US20070010926A1 - Adaptive shift learn control for automatic transmissions - Google Patents

Adaptive shift learn control for automatic transmissions Download PDF

Info

Publication number
US20070010926A1
US20070010926A1 US11/175,115 US17511505A US2007010926A1 US 20070010926 A1 US20070010926 A1 US 20070010926A1 US 17511505 A US17511505 A US 17511505A US 2007010926 A1 US2007010926 A1 US 2007010926A1
Authority
US
United States
Prior art keywords
clutch
state
adaptive shift
full
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/175,115
Other versions
US7590480B2 (en
Inventor
Randall Dlugoss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/175,115 priority Critical patent/US7590480B2/en
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DLUGOSS, RANDALL B.
Publication of US20070010926A1 publication Critical patent/US20070010926A1/en
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES reassignment CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to UAW RETIREE MEDICAL BENEFITS TRUST reassignment UAW RETIREE MEDICAL BENEFITS TRUST SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Publication of US7590480B2 publication Critical patent/US7590480B2/en
Application granted granted Critical
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UAW RETIREE MEDICAL BENEFITS TRUST
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST COMPANY
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • F16H2061/064Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means for calibration of pressure levels for friction members, e.g. by monitoring the speed change of transmission shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2342/00Calibrating
    • F16H2342/04Calibrating engagement of friction elements

Definitions

  • the present invention relates to vehicle transmissions, and more particularly to a transmission control system for rapidly updating an adaptive shift control in a transmission.
  • Internal combustion engines combust a fuel and air mixture within cylinders driving pistons to produce drive torque.
  • the engine drives a transmission through a coupling device.
  • the coupling device includes a torque converter.
  • the transmission transfers the drive torque to a driveline through one of a plurality of gear ratios.
  • the transmission shifts between gear ratios based on a shift schedule and vehicle operating conditions.
  • the transmission typically includes a plurality of clutches that are selectively engaged to establish a desired gear ratio.
  • clutch-to-clutch shifts occur. More specifically, at least one clutch is disengaged (i.e., off-going clutch) while another clutch is concurrently engaged (i.e., on-coming clutch).
  • Control of the clutch-to-clutch shift is based on an estimated engine torque (T EST ) and other shift parameters including, but not limited to, a clutch fill time, a clutch pressure offset and a clutch full feed fill threshold (FFFT) pressure.
  • T EST is determined using a torque estimating calculation that is based on engine operating conditions.
  • the clutch fill time, the clutch pressure offset and clutch FFFT pressure for each clutch are adaptively learned and updated during vehicle operation.
  • the shift parameters are set to initial values and do not include the benefit of the adaptive/learned shift control.
  • the transmission shift quality is not as high as desired.
  • a technician would be required to drive the vehicle over a series of drive cycles to improve the shift quality using the adaptive shift control before providing the vehicle to the customer. Driving the vehicle increases time and cost, and exposes the manufacturer to unnecessary liability.
  • the present invention provides an adaptive shift learn control system for rapidly updating an adaptive shift system that regulates shifting of a transmission.
  • the adaptive shift learn control system includes first and second clutches and a control module that cycles the first clutch between an ON state and an OFF state while the second clutch is in a full ON state.
  • the control module monitors a parameter of the transmission during the cycling, calculates a clutch characteristic based on the parameter and updates the adaptive shift control system based on the clutch characteristic.
  • control module switches the first clutch between full ON and full OFF states.
  • control module ramps the clutch between the ON and OFF states.
  • the parameter includes a torque converter slip speed and the clutch characteristic includes a fill time of the first clutch.
  • the fill time is determined based on a time between switching the first clutch to a full ON state and the torque converter slip speed increasing.
  • the parameter includes a hydraulic pressure of the first clutch.
  • the clutch characteristic includes an offset pressure of said first clutch. The offset pressure is equal to the hydraulic pressure at a point where a torque converter slip speed decreases while decreasing the hydraulic pressure.
  • the clutch characteristic includes a full feed fill threshold pressure. The full feed fill threshold is equal to the hydraulic pressure at a point where a switch state of a pressure switch associated with the first clutch switches to an ON state.
  • FIG. 1 is a functional block diagram of an exemplary vehicle system
  • FIG. 2 is a functional block diagram of an exemplary transmission
  • FIG. 3 is a graph illustrating exemplary cycles executed by an adaptive shift control system in accordance with the present invention.
  • FIG. 4 is a graph illustrating a detailed view of an exemplary cycle of FIG. 3 for determining a clutch fill time in accordance with the present invention
  • FIG. 5 is a graph illustrating a detailed view of another exemplary cycle of FIG. 3 for determining a full feed fill threshold pressure (P FFFT ) and clutch pressure offset (P CLOFFSET ) in accordance with the present invention.
  • FIG. 6 is a flowchart illustrating exemplary steps executed by the adaptive shift control system.
  • module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • ASIC application specific integrated circuit
  • processor shared, dedicated, or group
  • memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • the vehicle system 10 includes an engine 12 that combusts a fuel and air mixture within cylinders (not shown) to drive pistons slidably disposed within the cylinders.
  • the pistons drive a crankshaft (not shown) that drives a transmission 14 through a torque converter 16 .
  • Air is drawn through a throttle 18 and into an intake manifold 20 that distributes air to the individual cylinders. Exhaust generated by the combustion process is exhausted to an after-treatment system (not shown) through an exhaust manifold 22 .
  • the torque converter 16 is a fluid coupling that enables the engine to spin somewhat independently of the transmission 14 .
  • the torque converter 16 includes a pump, a turbine and a stator.
  • the pump is a centrifugal pump that is driven by the engine 12 . Fluid pumped by the pump, drives the turbine, which in turn drives the transmission 14 .
  • the stator redirects fluid returning from the turbine before it hits the pump again to increase the efficiency of the torque converter 16 . In a torque converter stall condition, the pump is turning but the turbine is not.
  • a control module 24 regulates operation of the vehicle system 10 . More specifically, the control module 24 operates the engine 12 and transmission 14 based on signals from operator input devices including, but not limited to, a range selector 26 and a brake pedal 28 .
  • the range selector 26 enables the operator to put the transmission 14 into one of a plurality of ranges including, but not limited to, a drive range (D), a reverse range (R), a neutral range (N) and a park range (P).
  • the control module 24 also regulates engine operation based on signals from various sensors including, but not limited to, an engine RPM sensor 30 and a transmission line pressure sensor 32 .
  • a remote module 40 is selectively linked for communication with the control module 24 through an interface 42 .
  • the remote module 40 provides an operator input for initiating and regulating the adaptive shift learn control of the present invention. More specifically, the remote module 40 initiates the adaptive shift learn control when the enable conditions are present.
  • the remote module 40 further provides prompts to the operator as the adaptive shift learn control is executed.
  • the exemplary transmission 14 is a six-speed automatic transmission that is disclosed in commonly assigned U.S. Pat. No. 6,308,125, issued on Oct. 23, 2001 and entitled Adaptive Clutch Control of a Closed-Throttle Downshift, the disclosure of which is expressly incorporated herein by reference. It is appreciated that the specific transmission described herein is merely exemplary in nature and that the adaptive shift learn control system of the present invention can be implemented with various other transmissions.
  • the transmission 14 includes an input shaft 40 , an output shaft 42 and three inter-connected planetary gear sets 44 A, 44 B and 44 C, respectively.
  • the planetary gear sets 44 A, 44 B, 44 C include respective sun gears 46 A, 46 B, 46 C, carriers 48 A, 48 B, 48 C, planetary gears 50 A, 50 B, 50 C and ring gears 52 A, 52 B, 52 C.
  • the transmission 14 further includes clutches C 1 -C 5 that are selectively engaged to establish a desired gear ratio of the transmission 14 .
  • the input shaft 40 continuously drives the sun gear 46 A of the gear set 44 A, selectively drives the sun gears 46 B, 46 C of the gear sets 44 B, 44 C via the clutch C 1 and selectively drives the carrier 48 B of the gear set 44 B via the clutch C 2 .
  • the ring gears 52 A, 52 B, 52 C of the gear sets 44 A, 44 B, 44 C are selectively grounded via the clutches C 3 , C 4 and C 5 , respectively.
  • Hydraulic pressure P HYD
  • a pressure switch 60 is associated with the pressure line to each clutch and switches between ON and OFF states. More specifically, when P HYD is below a threshold pressure (P THR ), the switch is in the OFF state. When P HYD is greater than P THR , the switch state is ON.
  • the state of the clutches C 1 -C 5 can be controlled to provide six forward speed ratios (1, 2, 3, 4, 5, 6), a reverse speed ratio (R) or a neutral condition (N).
  • R reverse speed ratio
  • N neutral condition
  • Shifting from one speed forward speed ratio to another is generally achieved by disengaging one clutch (i.e., the off-going clutch) while engaging another clutch (i.e., the on-coming clutch).
  • the transmission is downshifted from second to first by disengaging clutch C 4 while engaging clutch C 5 .
  • the adaptive shift learn control of the present invention is used after initial assembly of the vehicle and/or after service has been performed on the transmission.
  • the adaptive shift learn control exercises the clutches and characteristics of each clutch are measured and an adaptive shift system is updated based on the measurement.
  • the clutch-to-clutch architecture of the transmission is used to independently control and monitor the clutches. More specifically, up to two secondary clutches are applied to transfer torque to the output shaft or tie-down the output shaft to enable the turbine to tie-up when a primary clutch or test clutch is applied.
  • the adaptive shift learn control monitors a plurality of events and operating parameters to determine the characteristics of the particular test clutch. These events include, but are not limited to, the transmission temperature (T TRANS ) being within a normal operating range, the transmission output speed at zero RPM, the engine RPM within a desired range (e.g., at or near 1500 RPM), the transmission line pressure within a desired range (e.g., at or near 900 kPa), the commanded clutch pressure (P COM ), which is dependent on the test cycle and the clutch, and pressure switch states (e.g., ON/OFF).
  • T TRANS transmission temperature
  • P COM commanded clutch pressure
  • the adaptive shift learn control is designed to provide the best results under the most consistent operating conditions. Therefore, any changes occurring that effect these results will stop the adaptive shift learn control until they are corrected.
  • the adaptive shift learn control includes multiple clutch exercise cycles and multiple test cycles for data collection and learning clutch characteristics. More specifically, all of the clutches are exercised before testing. Exercising purges air from the clutches, de-fuzzes the clutch surfaces, warms up the clutches and moves lubricants into parts that have not moved since vehicle and/or service has been completed. The exercise cycles pressurize the clutches until the turbine speed drops to zero. The clutches are then exhausted. This is repeated as needed and is regulated via calibrations.
  • Three key clutch parameters are determined during execution of the adaptive shift learn control. These parameters include clutch fill time (t CLFILL ), full feed fill threshold pressure (P FFFT ) and clutch pressure offset (P CLOFFSET ). It should be noted that the measured values of these parameters may not be accurate compared to other methods of measurement. However, the results are meant to be a high correlation to the adaptive values used by the transmission adaptive shift system. Therefore, look-up tables are used to update the shifts based on the measured parameters. In this manner, unaccounted variables are compensated for to provide repeatable results.
  • t CLFILL clutch fill time
  • P FFFT full feed fill threshold pressure
  • P CLOFFSET clutch pressure offset
  • the test cycles of the adaptive shift learn control are performed as one cycle per clutch.
  • the operator is prompted to select D (i.e., to test the forward clutches) or R (to test the reverse clutch(es)).
  • t CLFILL is determined based on the time between P COM being issued and a turbine speed slip being achieved.
  • t CLFILL is used to calculate clutch circuit volume (V CLUTCH ), which is an important measure to understand how the clutch applies as control pressure varies and how much clutch capacity remains during a shift event. Because the transmission output speed is zero and the test clutch under ties down the transmission input speed, the clutch is nearly full at turbine speed slip.
  • V CLUTCH is determined from the t CLFILL and is used by an adapt procedure to determine clutch apply capacity, rates and timing for dynamic control pressure.
  • P FFFT represents the threshold below which the pressure regulator is regulating and above which the clutch is filling using full feed pressure (i.e. restricted only by line and fixed circuit restrictions).
  • P FFFT varies due to production variation and component wear. This value is important to understand the maximum pressure operating range of the clutch.
  • the shift system uses P FFFT to sense clutch pressure using only P COM in the absence of a pressure sensor.
  • P FFFT is determined by ramping the clutch pressure (i.e., applying the clutch) until the associated pressure switch changes state. A change in switch state represents the clutch value no longer regulating.
  • Ramp rates are based on clutch system performance and are different for each clutch. Control transmissions are used to calibrate the ramp rate for each clutch. The transmission line pressure is held constant.
  • the final P FFFT is determined from a look-up table as a function of the measured P FFFT .
  • P CLOFFSET represents the commanded pressure at which no clutch capacity is present at the clutch.
  • P CLOFFSET is close to the-mid point between P FFFT and the clutch release pressure value and is important to understand the clutch operating characteristics.
  • P CLOFFSET varies due to production variation and component wear. The ramp off to exhaust clutch pressure slowly releases the clutch. At release the remaining P COM equals the pressure in the clutch.
  • P CLOFFSET is measured by ramping off the pressure from the clutch until the input speed slip decreases to near zero. The engine provides drive torque to the clutch and P CLOFFSET is achieved, the clutch will barely hold (i.e., high clutch slip with low input speed slip).
  • the final P CLOFFSET value used by the adaptive shift system is determined from a look-up table as a function of the measured P CLOFFSET .
  • the three characteristics are compared to practical thresholds to check the rationality of the values. Further, the three characteristics learned for each of the clutches are stored into non-volatile memory and a test flag (FLAG TEST ) for each clutch is set (i.e., equal to 1) indicating that the adaptive shift learn control was successfully executed for the particular clutch. However, if the three characteristics for a particular clutch are not considered rational (i.e., based upon the comparison with the practical thresholds), FLAG TEST is not set for that clutch. The clutch is then re-cycled for a threshold number of times (e.g., three). If the three characteristics remain non-rational, the adaptive shift learn control is aborted and an error flag is set.
  • a threshold number of times e.g., three
  • the control module 24 determines whether FLAG TEST is set for each clutch. If FLAG TEST is set, the adaptive shift control that regulates shifting of the transmission is updated based on the characteristics stored for each of the clutches. After the adaptive shift control is updated, FLAG TEST is reset (i.e., equal to 0).
  • step 600 control determines whether to enable the adaptive shift learn control. If the adaptive shift learn control is not enabled, control loops back. If the adaptive shift learn control is enabled, control determines whether D range is selected and the vehicle brake is applied in step 602 . If D range is not selected or the brake is not applied, control loops back. If D range is selected and the brake is applied, control executes the warm-up cycles in step 604 . In step 606 , control sets a counter i equal to one.
  • control engages a secondary clutch or clutch(es) to provide a tie-up condition of the transmission.
  • Control cycles a clutch C i full On and full OFF in step 610 .
  • control determines the clutch fill time of C i based on the time at which the turbine slip increases after full ON (see FIG. 4 ).
  • control cycles C i to ramp ON and ramp OFF.
  • Control determines P CLOFFSET and P FFFT for C i in step 616 .
  • control determines whether i is equal to n, where n equal the number of clutches. If i is not equal to n, control increases i in step 620 and loops back to step 608 . If i is equal to n, control updates the adative shift control based on the learned parameters to regulate transmission shifting in step 622 and control ends. If i is not equal to n, control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

An adaptive shift learn control system for rapidly updating an adaptive shift system that regulates shifting of a transmission includes first and second clutches and a control module that cycles the first clutch between an ON state and an OFF state while the second clutch is in a full OFF state. The control module monitors a parameter of the transmission during the cycling, calculates a clutch characteristic based on the parameter and updates the adaptive shift control system based on the clutch characteristic.

Description

    FIELD OF THE INVENTION
  • The present invention relates to vehicle transmissions, and more particularly to a transmission control system for rapidly updating an adaptive shift control in a transmission.
  • BACKGROUND OF THE INVENTION
  • Internal combustion engines combust a fuel and air mixture within cylinders driving pistons to produce drive torque. The engine drives a transmission through a coupling device. In the case of an automatic transmission, the coupling device includes a torque converter. The transmission transfers the drive torque to a driveline through one of a plurality of gear ratios. The transmission shifts between gear ratios based on a shift schedule and vehicle operating conditions.
  • The transmission typically includes a plurality of clutches that are selectively engaged to establish a desired gear ratio. When shifting between gear ratios, clutch-to-clutch shifts occur. More specifically, at least one clutch is disengaged (i.e., off-going clutch) while another clutch is concurrently engaged (i.e., on-coming clutch). Control of the clutch-to-clutch shift is based on an estimated engine torque (TEST) and other shift parameters including, but not limited to, a clutch fill time, a clutch pressure offset and a clutch full feed fill threshold (FFFT) pressure. TEST is determined using a torque estimating calculation that is based on engine operating conditions. The clutch fill time, the clutch pressure offset and clutch FFFT pressure for each clutch, however, are adaptively learned and updated during vehicle operation.
  • When the vehicle first rolls off the assembly line and/or service has been performed on the transmission, the shift parameters are set to initial values and do not include the benefit of the adaptive/learned shift control. As a result, the transmission shift quality is not as high as desired. Traditionally, a technician would be required to drive the vehicle over a series of drive cycles to improve the shift quality using the adaptive shift control before providing the vehicle to the customer. Driving the vehicle increases time and cost, and exposes the manufacturer to unnecessary liability.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides an adaptive shift learn control system for rapidly updating an adaptive shift system that regulates shifting of a transmission. The adaptive shift learn control system includes first and second clutches and a control module that cycles the first clutch between an ON state and an OFF state while the second clutch is in a full ON state. The control module monitors a parameter of the transmission during the cycling, calculates a clutch characteristic based on the parameter and updates the adaptive shift control system based on the clutch characteristic.
  • In another feature, the control module switches the first clutch between full ON and full OFF states.
  • In another feature, the control module ramps the clutch between the ON and OFF states.
  • In other features, the parameter includes a torque converter slip speed and the clutch characteristic includes a fill time of the first clutch. The fill time is determined based on a time between switching the first clutch to a full ON state and the torque converter slip speed increasing.
  • In other features, the parameter includes a hydraulic pressure of the first clutch. The clutch characteristic includes an offset pressure of said first clutch. The offset pressure is equal to the hydraulic pressure at a point where a torque converter slip speed decreases while decreasing the hydraulic pressure. Alternatively, the clutch characteristic includes a full feed fill threshold pressure. The full feed fill threshold is equal to the hydraulic pressure at a point where a switch state of a pressure switch associated with the first clutch switches to an ON state.
  • Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
  • FIG. 1 is a functional block diagram of an exemplary vehicle system;
  • FIG. 2 is a functional block diagram of an exemplary transmission;
  • FIG. 3 is a graph illustrating exemplary cycles executed by an adaptive shift control system in accordance with the present invention;
  • FIG. 4 is a graph illustrating a detailed view of an exemplary cycle of FIG. 3 for determining a clutch fill time in accordance with the present invention;
  • FIG. 5 is a graph illustrating a detailed view of another exemplary cycle of FIG. 3 for determining a full feed fill threshold pressure (PFFFT) and clutch pressure offset (PCLOFFSET) in accordance with the present invention; and
  • FIG. 6 is a flowchart illustrating exemplary steps executed by the adaptive shift control system.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • Referring now to FIG. 1, an exemplary vehicle system 10 is schematically illustrated. The vehicle system 10 includes an engine 12 that combusts a fuel and air mixture within cylinders (not shown) to drive pistons slidably disposed within the cylinders. The pistons drive a crankshaft (not shown) that drives a transmission 14 through a torque converter 16. Air is drawn through a throttle 18 and into an intake manifold 20 that distributes air to the individual cylinders. Exhaust generated by the combustion process is exhausted to an after-treatment system (not shown) through an exhaust manifold 22.
  • The torque converter 16 is a fluid coupling that enables the engine to spin somewhat independently of the transmission 14. Although not illustrated, the torque converter 16 includes a pump, a turbine and a stator. The pump is a centrifugal pump that is driven by the engine 12. Fluid pumped by the pump, drives the turbine, which in turn drives the transmission 14. The stator redirects fluid returning from the turbine before it hits the pump again to increase the efficiency of the torque converter 16. In a torque converter stall condition, the pump is turning but the turbine is not.
  • A control module 24 regulates operation of the vehicle system 10. More specifically, the control module 24 operates the engine 12 and transmission 14 based on signals from operator input devices including, but not limited to, a range selector 26 and a brake pedal 28. The range selector 26 enables the operator to put the transmission 14 into one of a plurality of ranges including, but not limited to, a drive range (D), a reverse range (R), a neutral range (N) and a park range (P). The control module 24 also regulates engine operation based on signals from various sensors including, but not limited to, an engine RPM sensor 30 and a transmission line pressure sensor 32.
  • A remote module 40 is selectively linked for communication with the control module 24 through an interface 42. The remote module 40 provides an operator input for initiating and regulating the adaptive shift learn control of the present invention. More specifically, the remote module 40 initiates the adaptive shift learn control when the enable conditions are present. The remote module 40 further provides prompts to the operator as the adaptive shift learn control is executed.
  • Referring now to FIG. 2, an exemplary transmission 16 is illustrated. The exemplary transmission 14 is a six-speed automatic transmission that is disclosed in commonly assigned U.S. Pat. No. 6,308,125, issued on Oct. 23, 2001 and entitled Adaptive Clutch Control of a Closed-Throttle Downshift, the disclosure of which is expressly incorporated herein by reference. It is appreciated that the specific transmission described herein is merely exemplary in nature and that the adaptive shift learn control system of the present invention can be implemented with various other transmissions.
  • The transmission 14 includes an input shaft 40, an output shaft 42 and three inter-connected planetary gear sets 44A, 44B and 44C, respectively. The planetary gear sets 44A,44B,44C include respective sun gears 46A,46B,46C, carriers 48A,48B,48C, planetary gears 50A,50B,50C and ring gears 52A,52B,52C. The transmission 14 further includes clutches C1-C5 that are selectively engaged to establish a desired gear ratio of the transmission 14. More specifically, the input shaft 40 continuously drives the sun gear 46A of the gear set 44A, selectively drives the sun gears 46B,46C of the gear sets 44B,44C via the clutch C1 and selectively drives the carrier 48B of the gear set 44B via the clutch C2. The ring gears 52A,52B,52C of the gear sets 44A,44B,44C are selectively grounded via the clutches C3, C4 and C5, respectively. Hydraulic pressure (PHYD) is selectively provided to the various clutches to regulate engagement of the clutches. A pressure switch 60 is associated with the pressure line to each clutch and switches between ON and OFF states. More specifically, when PHYD is below a threshold pressure (PTHR), the switch is in the OFF state. When PHYD is greater than PTHR, the switch state is ON.
  • As diagrammed in Table 1 below, the state of the clutches C1-C5 (i.e., engaged or disengaged) can be controlled to provide six forward speed ratios (1, 2, 3, 4, 5, 6), a reverse speed ratio (R) or a neutral condition (N).
    TABLE 1
    C1 C2 C3 C4 C5
    1st X X
    2nd X X
    3rd X X
    4th X X
    5th X X
    6th X X
    R X X
    N X

    For example, the second forward speed ratio is established when clutches C1 and C4 are engaged. Shifting from one speed forward speed ratio to another is generally achieved by disengaging one clutch (i.e., the off-going clutch) while engaging another clutch (i.e., the on-coming clutch). For example the transmission is downshifted from second to first by disengaging clutch C4 while engaging clutch C5.
  • The adaptive shift learn control of the present invention is used after initial assembly of the vehicle and/or after service has been performed on the transmission. The adaptive shift learn control exercises the clutches and characteristics of each clutch are measured and an adaptive shift system is updated based on the measurement. The clutch-to-clutch architecture of the transmission is used to independently control and monitor the clutches. More specifically, up to two secondary clutches are applied to transfer torque to the output shaft or tie-down the output shaft to enable the turbine to tie-up when a primary clutch or test clutch is applied.
  • The adaptive shift learn control monitors a plurality of events and operating parameters to determine the characteristics of the particular test clutch. These events include, but are not limited to, the transmission temperature (TTRANS) being within a normal operating range, the transmission output speed at zero RPM, the engine RPM within a desired range (e.g., at or near 1500 RPM), the transmission line pressure within a desired range (e.g., at or near 900 kPa), the commanded clutch pressure (PCOM), which is dependent on the test cycle and the clutch, and pressure switch states (e.g., ON/OFF). The adaptive shift learn control is designed to provide the best results under the most consistent operating conditions. Therefore, any changes occurring that effect these results will stop the adaptive shift learn control until they are corrected.
  • Further, internal control checks are implemented to monitor DTCs, operator responses, and vehicle movement. Any vehicle movement or conditions that could induce vehicle movement during execution of the adaptive shift learn control stops the control routine until the conditions are corrected. If corrections are not made within a threshold time limit, the adaptive shift learn control aborts. A failsafe feature requires vehicle shutdown before any normal transmission operation may resume because all of the clutches are locked into no pressure states.
  • Referring now to FIG. 3, the adaptive shift learn control includes multiple clutch exercise cycles and multiple test cycles for data collection and learning clutch characteristics. More specifically, all of the clutches are exercised before testing. Exercising purges air from the clutches, de-fuzzes the clutch surfaces, warms up the clutches and moves lubricants into parts that have not moved since vehicle and/or service has been completed. The exercise cycles pressurize the clutches until the turbine speed drops to zero. The clutches are then exhausted. This is repeated as needed and is regulated via calibrations.
  • Three key clutch parameters are determined during execution of the adaptive shift learn control. These parameters include clutch fill time (tCLFILL), full feed fill threshold pressure (PFFFT) and clutch pressure offset (PCLOFFSET). It should be noted that the measured values of these parameters may not be accurate compared to other methods of measurement. However, the results are meant to be a high correlation to the adaptive values used by the transmission adaptive shift system. Therefore, look-up tables are used to update the shifts based on the measured parameters. In this manner, unaccounted variables are compensated for to provide repeatable results.
  • Referring not to FIGS. 4 and 5, the test cycles of the adaptive shift learn control are performed as one cycle per clutch. The operator is prompted to select D (i.e., to test the forward clutches) or R (to test the reverse clutch(es)). tCLFILL is determined based on the time between PCOM being issued and a turbine speed slip being achieved. tCLFILL is used to calculate clutch circuit volume (VCLUTCH), which is an important measure to understand how the clutch applies as control pressure varies and how much clutch capacity remains during a shift event. Because the transmission output speed is zero and the test clutch under ties down the transmission input speed, the clutch is nearly full at turbine speed slip. VCLUTCH is determined from the tCLFILL and is used by an adapt procedure to determine clutch apply capacity, rates and timing for dynamic control pressure. VCLUTCH is determined as follows:
    V CLUTCH=Flow Rate*t CLFILL
    Alternatively, VCLUTCH is determined from a look-up table as a function of the tCLFILL. More specifically, control transmissions (e.g., minimum, nominal, maximum) are used to calibrate the relationship between the tCLFILL and VCLUTCH and the look-up table is constructed based thereon.
  • PFFFT represents the threshold below which the pressure regulator is regulating and above which the clutch is filling using full feed pressure (i.e. restricted only by line and fixed circuit restrictions). PFFFT varies due to production variation and component wear. This value is important to understand the maximum pressure operating range of the clutch. The shift system uses PFFFT to sense clutch pressure using only PCOM in the absence of a pressure sensor. PFFFT is determined by ramping the clutch pressure (i.e., applying the clutch) until the associated pressure switch changes state. A change in switch state represents the clutch value no longer regulating. Ramp rates are based on clutch system performance and are different for each clutch. Control transmissions are used to calibrate the ramp rate for each clutch. The transmission line pressure is held constant. The final PFFFT is determined from a look-up table as a function of the measured PFFFT.
  • PCLOFFSET represents the commanded pressure at which no clutch capacity is present at the clutch. PCLOFFSET is close to the-mid point between PFFFT and the clutch release pressure value and is important to understand the clutch operating characteristics. PCLOFFSET varies due to production variation and component wear. The ramp off to exhaust clutch pressure slowly releases the clutch. At release the remaining PCOM equals the pressure in the clutch. PCLOFFSET is measured by ramping off the pressure from the clutch until the input speed slip decreases to near zero. The engine provides drive torque to the clutch and PCLOFFSET is achieved, the clutch will barely hold (i.e., high clutch slip with low input speed slip). The final PCLOFFSET value used by the adaptive shift system is determined from a look-up table as a function of the measured PCLOFFSET.
  • Upon completion of the cycles, the three characteristics are compared to practical thresholds to check the rationality of the values. Further, the three characteristics learned for each of the clutches are stored into non-volatile memory and a test flag (FLAGTEST) for each clutch is set (i.e., equal to 1) indicating that the adaptive shift learn control was successfully executed for the particular clutch. However, if the three characteristics for a particular clutch are not considered rational (i.e., based upon the comparison with the practical thresholds), FLAGTEST is not set for that clutch. The clutch is then re-cycled for a threshold number of times (e.g., three). If the three characteristics remain non-rational, the adaptive shift learn control is aborted and an error flag is set.
  • After the vehicle is shut down and powered back up, the control module 24 determines whether FLAGTEST is set for each clutch. If FLAGTEST is set, the adaptive shift control that regulates shifting of the transmission is updated based on the characteristics stored for each of the clutches. After the adaptive shift control is updated, FLAGTEST is reset (i.e., equal to 0).
  • Referring now to FIG. 6, exemplary steps executed by the adaptive shift learn control of the present invention will be described in detail. In step 600, control determines whether to enable the adaptive shift learn control. If the adaptive shift learn control is not enabled, control loops back. If the adaptive shift learn control is enabled, control determines whether D range is selected and the vehicle brake is applied in step 602. If D range is not selected or the brake is not applied, control loops back. If D range is selected and the brake is applied, control executes the warm-up cycles in step 604. In step 606, control sets a counter i equal to one.
  • In step 608, control engages a secondary clutch or clutch(es) to provide a tie-up condition of the transmission. Control cycles a clutch Ci full On and full OFF in step 610. In step 612, control determines the clutch fill time of Ci based on the time at which the turbine slip increases after full ON (see FIG. 4). In step 614, control cycles Ci to ramp ON and ramp OFF. Control determines PCLOFFSET and PFFFT for Ci in step 616. In step 618, control determines whether i is equal to n, where n equal the number of clutches. If i is not equal to n, control increases i in step 620 and loops back to step 608. If i is equal to n, control updates the adative shift control based on the learned parameters to regulate transmission shifting in step 622 and control ends. If i is not equal to n, control
  • Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.

Claims (30)

1. An adaptive shift learn control system for rapidly updating an adaptive shift system that regulates shifting of a transmission, comprising:
first and second clutches of said transmission; and
a control module that cycles said first clutch between an ON state and an OFF state while said second clutch is in a full ON state, that monitors a parameter of said transmission during said cycling, that calculates a clutch characteristic based on said parameter and that updates said adaptive shift control system based on said clutch characteristic.
2. The adaptive shift learn control system of claim 1 wherein said control module switches said first clutch between full ON and full OFF states.
3. The adaptive shift learn control system of claim 1 wherein said control module ramps said first clutch between said ON and OFF states.
4. The adaptive shift learn control system of claim 1 wherein said parameter includes a torque converter slip speed and said clutch characteristic includes a fill time of said first clutch.
5. The adaptive shift learn control system of claim 4 wherein said fill time is determined based on a time between switching said first clutch to a full ON state and said torque converter slip speed increasing.
6. The adaptive shift learn control system of claim 1 wherein said parameter includes a hydraulic pressure of said first clutch.
7. The adaptive shift learn control system of claim 6 wherein said clutch characteristic includes an offset pressure of said first clutch.
8. The adaptive shift learn control system of claim 7 wherein said offset pressure is equal to said hydraulic pressure at a point where a torque converter slip speed decreases while decreasing said hydraulic pressure.
9. The adaptive shift learn control system of claim 6 wherein said clutch characteristic includes a full feed fill threshold pressure.
10. The adaptive shift learn control system of claim 9 wherein said full feed fill threshold is equal to said hydraulic pressure at a point where a switch state of a pressure switch associated with said clutch switches to an ON state.
11. A method of updating adaptive shift learn set-points for regulating shifting of a transmission, comprising:
cycling a clutch of said transmission between an ON state and an OFF state;
monitoring a parameter of said transmission during said cycling;
calculating a clutch characteristic based on said parameter; and
updating an adaptive shift control system that regulates shifting of said transmission based on said clutch characteristic.
12. The method of claim 11 wherein said cycling includes switching said clutch between full ON and full OFF states.
13. The method of claim 11 wherein said cycling includes ramping said clutch between said ON and OFF states.
14. The method of claim 11 wherein said parameter includes a torque converter slip speed and said clutch characteristic includes a fill time of said clutch.
15. The method of claim 14 wherein said fill time is determined based on a time between switching said clutch to a full ON state and said torque converter slip speed increasing.
16. The method of claim 11 wherein said parameter includes a hydraulic pressure of said clutch.
17. The method of claim 16 wherein said clutch characteristic includes an offset pressure of said clutch.
18. The method of claim 17 wherein said offset pressure is equal to said hydraulic pressure at a point where a torque converter slip speed decreases while decreasing said hydraulic pressure.
19. The method of claim 16 wherein said clutch characteristic includes a full feed fill threshold pressure.
20. The method of claim 19 wherein said full feed fill threshold is equal to said hydraulic pressure at a point where a switch state of a pressure switch associated with said clutch switches to an ON state.
21. A method of updating adaptive shift learn set-points for regulating shifting of a transmission, comprising:
engaging one of a plurality of clutches of said transmission to a full ON state to induce a tie-up condition of said transmission;
cycling another clutch of said plurality of clutches between an ON state and an OFF state;
monitoring a parameter of said transmission during said cycling;
calculating a clutch characteristic based on said parameter; and
updating an adaptive shift control system that regulates shifting of said transmission based on said clutch characteristic.
22. The method of claim 21 wherein said cycling includes switching said another clutch of said plurality of clutches between full ON and full OFF states.
23. The method of claim 21 wherein said cycling includes ramping said another clutch of said plurality of clutches between said ON and OFF states.
24. The method of claim 21 wherein said parameter includes a torque converter slip speed and said clutch characteristic includes a fill time of said clutch.
25. The method of claim 24 wherein said fill time is determined based on a time between switching said another clutch of said plurality of clutches to a full ON state and said torque converter slip speed increasing.
26. The method of claim 21 wherein said parameter includes a hydraulic pressure of said another clutch of said plurality of clutches.
27. The method of claim 26 wherein said clutch characteristic includes an offset pressure of said another clutch of said plurality of clutches.
28. The method of claim 27 wherein said offset pressure is equal to said hydraulic pressure at a point where a torque converter slip speed decreases while decreasing said hydraulic pressure.
29. The method of claim 26 wherein said clutch characteristic includes a full feed fill threshold pressure.
30. The method of claim 29 wherein said full feed fill threshold is equal to said hydraulic pressure at a point where a switch state of a pressure switch associated with said another clutch of said plurality of clutches switches to an ON state.
US11/175,115 2005-07-05 2005-07-05 Adaptive shift learn control for automatic transmissions Expired - Fee Related US7590480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/175,115 US7590480B2 (en) 2005-07-05 2005-07-05 Adaptive shift learn control for automatic transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/175,115 US7590480B2 (en) 2005-07-05 2005-07-05 Adaptive shift learn control for automatic transmissions

Publications (2)

Publication Number Publication Date
US20070010926A1 true US20070010926A1 (en) 2007-01-11
US7590480B2 US7590480B2 (en) 2009-09-15

Family

ID=37619241

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/175,115 Expired - Fee Related US7590480B2 (en) 2005-07-05 2005-07-05 Adaptive shift learn control for automatic transmissions

Country Status (1)

Country Link
US (1) US7590480B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113670A1 (en) * 2005-11-21 2007-05-24 Etchason Edmond M Method for estimating transmission input torque
CN101846179A (en) * 2009-03-27 2010-09-29 通用汽车环球科技运作公司 The adaptive shift learning control that is used for automatic transmission
US20100250077A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Adaptive shift learn control for automatic transmissions
US20100298089A1 (en) * 2009-05-19 2010-11-25 Gm Global Technology Operations, Inc. Method of clutch actuation for hybrid transmissions
CN102297259A (en) * 2011-05-12 2011-12-28 浙江吉利汽车研究院有限公司 Improved method for controlling automatic shift of transmission and TCU (transmission control unit)
EP3190315A1 (en) * 2015-12-24 2017-07-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle driving system
CN107631021A (en) * 2016-07-19 2018-01-26 丰田自动车株式会社 Control device for vehicle and the control method for vehicle
CN107642597A (en) * 2016-07-20 2018-01-30 丰田自动车株式会社 Control device for automatic transmission
US20200173821A1 (en) * 2018-12-03 2020-06-04 Zf Friedrichshafen Ag Method for Determining Reference Values of a Sensor
CN114995325A (en) * 2022-04-30 2022-09-02 重庆青山工业有限责任公司 Hybrid power transmission electronic control unit hardware-in-loop simulation platform and simulation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8589042B2 (en) * 2011-07-13 2013-11-19 GM Global Technology Operations LLC System and method for adaptive transmission clutch torque control
US9365201B2 (en) 2012-03-16 2016-06-14 Allison Transmission, Inc. Device, system, and method for controlling transmission torque to provide hill ascent and/or descent assistance using road grade
KR102070470B1 (en) * 2012-03-16 2020-01-29 알리손 트랜스미션, 인크. Device and method for controlling transmission torque to provide hill ascent and/or descent assistance
DE102014201603A1 (en) * 2014-01-30 2015-07-30 Zf Friedrichshafen Ag Method for improving the shift quality at the start of commissioning of a new automatic transmission or automated transmission of a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707789A (en) * 1985-11-29 1987-11-17 General Motors Corporation Adaptive direct pressure shift control for a motor vehicle transmission
US5072390A (en) * 1989-12-26 1991-12-10 General Motors Corporation Adaptive control of an automatic transmission
US5737712A (en) * 1996-04-03 1998-04-07 General Motors Corporation Fuzzy logic adaptive shift control
US7356398B2 (en) * 2003-10-14 2008-04-08 General Motors Corporation Synchronous shift control in an electrically variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707789A (en) * 1985-11-29 1987-11-17 General Motors Corporation Adaptive direct pressure shift control for a motor vehicle transmission
US5072390A (en) * 1989-12-26 1991-12-10 General Motors Corporation Adaptive control of an automatic transmission
US5737712A (en) * 1996-04-03 1998-04-07 General Motors Corporation Fuzzy logic adaptive shift control
US7356398B2 (en) * 2003-10-14 2008-04-08 General Motors Corporation Synchronous shift control in an electrically variable transmission

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7370516B2 (en) * 2005-11-21 2008-05-13 General Motors Corporation Method for estimating transmission input torque
US20070113670A1 (en) * 2005-11-21 2007-05-24 Etchason Edmond M Method for estimating transmission input torque
DE102010011665B4 (en) 2009-03-27 2020-07-16 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Control system and method using adaptive shift control for automatic transmissions
CN101846179A (en) * 2009-03-27 2010-09-29 通用汽车环球科技运作公司 The adaptive shift learning control that is used for automatic transmission
US20100250077A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Adaptive shift learn control for automatic transmissions
US8239106B2 (en) * 2009-03-27 2012-08-07 GM Global Technology Operations LLC Adaptive shift learn control for automatic transmissions
US20100298089A1 (en) * 2009-05-19 2010-11-25 Gm Global Technology Operations, Inc. Method of clutch actuation for hybrid transmissions
US8066620B2 (en) * 2009-05-19 2011-11-29 GM Global Technology Operations LLC Method of clutch actuation for hybrid transmissions
CN102297259A (en) * 2011-05-12 2011-12-28 浙江吉利汽车研究院有限公司 Improved method for controlling automatic shift of transmission and TCU (transmission control unit)
EP3190315A1 (en) * 2015-12-24 2017-07-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle driving system
KR101814649B1 (en) 2015-12-24 2018-01-04 도요타 지도샤(주) Control apparatus for vehicle driving system
RU2654250C1 (en) * 2015-12-24 2018-05-17 Тойота Дзидося Кабусики Кайся Control device for vehicle drive system
CN107023670A (en) * 2015-12-24 2017-08-08 丰田自动车株式会社 Control device for driver for vehicle
CN107631021A (en) * 2016-07-19 2018-01-26 丰田自动车株式会社 Control device for vehicle and the control method for vehicle
CN107642597A (en) * 2016-07-20 2018-01-30 丰田自动车株式会社 Control device for automatic transmission
US20200173821A1 (en) * 2018-12-03 2020-06-04 Zf Friedrichshafen Ag Method for Determining Reference Values of a Sensor
US11614161B2 (en) * 2018-12-03 2023-03-28 Zf Friedrichshafen Ag Method for determining reference values of a sensor
CN114995325A (en) * 2022-04-30 2022-09-02 重庆青山工业有限责任公司 Hybrid power transmission electronic control unit hardware-in-loop simulation platform and simulation method thereof

Also Published As

Publication number Publication date
US7590480B2 (en) 2009-09-15

Similar Documents

Publication Publication Date Title
US7590480B2 (en) Adaptive shift learn control for automatic transmissions
US8308611B2 (en) Shift control systems and methods for an automatic transmission
US8137241B2 (en) System and method for automatic transmission shift control
US8543284B2 (en) Vehicle speed sensor diagnostic system and method
US6790160B2 (en) Control device and control method for a vehicular automatic transmission
US7524265B2 (en) Powertrain overspeed protection
US20020160880A1 (en) Speed shift control and apparatus for control of automatic transmission
US8346444B2 (en) Real time transmission shift quality detection and evaluation utilizing transmission output shaft acceleration
US8086380B2 (en) Variable bleed solenoid recovery system
US20120010046A1 (en) Negative torque upshift offgoing clutch control systems and methods
US20070135252A1 (en) Air purge method for a rotating clutch
CA2071403C (en) Adaptive pressure control for an automatic transmission
US7544150B2 (en) Engine torque error learn during dynamic vehicle test
US7056263B2 (en) Electronic clutch-to-clutch transmission control system
US8396637B2 (en) System and method for automatic transmission shift control
US8239106B2 (en) Adaptive shift learn control for automatic transmissions
US8276439B2 (en) System and method for determining a volume of a torque converter clutch and calibrating a transmission
US5816978A (en) Control system for automatic transmission
US8548699B2 (en) Control system and method for adaptive control of transmission fluid operating pressures
US6409630B1 (en) Power off upshift control method for automatic transmission
US8165772B2 (en) Transmission slip control
US20080185251A1 (en) Clutch to clutch tie-up steady-state diagnostic
US20100131161A1 (en) Adapting stroke pressure of a transmission control element
US6334082B1 (en) Shift control method for automatic transmission
CN101846179B (en) Adaptive shift learn control for automatic transmissions

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DLUGOSS, RANDALL B.;REEL/FRAME:016661/0705

Effective date: 20050803

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0405

Effective date: 20081231

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0405

Effective date: 20081231

AS Assignment

Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493

Effective date: 20090409

Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493

Effective date: 20090409

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519

Effective date: 20090709

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519

Effective date: 20090709

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402

Effective date: 20090814

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402

Effective date: 20090814

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142

Effective date: 20090710

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142

Effective date: 20090710

AS Assignment

Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093

Effective date: 20090710

Owner name: UAW RETIREE MEDICAL BENEFITS TRUST,MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093

Effective date: 20090710

CC Certificate of correction
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0587

Effective date: 20100420

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025314/0901

Effective date: 20101026

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0001

Effective date: 20101027

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0936

Effective date: 20101202

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034371/0676

Effective date: 20141017

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210915