US20070031637A1 - Superabsorbent water sensitive multilayer construction - Google Patents

Superabsorbent water sensitive multilayer construction Download PDF

Info

Publication number
US20070031637A1
US20070031637A1 US11/544,911 US54491106A US2007031637A1 US 20070031637 A1 US20070031637 A1 US 20070031637A1 US 54491106 A US54491106 A US 54491106A US 2007031637 A1 US2007031637 A1 US 2007031637A1
Authority
US
United States
Prior art keywords
layer
multilayer construction
component
superabsorbent polymer
water sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/544,911
Inventor
Stewart Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuller H B Co
Original Assignee
Anderson Stewart C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/121,171 priority Critical patent/US7135135B2/en
Application filed by Anderson Stewart C filed Critical Anderson Stewart C
Priority to US11/544,911 priority patent/US20070031637A1/en
Publication of US20070031637A1 publication Critical patent/US20070031637A1/en
Assigned to H.B. FULLER COMPANY reassignment H.B. FULLER COMPANY CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: H.B. FULLER LICENSING & FINANCING, INC.
Application status is Abandoned legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/53051Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being only in particular parts or specially arranged
    • A61F2013/530547Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being only in particular parts or specially arranged positioned in a separate layer or layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24091Strand or strand-portions with additional layer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31591Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31659With cellulosic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet

Abstract

A multilayer construction that includes a first layer that includes water sensitive thermoplastic polymer and a second layer disposed on the first layer, the second layer including superabsorbent polymer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. Patent Application Ser. No. 10/121,171 filed Apr. 11, 2002, now U.S. Pat. No. ______, and incorporated herein.
  • BACKGROUND
  • The invention is directed to a superabsorbent multilayer construction.
  • Superabsorbent polymers, which are available as powders, particles, and aqueous compositions, absorb large quantities of water and are often used in absorbent articles to increase the absorbency of the article. Disposable diapers and feminine hygiene products often include superabsorbent polymers to enhance body fluid absorption. Superabsorbent polymers also have various applications in the medical, food, and agricultural industries.
  • SUMMARY
  • In one aspect, the invention features a multilayer construction that includes a first layer including water sensitive thermoplastic polymer, and a second layer disposed on the first layer, the second layer including superabsorbent polymer. In one embodiment, the thermoplastic polymer includes polyamide. In another embodiment the thermoplastic polymer includes the reaction product of polyoxyalkylene glycol diamine and an acid selected from the group consisting of dicarboxylic acid, dicarboxylic acid ester, and combinations thereof, the polyoxyalkylene glycol diamine having the formula NH2—(CH2)x—(OCH2—CH2)y—O—(CH2)x—NH2, where 2≦X≦3, and 1≦Y≦2. In other embodiments, the thermoplastic polymer includes the reaction product of adipic acid and polyoxyalkylene glycol diamine. In another embodiment, the thermoplastic polymer is water soluble.
  • In some embodiments, the superabsorbent polymer includes crosslinked polyacrylate. In other embodiments, the superabsorbent polymer includes crosslinked and at least partially neutralized α,β-beta ethylenically unsaturated monomers selected from the group consisting of monocarboxylic acid monomers, dicarboxylic acid monomers, acid anhydride monomers, and combinations thereof.
  • In one embodiment, the construction exhibits an absorption rate greater than the absorption rate of the superabsorbent polymer layer in the absence of the thermoplastic layer.
  • In other embodiments, an above-described multilayer construction is a film. In one embodiment the film exhibits an absorption rate greater than the absorption rate of the superabsorbent polymer layer in the absence of the thermoplastic layer. In some embodiments, the film is flexible.
  • In some embodiments, an above-described multilayer construction is a fiber.
  • In another aspect, the invention features an article that includes a nonwoven web and an above-described multilayer construction disposed on the web.
  • In some aspects, the invention features a multi-component fiber that includes a first component that includes water sensitive thermoplastic polymer, and a second component that includes superabsorbent polymer, the second component being disposed on the first component. In one embodiment, the first component includes a core and the second component includes a sheath.
  • In other aspects the invention features a multi-component yarn that includes a first component that includes water sensitive thermoplastic polymer, and a second component comprising superabsorbent polymer, the second component being disposed on the first component. In some embodiments, the first component includes a core that includes the water sensitive thermoplastic polymer. In another embodiment, the second component includes a sheath that includes the superabsorbent polymer.
  • In another embodiment, a disposable article (e.g., a diaper) includes an above-described multilayer construction.
  • In another aspect, the invention features a method of making a multilayer construction that includes coating an aqueous water soluble superabsorbent polymer composition on a water sensitive thermoplastic film.
  • In one embodiment, the method includes providing a molten water sensitive thermoplastic polymer, and contacting the molten thermoplastic polymer with an aqueous water soluble superabsorbent polymer composition. In another embodiment, the molten thermoplastic polymer is in a form selected from the group consisting of fibers, filaments and combinations thereof. In some embodiments, the molten thermoplastic polymer is in the form of a film.
  • The invention features a superabsorbent self-supporting film that is capable of degrading in water, is flushable, and degrades in a sewer system. The multiplayer construction and can also be constructed to include a water soluble thermoplastic polymer layer and be capable of dissolving in water. The invention also features a multilayer construction that can be disposed on a substrate or incorporated into an article to render the article water soluble, water swellable, water dispersible or a combination thereof.
  • The multilayer construction is well suited to use in personal hygiene products and can be incorporated into such products to render the products more able to degrade in sewer and waste disposal systems.
  • The multilayer construction can be constructed to be thermally bonded to a substrate.
  • The multilayer construction, when in the form of a continuous or discontinuous film can allow liquid to pass through the layers of the construction to a second layer, e.g., an absorbent core, where it can then be stored. Storage of the liquid in the second layer allows the liquid to be maintained away from the skin of the user.
  • GLOSSARY
  • In reference to the invention, these terms have the meanings set forth below:
  • “Water sensitive” means water soluble, water dispersible, water swellable, and combinations thereof.
  • Other features and advantages will be apparent from the following description of the preferred embodiments and from the claims.
  • DETAILED DESCRIPTION
  • The multilayer construction (e.g., film) includes a layer of superabsorbent polymer disposed on a layer of water sensitive thermoplastic polymer. When the superabsorbent layer of the multilayer construction is contacted with an aqueous composition it forms a gel and the thermoplastic layer at the interface with the gelling superabsorbent layer substantially maintains its integrity as the superabsorbent layer gels. The multilayer construction can be constructed to gel at a rate faster than the gel rate that would be exhibited by the superabsorbent polymer layer in the absence of the water sensitive thermoplastic layer.
  • The superabsorbent layer includes superabsorbent polymer preferably in the form of a continuous or discontinuous coating or film. The superabsorbent polymer absorbs many times its own weight in water, preferably at least 50 times, more preferably at least 100 times, most preferably at least 150 times its weight in water. The ability of the superabsorbent polymer to absorb water is related to the degree of crosslinking present in the superabsorbent polymer. Increasing the degree of crosslinking increases the superabsorbent polymer's total fluid holding capacity under load. The degree of crosslinking is preferably optimized to obtain a composition in which the rate and amount of absorbency are optimized. Preferred superabsorbent polymers are at least 10%, more preferably from about 10% to about 50%, most preferably from about 20% to 40% crosslinked. Examples of suitable superabsorbent polymers include crosslinked and polymerized α,β-beta ethylenically unsaturated mono- and dicarboxylic acids and acid anhydride monomers including, e.g., acrylic acid, methacrylic acid, crotonic acid, maleic acid/anhydride, itaconic acid, fumaric acid, and combinations thereof.
  • The superabsorbent layer is preferably formed from an aqueous composition of water soluble superabsorbent polymer (i.e., a polymer that exhibits superabsorbent properties when crosslinked), and crosslinking agent. The aqueous superabsorbent polymer composition exhibits a pH of from about 7 to about 10, preferably a pH greater than 7, which can be achieved by adding a pH adjusting agent (e.g., a base) to the aqueous superabsorbent polymer composition. Examples of useful pH adjusting agents include alkali metal hydroxide (e.g., sodium hydroxide and potassium hydroxide), alkali metal alkoxide, alkaline earth metal hydroxide (e.g., calcium hydroxide), and combinations thereof. The pH adjusting agent assists in neutralizing the acid groups of the water soluble superabsorbent polymer. Preferably alkali metal hydroxide or alkaline earth metal hydroxide is added to neutralize from about 50% to about 95% of the carboxyl groups, preferably from greater than 65% to about 95% of the carboxyl groups, more preferably from about 70% to about 95% of the carboxyl groups, more preferably from about 70% to about 85% of the carboxyl groups, most preferably about 75% of the carboxyl groups. The water soluble superabsorbent polymer is then further neutralized (e.g., at least 100% neutralized) with a volatile base. The volatile base dissipates from the aqueous water soluble superabsorbent polymer composition as the composition dries, which allows the crosslinking agent to crosslink the water soluble superabsorbent polymer to form a high molecular weight polymer, i.e., the superabsorbent polymer. Examples of suitable volatile bases include ammonia, e.g., ammonium hydroxide, amines including, e.g., methylamine and dimethylamine, and combinations thereof.
  • The viscosity of the aqueous water soluble superabsorbent polymer composition is selected to facilitate application of the composition on a substrate (e.g., the water soluble thermoplastic polymer component). Useful aqueous water soluble superabsorbent polymer compositions have a viscosity of from about 50 cPs to about 50,000 cPs, more preferably, in increasing order of preference, from about 100 cPs to about 30,000 cPs, from abut 100 cPs to about 20,000 cPs, from about 100 cPs to abut 10,000 cPs, from about 100 cPs to about 5000 cPs, from about 100 cPs to abut 2500 cPs at room temperature (i.e., 25° C.) for a 20% by weight solids composition. Preferably the water soluble superabsorbent polymer has a molecular weight of from about 9000 Mw to about 4,000,000 Mw, more preferably from about 20,000 Mw to about 1,000,000 Mw, most preferably from about 100,000 Mw to about 200,000 Mw.
  • The aqueous water soluble superabsorbent polymer composition includes from 5% by weight to about 65% by weight, preferably from about 10% by weight to about 50% by weight, more preferably from about 20% by weight to about 40% by weight solids.
  • The crosslinking agent is selected to complex with the functional hydrophilic groups of the water soluble superabsorbent polymer. Preferred crosslinking agents complex with the functional groups on the water soluble superabsorbent polymer once the water phase of the polymer composition has dissipated. Useful crosslinking agents include, e.g., di- and trivalent crosslinking salts including, e.g., zirconium salts, zinc salts, chromium salts, and combinations thereof, zirconium ions, which can be mixed with ferric aluminum ions, chromic ions, titanium ions, and aziridine, and combinations thereof. Other useful crosslinking agents are described in U.S. Pat. No. 4,090,013 and incorporated herein. Useful commercially available crosslinking agents include ammonium zirconyl carbonate available under the trade designations BACOTE 20 and ZIRMEL 1000 from Magnesium Elektron, Inc. (Flemington, N.J.), and aziridine crosslinking agents available under the trade designation NEOCRYL CX-100 from Zeneca Resins (Wilmington, Mass.). Preferably the crosslinking agent is added to the aqueous superabsorbent prepolymer composition in an amount of from about 2 parts to about 10 parts, preferably from about 2 parts to about 8 parts, most preferably from about 4 parts to 6 parts.
  • The crosslinking agent can also be provided separately from the aqueous water soluble superabsorbent polymer composition. In some applications, the aqueous water soluble superabsorbent polymer composition is applied to the water sensitive thermoplastic layer prior to or after application of the crosslinking agent in a two-step process. When the aqueous water soluble superabsorbent polymer and crosslinking agent are applied separately, the aqueous water soluble superabsorbent polymer composition is preferably dried prior to contact with the crosslinking agent.
  • Preferred superabsorbent polymers are capable of being hydroplasticized by ambient moisture. The hydroplasticized superabsorbent polymer provides a pliant film exhibiting extensibility and flexibility. Preferably the superabsorbent polymer absorbs moisture from the air at ambient temperature and 50% relative humidity in an amount of at least about 5% by weight, more preferably at least about 10% by weight, most preferably at least about 20% by weight of the anhydrous superabsorbent polymer.
  • The aqueous water soluble superabsorbent polymer composition may also include small amounts of water soluble monomers including, e.g., 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, vinyl pyrrolidone, acrylamide, methacrylamide, sodium vinyl sulfonated, and 1-allyloxy-2-hydroxypropane sulfonate.
  • Useful water sensitive thermoplastic polymers include water soluble thermoplastic polymers, water dispersible thermoplastic polymers and water swellable thermoplastic polymers. Suitable water sensitive thermoplastic polymers include crystalline water sensitive thermoplastic polymers and amorphous water sensitive thermoplastic polymers. The term “crystalline polymer” means those polymers that retain their rubbery elastomeric or flexible properties above the glass transition, until the melting temperature has been surpassed. Melting of the crystalline polymer is also accompanied by a loss of crystalline X-ray diffraction effects. An “amorphous polymer” is a polymer that, with increasing temperature, passes from a solid phase to a liquid phase without a discernible transition point.
  • Suitable water soluble crystalline thermoplastic polymers include the reaction product of a polyoxyalkylene glycol diamine or a polyoxyalkylene glycol amine, and a dicarboxylic acid or dicarboxylic acid ester. Preferred polyoxyalkylene glycol diamines have the formula:
    NH2—(CH2)x—(OCH2—CH2)y—O—(CH2)x—NH2
    where 2≦X≦3, and 1≦Y≦2. Examples of suitable polyoxyalkylene glycol diamines include triethylene glycol diamine, wherein X=2 and Y=1, and tetraethylene glycol diamine, wherein 2≦X≦3 and Y=2. Useful commercially available polyoxyalkylene glycol diamines are available under the trade designations JEFFAMINE XTJ-504 and JEFFAMINE EDR-192 (tetraethylene glycol diamine) from Huntsman Chemical Co. (Houston, Tex.). A preferred diamine is 4,7,10-trioxatridecane-1,13-diamine (TTD diamine) where X=3 and Y=2, which is available from BASF (Parsippany, N.J.).
  • Useful polyoxyalkylene glycol amines include JEFFAMINE D-230, D-400, XTJ-500, XTJ-501, and XTJ-502 provided a chain terminator acid or amine is employed during the reaction, and/or additional ingredients such as waxes, tackifiers, crystalline polymers, and monoacids are subsequently combined with the reacted polyamide When adipic acid is reacted with trioxytridecane-1,13-diamine and JEFFAMINE D-230, for example, the resulting polyamide is relatively slow setting relative to the reaction of adipic acid and trioxytridecane-1,13-diamine alone. The polyoxyalkylene glycol diamine is reacted with an equal stoichiometric ratio of a dicarboxylic acid.
  • Suitable dicarboxylic acids include those dicarboxylic acids having from 5 to 36 carbon atoms including, e.g., adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, t-butyl isophthalic acid, dimer acid, and mixtures thereof. The esters and anhydrides of these acids may also be used.
  • Particularly useful water soluble polyether amides have a melting point no greater than 190° C. and include, e.g., the reaction products of adipic acid and JEFFAMINE XTJ-504, adipic acid and JEFFAMINE EDR-192, and adipic acid and TTD diamine.
  • Suitable crystalline water soluble polyamides are commercially available under the trade designations NP-2126, NP-2110, NP-2116, and NP-2068 from H.B. Fuller Company (St. Paul, Minn.).
  • Suitable crystalline water dispersible polymers include, e.g., polyethylene oxide available, e.g., from Union Carbide (Danbury, Conn.) and crystalline polyesters.
  • Suitable amorphous water sensitive thermoplastic polymers include, e.g., polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl pyrrolidone/vinyl acetate, polyvinyl pyrrolidone/acrylic acid, polyetheroxazoline, and linear and branched water dispersible polyesters.
  • Suitable commercially available amorphous water dispersible thermoplastic polymers include, e.g., polyvinyl alcohol available under the trade designations GROHSERAN L-301 and GROHSERAN L-302 from Nippon Groshei (Japan), and under the trade designation UNITIKA from Unitaka Ltd. (Japan); polyvinyl pyrrolidone available from BASF (Mount Olive, N.J.), and International Specialty Products (Wayne, N.J.); polyvinyl pyrrolidone/vinyl acetate copolymer and polyvinyl pyrrolidone/acrylic acid available under the trade designation ACRYLIDONE, both of which are available from ISP; polyethyloxazoline available under the trade designation PEOX from The Dow Chemical Company (Freeport, Tex.), and under the trade designation AQUAZOL from PCI Incorporated (Tucson, Ariz.), polyvinyl methyl ether available under the trade designation AMOBOND from Amoco Chemical Co., linear polyesters, polyacrylamide, and water dispersible polyesters and copolyesters available under the trade designation EASTMAN AQ including EASTMAN AQ-14000, EASTMAN AQ-1950, and EASTMAN AQ-1045 from Eastman Chemical Company (Kingsport, Tenn.).
  • Suitable water dispersible polyesters and copolyesters are available under the EASTMAN AQ trade designation and include linear polyesters or branched sulfonated copolyesters. Such polymers are saline and body fluid insoluble, yet dispersible in tap water. The Tg of the branched water dispersible copolyesters ranges from about −5° C. to 7° C., whereas the linear polyesters have a Tg from about 30° C. to about 60° C. Linear thermoplastic water dispersible polyesters are commercially available under the EASTMAN AQ series of trade designations including, e.g., EASTMAN AQ 35S (7,000 Mn), AQ 38S (10,000 Mw), and AQ 55S (8,000 Mn) all from Eastman Chemical Company (Kingsport, Tenn.). Branched thermoplastic water dispersible polyesters are commercially available under the EASTMAN AQ series of trade designations including, e.g., EASTMAN AQ 1045, AQ 1350, AQ 1950, and AQ 14000 from Eastman Chemical Company.
  • Other useful water sensitive polymers are commercially available under the Hydromelt trade designation from H.B. Fuller Company (St. Paul, Minn.) and include NP 2116, NP 2055, NP 2068, and NP 2110.
  • Useful water sensitive thermoplastic polymers and their methods of manufacture are disclosed, e.g., in U.S. Pat. No. 3,882,090 (Fagerberg et al.), U.S. Pat. No. 5,053,484 (Speranza et al.), U.S. Pat. No. 5,118,785 (Speranza et al.), U.S. Pat. No. 5,086,162 (Speranza et al.), U.S. Pat. No. 5,324,812 (Speranza et al.), U.S. Pat. No. 5,899,675 (Ahmed et al.), U.S. Pat. No. 5,863,979 (Ahmed et al.), U.S. Pat. No. 5,663,286 (Ahmed et al.), and U.S. Pat. No. 5,869,596 (Ahmed et al.), and incorporated herein.
  • The water soluble thermoplastic polymer layer can also include additives including, e.g., waxes, tackifying resins, crystalline polymers, monocarboxylic acids, and mixtures thereof as well as monocarboxylic acids and monoamines.
  • Preferably the multilayer construction is oriented such that the superabsorbent polymer layer is exposed to a fluid to be absorbed, e.g., water, body fluid, and combinations thereof.
  • The multilayer construction can exist in a variety of forms including, e.g., fibers (e.g., a multicomponent fiber, e.g., core-sheath construction), yarn (e.g., multicomponent yarn), film (e.g., a freestanding film), a coating on a substrate (including, e.g., woven and nonwoven substrates, porous substrates, films, fibers, and yarns), and combinations thereof. The multilayer construction, itself, as well as the layers of the multilayer construction can be continuous or discontinuous including, e.g., striped, dotted, and patterned.
  • The multilayer construction can be free standing (e.g., a film, fiber, and yarn) or associated with, e.g., disposed on, a substrate including, e.g., fibers, yarns, webs (woven and nonwoven), films, release liners, and combinations thereof. Useful fibers include cellulose fibers including, e.g., wood pulp, cotton, silk, and wool, and synthetic fibers including, e.g., nylon, rayon, polyesters, acrylics, polypropylenes, polyethylene, polyvinyl chloride, polyurethane, glass, and combinations thereof. The multilayer construction can be disposed on the substrate in various forms including, e.g., continuous and discontinuous (e.g., striped, dotted, and patterned) coatings, laminates, and combinations thereof.
  • The layers of the construction can be applied to or formed on the substrate simultaneously or sequentially using a variety of techniques including, e.g., immersing, soaking, impregnating, spraying, extruding (e.g., coextrusion), laminating, coating (e.g., dip coating, slot, gravure, knife, and contact coating), and combinations thereof. Porous substrates, for example, can be sequentially impregnated with the aqueous superabsorbent polymer and the water sensitive thermoplastic polymer.
  • Preferably the aqueous water soluble superabsorbent polymer composition is applied to the water sensitive component of the construction while the water sensitive thermoplastic component is at a higher temperature, e.g., in a molten state or a temperature in the melt temperature range of the water sensitive thermoplastic polymer, relative to the aqueous superabsorbent polymer composition. In the case where the water sensitive component is formed by extrusion, for example, the aqueous water soluble superabsorbent polymer composition can be applied to the water sensitive component as it is extruded, and, in the case of fibers and filaments, the aqueous water soluble superabsorbent polymer composition can be applied to the fibers or filaments at or near the point at which the fibers or filaments are released from the fiber or filament forming orifice. The relatively higher temperature exhibited by the water sensitive thermoplastic component as it is extruded from an orifice increases the rate of dissipation of the aqueous component of the aqueous water soluble superabsorbent polymer composition applied thereto.
  • The multilayer construction is suitable for use in a variety of articles including, e.g., absorbent articles such as diapers, sanitary napkins, bandages, wound care products, surgical pads, drapes, and gowns as well as various paper products such as paper towels, toilet paper, and facial tissue, cable wrap, and packaging.
  • One useful article includes a fibrous nonwoven web and the multilayer construction disposed on the web. The multilayer construction can include perforations to allow liquid to pass through the construction to a second layer, e.g., a nonwoven web.
  • The multilayer construction also can be incorporated into an absorbent article that includes, e.g., a body fluid pervious top sheet, an acquisition layer, an absorbent layer (e.g., a fibrous core), a body fluid impermeable back sheet, and combinations thereof. The acquisition layer preferably is capable of dispersing liquid to the surface of the absorbent layer. The absorbent layer may include loose fibers, fibers held together through a binder, compressed fibers, and combinations thereof. The fibers of the absorbent layer may be natural fibers (e.g., wood pulp, jute, cotton, silk, and wool, and combinations thereof), synthetic fibers including (e.g., nylon, rayon polyester, acrylics, polypropylenes, polyethylene, polyvinyl chloride, polyurethane, and combinations thereof), and combinations thereof. The multilayer construction can be in the form of a layer disposed between any of the components.
  • In one absorbent article, the multilayer construction is perforated and disposed between the wearer of the absorbent article and an absorbent layer such that the thermoplastic layer is the first layer of the multilayer construction that is available for contact with a liquid. The perforations allow a liquid to pass through the multilayer construction from the thermoplastic layer to the superabsorbent layer. The superabsorbent layer then gels upon contact with the water and the absorbent layer of the absorbent article absorbs the water.
  • The invention will now be described by way of the following examples. All ratios and percentages are by weight unless otherwise indicated.
  • EXAMPLES Example
  • FULATEX PD8081H aqueous polyacrylic acid solution polymer and ammonium zirconyl carbonate composition (H.B. Fuller Company, St. Paul, Minn.) was coated onto a 50 um thick NP 2116 polyamide film (H.B. Fuller Company) and dried to form a film construction that included a 15 um superabsorbent polymer coating on the 50 um polyamide film.
  • Water droplets were dropped onto the superabsorbent polymer surface of the film construction using an eye dropper. The treated film was observed. The water was rapidly adsorbed and then absorbed by the superabsorbent polymer and formed a gel in five seconds. The water was then absorbed by the thermoplastic layer of the film construction. After three minutes the film construction had dissolved in the location of the water droplets.
  • Other features are present in the claims.

Claims (26)

1. A multilayer construction comprising:
a first layer comprising water sensitive thermoplastic polymer; and
a second layer comprising superabsorbent polymer, said second layer being disposed on said first layer.
2. The multilayer construction of claim 1, wherein said thermoplastic polymer comprises polyamide.
3. The multilayer construction of claim 1, wherein said water sensitive thermoplastic polymer comprises the reaction product of polyoxyalkylene glycol diamine and an acid selected from the group consisting of dicarboxylic acid, dicarboxylic acid ester and combinations thereof, said polyoxyalkylene glycol diamine having the formula NH2—(CH2)x—(OCH2—CH2)y—O—(CH2)x—NH2, where 2≦X≦3, and 1≦Y≦2.
4. The multilayer construction of claim 1, wherein said water sensitive thermoplastic polymer comprises the reaction product of adipic acid and polyoxyalkylene glycol diamine.
5. The multilayer construction of claim 1, wherein said water sensitive thermoplastic polymer is water soluble.
6. The multilayer construction of claim 1, wherein said superabsorbent polymer comprises crosslinked polyacrylate.
7. The multilayer construction of claim 1, wherein said superabsorbent polymer comprises crosslinked and at least partially neutralized α,β-beta ethylenically unsaturated monomers selected from the group consisting of monocarboxylic acid monomers, dicarboxylic acid monomers, acid anhydride monomers and combinations thereof.
8. The multilayer construction of claim 1, wherein said construction exhibits an absorption rate greater than the absorption rate of the superabsorbent polymer layer in the absence of said thermoplastic layer.
9. The multilayer construction of claim 1, further comprising perforations.
10. A film comprising the multilayer construction of claim 1.
11. The film of claim 10, wherein said film exhibits an absorption rate greater than the absorption rate of the superabsorbent polymer layer in the absence of said thermoplastic layer.
12. The film of claim 10, further comprising perforations.
13. A film comprising the multilayer construction of claim 3.
14. A film comprising the multilayer construction of claim 6.
15. A fiber comprising the multilayer construction of claim 1.
16. A fiber comprising the multilayer construction of claim 3.
17. A fiber comprising the multilayer construction of claim 6.
18. An article comprising:
a nonwoven web; and
a multilayer construction disposed on said web, said multilayer construction comprising
a first layer comprising a water sensitive thermoplastic polymer; and
a second layer comprising a superabsorbent polymer, said second layer being disposed on said first layer.
19. An article comprising:
an absorbent layer; and
a film comprising
a first layer comprising a water sensitive thermoplastic polymer, and
a second layer comprising a superabsorbent polymer, said second layer being disposed on said first layer.
20. A multi-component fiber comprising:
a first component comprising water sensitive thermoplastic polymer; and
a second component comprising superabsorbent polymer, said second component being disposed on said first component.
21. The multi-component fiber of claim 20, wherein said first component comprises a core and said second component comprises a sheath.
22. A multi-component yarn comprising:
a first component comprising water sensitive thermoplastic polymer; and
a second component comprising superabsorbent polymer, said second component being disposed on said first component.
23. The multi-component yarn of claim 22, wherein said first component comprises a core comprising the water sensitive thermoplastic polymer.
24. The multi-component yarn of claim 22, wherein the second component comprises a sheath comprising the superabsorbent polymer.
25. A disposable article comprising the multilayer construction of claim 1.
26. A diaper comprising the multilayer construction of claim 1.
US11/544,911 2002-04-11 2006-10-05 Superabsorbent water sensitive multilayer construction Abandoned US20070031637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/121,171 US7135135B2 (en) 2002-04-11 2002-04-11 Superabsorbent water sensitive multilayer construction
US11/544,911 US20070031637A1 (en) 2002-04-11 2006-10-05 Superabsorbent water sensitive multilayer construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/544,911 US20070031637A1 (en) 2002-04-11 2006-10-05 Superabsorbent water sensitive multilayer construction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/121,171 Division US7135135B2 (en) 2002-04-11 2002-04-11 Superabsorbent water sensitive multilayer construction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/569,700 Division US8465744B2 (en) 2003-02-13 2009-09-29 Method of treating inflammation by administering human IL-1B antibodies

Publications (1)

Publication Number Publication Date
US20070031637A1 true US20070031637A1 (en) 2007-02-08

Family

ID=28790263

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/121,171 Expired - Fee Related US7135135B2 (en) 2002-04-11 2002-04-11 Superabsorbent water sensitive multilayer construction
US11/544,911 Abandoned US20070031637A1 (en) 2002-04-11 2006-10-05 Superabsorbent water sensitive multilayer construction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/121,171 Expired - Fee Related US7135135B2 (en) 2002-04-11 2002-04-11 Superabsorbent water sensitive multilayer construction

Country Status (7)

Country Link
US (2) US7135135B2 (en)
EP (1) EP1492670A1 (en)
CN (1) CN1646313A (en)
AU (1) AU2003223713A1 (en)
CA (1) CA2480153A1 (en)
MX (1) MXPA04009903A (en)
WO (1) WO2003086755A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282008A1 (en) * 2003-06-19 2005-12-22 Haile William A Water-dispersible and multicomponent fibers from sulfopolyesters
US20060194047A1 (en) * 2003-06-19 2006-08-31 Gupta Rakesh K Water-dispersible and multicomponent fibers from sulfopolyesters
US20070179275A1 (en) * 2006-01-31 2007-08-02 Gupta Rakesh K Sulfopolyester recovery
GB2463523A (en) * 2008-09-17 2010-03-24 Medtrade Products Ltd Absorbent gelling wound care device
US20110139386A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Wet lap composition and related processes
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US10369246B2 (en) 2013-06-14 2019-08-06 Krp U.S., Llc Absorbent articles having pockets and related methods therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391532B (en) * 2002-08-07 2004-09-15 Reckitt Benckiser Water-soluble container with spacer between compartments
DE102004025499A1 (en) * 2004-05-21 2005-12-15 Fischer, Jörg Multi-layer composite
US20060020250A1 (en) * 2004-07-23 2006-01-26 Bba Nonwovens Simpsonville, Inc. Absorbent structure
US20060246186A1 (en) * 2005-04-28 2006-11-02 Nowak Michael J Polycarboxylated polymer, method of making, method of use, and superabsorbent compositions including the same
EP1940479B1 (en) * 2005-10-06 2011-02-23 H.B. Fuller Company Wetness indicating composition
US7491669B2 (en) * 2006-02-07 2009-02-17 Crystal Clear Technologies, Inc. Adsorbent with multiple layers
US20120141785A1 (en) * 2008-01-11 2012-06-07 Hugh Winters Lowrey Process for application of durable fast drying multi-coat organic coating system
WO2010132351A2 (en) 2009-05-12 2010-11-18 3M Innovative Properties Company Masking article for producing precise paint lines and method of improving paint line performance of masking articles
US8828516B2 (en) 2012-05-03 2014-09-09 Biovation Ii Llc Biodegradable polymer non-woven absorbent pad with absorbency and antimicrobial chemistry
US9971114B2 (en) * 2015-11-13 2018-05-15 Ofs Fitel, Llc Optical cable containing fiber bundles and thread for tying the bundles

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090013A (en) * 1975-03-07 1978-05-16 National Starch And Chemical Corp. Absorbent composition of matter
US4335722A (en) * 1981-02-17 1982-06-22 Kimberly-Clark Corporation Wrapped superabsorbent core tampon
US4354487A (en) * 1980-05-12 1982-10-19 Johnson & Johnson Fiber/absorbent polymer composites and method of forming same
US4563289A (en) * 1984-04-10 1986-01-07 Polysar Limited Impregnation of non-woven webs
US4702944A (en) * 1984-04-10 1987-10-27 Polysar Limited Process for binding non-wovens with acrylate compounds
US4721647A (en) * 1985-05-29 1988-01-26 Kao Corporation Absorbent article
US4732789A (en) * 1986-10-28 1988-03-22 Burlington Industries, Inc. Flame-resistant cotton blend fabrics
US4808637A (en) * 1987-05-14 1989-02-28 Johnson & Johnson Patient Care, Inc. Superabsorbent composition and process
US4888238A (en) * 1987-09-16 1989-12-19 James River Corporation Superabsorbent coated fibers and method for their preparation
US4914170A (en) * 1987-11-17 1990-04-03 Rohm And Haas Company Superabsorbent polymeric compositions and process for producing the same
US4933390A (en) * 1985-06-28 1990-06-12 Shmuel Dabi In situ crosslinking of polyelectrolytes
US5071681A (en) * 1988-07-28 1991-12-10 James River Corporation Of Virginia Water absorbent fiber web
US5075344A (en) * 1991-05-20 1991-12-24 The Dow Chemical Company Process for producing a superabsorbent polymer
US5079034A (en) * 1988-11-21 1992-01-07 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacturing a water absorbent composite by applying an aqueous polymerizable solution to a substrate and polymerizing the coating against polymerization inner surfaces
US5118749A (en) * 1989-08-31 1992-06-02 Union Oil Company Of California Emulsion polymers and paint formulated therewith
US5122544A (en) * 1988-05-31 1992-06-16 Nalco Chemical Company Process for producing improved superabsorbent polymer aggregates from fines
US5126382A (en) * 1989-06-28 1992-06-30 James River Corporation Superabsorbent compositions and a process for preparing them
US5244934A (en) * 1991-06-07 1993-09-14 Takai Rubber Industries, Ltd. Irradiation or thermal treatment of water-impregnated cross-linked poly-acrylic acid metal salt resin particles
US5246544A (en) * 1990-10-02 1993-09-21 James River Corporation Of Virginia Crosslinkable creping adhesives
US5324812A (en) * 1993-04-01 1994-06-28 Texaco Chemical Company Water soluble polyamide from polyalkylene glycol diamines and polycarboxylic acids
US5487736A (en) * 1993-11-17 1996-01-30 The Procter & Gamble Company Multi-topography substrate having selectively disposed osmotic absorbent, incorporation thereof in a disposable absorbent article and process of manufacture therefor
US5489469A (en) * 1987-01-28 1996-02-06 Kao Corporation Absorbent composite
US5547747A (en) * 1993-11-17 1996-08-20 The Procter & Gamble Company Process of making absorbent structures and absorbent strutures produced thereby
US5693707A (en) * 1994-09-16 1997-12-02 Air Products And Chemicals, Inc. Liquid absorbent composition for nonwoven binder applications
US5837802A (en) * 1997-08-29 1998-11-17 H. B. Fuller Licensing & Financing, Inc. Fast setting water sensitive polyamides having a high Tg
US5849837A (en) * 1996-05-22 1998-12-15 H. B. Fuller Licensing & Financing, Inc. Structured reactive latex
US5856410A (en) * 1997-05-23 1999-01-05 Amcol International Corporation Polyacrylate superabsorbent post-polymerization neutralized with solid, non-hydroxyl neutralizing agent.
US5916678A (en) * 1995-06-30 1999-06-29 Kimberly-Clark Worldwide, Inc. Water-degradable multicomponent fibers and nonwovens
US6022610A (en) * 1993-11-18 2000-02-08 The Procter & Gamble Company Deposition of osmotic absorbent onto a capillary substrate without deleterious interfiber penetration and absorbent structures produced thereby
US6051317A (en) * 1995-02-20 2000-04-18 Stockhausen Gmbh & Co. Kg Sheet-like superabsorbent structures
US6103317A (en) * 1995-05-23 2000-08-15 Glastic Corporation Water swellable compositions
US6174929B1 (en) * 1996-02-28 2001-01-16 Basf Aktiengesellschaft Water-absorbent cross-linked polymers in foam form
US6284367B1 (en) * 1996-11-14 2001-09-04 Neptco, Inc. Process for the preparation of nonwoven water blocking tapes and their use in cable manufacture
US6417425B1 (en) * 2000-02-01 2002-07-09 Basf Corporation Absorbent article and process for preparing an absorbent article
US20020090453A1 (en) * 2000-10-25 2002-07-11 Synergistic Ventures, Inc. Highly absorbent products and process of making such products
US6426445B1 (en) * 1995-01-10 2002-07-30 The Procter & Gamble Company Absorbent members comprising an agglomerate of hydrogel-forming absorbent polymer and particulate hydrophilic foam
US20020137837A1 (en) * 1998-11-13 2002-09-26 Martin C. Flautt Superabsorbent water-resistant coatings
US6495080B1 (en) * 1997-10-03 2002-12-17 Kimberly-Clark Worldwide, Inc. Methods for making water-sensitive compositions for improved processability and fibers including same
US20030163106A1 (en) * 1999-09-28 2003-08-28 Carol Ann Blaney Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US6686414B1 (en) * 1999-04-14 2004-02-03 H. B. Fuller Licensing & Financing Inc. Aqueous superabsorbent polymer and methods of use
US6684414B1 (en) * 2000-09-26 2004-02-03 Houston Rehrig Portable urinal
US6843874B1 (en) * 1997-12-01 2005-01-18 H.B. Fuller Licensing & Financing Inc. Method for producing a substantially continuous, nonporous thermoplastic coating and articles constructed therefrom

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2191779B (en) 1984-04-10 1988-09-21 Polysar Ltd Non-woven webs
WO1996005234A1 (en) 1994-08-12 1996-02-22 Kao Corporation Process for producing improved super absorbent polymer
EP0708119A1 (en) 1994-10-21 1996-04-24 Air Products And Chemicals, Inc. Self-crosslinking, aqueous absorbent polymer compositions
US5948710A (en) * 1995-06-30 1999-09-07 Kimberly-Clark Worldwide, Inc. Water-dispersible fibrous nonwoven coform composites
US6087550A (en) 1995-11-09 2000-07-11 H. B. Fuller Licensing & Financing, Inc. Non-woven application for water dispersable copolyester
DE69737590D1 (en) 1996-08-07 2007-05-24 Nippon Catalytic Chem Ind product water absorbent and method for its manufacture
US6403857B1 (en) * 1998-06-08 2002-06-11 Buckeye Technologies Inc. Absorbent structures with integral layer of superabsorbent polymer particles
US6586354B1 (en) * 1998-12-28 2003-07-01 Kimberly-Clark Worldwide, Inc. Microlayer breathable hybrid films of degradable polymers and thermoplastic elastomers

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090013A (en) * 1975-03-07 1978-05-16 National Starch And Chemical Corp. Absorbent composition of matter
US4354487A (en) * 1980-05-12 1982-10-19 Johnson & Johnson Fiber/absorbent polymer composites and method of forming same
US4335722A (en) * 1981-02-17 1982-06-22 Kimberly-Clark Corporation Wrapped superabsorbent core tampon
US4563289A (en) * 1984-04-10 1986-01-07 Polysar Limited Impregnation of non-woven webs
US4702944A (en) * 1984-04-10 1987-10-27 Polysar Limited Process for binding non-wovens with acrylate compounds
US4721647A (en) * 1985-05-29 1988-01-26 Kao Corporation Absorbent article
US4933390A (en) * 1985-06-28 1990-06-12 Shmuel Dabi In situ crosslinking of polyelectrolytes
US4732789A (en) * 1986-10-28 1988-03-22 Burlington Industries, Inc. Flame-resistant cotton blend fabrics
US5489469A (en) * 1987-01-28 1996-02-06 Kao Corporation Absorbent composite
US4808637A (en) * 1987-05-14 1989-02-28 Johnson & Johnson Patient Care, Inc. Superabsorbent composition and process
US4888238A (en) * 1987-09-16 1989-12-19 James River Corporation Superabsorbent coated fibers and method for their preparation
US4914170A (en) * 1987-11-17 1990-04-03 Rohm And Haas Company Superabsorbent polymeric compositions and process for producing the same
US5122544A (en) * 1988-05-31 1992-06-16 Nalco Chemical Company Process for producing improved superabsorbent polymer aggregates from fines
US5071681A (en) * 1988-07-28 1991-12-10 James River Corporation Of Virginia Water absorbent fiber web
US5079034A (en) * 1988-11-21 1992-01-07 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacturing a water absorbent composite by applying an aqueous polymerizable solution to a substrate and polymerizing the coating against polymerization inner surfaces
US5126382A (en) * 1989-06-28 1992-06-30 James River Corporation Superabsorbent compositions and a process for preparing them
US5118749A (en) * 1989-08-31 1992-06-02 Union Oil Company Of California Emulsion polymers and paint formulated therewith
US5246544A (en) * 1990-10-02 1993-09-21 James River Corporation Of Virginia Crosslinkable creping adhesives
US5075344A (en) * 1991-05-20 1991-12-24 The Dow Chemical Company Process for producing a superabsorbent polymer
US5244934A (en) * 1991-06-07 1993-09-14 Takai Rubber Industries, Ltd. Irradiation or thermal treatment of water-impregnated cross-linked poly-acrylic acid metal salt resin particles
US5324812A (en) * 1993-04-01 1994-06-28 Texaco Chemical Company Water soluble polyamide from polyalkylene glycol diamines and polycarboxylic acids
US5547747A (en) * 1993-11-17 1996-08-20 The Procter & Gamble Company Process of making absorbent structures and absorbent strutures produced thereby
US5487736A (en) * 1993-11-17 1996-01-30 The Procter & Gamble Company Multi-topography substrate having selectively disposed osmotic absorbent, incorporation thereof in a disposable absorbent article and process of manufacture therefor
US6022610A (en) * 1993-11-18 2000-02-08 The Procter & Gamble Company Deposition of osmotic absorbent onto a capillary substrate without deleterious interfiber penetration and absorbent structures produced thereby
US5693707A (en) * 1994-09-16 1997-12-02 Air Products And Chemicals, Inc. Liquid absorbent composition for nonwoven binder applications
US6426445B1 (en) * 1995-01-10 2002-07-30 The Procter & Gamble Company Absorbent members comprising an agglomerate of hydrogel-forming absorbent polymer and particulate hydrophilic foam
US6051317A (en) * 1995-02-20 2000-04-18 Stockhausen Gmbh & Co. Kg Sheet-like superabsorbent structures
US6103317A (en) * 1995-05-23 2000-08-15 Glastic Corporation Water swellable compositions
US5916678A (en) * 1995-06-30 1999-06-29 Kimberly-Clark Worldwide, Inc. Water-degradable multicomponent fibers and nonwovens
US6174929B1 (en) * 1996-02-28 2001-01-16 Basf Aktiengesellschaft Water-absorbent cross-linked polymers in foam form
US5849837A (en) * 1996-05-22 1998-12-15 H. B. Fuller Licensing & Financing, Inc. Structured reactive latex
US6284367B1 (en) * 1996-11-14 2001-09-04 Neptco, Inc. Process for the preparation of nonwoven water blocking tapes and their use in cable manufacture
US5856410A (en) * 1997-05-23 1999-01-05 Amcol International Corporation Polyacrylate superabsorbent post-polymerization neutralized with solid, non-hydroxyl neutralizing agent.
US5837802A (en) * 1997-08-29 1998-11-17 H. B. Fuller Licensing & Financing, Inc. Fast setting water sensitive polyamides having a high Tg
US6495080B1 (en) * 1997-10-03 2002-12-17 Kimberly-Clark Worldwide, Inc. Methods for making water-sensitive compositions for improved processability and fibers including same
US6843874B1 (en) * 1997-12-01 2005-01-18 H.B. Fuller Licensing & Financing Inc. Method for producing a substantially continuous, nonporous thermoplastic coating and articles constructed therefrom
US20020137837A1 (en) * 1998-11-13 2002-09-26 Martin C. Flautt Superabsorbent water-resistant coatings
US6686414B1 (en) * 1999-04-14 2004-02-03 H. B. Fuller Licensing & Financing Inc. Aqueous superabsorbent polymer and methods of use
US20030163106A1 (en) * 1999-09-28 2003-08-28 Carol Ann Blaney Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US6417425B1 (en) * 2000-02-01 2002-07-09 Basf Corporation Absorbent article and process for preparing an absorbent article
US6684414B1 (en) * 2000-09-26 2004-02-03 Houston Rehrig Portable urinal
US20020090453A1 (en) * 2000-10-25 2002-07-11 Synergistic Ventures, Inc. Highly absorbent products and process of making such products

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20060194047A1 (en) * 2003-06-19 2006-08-31 Gupta Rakesh K Water-dispersible and multicomponent fibers from sulfopolyesters
US8557374B2 (en) 2003-06-19 2013-10-15 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8691130B2 (en) 2003-06-19 2014-04-08 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US7902094B2 (en) 2003-06-19 2011-03-08 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110089594A1 (en) * 2003-06-19 2011-04-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110092931A1 (en) * 2003-06-19 2011-04-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110092932A1 (en) * 2003-06-19 2011-04-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110092123A1 (en) * 2003-06-19 2011-04-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110091513A1 (en) * 2003-06-19 2011-04-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110097959A1 (en) * 2003-06-19 2011-04-28 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110097580A1 (en) * 2003-06-19 2011-04-28 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110095444A1 (en) * 2003-06-19 2011-04-28 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110095445A1 (en) * 2003-06-19 2011-04-28 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110139908A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110142896A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110140297A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110139386A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Wet lap composition and related processes
US20110143624A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20110142909A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8148278B2 (en) 2003-06-19 2012-04-03 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8158244B2 (en) 2003-06-19 2012-04-17 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8163385B2 (en) 2003-06-19 2012-04-24 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8216953B2 (en) 2003-06-19 2012-07-10 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8227362B2 (en) 2003-06-19 2012-07-24 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8236713B2 (en) 2003-06-19 2012-08-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8247335B2 (en) 2003-06-19 2012-08-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8257628B2 (en) 2003-06-19 2012-09-04 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8262958B2 (en) 2003-06-19 2012-09-11 Eastman Chemical Company Process of making woven articles comprising water-dispersible multicomponent fibers
US8273451B2 (en) 2003-06-19 2012-09-25 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8277706B2 (en) 2003-06-19 2012-10-02 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8314041B2 (en) 2003-06-19 2012-11-20 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8388877B2 (en) 2003-06-19 2013-03-05 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8398907B2 (en) 2003-06-19 2013-03-19 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8623247B2 (en) 2003-06-19 2014-01-07 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8435908B2 (en) 2003-06-19 2013-05-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8444895B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Processes for making water-dispersible and multicomponent fibers from sulfopolyesters
US8444896B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20050282008A1 (en) * 2003-06-19 2005-12-22 Haile William A Water-dispersible and multicomponent fibers from sulfopolyesters
US20070179275A1 (en) * 2006-01-31 2007-08-02 Gupta Rakesh K Sulfopolyester recovery
GB2463523A (en) * 2008-09-17 2010-03-24 Medtrade Products Ltd Absorbent gelling wound care device
GB2463523B (en) * 2008-09-17 2013-05-01 Medtrade Products Ltd Wound care device
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US9175440B2 (en) 2012-01-31 2015-11-03 Eastman Chemical Company Processes to produce short-cut microfibers
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US10369246B2 (en) 2013-06-14 2019-08-06 Krp U.S., Llc Absorbent articles having pockets and related methods therefor
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion

Also Published As

Publication number Publication date
CN1646313A (en) 2005-07-27
US20030194558A1 (en) 2003-10-16
EP1492670A1 (en) 2005-01-05
US7135135B2 (en) 2006-11-14
AU2003223713A1 (en) 2003-10-27
WO2003086755A1 (en) 2003-10-23
MXPA04009903A (en) 2004-12-07
CA2480153A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
EP0278601B2 (en) Process for manufacturing an absorbent composite
JP4718083B2 (en) Superabsorbent polymers having a low absorption rate
US6410644B2 (en) Temperature sensitive polymers and water-dispersible products containing the polymers
CA1306855C (en) Microfiber-containing absorbent structures and absorbent articles using such structures
EP0983319B1 (en) Ion sensitive binder for fibrous materials
CA2103306C (en) Extrudable compositions for topical or transdermal drug delivery
JP3583423B2 (en) Multi-layer absorbent composite material
EP1255574B1 (en) Foam-on-film medical articles
CN100430036C (en) Stretchable absorbent article
US5543215A (en) Polymeric binders for binding particles to fibers
US6051317A (en) Sheet-like superabsorbent structures
EP0268498B1 (en) Absorbent products and their manufacture
CN100349619C (en) Composition comprising super absorbent particles of substantially angle-lacking shape
CN1027678C (en) Hydrophilic polymers for incoporating deodorants into absorbent structures
JP3099970B2 (en) Multilayer bandage
CA2406520C (en) Ion-sensitive hard water dispersible polymers and applications therefor
EP0427219B1 (en) Water absorbent latex polymer foams
CA2205039C (en) Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures
AU2000270582B2 (en) Foam/film composite medical articles
KR0138239B1 (en) Water absorbing material
US5589192A (en) Gel pharmaceutical formulation for local anesthesia
CA1318655C (en) Immobilizing particulate absorbents by conversion to hydrates
US4392908A (en) Process for making absorbent articles
US5676660A (en) Absorbent product including absorbent layer treated with surface active agent
CA1183513A (en) Absorbent products, process and compositions for immobilization of particulate absorbents

Legal Events

Date Code Title Description
AS Assignment

Owner name: H.B. FULLER COMPANY, MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:H.B. FULLER LICENSING & FINANCING, INC.;REEL/FRAME:023574/0530

Effective date: 20091106

Owner name: H.B. FULLER COMPANY,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:H.B. FULLER LICENSING & FINANCING, INC.;REEL/FRAME:023574/0530

Effective date: 20091106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION