New! View global litigation for patent families

US20070036398A1 - Apparatus and method for partial component facial recognition - Google Patents

Apparatus and method for partial component facial recognition Download PDF

Info

Publication number
US20070036398A1
US20070036398A1 US11464145 US46414506A US2007036398A1 US 20070036398 A1 US20070036398 A1 US 20070036398A1 US 11464145 US11464145 US 11464145 US 46414506 A US46414506 A US 46414506A US 2007036398 A1 US2007036398 A1 US 2007036398A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
face
human
partial
database
gallery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11464145
Other versions
US7817826B2 (en )
Inventor
Tianlong Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InteliTrac Inc
Original Assignee
Tianlong Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00288Classification, e.g. identification

Abstract

A method and system for identifying a human being or verifying two human beings by partial component(s) of their face which may include one or multiple of left eye(s), right eye(s), nose(s), mouth(s), left ear(s), or right ear(s). A gallery database for face recognition is constructed from a plurality of human face images by detecting and segmenting a plurality of partial face components from each of the human face images, creating a template for each of the plurality of partial face components, and storing the templates in the gallery database. Templates from a plurality of partial face components from a same human face image are linked with one ID in the gallery database. A probe human face image is identified from the gallery database by detecting and segmenting a plurality of partial face components from the probe human face image; creating a probe template for each of the partial face components from the probe human face image, comparing each of the probe templates against a category of templates in the gallery database to generate similarity scores between the probe templates and templates in the gallery database; generating a plurality of sub-lists of candidate images having partial face component templates with the highest similarity scores over a first preset threshold; generating for each candidate image from each sub-list a combined similarity score; and generating a final list of candidates from said candidates of combined similarity scores over a second preset threshold.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The present application claims the benefit of the filing dates of U.S. Provisional Application Ser. No. 60/708,053 entitled “Apparatus and Method for Partial Component Facial Recognition,” and filed on Aug. 23, 2005
  • [0002]
    Other related applications include the following:
  • [0003]
    Invariant Memory Page Pool and Implementation Thereof, U.S. Pat. No. 6,912,641, issued on Jun. 28, 2005; Inventors: Tianlong Chen, Yingbin Wang and Yinong Wei.
  • [0004]
    Memory-Resident Database Management System and Implementation Thereof, Ser. No. 10/347,678; Filed on Jan. 22, 2003; Attorney Docket Number 0299-0005; Inventors: Tianlong Chen, Jonathan Vu.
  • [0005]
    Distributed Memory Computing Environment and Implementation Thereof; U.S. Pat. No. 7,043,623, issued on May 9, 2006, Inventors: Tianlong Chen, Jonathan Vu, Yingbin Wang.
  • [0006]
    Apparatus and Method for Biometric Database Management System; U.S. application Ser. No. 11/064,266 filed on Feb. 22, 2005; Inventors: Yingbin Wang and Tianlong Chen.
  • [0007]
    Image Indexing Search and Implementation Thereof; U.S. application Ser. No. 10/718,738 filed on Nov. 21, 2003; Inventors: Tianlong Chen, Yi Rui, Yingbin Wang, and Yinong Wei.
  • [0008]
    The entirety of each of the aforementioned patents and patent applications is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • [0009]
    The present invention is related to face recognition systems and methods.
  • BACKGROUND OF THE INVENTION
  • [0010]
    Most of current face recognition will fail when portion of a human face is blocked or occluded by obstacle or strong light, in such cases, whole face recognition becomes impossible or very difficult. The invention presents a face recognition method to do partial face recognition to partially overcome the difficulty in recognizing human identity by occluded face.
  • SUMMARY OF THE INVENTION
  • [0011]
    The present invention disclosed and claimed herein is a method and system for identifying a human being or verifying two human beings by their partial component(s) of their face which may include one or multiple of left eye(s), right eye(s), nose(s), mouth(s), left ear(s), or right ear(s).
  • [0012]
    In still another aspect of the disclosed embodiment, a method for preparing a gallery database in which each components are grouped by its category in the present invention;
  • [0013]
    In still another aspect of the disclosed embodiment, a method for searching partial components for identification and verification in the present invention.
  • [0014]
    In a preferred embodiment, the present invention is a method and system for identifying a human being or verifying two human beings by partial component(s) of their face which may include one or multiple of left eye(s), right eye(s), nose(s), mouth(s), left ear(s), or right ear(s). A gallery database for face recognition is constructed from a plurality of human face images by detecting and segmenting a plurality of partial face components from each of the human face images, creating a template for each of the plurality of partial face components, and storing the templates in the gallery database. Templates from a plurality of partial face components from a same human face image are linked with one ID in the gallery database. A probe human face image is identified from the gallery database by detecting and segmenting a plurality of partial face components from the probe human face image; creating a probe template for each of the partial face components from the probe human face image, comparing each of the probe templates against a category of templates in the gallery database to generate similarity scores between the probe templates and templates in the gallery database; generating a plurality of sub-lists of candidate images having partial face component templates with the highest similarity scores over a first preset threshold; generating for each candidate image from each sub-list a combined similarity score; and generating a final list of candidates from said candidates of combined similarity scores over a second preset threshold.
  • [0015]
    Still other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, simply by illustrating preferable embodiments and implementations. The present invention is also capable of other and different embodiments, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustration in nature, and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    FIG. 1 illustrates a conceptual diagram of a human face and some of its partial components, left eye, right eye, nose, mouth in accordance with a preferred embodiment of the present invention.
  • [0017]
    FIG. 2 illustrates a conceptual diagram of a human face of large off-angle pose where one side of face is more recognizable than the other.
  • [0018]
    FIG. 3 illustrates a conceptual diagram of a human face blocked by an obstacle such that only two eyes can be possibly be used for recognition.
  • [0019]
    FIG. 4 illustrates a conceptual diagram of categorizing and grouping partial components in gallery database for recognition in accordance with a preferred embodiment of the present invention.
  • [0020]
    FIG. 5 illustrates a conceptual procedure diagram of preparing a partial components gallery database in accordance with a preferred embodiment of the present invention.
  • [0021]
    FIG. 6 illustrates a conceptual procedure diagram of searching partial components for identification and verification in accordance with a preferred embodiment of the present invention.
  • [0022]
    FIG. 7 illustrates a general processing procedure to generate a template from a biometric data such as a human face, or a left eye of a human face, or a right eye of a human face, etc. in accordance with a preferred embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0023]
    To simplify the description and clear any possible terminology confusion, we make a few definitions herein. “Gallery” is associated with the biometric data stored in the database normally with “known” identity, whereas “probe” is associated with incoming-quested biometric data (normally with “unknown” identity) that will be matched against the “gallery” in a database to find or identify any possible similarities or verify similarities of incoming-quested biometric data as matching result. A “probe”, or “probing”, or a “probe process” is herein referred to a process to find or identify one or more top candidates on their similarity to a given “probe” biometric data (may include partial face components) of one kind of biometric data type, or referred to a process to verify the similarity among two or more biometric data of same kind of biometric data type. A “template” is a feature vector, or a collection of characteristic features extracted by an algorithm for targeted biometric data, in which “an algorithm” or “algorithm” herein is referred to an algorithm used often for image pattern processing for pattern recognition (such as face recognition), as an example of such an algorithm is “Principal Component Analysis (PCA)” (see a reference about PCA: http://www.fon.hum.uva.nl/praat/manual/Principal_component_analysis.html), there are a lot of other algorithms can be, or have been or will be applied to the face recognition; an “algorithm” herein may also refers to the whole procedure of generating a template from a biometric data. For those skilled in the art, it is understandable that template-based face recognition is only one of many possible methods for face recognition and also for partial face recognition presented herein; other methods will become apparent the present invention pertains without departing from its spirit and scope.
  • [0024]
    A conceptual block diagram in FIG. 7 illustrates a general processing procedure to generate a template from a biometric data such as a human face, or a left eye of a human face, or a right eye of a human face, etc. An image of human face is given as a biometric data 701; it is normally and optionally processed 703 to improve the overall image quality, which may include lighting normalization, shadow removal, histogram normalization, etc. In case of whole face recognition as most academic and vendors do, step 705 “Feature Detection” will try to find and segment one or multiple whole human face(s) from the image 701 and may also locate all major feature points for each human face. Then an algorithm will normally be applied 707 to process and extract a feature vector or a collection of features for each whole face, which is a template 709 of the given face; multiple faces of a single image may generate multiple templates.
  • [0025]
    For an exemplary embodiment of the present invention, at step 705, instead of treating a whole face to be segmented and processed to generate a template, partial components such as left eye 104, right eye 106, nose 108, mouth 110, right ear (not shown), left ear (not shown) will be segmented from a whole human face 102, as illustrated in FIG. 1, then each segmented image with one partial component will be analyzed by an algorithm to extract features to generate a template for each separated partial component. The processing between the partial component face and a whole face from a segmented image to a template is almost the same; the same technique used for a whole face may be similarly applied to each partial face component.
  • [0026]
    Referring to FIG. 4, for a frontal whole face 422, at least four partial components can be segmented to generate a template for each of them, left eye 410, right eye 412, nose 414, mouth 416; partial components from the same individual are linked 424 to a single identity 420 in the gallery database.
  • [0027]
    Still referring to FIG. 4, in a gallery database, different partial components from different individuals are grouped into different categories in gallery database, such as left eyes from one or multiple individuals are grouped in one category 402, right eyes from one or multiple individuals are grouped in one category 404, noses from one or multiple individuals are grouped in one category 406, mouths from one or multiple individuals are grouped in one category 408, etc. Further indexation based on metadata depicted in Patent Application “Enhanced Biometric Platform and Implementation thereof”, filed on Aug. 9, 2005 by Tianlong Chen et al. can be similarly applied to the partial component face recognition also.
  • [0028]
    FIG. 2 illustrates an image in which a human face with large rotation angle such that the right eye partially blocked by nose, only left eye 202 and nose 204 seem more recognizable. As an exemplary embodiment of the present invention, the image is segmented into two portions, one of left eye 202, the other of nose 204, a template is generated respectively from segmented left eye 202 and nose 204; then the template for left eye is used to search from the left eye group in gallery database aforementioned to find a list of candidates that have high similarity scores than a pre-set threshold, do the same for nose; then combine the two candidate lists, and either present the two candidate lists as final result, or present a combined candidate list as a final result based on combined similarity scores from the two candidate lists; a combination method may look like this: the candidate with the addition of two similarity scores of a candidate may be selected into final candidate list if the addition is over a preset threshold, other combination method may be applicable here by user configuration; the final candidate list includes identities for each candidate.
  • [0029]
    FIG. 3 illustrates an image in which a human face 302 is blocked 304, only left eye 308 and right eye 306 are recognizable; the image is segmented to extract left eye 308 and right eye 306 respectively; from the two segmented images, a template is generated for right eye 306 and left eye 308 respectively; then the template for left eye 308 is used to search from the left eye group in gallery database a aforementioned to find a list of candidates that have high similarity scores than a pre-set threshold, do the same for right eye 306; combine the two candidate lists, and either present the two candidate lists as final result, or present a combined candidate list as a final result based on combined similarity scores from the two candidate lists; a combination method may look like this: the candidate with the addition of two similarity scores of a candidates may be selected into final candidate list if the addition is over another preset threshold, other combination method may be applicable here; the final candidate list includes identities for each candidate.
  • [0030]
    FIG. 5 illustrates a conceptual procedure diagram 500 of preparing a gallery database for partial component face recognition as an exemplary embodiment of the present invention. An image 502 is first processed by “image processing” 504 for the purpose of improving image quality for face recognition, then the image is processed 506 to detect human face and face components; if no face is ever detected whether it is partial or whole, the preparation process 500 is skipped to the next image, or stopped; ideally an image 502 for preparing a gallery database has a whole face in good quality (as minimum, “good quality” indicates a face or face component is recognizable by algorithm in rather reliable confidence, and can generate a template), or its quality may be extracted as metadata for better matching (see Patent Application “Enhanced Biometric Platform and Implementation thereof” by Tianlong Chen et al.); detected components (e.g. left eye, right eye, nose, mouth, left ear, right ear) are segmented 508; each of segmented components are then processed by an algorithm to generate a template 512; store templates 514 and group them into different categories into gallery data storage such that left eyes are in left eye category, right eyes are in right eye category, etc.
  • [0031]
    FIG. 6 illustrates a conceptual procedure diagram 600 of partial component identification or verification as an exemplary embodiment of the present invention. In case of identification, at least one image 602 is given to the system to find candidates with high similarity scores, the image 602 is processed 604 for image quality improvement, it is then processed to 610 detect face and face components if any; if no human face is found, “no face found” 606 is returned as result 620; if a human face is found, partial components of a human face that in good condition (“good condition” may be user-configurable) are segmented 612; and for each available components, algorithm is applied to 614 extract features, and then generate a template 616 for each partial component; each available component (i.e. the component is in “good condition”) is used to 618 search its related categories for a list of candidates, then the candidate lists from all available candidates are combined to generate a result 620. In case of verification, at least two images 602 are given to the system to find similarity of partial or whole faces, process images 602 through same steps 610, 612, 614, 616 as for the case of identification as aforementioned; then compare 619 the templates of commonly available same kind of components to generate a similarity score for each kind of components (i.e. left eye, right eye, etc.), combine the similarity scores from commonly available component matching scores to generate a final result 620 for similarity of two human faces in two images if any; if no human face is found on one of images, “no face found” on that image will be reported in result 620.
  • [0032]
    The foregoing description of the preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiment was chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned documents is incorporated by reference herein.

Claims (10)

  1. 1. A method for constructing a gallery database for face recognition from a plurality of human face images, comprising the steps of:
    detecting and segmenting a plurality of partial face components from each of said human face images;
    creating a template for each of said plurality of partial face components;
    storing said templates in said gallery database;
    wherein templates from a plurality of partial face components from a same human face image will be linked with one ID in said gallery database.
  2. 2. A method for constructing a gallery database for face recognition according to claim 1 wherein said plurality of partial face components comprises at least one of a right eye, a left eye, a nose, a mouth, a right ear, and a left ear of a human face.
  3. 3. A method for constructing a gallery database for face recognition according to claim 1 wherein templates of a same kind from different human face images are grouped into one category in said gallery database.
  4. 4. A method for constructing a gallery database for face recognition according to claim 1 wherein templates from left eyes are grouped into a first category and templates from right eyes are grouped into a second category.
  5. 5. A method for constructing a gallery database for face recognition according to claim 4, wherein templates from noses are grouped into a third category and templates from mouths are grouped into a fourth category.
  6. 6. A method for constructing a gallery database for face recognition according to claim 4, wherein templates from right ears are grouped into a third category and templates from left ears are grouped into a fourth category.
  7. 7. A method for constructing a gallery database for face recognition according to claim 1 wherein said templates are only created only for said partial face components having good quality.
  8. 8. A method for face identification of a probe human face image from a plurality of human face images in a gallery database having a plurality of templates, each template corresponding to a partial face component and said templates in said gallery database being grouped into categories, comprising the steps of:
    detecting and segmenting a plurality of partial face components from said probe human face image;
    creating a probe template for each of said partial face components from said probe human face image;
    comparing each of said probe templates against a category of templates in said gallery database to generate similarity scores between said probe templates and templates in said gallery database;
    generating a list of candidate images whose partial face component templates have similarity scores with partial face component templates of said human face probe image over a preset threshold.
  9. 9. A method for face recognition according to claim 8 wherein said generating generates a list of candidate images having the highest similarity scores over said preset threshold.
  10. 10. A method for face identification of a probe human face image from a plurality of human face images in a gallery database having a plurality of templates, each template corresponding to a partial face component and said templates in said gallery database being grouped into categories, comprising the steps of:
    detecting and segmenting a plurality of partial face components from said probe human face image;
    creating a probe template for each of said partial face components from said probe human face image;
    comparing each of said probe templates against a category of templates in said gallery database to generate similarity scores between said probe templates and templates in said gallery database;
    generating a plurality of sub-lists of candidate images having partial face component templates with the highest similarity scores over a first preset threshold;
    generating for each candidate image from each said sub-list a combined similarity score; and
    generating a final list of candidates having combined similarity scores over a second preset threshold.
US11464145 2005-08-12 2006-08-11 Apparatus and method for partial component facial recognition Active 2029-06-18 US7817826B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US70805305 true 2005-08-12 2005-08-12
US11464145 US7817826B2 (en) 2005-08-12 2006-08-11 Apparatus and method for partial component facial recognition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11464145 US7817826B2 (en) 2005-08-12 2006-08-11 Apparatus and method for partial component facial recognition

Publications (2)

Publication Number Publication Date
US20070036398A1 true true US20070036398A1 (en) 2007-02-15
US7817826B2 US7817826B2 (en) 2010-10-19

Family

ID=37742578

Family Applications (1)

Application Number Title Priority Date Filing Date
US11464145 Active 2029-06-18 US7817826B2 (en) 2005-08-12 2006-08-11 Apparatus and method for partial component facial recognition

Country Status (1)

Country Link
US (1) US7817826B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090133051A1 (en) * 2007-11-21 2009-05-21 Gesturetek, Inc. Device access control
US20090138805A1 (en) * 2007-11-21 2009-05-28 Gesturetek, Inc. Media preferences
US20090148006A1 (en) * 2007-12-11 2009-06-11 Sharp Kabushiki Kaisha Control device, image forming apparatus, method of controlling image forming apparatus, and recording medium
US20090150344A1 (en) * 2007-12-06 2009-06-11 Eric Nels Herness Collaborative Program Development Method and System
US20100008550A1 (en) * 2008-07-14 2010-01-14 Lockheed Martin Corporation Method and apparatus for facial identification
US20120213421A1 (en) * 2007-06-25 2012-08-23 Corel Corporation Method and System for Searching Images With Figures and Recording Medium Storing Metadata of Image
US20130198079A1 (en) * 2012-01-27 2013-08-01 Daniel Mattes Verification of Online Transactions
US20130245462A1 (en) * 2011-09-06 2013-09-19 Lluis Capdevila Apparatus, methods, and articles of manufacture for determining and using heart rate variability
WO2013181695A1 (en) * 2012-06-04 2013-12-12 National Ict Australia Limited Biometric verification
US9049983B1 (en) * 2011-04-08 2015-06-09 Amazon Technologies, Inc. Ear recognition as device input
US20150186422A1 (en) * 2012-08-10 2015-07-02 Konica Minolta, Inc. Image processing apparatus, image processing method, and image processing program
US20150317511A1 (en) * 2013-11-07 2015-11-05 Orbeus, Inc. System, method and apparatus for performing facial recognition
WO2016025540A1 (en) * 2014-08-11 2016-02-18 Synaptics Incorporated Multi-view fingerprint matching
EP2624207A4 (en) * 2010-09-27 2016-03-02 Panasonic Corp Device and method for internally and externally assessing whitelists
WO2017125915A1 (en) * 2016-01-19 2017-07-27 Agt International Gmbh Method of distributed face recognition and system thereof
US20170262472A1 (en) * 2014-11-24 2017-09-14 Isityou Ltd. Systems and methods for recognition of faces e.g. from mobile-device-generated images of faces
US9836726B2 (en) 2008-07-14 2017-12-05 Jumio Corporation Internet payment system using credit card imaging
US9905267B1 (en) * 2016-07-13 2018-02-27 Gracenote, Inc. Computing system with DVE template selection and video content item generation feature

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524692B2 (en) * 2010-04-20 2014-06-18 富士フイルム株式会社 Information processing apparatus and method, and program
US8548207B2 (en) 2011-08-15 2013-10-01 Daon Holdings Limited Method of host-directed illumination and system for conducting host-directed illumination
US9177130B2 (en) 2012-03-15 2015-11-03 Google Inc. Facial feature detection
US8837788B2 (en) 2012-06-04 2014-09-16 J. Stephen Hudgins Disruption of facial recognition system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905807A (en) * 1992-01-23 1999-05-18 Matsushita Electric Industrial Co., Ltd. Apparatus for extracting feature points from a facial image
US20060280341A1 (en) * 2003-06-30 2006-12-14 Honda Motor Co., Ltd. System and method for face recognition
US7203346B2 (en) * 2002-04-27 2007-04-10 Samsung Electronics Co., Ltd. Face recognition method and apparatus using component-based face descriptor
US7224823B2 (en) * 2001-09-25 2007-05-29 Matsushita Electric Industrial Co., Ltd. Parameter estimation apparatus and data matching apparatus
US7242810B2 (en) * 2004-05-13 2007-07-10 Proximex Corporation Multimodal high-dimensional data fusion for classification and identification

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640004B2 (en) 1995-07-28 2003-10-28 Canon Kabushiki Kaisha Image sensing and image processing apparatuses
US6975750B2 (en) 2000-12-01 2005-12-13 Microsoft Corp. System and method for face recognition using synthesized training images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905807A (en) * 1992-01-23 1999-05-18 Matsushita Electric Industrial Co., Ltd. Apparatus for extracting feature points from a facial image
US7224823B2 (en) * 2001-09-25 2007-05-29 Matsushita Electric Industrial Co., Ltd. Parameter estimation apparatus and data matching apparatus
US7203346B2 (en) * 2002-04-27 2007-04-10 Samsung Electronics Co., Ltd. Face recognition method and apparatus using component-based face descriptor
US20060280341A1 (en) * 2003-06-30 2006-12-14 Honda Motor Co., Ltd. System and method for face recognition
US7242810B2 (en) * 2004-05-13 2007-07-10 Proximex Corporation Multimodal high-dimensional data fusion for classification and identification

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213421A1 (en) * 2007-06-25 2012-08-23 Corel Corporation Method and System for Searching Images With Figures and Recording Medium Storing Metadata of Image
US8539357B2 (en) 2007-11-21 2013-09-17 Qualcomm Incorporated Media preferences
WO2009067670A1 (en) * 2007-11-21 2009-05-28 Gesturetek, Inc. Media preferences
US20090133051A1 (en) * 2007-11-21 2009-05-21 Gesturetek, Inc. Device access control
US20090138805A1 (en) * 2007-11-21 2009-05-28 Gesturetek, Inc. Media preferences
US20090150344A1 (en) * 2007-12-06 2009-06-11 Eric Nels Herness Collaborative Program Development Method and System
US8180780B2 (en) * 2007-12-06 2012-05-15 International Business Machines Corporation Collaborative program development method and system
US20090148006A1 (en) * 2007-12-11 2009-06-11 Sharp Kabushiki Kaisha Control device, image forming apparatus, method of controlling image forming apparatus, and recording medium
US8289546B2 (en) * 2007-12-11 2012-10-16 Sharp Kabushiki Kaisha Control device, image forming apparatus, method of controlling image forming apparatus, and recording medium
US9405995B2 (en) 2008-07-14 2016-08-02 Lockheed Martin Corporation Method and apparatus for facial identification
US9836726B2 (en) 2008-07-14 2017-12-05 Jumio Corporation Internet payment system using credit card imaging
US20100008550A1 (en) * 2008-07-14 2010-01-14 Lockheed Martin Corporation Method and apparatus for facial identification
EP2624207A4 (en) * 2010-09-27 2016-03-02 Panasonic Corp Device and method for internally and externally assessing whitelists
US9049983B1 (en) * 2011-04-08 2015-06-09 Amazon Technologies, Inc. Ear recognition as device input
US20130245462A1 (en) * 2011-09-06 2013-09-19 Lluis Capdevila Apparatus, methods, and articles of manufacture for determining and using heart rate variability
US20130198079A1 (en) * 2012-01-27 2013-08-01 Daniel Mattes Verification of Online Transactions
WO2013181695A1 (en) * 2012-06-04 2013-12-12 National Ict Australia Limited Biometric verification
US20150186422A1 (en) * 2012-08-10 2015-07-02 Konica Minolta, Inc. Image processing apparatus, image processing method, and image processing program
US20150317511A1 (en) * 2013-11-07 2015-11-05 Orbeus, Inc. System, method and apparatus for performing facial recognition
WO2016025540A1 (en) * 2014-08-11 2016-02-18 Synaptics Incorporated Multi-view fingerprint matching
US9508022B2 (en) 2014-08-11 2016-11-29 Synaptics Incorporated Multi-view fingerprint matching
US20170262472A1 (en) * 2014-11-24 2017-09-14 Isityou Ltd. Systems and methods for recognition of faces e.g. from mobile-device-generated images of faces
WO2017125915A1 (en) * 2016-01-19 2017-07-27 Agt International Gmbh Method of distributed face recognition and system thereof
US9905267B1 (en) * 2016-07-13 2018-02-27 Gracenote, Inc. Computing system with DVE template selection and video content item generation feature

Also Published As

Publication number Publication date Type
US7817826B2 (en) 2010-10-19 grant

Similar Documents

Publication Publication Date Title
Ribaric et al. A biometric identification system based on eigenpalm and eigenfinger features
Proenca et al. Toward noncooperative iris recognition: A classification approach using multiple signatures
Queirolo et al. 3D face recognition using simulated annealing and the surface interpenetration measure
Vatsa et al. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing
Bowyer et al. Image understanding for iris biometrics: A survey
Yoon et al. Altered fingerprints: Analysis and detection
Uludag et al. Biometric template selection and update: a case study in fingerprints
US6944318B1 (en) Fast matching systems and methods for personal identification
Liao et al. A fast and accurate unconstrained face detector
Ding et al. Features versus context: An approach for precise and detailed detection and delineation of faces and facial features
Hamouz et al. Feature-based affine-invariant localization of faces
Phillips Matching pursuit filters applied to face identification
US20060147094A1 (en) Pupil detection method and shape descriptor extraction method for a iris recognition, iris feature extraction apparatus and method, and iris recognition system and method using its
US20090185746A1 (en) Image recognition
US20070211924A1 (en) Invariant radial iris segmentation
Chang et al. Multiple nose region matching for 3D face recognition under varying facial expression
Ali et al. An iris recognition system to enhance e-security environment based on wavelet theory
US7191164B2 (en) Searching for object images with reduced computation
US7505621B1 (en) Demographic classification using image components
Rattani et al. Feature level fusion of face and fingerprint biometrics
Bhanu et al. Fingerprint indexing based on novel features of minutiae triplets
US20070286462A1 (en) System and method for biometric retinal identification
US20010026634A1 (en) Personal identification apparatus and method
US20140016830A1 (en) Small Vein Image Recognition and Authorization Using Constrained Geometrical Matching and Weighted Voting Under Generic Tree Model
Sarfraz et al. Head Pose Estimation in Face Recognition Across Pose Scenarios.

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTELITRAC, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, TIANLONG;REEL/FRAME:027853/0609

Effective date: 20120229

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment