, Inc. Ultrasonic authentication for dialysis
US11634311B2 (en) 2007-09-06 2023-04-25 Deka Products Limited Partnership Product dispensing system
US11655806B2 (en) 2007-09-06 2023-05-23 Deka Products Limited Partnership Product dispensing system
US11661329B2 (en) 2006-03-06 2023-05-30 Deka Products Limited Partnership System and method for generating a drive signal
US11906988B2 (en) 2006-03-06 2024-02-20 Deka Products Limited Partnership Product dispensing system

Families Citing this family (314)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006446A2 (en) * 1996-08-15 1998-02-19 Deka Products Limited Partnership Medical irrigation pump and system
AU9028498A (en) * 1997-08-22 1999-03-16 Deka Products Limited Partnership System, method and cassette for mixing and delivering intravenous drugs
US6321597B1 (en) 1999-05-28 2001-11-27 Deka Products Limited Partnership System and method for measuring volume of liquid in a chamber
US6641556B1 (en) * 1999-07-06 2003-11-04 Respiratory Support Products, Inc. Intravenous fluid heating system
US6877713B1 (en) * 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
US7645258B2 (en) * 1999-12-01 2010-01-12 B. Braun Medical, Inc. Patient medication IV delivery pump with wireless communication to a hospital information management system
US6519569B1 (en) * 1999-12-01 2003-02-11 B. Braun Medical, Inc. Security infusion pump with bar code reader
US6497676B1 (en) * 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US6503062B1 (en) * 2000-07-10 2003-01-07 Deka Products Limited Partnership Method for regulating fluid pump pressure
US20040172169A1 (en) * 2001-03-02 2004-09-02 Curtis Wright Method and apparatus for compouding individualized dosege forms
US6928338B1 (en) * 2001-08-10 2005-08-09 Medtronic, Inc. Decision information system for drug delivery devices
US6983721B2 (en) 2001-10-19 2006-01-10 Hydropac/Lab Products, Inc. Method and system of providing sealed bags of fluid at the clean side of a laboratory facility
US9763425B2 (en) 2001-10-19 2017-09-19 Hydropac/Lab Products, Inc. Method and system of providing sealed bags of fluid at the clean side of a laboratory facility
EP1958501A3 (en) * 2001-10-19 2009-03-04 Hydropac/Lap Products, Inc. Fluid delivery system
US6986324B2 (en) * 2001-10-19 2006-01-17 Hydropac/Lab Products, Inc. Fluid delivery valve system and method
US7241272B2 (en) 2001-11-13 2007-07-10 Baxter International Inc. Method and composition for removing uremic toxins in dialysis processes
US20030125662A1 (en) 2002-01-03 2003-07-03 Tuan Bui Method and apparatus for providing medical treatment therapy based on calculated demand
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US6758835B2 (en) 2002-05-01 2004-07-06 Medtg, Llc Disposable needle assembly having sensors formed therein permitting the simultaneous drawing and administering of fluids and method of forming the same
US20030217957A1 (en) * 2002-05-24 2003-11-27 Bowman Joseph H. Heat seal interface for a disposable medical fluid unit
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
DE10224750A1 (en) 2002-06-04 2003-12-24 Fresenius Medical Care De Gmbh Device for the treatment of a medical fluid
US20030236489A1 (en) * 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
EP2168612A3 (en) 2002-07-19 2010-07-21 Baxter International Inc. Systems and methods for peritoneal dialysis
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
AU2003274901A1 (en) * 2002-07-19 2004-02-09 Baxter Healthcare S.A. Systems and methods for performing peritoneal dialysis
WO2004009158A2 (en) 2002-07-19 2004-01-29 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US7527608B2 (en) * 2002-08-12 2009-05-05 Lma North America, Inc. Medication infusion and aspiration system and method
US7563244B2 (en) 2002-10-31 2009-07-21 Hewlett-Packard Development Company, L.P. Device for mixing and delivering pharmaceutical compositions
EP1617888B1 (en) 2003-04-23 2019-06-12 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
US7367358B2 (en) * 2005-02-02 2008-05-06 Universal Infusion Technology, Llc Medical fluid delivery system and method relating to the same
AU2004271893B2 (en) 2003-08-28 2010-07-29 Becton, Dickinson And Company Intradermal injection device
EP1680155B2 (en) * 2003-10-28 2015-11-04 Baxter International Inc. Dialysis machine with improved integrity test
US7461968B2 (en) * 2003-10-30 2008-12-09 Deka Products Limited Partnership System, device, and method for mixing liquids
US7662139B2 (en) * 2003-10-30 2010-02-16 Deka Products Limited Partnership Pump cassette with spiking assembly
US11319944B2 (en) 2003-10-30 2022-05-03 Deka Products Limited Partnership Disposable interconnected pump cassettes having first and second pump chambers with valved inlet and outlet connections
US8158102B2 (en) * 2003-10-30 2012-04-17 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US8038639B2 (en) 2004-11-04 2011-10-18 Baxter International Inc. Medical fluid system with flexible sheeting disposable unit
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US7998106B2 (en) * 2004-05-03 2011-08-16 Thorne Jr Gale H Safety dispensing system for hazardous substances
US6997910B2 (en) * 2004-05-03 2006-02-14 Infusive Technologies, Llc Multi-chamber, sequential dose dispensing syringe
US7608059B2 (en) * 2004-05-25 2009-10-27 Covidien Ag Flow control apparatus
US20050277883A1 (en) * 2004-05-26 2005-12-15 Kriesel Marshall S Fluid delivery device
WO2006014425A1 (en) 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
US7935081B2 (en) * 2004-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Drug delivery cassette and a medical effector system
US7575567B2 (en) * 2005-01-31 2009-08-18 Simpkins Dale H Multiple medication IV pump
US20060195064A1 (en) * 2005-02-28 2006-08-31 Fresenius Medical Care Holdings, Inc. Portable apparatus for peritoneal dialysis therapy
US7935074B2 (en) * 2005-02-28 2011-05-03 Fresenius Medical Care Holdings, Inc. Cassette system for peritoneal dialysis machine
US8197231B2 (en) 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
EP1993633B1 (en) * 2006-02-09 2016-11-09 Deka Products Limited Partnership Pumping fluid delivery systems and methods using force application assembly
US10010686B2 (en) * 2006-02-27 2018-07-03 Ivenix, Inc. Fluid control system and disposable assembly
US7975721B2 (en) * 2006-03-30 2011-07-12 John Hiebert Fluid valve systems
WO2007115039A2 (en) 2006-03-30 2007-10-11 Valeritas, Llc Multi-cartridge fluid delivery device
US20140199193A1 (en) 2007-02-27 2014-07-17 Deka Products Limited Partnership Blood treatment systems and methods
WO2007120812A2 (en) 2006-04-14 2007-10-25 Deka Products Limited Partnership Systems, devices and methods for fluid pumping, heat exchange, thermal sensing, and conductivity sensing
US7967022B2 (en) 2007-02-27 2011-06-28 Deka Products Limited Partnership Cassette system integrated apparatus
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
US8366316B2 (en) 2006-04-14 2013-02-05 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8870811B2 (en) * 2006-08-31 2014-10-28 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related methods
US8926550B2 (en) * 2006-08-31 2015-01-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US9121509B2 (en) 2006-09-26 2015-09-01 Novartis Ag Valve that is normally closed in the free state
US7462168B2 (en) 2007-01-23 2008-12-09 Becton, Dickinson And Company Safety pen needle with passive safety shield system
US7998115B2 (en) 2007-02-15 2011-08-16 Baxter International Inc. Dialysis system having optical flowrate detection
US8870812B2 (en) 2007-02-15 2014-10-28 Baxter International Inc. Dialysis system having video display with ambient light adjustment
US8558964B2 (en) 2007-02-15 2013-10-15 Baxter International Inc. Dialysis system having display with electromagnetic compliance (“EMC”) seal
US8361023B2 (en) 2007-02-15 2013-01-29 Baxter International Inc. Dialysis system with efficient battery back-up
US7731689B2 (en) 2007-02-15 2010-06-08 Baxter International Inc. Dialysis system having inductive heating
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US20090107335A1 (en) 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
KR101964364B1 (en) 2007-02-27 2019-04-01 데카 프로덕츠 리미티드 파트너쉽 Hemodialysis system
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
AU2016203233C1 (en) * 2007-02-27 2020-07-02 Deka Products Limited Partnership Cassette system integrated apparatus
WO2008106452A1 (en) 2007-02-27 2008-09-04 Deka Products Limited Partnership Peritoneal dialysis sensor apparatus systems, devices and methods
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US10463774B2 (en) 2007-02-27 2019-11-05 Deka Products Limited Partnership Control systems and methods for blood or fluid handling medical devices
FR2915105A1 (en) 2007-04-19 2008-10-24 Gambro Lundia Ab MEDICAL FLUID TREATMENT APPARATUS AND METHOD FOR PREPARING MEDICAL FLUID TREATMENT APPARATUS.
US20080275668A1 (en) * 2007-05-02 2008-11-06 General Electric Company Apparatus and method for fully automated closed system optical measurement of volume
US7610157B2 (en) * 2007-05-02 2009-10-27 General Electric Company Apparatus and method for fully automated closed system pH measurement
US7519492B2 (en) * 2007-05-02 2009-04-14 General Electric Company Apparatus and method for fully automated closed system quality control of a substance
US8876765B2 (en) * 2007-05-16 2014-11-04 Smiths Medical Asd, Inc. Pump module for use in a medical fluid dispensing system
WO2008150776A2 (en) * 2007-05-29 2008-12-11 Fresenius Medical Care Holdings, Inc. Solutions, dialysates, and related methods
EP2175999B1 (en) 2007-06-21 2017-01-04 Gen-Probe Incorporated Receptacles for use in performing processes
US7909795B2 (en) 2007-07-05 2011-03-22 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US8715235B2 (en) 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US8057423B2 (en) 2007-07-05 2011-11-15 Baxter International Inc. Dialysis system having disposable cassette
US7736328B2 (en) 2007-07-05 2010-06-15 Baxter International Inc. Dialysis system having supply container autoconnection
US8496609B2 (en) 2007-07-05 2013-07-30 Baxter International Inc. Fluid delivery system with spiked cassette
US7955295B2 (en) 2007-07-05 2011-06-07 Baxter International Inc. Fluid delivery system with autoconnect features
US8057437B2 (en) * 2007-08-31 2011-11-15 Hospira, Inc. Radially sealing vavle for an infusion set
US7892197B2 (en) * 2007-09-19 2011-02-22 Fresenius Medical Care Holdings, Inc. Automatic prime of an extracorporeal blood circuit
US8863772B2 (en) 2008-08-27 2014-10-21 Deka Products Limited Partnership Occluder for a medical infusion system
BRPI0818056B8 (en) * 2007-10-12 2021-06-22 Deka Products Lp device and methods for hemodialysis
US8771508B2 (en) * 2008-08-27 2014-07-08 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
EP2246080B1 (en) * 2007-10-12 2016-02-10 DEKA Products Limited Partnership An extracorporeal blood flow system
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
JP5695908B2 (en) 2007-12-10 2015-04-08 バイエル メディカル ケア インコーポレーテッド Continuous fluid transport system and fluid transport method
US9044542B2 (en) 2007-12-21 2015-06-02 Carticept Medical, Inc. Imaging-guided anesthesia injection systems and methods
US8545440B2 (en) * 2007-12-21 2013-10-01 Carticept Medical, Inc. Injection system for delivering multiple fluids within the anatomy
WO2009086182A1 (en) * 2007-12-21 2009-07-09 Carticept Medical, Inc. Articular injection system
US9078971B2 (en) 2008-01-23 2015-07-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11833281B2 (en) 2008-01-23 2023-12-05 Deka Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
EP3761316B1 (en) * 2008-01-23 2022-12-07 DEKA Products Limited Partnership Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US11975128B2 (en) 2008-01-23 2024-05-07 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US11738130B2 (en) 2008-01-23 2023-08-29 Deka Products Limited Partnership Fluid line autoconnect apparatus and methods for medical treatment system
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US20090246035A1 (en) * 2008-03-28 2009-10-01 Smiths Medical Asd, Inc. Pump Module Fluidically Isolated Displacement Device
US20090318893A1 (en) * 2008-06-23 2009-12-24 English Mary L Reconstitution and administration of medication apparatus and method
US8062513B2 (en) 2008-07-09 2011-11-22 Baxter International Inc. Dialysis system and machine having therapy prescription recall
US8168063B2 (en) 2008-07-09 2012-05-01 Baxter International Inc. Dialysis system having filtering method for determining therapy prescriptions
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US7981281B2 (en) * 2008-07-09 2011-07-19 Baxter International, Inc. Dialysis system having regimen generation methodology
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US20100022953A1 (en) * 2008-07-24 2010-01-28 Walter John Bochenko Medication delivery devices having penetrable sterility barriers and alignment features
US20100204659A1 (en) * 2008-07-24 2010-08-12 The Regents Of The University Of California Medication delivery system
US10265454B2 (en) 2008-07-25 2019-04-23 Baxter International Inc. Dialysis system with flow regulation device
US20100051552A1 (en) 2008-08-28 2010-03-04 Baxter International Inc. In-line sensors for dialysis applications
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
EP2334234A4 (en) 2008-09-19 2013-03-20 Tandem Diabetes Care Inc Solute concentration measurement device and related methods
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
DE102008056300A1 (en) * 2008-11-07 2010-06-02 Sartorius Ag Dosing system and method for dosing a medium
DK2198778T3 (en) * 2008-12-19 2013-10-14 Hoffmann La Roche Infusion apparatus with impedance measurement
US8192401B2 (en) 2009-03-20 2012-06-05 Fresenius Medical Care Holdings, Inc. Medical fluid pump systems and related components and methods
WO2010121285A1 (en) * 2009-04-23 2010-10-28 Michael James Stanbrook Dosing
KR101715421B1 (en) 2009-05-04 2017-03-10 발레리타스 인코포레이티드 Fluid transfer device
US8282829B2 (en) 2009-05-20 2012-10-09 Baxter International Inc. System and method for automated data collection of twenty-four hour ultrafiltration and other patient parameters using wired or wireless technology
US8545458B2 (en) * 2009-06-25 2013-10-01 Nestec S.A. Pinch clamp assembly for an infusion cassette
WO2011002853A2 (en) 2009-07-01 2011-01-06 Fresenius Medical Care Holdings, Inc. Drug delivery devices and related systems and methods
US8926551B2 (en) * 2009-07-07 2015-01-06 Baxter Healthcare Inc. Peritoneal dialysis therapy with large dialysis solution volumes
CA2767668C (en) 2009-07-15 2017-03-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
WO2011014525A2 (en) 2009-07-29 2011-02-03 Icu Medical, Inc. Fluid transfer devices and methods of use
EP2932994B1 (en) 2009-07-30 2017-11-08 Tandem Diabetes Care, Inc. New o-ring seal, and delivery mechanism and portable infusion pump system related thereto
US8720913B2 (en) 2009-08-11 2014-05-13 Fresenius Medical Care Holdings, Inc. Portable peritoneal dialysis carts and related systems
CN104841030B (en) 2009-10-30 2017-10-31 德卡产品有限公司 For the apparatus and method for the disconnection for detecting intravascular access device
US9039655B2 (en) 2009-11-06 2015-05-26 Crisi Medical Systems, Inc. Medication injection site and data collection system
US8197438B2 (en) * 2009-12-23 2012-06-12 Roche Diagnostics Operations, Inc. Medicinal fluid delivery systems and methods for priming the same
US11164672B2 (en) 2010-01-22 2021-11-02 Deka Products Limited Partnership System and apparatus for electronic patient care
US11881307B2 (en) 2012-05-24 2024-01-23 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US9295778B2 (en) 2011-12-21 2016-03-29 Deka Products Limited Partnership Syringe pump
US11227687B2 (en) 2010-01-22 2022-01-18 Deka Products Limited Partnership System, method, and apparatus for communicating data
US9677555B2 (en) 2011-12-21 2017-06-13 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
US9789247B2 (en) 2011-12-21 2017-10-17 Deka Products Limited Partnership Syringe pump, and related method and system
US9151646B2 (en) 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US20110313789A1 (en) 2010-01-22 2011-12-22 Deka Products Limited Partnership Electronic patient monitoring system
US9759369B2 (en) 2011-12-21 2017-09-12 Deka Products Limited Partnership System, method, and apparatus for clamping
US11244745B2 (en) 2010-01-22 2022-02-08 Deka Products Limited Partnership Computer-implemented method, system, and apparatus for electronic patient care
US9400873B2 (en) 2011-12-21 2016-07-26 Deka Products Limited Partnership System, method, and apparatus for dispensing oral medications
US9744300B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Syringe pump and related method
US10044791B2 (en) 2010-01-22 2018-08-07 Deka Products Limited Partnership System, method, and apparatus for communicating data
US11210611B2 (en) 2011-12-21 2021-12-28 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US9518958B2 (en) 2012-12-18 2016-12-13 Deka Products Limited Partnership System, method, and apparatus for detecting air in a fluid line using active rectification
US10453157B2 (en) 2010-01-22 2019-10-22 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US9636455B2 (en) 2011-12-21 2017-05-02 Deka Products Limited Partnership System, method, and apparatus for estimating liquid delivery
US9808572B2 (en) 2010-01-22 2017-11-07 Deka Products Limited Partnership System, method and apparatus for clamping
US9488200B2 (en) 2010-01-22 2016-11-08 Deka Products Limited Partnership System, method, and apparatus for clamping
US10911515B2 (en) 2012-05-24 2021-02-02 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US9101534B2 (en) 2010-04-27 2015-08-11 Crisi Medical Systems, Inc. Medication and identification information transfer apparatus
FR2959122B1 (en) * 2010-04-27 2012-06-01 Doran Internat SYSTEM FOR PREPARING AND / OR ADMINISTERING MEDICAL TREATMENT FLUIDS
US9514131B1 (en) 2010-05-30 2016-12-06 Crisi Medical Systems, Inc. Medication container encoding, verification, and identification
US10492991B2 (en) 2010-05-30 2019-12-03 Crisi Medical Systems, Inc. Medication container encoding, verification, and identification
SG10201505334YA (en) 2010-07-07 2015-08-28 Deka Products Lp Medical Treatment System And Methods Using A Plurality Of Fluid Lines
DE102010053973A1 (en) 2010-12-09 2012-06-14 Fresenius Medical Care Deutschland Gmbh Medical device with a heater
EP2654825B1 (en) 2010-12-20 2017-08-02 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
WO2012106174A1 (en) 2011-01-31 2012-08-09 Fresenius Medical Care Holdings, Inc. Preventing over-delivery of drug
CN106902406B (en) 2011-02-08 2019-11-08 弗雷塞尼斯医疗保健控股公司 Magnetic sensor and related system and method
WO2012109678A2 (en) * 2011-02-13 2012-08-16 The Regents Of The University Of California Fluid delivery system
US9624915B2 (en) 2011-03-09 2017-04-18 Fresenius Medical Care Holdings, Inc. Medical fluid delivery sets and related systems and methods
AU2012254069B2 (en) 2011-04-21 2015-10-08 Fresenius Medical Care Holdings, Inc. Medical fluid pumping systems and related devices and methods
EP3263150A1 (en) 2011-05-24 2018-01-03 DEKA Products Limited Partnership Blood treatment systems and methods
US9724458B2 (en) 2011-05-24 2017-08-08 Deka Products Limited Partnership Hemodialysis system
US9078809B2 (en) 2011-06-16 2015-07-14 Crisi Medical Systems, Inc. Medication dose preparation and transfer system
US9744298B2 (en) 2011-06-22 2017-08-29 Crisi Medical Systems, Inc. Selectively controlling fluid flow through a fluid pathway
US10293107B2 (en) 2011-06-22 2019-05-21 Crisi Medical Systems, Inc. Selectively Controlling fluid flow through a fluid pathway
CN103006436B (en) * 2011-09-23 2016-06-29 深圳市卫邦科技有限公司 A kind of automated dispensing machine people's system and method
US9186449B2 (en) 2011-11-01 2015-11-17 Fresenius Medical Care Holdings, Inc. Dialysis machine support assemblies and related systems and methods
AU2012327182B2 (en) 2011-11-04 2015-11-12 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US9746093B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter and related system and apparatus
US10082241B2 (en) 2011-12-21 2018-09-25 Deka Products Limited Partnership System, method, and apparatus for clamping
US9746094B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter having a background pattern with first and second portions
US9675756B2 (en) 2011-12-21 2017-06-13 Deka Products Limited Partnership Apparatus for infusing fluid
US9435455B2 (en) 2011-12-21 2016-09-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10228683B2 (en) 2011-12-21 2019-03-12 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9372486B2 (en) 2011-12-21 2016-06-21 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10655779B2 (en) 2011-12-21 2020-05-19 Deka Products Limited Partnership System, method, and apparatus for clamping
US11295846B2 (en) 2011-12-21 2022-04-05 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
US11649924B2 (en) 2011-12-21 2023-05-16 Deka Products Limited Partnership System, method, and apparatus for clamping
US11217340B2 (en) 2011-12-21 2022-01-04 Deka Products Limited Partnership Syringe pump having a pressure sensor assembly
US10488848B2 (en) 2011-12-21 2019-11-26 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10563681B2 (en) 2011-12-21 2020-02-18 Deka Products Limited Partnership System, method, and apparatus for clamping
US10722645B2 (en) 2011-12-21 2020-07-28 Deka Products Limited Partnership Syringe pump, and related method and system
US9724467B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
KR102481494B1 (en) 2011-12-22 2022-12-26 아이씨유 메디칼 인코퍼레이티드 A medical fluid transfer system, a fluid transfer method, an electronic medical fluid transfer system, and a method of using an electronic medical fluid transfer system
EP2822526B1 (en) * 2012-03-09 2017-01-18 Sensile Pat AG Drug reconstitution system
US9144646B2 (en) 2012-04-25 2015-09-29 Fresenius Medical Care Holdings, Inc. Vial spiking devices and related assemblies and methods
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9610392B2 (en) 2012-06-08 2017-04-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9500188B2 (en) 2012-06-11 2016-11-22 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
KR101623326B1 (en) 2012-10-26 2016-05-20 백스터 코포레이션 잉글우드 Improved work station for medical dose preparation system
EP3779876A1 (en) 2012-10-26 2021-02-17 Baxter Corporation Englewood Improved image acquisition for medical dose preparation system
US9468713B2 (en) 2012-10-30 2016-10-18 Hospira, Inc. Apparatus and method of mitigating free flow in a fluid administration set
US9759343B2 (en) 2012-12-21 2017-09-12 Deka Products Limited Partnership Flow meter using a dynamic background image
US9855386B2 (en) 2012-12-31 2018-01-02 Medtg, Llc Infusion and blood collection device and method
USD744095S1 (en) * 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
US10143830B2 (en) 2013-03-13 2018-12-04 Crisi Medical Systems, Inc. Injection site information cap
US9561323B2 (en) 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9713664B2 (en) 2013-03-15 2017-07-25 Fresenius Medical Care Holdings, Inc. Nuclear magnetic resonance module for a dialysis machine
US9421329B2 (en) 2013-03-15 2016-08-23 Tandem Diabetes Care, Inc. Infusion device occlusion detection system
US9433718B2 (en) 2013-03-15 2016-09-06 Fresenius Medical Care Holdings, Inc. Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device
US9566377B2 (en) 2013-03-15 2017-02-14 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field
US9597439B2 (en) 2013-03-15 2017-03-21 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field
US9772386B2 (en) 2013-03-15 2017-09-26 Fresenius Medical Care Holdings, Inc. Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies
USD735319S1 (en) 2013-06-11 2015-07-28 Deka Products Limited Partnership Medical pump
USD736370S1 (en) 2013-06-11 2015-08-11 Deka Products Limited Partnership Medical pump
US9714650B2 (en) 2013-06-11 2017-07-25 Matthew G. Morris, Jr. Pumping system
USD767756S1 (en) 2013-06-11 2016-09-27 Deka Products Limited Partnership Medical pump
US9719964B2 (en) 2013-07-31 2017-08-01 Deka Products Limited Partnership System, method, and apparatus for bubble detection in a fluid line using a split-ring resonator
US10117985B2 (en) 2013-08-21 2018-11-06 Fresenius Medical Care Holdings, Inc. Determining a volume of medical fluid pumped into or out of a medical fluid cassette
USD752209S1 (en) 2013-11-06 2016-03-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD751690S1 (en) 2013-11-06 2016-03-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD749206S1 (en) 2013-11-06 2016-02-09 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD745661S1 (en) 2013-11-06 2015-12-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD751689S1 (en) 2013-11-06 2016-03-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US20150133861A1 (en) 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
EP3073982B1 (en) 2013-11-25 2020-04-08 ICU Medical, Inc. Methods and system for filling iv bags with therapeutic fluid
USD760288S1 (en) 2013-12-20 2016-06-28 Deka Products Limited Partnership Medical pump display screen with transitional graphical user interface
USD760289S1 (en) 2013-12-20 2016-06-28 Deka Products Limited Partnership Display screen of a syringe pump with a graphical user interface
USD768716S1 (en) 2013-12-20 2016-10-11 Deka Products Limited Partnership Display screen of a medical pump with a graphical user interface
USD756386S1 (en) 2013-12-20 2016-05-17 Deka Products Limited Partnership Display screen with graphical user interface
USD758399S1 (en) 2013-12-20 2016-06-07 Deka Products Limited Partnership Display screen with graphical user interface
USD760782S1 (en) 2013-12-20 2016-07-05 Deka Products Limited Partnership Display screen of a medical pump with a graphical user interface
JP6382989B2 (en) 2014-01-06 2018-08-29 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device with tear resistant flexible circuit assembly
WO2015127189A1 (en) 2014-02-21 2015-08-27 Deka Products Limited Partnership Syringe pump having a pressure sensor assembly
US9730731B2 (en) 2014-02-27 2017-08-15 Deka Products Limited Partnership Craniofacial external distraction apparatus
US9364394B2 (en) 2014-03-14 2016-06-14 Deka Products Limited Partnership Compounder apparatus
US10286135B2 (en) 2014-03-28 2019-05-14 Fresenius Medical Care Holdings, Inc. Measuring conductivity of a medical fluid
EP4424339A1 (en) 2014-06-05 2024-09-04 DEKA Products Limited Partnership Medical treatment system and method using a plurality of fluid lines
AU2015284368A1 (en) 2014-06-30 2017-01-12 Baxter Corporation Englewood Managed medical information exchange
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
CA2959086C (en) 2014-09-18 2023-11-14 Deka Products Limited Partnership Apparatus and method for infusing fluid through a tube by appropriately heating the tube
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
US9505233B2 (en) 2014-10-10 2016-11-29 Becton, Dickinson And Company Tensioning control device
BR112017006951B1 (en) 2014-10-10 2022-06-14 Becton, Dickinson And Company SYRINGE LABELING DEVICE
SG11201704359VA (en) 2014-12-05 2017-06-29 Baxter Corp Englewood Dose preparation data analytics
CN107429206A (en) * 2015-01-30 2017-12-01 安海斯-布希英博股份有限公司 Method for preparing beverage from basal liquid and component, equipment and system
US20160222331A1 (en) 2015-01-30 2016-08-04 Anheuser-Busch Inbev S.A. Pressurized beverage concentrates and appliances and methods for producing beverages therefrom
USD754065S1 (en) 2015-02-10 2016-04-19 Deka Products Limited Partnership AC-to-DC power supply
USD774645S1 (en) 2015-02-10 2016-12-20 Deka Products Limited Partnership Clamp
USD805183S1 (en) 2015-02-10 2017-12-12 Deka Products Limited Partnership Medical pump
USD792963S1 (en) 2015-02-10 2017-07-25 Deka Products Limited Partnership Bumper for a medical pump
USD803386S1 (en) 2015-02-10 2017-11-21 Deka Products Limited Partnership Syringe medical pump
USD801519S1 (en) 2015-02-10 2017-10-31 Deka Products Limited Partnership Peristaltic medical pump
USD803387S1 (en) 2015-02-10 2017-11-21 Deka Products Limited Partnership Syringe medical pump
EP3800610A1 (en) 2015-03-03 2021-04-07 Baxter Corporation Englewood Pharmacy workflow management with integrated alerts
US11357966B2 (en) 2015-04-23 2022-06-14 B. Braun Medical Inc. Compounding device, system, kit, software, and method
ES2809505T3 (en) 2015-05-26 2021-03-04 Icu Medical Inc Disposable infusion fluid delivery device for programmable delivery of high volume drugs
US10478261B2 (en) 2015-05-29 2019-11-19 Deka Products Limited Partnership System, method, and apparatus for remote patient care
EP3607930A3 (en) * 2015-06-04 2020-04-15 B. Braun Medical Inc. Compounding device, system, kit, software and method
CN105125404B (en) * 2015-06-17 2018-08-31 苏州艾隆科技股份有限公司 Machine is matched in semi-automatic medication punching
TWI705811B (en) 2015-06-19 2020-10-01 美商巴克斯歐塔公司 Pooling device for single or multiple medical containers
CN116206744A (en) 2015-06-25 2023-06-02 甘布罗伦迪亚股份公司 Medical device systems and methods with distributed databases
EP4026893A3 (en) 2015-10-09 2022-09-28 DEKA Products Limited Partnership Fluid pumping and bioreactor system
CN105342849B (en) * 2015-10-09 2018-07-06 步建设 Western medicine medicament integrates tuner
EP3383343A4 (en) 2015-12-04 2019-07-10 ICU Medical, Inc. Systems methods and components for transferring medical fluids
JP6923525B2 (en) * 2015-12-04 2021-08-18 ケアフュージョン 303、インコーポレイテッド Carousel for automatic drug formulator
WO2017095666A1 (en) * 2015-12-04 2017-06-08 Carefusion 303, Inc. Tube management structures for automatic drug compounder
CN108472197B (en) * 2015-12-04 2021-06-15 康尔福盛303公司 Disposable cartridge for an automatic drug dispenser
USD905848S1 (en) 2016-01-28 2020-12-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
MX2018009239A (en) 2016-01-28 2019-02-07 Deka Products Lp Apparatus for monitoring, regulating, or controlling fluid flow.
AU2017261338A1 (en) 2016-05-06 2018-12-13 Gambro Lundia Ab Systems and methods for peritoneal dialysis having point of use dialysis fluid preparation including testing thereof
USD854145S1 (en) 2016-05-25 2019-07-16 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD851745S1 (en) 2016-07-19 2019-06-18 Icu Medical, Inc. Medical fluid transfer system
WO2018022640A1 (en) 2016-07-25 2018-02-01 Icu Medical, Inc. Systems, methods, and components for trapping air bubbles in medical fluid transfer modules and systems
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
KR102476516B1 (en) 2016-12-21 2022-12-09 감브로 룬디아 아베 A medical device system that includes an information technology infrastructure with secure cluster domains supporting external domains.
EP3248632A1 (en) * 2017-03-17 2017-11-29 Citros VOF Device for storage and reconstitution of a substance for administration to a subject
JP2020512086A (en) * 2017-03-24 2020-04-23 ケアフュージョン 303、インコーポレイテッド Dry disconnect cartridges and dual lumen needles for automated drug dispensers
CN110662523B (en) 2017-03-24 2021-11-23 康尔福盛303公司 Syringe pump for automatic drug compounding machine
US11045353B2 (en) * 2017-05-24 2021-06-29 Alcon Inc. Ophthalmic surgical system with infusion fluid and substance delivery through an infusion cannula
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
WO2019191181A1 (en) * 2018-03-27 2019-10-03 Baylor Research Institute Peristaltic pump nerve block injection system and related methods
BR112020019993A2 (en) 2018-03-30 2021-01-26 Deka Products Limited Partnership liquid pumping cassettes and associated pressure distribution manifold and related methods
US11965766B2 (en) 2018-04-17 2024-04-23 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
USD917045S1 (en) 2018-08-16 2021-04-20 Deka Products Limited Partnership Slide clamp
JP7047185B2 (en) 2018-08-16 2022-04-04 デカ・プロダクツ・リミテッド・パートナーシップ Medical pump
US11543037B2 (en) * 2018-08-30 2023-01-03 SFC Fluidics, Inc. Metastable state of dual latching valves
US11903900B2 (en) 2018-10-03 2024-02-20 Takeda Pharmaceutical Company Limited Packaging for multiple containers
KR20210093937A (en) * 2018-11-23 2021-07-28 에이락시아 에스아에스 Ingredient mixing device and ingredient mixing method
US20200254173A1 (en) * 2019-02-12 2020-08-13 Amgen Inc. Take-home drug delivery system
WO2020191156A1 (en) 2019-03-19 2020-09-24 Deka Products Limited Partnership Medical treatment systems, methods, and apparatuses using a plurality of fluid lines
USD964563S1 (en) 2019-07-26 2022-09-20 Deka Products Limited Partnership Medical flow clamp
US11839741B2 (en) 2019-07-26 2023-12-12 Deka Products Limited Partneship Apparatus for monitoring, regulating, or controlling fluid flow
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
EP4064989A4 (en) 2019-11-26 2023-12-06 Medtg LLC Infusion and blood collection devices and methods
CN110975053B (en) * 2019-12-20 2021-07-13 厦门华厦学院 Automatic replacing device for intravenous injection
EP4114337A4 (en) * 2020-03-05 2024-04-17 Takeda Pharmaceutical Company Limited Medicinal fluid delivery device
EP3881875A1 (en) * 2020-03-20 2021-09-22 Littringer, Eva Delivery device for delivering a drug
US11590057B2 (en) 2020-04-03 2023-02-28 Icu Medical, Inc. Systems, methods, and components for transferring medical fluids
JP2022062879A (en) * 2020-10-09 2022-04-21 藤森工業株式会社 Pharmaceutical dispenser apparatus
CN112076362B (en) * 2020-10-17 2021-11-16 吉林大学 Continuous infusion bag mixes medicine device
USD1002837S1 (en) 2021-03-05 2023-10-24 Takeda Pharmaceutical Company Limited Medicament access device
WO2022261543A2 (en) * 2021-06-11 2022-12-15 Bristol-Myers Squibb Company Drug cartridge, drug delivery device, and methods for preparing thereof
CN116983504A (en) * 2022-04-26 2023-11-03 深圳硅基传感科技有限公司 Medical device and medical system for delivering fluids
CN116942960A (en) * 2022-04-26 2023-10-27 深圳硅基传感科技有限公司 Flow restricting structure with interlocking mechanism

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722858A (en) * 1969-12-29 1973-03-27 Norio Nomura Flow regulating device
US3727882A (en) * 1971-08-19 1973-04-17 G Burris Metering valve
US4667927A (en) * 1985-11-08 1987-05-26 Rao Medical Devices, Inc. Liquid flow metering device
US4802506A (en) * 1984-07-13 1989-02-07 Aslanian Jerry L Flow control device for administration of intravenous fluids
US4807660A (en) * 1984-07-13 1989-02-28 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5005604A (en) * 1984-07-13 1991-04-09 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5113904A (en) * 1984-07-13 1992-05-19 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5755683A (en) * 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
US6165154A (en) * 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6364857B1 (en) * 1995-06-07 2002-04-02 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6709417B1 (en) * 1995-06-07 2004-03-23 Deka Products Limited Partnership Valve for intravenous-line flow-control system

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58977C (en) A. VOSS in Kopenhagen, Rolighedsvej 4 Tap with sealing edge of the outlet opening and surrounding packing
BE535179A (en) 1955-01-26 1955-02-15
US1792906A (en) 1927-08-16 1931-02-17 Henry C Heilos Valve
US2526017A (en) 1946-10-18 1950-10-17 Motor Wheel Corp Valve
US2902253A (en) 1956-10-18 1959-09-01 George D Page Rotary plug valve
US3540694A (en) 1968-01-05 1970-11-17 Cornelius Co Dispensing valve assembly
US3570486A (en) * 1968-10-14 1971-03-16 Horizon Ind Ltd Mixing syringe
AU451636B2 (en) 1971-05-27 1974-08-15 Stanadyne Inc. Seal construction
US4042153A (en) 1973-03-14 1977-08-16 Standard Oil Company Liquid dropping device
FR2340491A1 (en) 1976-02-05 1977-09-02 Marti Puig Juan Tap seal for liquids or gases - uses plastics sleeve compressed by external nut to take up wear
US4085747A (en) 1976-12-13 1978-04-25 Milstein Medical Research Foundation, Inc. Infusion pumps and dosage control means therefor
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4277226A (en) 1979-03-09 1981-07-07 Avi, Inc. IV Pump with empty supply reservoir and occlusion detector
US4236880A (en) 1979-03-09 1980-12-02 Archibald Development Labs, Inc. Nonpulsating IV pump and disposable pump chamber
US4619653A (en) 1979-04-27 1986-10-28 The Johns Hopkins University Apparatus for detecting at least one predetermined condition and providing an informational signal in response thereto in a medication infusion system
US4731051A (en) 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4573994A (en) 1979-04-27 1986-03-04 The Johns Hopkins University Refillable medication infusion apparatus
GB2174218B (en) 1979-04-27 1987-09-03 Univ Johns Hopkins Programmable infusion system for medication
US4373527B1 (en) 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4230300A (en) 1979-06-11 1980-10-28 Mary Louise Wiltse Flow metering and shut-off valve
US4303376A (en) 1979-07-09 1981-12-01 Baxter Travenol Laboratories, Inc. Flow metering cassette and controller
US4313439A (en) 1980-03-24 1982-02-02 Biotek, Inc. Automated, spring-powered medicament infusion system
US4784645A (en) 1982-11-04 1988-11-15 The Johns Hopkins University Apparatus for detecting a condition of a medication infusion system and providing an informational signal in response thereto
US4820269A (en) * 1983-03-07 1989-04-11 Vanderbilt University Mixer apparatus for controlling intravenous drug infusion
DE3314664C2 (en) 1983-04-22 1985-02-21 B. Braun Melsungen Ag, 3508 Melsungen Procedure for triggering a pre-alarm in a pressure infusion apparatus
US4534764A (en) 1983-07-25 1985-08-13 Trimedyne, Inc. Sequential medication delivery device
CA1257165A (en) * 1984-02-08 1989-07-11 Paul Epstein Infusion system having plural fluid input ports and at least one patient output port
IT1173370B (en) 1984-02-24 1987-06-24 Erba Farmitalia SAFETY DEVICE TO CONNECT A SYRINGE TO THE MOUTH OF A BOTTLE CONTAINING A DRUG OR A TUBE FOR DISPENSING THE SYRINGE DRUG
US4741732A (en) 1984-05-10 1988-05-03 The University Of Melbourne Open-loop control of drug infusion
US4759756A (en) * 1984-09-14 1988-07-26 Baxter Travenol Laboratories, Inc. Reconstitution device
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
EP0182502B1 (en) 1984-10-19 1991-02-06 Pharmacia Deltec, Inc. Drug delivery system
US4650469A (en) 1984-10-19 1987-03-17 Deltec Systems, Inc. Drug delivery system
US4703775A (en) 1985-09-16 1987-11-03 Abbott Laboratories Liquid flow regulator
US4648868A (en) 1985-09-30 1987-03-10 American Hospital Supply Corporation Apparatus for controlling flow and pressure measurement
IT1214901B (en) 1985-11-11 1990-01-31 Simonazzi Spa A & L CONTINUOUS ROTARY FILLER EQUIPPED, FOR THE MECHANICAL LIFTING OF THE EMPTY BOTTLES AND FOR THE FREE LOWERING OF THE FILLED BOTTLES, ONLY WITH WITH PRENSILE TAPS EQUIPPED WITH A SYNCHRONIZED LOCKING LOCK WITH THE DIRI PROCESS
DE3605640A1 (en) 1986-02-21 1987-08-27 Graessle Maschinenbau Device for cleaning containers, especially bottles
US4976162A (en) 1987-09-03 1990-12-11 Kamen Dean L Enhanced pressure measurement flow control system
US5349852A (en) 1986-03-04 1994-09-27 Deka Products Limited Partnership Pump controller using acoustic spectral analysis
US5088515A (en) 1989-05-01 1992-02-18 Kamen Dean L Valve system with removable fluid interface
ES2036616T3 (en) 1987-05-01 1993-06-01 Abbott Laboratories DISPOSABLE CASSETTE OF PUMPING CHAMBER FOR INFUSION OF FLUIDS AND ITS DRIVING MECHANISM.
US4818186A (en) 1987-05-01 1989-04-04 Abbott Laboratories Drive mechanism for disposable fluid infusion pumping cassette
NL8701091A (en) 1987-05-08 1988-12-01 Spruyt Hillen Bv INJECTION PEN.
US5207642A (en) 1987-08-07 1993-05-04 Baxter International Inc. Closed multi-fluid delivery system and method
US4925444A (en) 1987-08-07 1990-05-15 Baxter Travenol Laboratories, Inc. Closed multi-fluid delivery system and method
US4850978A (en) 1987-10-29 1989-07-25 Baxter International Inc. Drug delivery cartridge with protective cover
US4804366A (en) 1987-10-29 1989-02-14 Baxter International Inc. Cartridge and adapter for introducing a beneficial agent into an intravenous delivery system
US4863425A (en) 1987-12-04 1989-09-05 Pacesetter Infusion, Ltd. Patient-side occlusion detection system for a medication infusion system
CA1329946C (en) 1987-12-04 1994-05-31 Paul A. Koenig User interface for medication infusion system
JPH021277A (en) 1988-03-31 1990-01-05 Fujisawa Pharmaceut Co Ltd Infusion container
US5006050A (en) * 1988-12-09 1991-04-09 James E. Cooke High accuracy disposable cassette infusion pump
US5153827A (en) * 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
EP0390949B1 (en) 1989-04-06 1993-06-30 Japan Medical Supply Co., Ltd. Flow rate regulator for liquid medicine or blood transfusion unit
US5716343A (en) 1989-06-16 1998-02-10 Science Incorporated Fluid delivery apparatus
US5336188A (en) 1989-06-16 1994-08-09 Science Incorporated Fluid delivery apparatus having a stored energy source
US5156186A (en) 1989-10-31 1992-10-20 Manska Wayne E Stopcock valve
US5062774A (en) * 1989-12-01 1991-11-05 Abbott Laboratories Solution pumping system including disposable pump cassette
ATE129867T1 (en) * 1990-04-04 1995-11-15 Ferton Holding DEVICE FOR THE FLUSHING OR CONTINUOUS DRAINAGE OF THE TISSUE OR BODY CAVITY OF THE HUMAN OR ANIMAL ORGANISM.
US5122116A (en) * 1990-04-24 1992-06-16 Science Incorporated Closed drug delivery system
JPH06501858A (en) 1990-08-31 1994-03-03 ザ ジェネラル ホスピタル コーポレーション Network for portable patient monitoring devices
IT1244884B (en) 1990-12-21 1994-09-13 Healtech Sa PROCEDURE AND EQUIPMENT FOR THE UNIQUE COMBINATION OF DRUGS CORRESPONDING TO A THERAPY PREDICTED TO A CERTAIN PATIENT
US5098262A (en) 1990-12-28 1992-03-24 Abbott Laboratories Solution pumping system with compressible pump cassette
US5116316A (en) * 1991-02-25 1992-05-26 Baxter International Inc. Automatic in-line reconstitution system
US5713865A (en) 1991-11-15 1998-02-03 Deka Products Limited Partnership Intravenous-line air-elimination system
WO1993012825A1 (en) * 1991-12-20 1993-07-08 Abbott Laboratories Automated drug infusion system with autopriming
JP3184923B2 (en) 1992-01-08 2001-07-09 ビオ セレ ラボラトワール エス ア Anti-rheumatic drug
US5405614A (en) 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
JP2605345Y2 (en) * 1992-05-01 2000-07-10 株式会社大塚製薬工場 Drug container
US5302093A (en) 1992-05-01 1994-04-12 Mcgaw, Inc. Disposable cassette with negative head height fluid supply and method
US5246147A (en) 1992-05-20 1993-09-21 Sil Medics Ltd. Liquid material dispenser
US5330426A (en) 1992-08-13 1994-07-19 Science Incorporated Mixing and delivery syringe assembly
WO1994008647A1 (en) 1992-10-15 1994-04-28 The General Hospital Corporation An infusion pump with an electronically loadable drug library
US5334179A (en) 1992-10-16 1994-08-02 Abbott Laboratories Latching piercing pin for use with fluid vials of varying sizes
US5378231A (en) 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
DE69326934T2 (en) 1992-12-16 2000-03-30 Siemens Medical Systems, Inc. Patient location and patient data monitoring system
CA2145294A1 (en) * 1992-12-18 1994-07-07 John E. Ogden Solution pumping system for maximizing output while minimizing pumping pressures
US5368555A (en) 1992-12-29 1994-11-29 Hepatix, Inc. Organ support system
AU5956994A (en) 1992-12-30 1994-08-15 Abbott Laboratories Diaphragm for solution pumping system
US5292306A (en) 1993-01-29 1994-03-08 Abbott Laboratories Method of detecting occlusions in a solution pumping system
US5385540A (en) * 1993-05-26 1995-01-31 Quest Medical, Inc. Cardioplegia delivery system
CA2097781A1 (en) 1993-06-04 1994-12-05 Peter O. Paulson Apparatus and method for non-destructive testing of structures
US5531679A (en) 1994-03-14 1996-07-02 Schulman; Joseph H. Fluidic infusion system for catheter or probe
FR2717919B1 (en) 1994-03-28 1996-06-21 Ensyma Sa Medical decision support system and device for administering at least one drug.
WO1995029455A1 (en) 1994-04-21 1995-11-02 Fillingane Sam D O Electronic hand-held prescription writing and transmitting device
EP0751794B1 (en) 1994-05-13 2003-07-16 Abbott Laboratories Disposable fluid infusion pumping chamber cassette having a push button flow stop thereon
SE510512C2 (en) 1994-08-23 1999-05-31 Gambro Lundia Ab Method and connection unit for sterile transfer of a solution
MX9702723A (en) 1994-10-28 1998-04-30 Advanced Health Med E Systems Prescription management system.
US5573506A (en) 1994-11-25 1996-11-12 Block Medical, Inc. Remotely programmable infusion system
US5584671A (en) 1994-11-28 1996-12-17 Sherwood Medical Company Apparatus for delivering fluid to a patient
US5593290A (en) 1994-12-22 1997-01-14 Eastman Kodak Company Micro dispensing positive displacement pump
US5758095A (en) 1995-02-24 1998-05-26 Albaum; David Interactive medication ordering system
US5781442A (en) 1995-05-15 1998-07-14 Alaris Medical Systems, Inc. System and method for collecting data and managing patient care
WO1996040396A1 (en) 1995-06-07 1996-12-19 Arch Development Corporation Recovering chaotropic anions from aqueous solution
US5651775A (en) 1995-07-12 1997-07-29 Walker; Richard Bradley Medication delivery and monitoring system and methods
WO1997004712A1 (en) 1995-07-26 1997-02-13 Mc Medical Card Systems Gmbh System for the transmission and storage of personal medical data, and an ic card for use in such a system
US5776103A (en) * 1995-10-11 1998-07-07 Science Incorporated Fluid delivery device with bolus injection site
US5766149A (en) * 1996-02-23 1998-06-16 Kriesel; Marshall S. Mixing and delivery system
US5782805A (en) 1996-04-10 1998-07-21 Meinzer; Randolph Medical infusion pump
US5895371A (en) 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US6228047B1 (en) * 1997-07-28 2001-05-08 1274515 Ontario Inc. Method and apparatus for performing peritoneal dialysis
AU9028498A (en) * 1997-08-22 1999-03-16 Deka Products Limited Partnership System, method and cassette for mixing and delivering intravenous drugs
AU9104498A (en) 1997-08-22 1999-03-16 Deka Products Limited Partnership System and method for intelligent admixture and delivery of medications
MXPA00011835A (en) 1998-06-03 2002-10-17 Scott Lab Inc Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures.
US7645258B2 (en) 1999-12-01 2010-01-12 B. Braun Medical, Inc. Patient medication IV delivery pump with wireless communication to a hospital information management system
US6790198B1 (en) 1999-12-01 2004-09-14 B-Braun Medical, Inc. Patient medication IV delivery pump with wireless communication to a hospital information management system
US7835927B2 (en) 2002-12-27 2010-11-16 Carefusion 303, Inc. Medication management system
US7256888B2 (en) * 2003-11-07 2007-08-14 Cardial Health 303, Inc. Fluid verification system and method for infusions
PL2295549T3 (en) 2004-04-29 2015-10-30 U S Smokeless Tobacco Company Llc Nicotiana nucleic acid molecules and uses thereof
KR100675913B1 (en) 2005-02-14 2007-01-29 이상대 Liquid blocking apparatus and liquid blocking monitoring apparatus equipped with an alarm or wireless calling device and a storing bag
EP1993633B1 (en) 2006-02-09 2016-11-09 Deka Products Limited Partnership Pumping fluid delivery systems and methods using force application assembly
WO2011002853A2 (en) * 2009-07-01 2011-01-06 Fresenius Medical Care Holdings, Inc. Drug delivery devices and related systems and methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722858A (en) * 1969-12-29 1973-03-27 Norio Nomura Flow regulating device
US3727882A (en) * 1971-08-19 1973-04-17 G Burris Metering valve
US4802506A (en) * 1984-07-13 1989-02-07 Aslanian Jerry L Flow control device for administration of intravenous fluids
US4807660A (en) * 1984-07-13 1989-02-28 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5005604A (en) * 1984-07-13 1991-04-09 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5113904A (en) * 1984-07-13 1992-05-19 Aslanian Jerry L Flow control device for administration of intravenous fluids
US4667927A (en) * 1985-11-08 1987-05-26 Rao Medical Devices, Inc. Liquid flow metering device
US5755683A (en) * 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
US6165154A (en) * 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6364857B1 (en) * 1995-06-07 2002-04-02 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US6709417B1 (en) * 1995-06-07 2004-03-23 Deka Products Limited Partnership Valve for intravenous-line flow-control system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080073610A1 (en) * 1997-08-22 2008-03-27 Manning Casey P Stopcock valve
US11906988B2 (en) 2006-03-06 2024-02-20 Deka Products Limited Partnership Product dispensing system
US20080054837A1 (en) * 2006-03-06 2008-03-06 Beavis Russell H System and method for generating a drive signal
US20090277516A1 (en) 2006-03-06 2009-11-12 Felix Winkler Product Dispensing System
US11429120B2 (en) 2006-03-06 2022-08-30 Deka Products Limited Partnership Product dispensing system
US20100206400A2 (en) * 2006-03-06 2010-08-19 Felix Winkler Product Dispensing System
US9146564B2 (en) 2006-03-06 2015-09-29 Deka Products Limited Partnership Product dispensing system
US11661329B2 (en) 2006-03-06 2023-05-30 Deka Products Limited Partnership System and method for generating a drive signal
US11975960B2 (en) 2006-03-06 2024-05-07 Deka Products Limited Partnership System and method for generating a drive signal
US7905373B2 (en) 2006-03-06 2011-03-15 Deka Products Limited Partnership System and method for generating a drive signal
US11634311B2 (en) 2007-09-06 2023-04-25 Deka Products Limited Partnership Product dispensing system
US11655806B2 (en) 2007-09-06 2023-05-23 Deka Products Limited Partnership Product dispensing system
US11427462B2 (en) 2007-09-06 2022-08-30 Deka Products Limited Partnership Product dispensing system
US8322570B2 (en) 2007-09-06 2012-12-04 Deka Products Limited Partnership Product dispensing system
US8783513B2 (en) * 2007-09-06 2014-07-22 Deka Products Limited Partnership Product dispensing system
US20110011888A2 (en) * 2007-09-06 2011-01-20 Russell Beavis Product dispensing system
US20090159612A1 (en) * 2007-09-06 2009-06-25 Deka Research & Development Corp. Product dispensing system
US11738989B2 (en) 2007-09-06 2023-08-29 Deka Products Limited Partnership Product dispensing system
US8087303B2 (en) 2007-09-06 2012-01-03 Deka Products Limited Partnership Product dispensing system
US11365107B2 (en) 2007-09-06 2022-06-21 Deka Products Limited Partnership Product dispensing system
US20100005903A1 (en) * 2007-09-06 2010-01-14 Deka Products Limited Partnership Product Dispensing System
WO2010129835A2 (en) 2009-05-07 2010-11-11 Deka Products Limited Partnership Product dispensing system
WO2011106666A1 (en) 2010-02-26 2011-09-01 Deka Products Limited Partnership Rfid system with an eddy current trap
US9700672B2 (en) 2011-09-21 2017-07-11 Bayer Healthcare Llc Continuous multi-fluid pump device, drive and actuating system and method
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
WO2013063463A1 (en) 2011-10-28 2013-05-02 Deka Products Limited Partnership Product dispensing system with pwm controlled solenoid pump
US9561321B2 (en) 2011-12-08 2017-02-07 Alcon Research, Ltd. Selectively moveable valve elements for aspiration and irrigation circuits
USD698019S1 (en) 2013-03-05 2014-01-21 Alcon Research, Ltd. Ophthalmic surgical cassette
WO2014159624A1 (en) 2013-03-14 2014-10-02 Deka Products Limited Partnership Product dispensing system
EP4421020A2 (en) 2013-03-14 2024-08-28 DEKA Products Limited Partnership Product dispensing system
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US11491318B2 (en) 2015-01-09 2022-11-08 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US11135345B2 (en) 2017-05-10 2021-10-05 Fresenius Medical Care Holdings, Inc. On demand dialysate mixing using concentrates
US11752246B2 (en) 2017-05-10 2023-09-12 Fresenius Medical Care Holdings, Inc. On demand dialysate mixing using concentrates
US11504458B2 (en) 2018-10-17 2022-11-22 Fresenius Medical Care Holdings, Inc. Ultrasonic authentication for dialysis

Also Published As

Publication number Publication date
US6464667B1 (en) 2002-10-15
US8968244B2 (en) 2015-03-03
US8251953B2 (en) 2012-08-28
AU9028498A (en) 1999-03-16
US9408966B2 (en) 2016-08-09
JP5096298B2 (en) 2012-12-12
WO1999010028A1 (en) 1999-03-04
US20040176724A1 (en) 2004-09-09
EP1003579A1 (en) 2000-05-31
US6726656B2 (en) 2004-04-27
US20060241550A1 (en) 2006-10-26
DE69828619T2 (en) 2006-01-05
JP2011183174A (en) 2011-09-22
US6210361B1 (en) 2001-04-03
US20140343492A1 (en) 2014-11-20
US20110230825A1 (en) 2011-09-22
JP5575052B2 (en) 2014-08-20
JP4291506B2 (en) 2009-07-08
US20010007932A1 (en) 2001-07-12
JP2001513404A (en) 2001-09-04
JP2013144114A (en) 2013-07-25
TW394695B (en) 2000-06-21
EP1003579B1 (en) 2005-01-12
US7214210B2 (en) 2007-05-08
US6234997B1 (en) 2001-05-22
DE69828619D1 (en) 2005-02-17
JP2009078164A (en) 2009-04-16
US20130178831A1 (en) 2013-07-11
US7798997B2 (en) 2010-09-21
US20030060766A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
EP0833675B1 (en) Stopcock-valve
US20070085049A1 (en) Stopcock Valve
US6709417B1 (en) Valve for intravenous-line flow-control system
US6364857B1 (en) Cassette for intravenous-line flow-control system
US6165154A (en) Cassette for intravenous-line flow-control system
US20080073610A1 (en) Stopcock valve
US4730635A (en) Valve and method
US2913000A (en) Flow control valve
EP0452045B1 (en) Normally closed duckbill valve assembly
US6209578B1 (en) Constant flow valve
US5372158A (en) Valve with backflow preventer
US5072756A (en) Valve assembly for fluid line connection
JPH0222067A (en) Assembly of valve and pump
JPH05502096A (en) High pressure fluid measurement control device
JP5745591B2 (en) Occlusion and discharge valve assembly
US4927061A (en) Dispensing valve with elastic sealing tube
US5653261A (en) Selector valve
JPH05118449A (en) Cock
US4804065A (en) Device for dosing a flowing fluid
JP2530289B2 (en) One-touch open / close valve device
JPS6053225B2 (en) Plug valve with liner equipped with leak prevention device using pressurization
US4597559A (en) Diaphragm valve
JP3015562U (en) Air flow regulator with backflow prevention device
JPH0729390Y2 (en) Pressure regulator for gas appliances
JP2522681Y2 (en) Liquid seal structure for fuel inlet pipe

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION