US20060291591A1  Estimating bit error probability (BEP) in an edge wireless system  Google Patents
Estimating bit error probability (BEP) in an edge wireless system Download PDFInfo
 Publication number
 US20060291591A1 US20060291591A1 US11165297 US16529705A US2006291591A1 US 20060291591 A1 US20060291591 A1 US 20060291591A1 US 11165297 US11165297 US 11165297 US 16529705 A US16529705 A US 16529705A US 2006291591 A1 US2006291591 A1 US 2006291591A1
 Authority
 US
 Grant status
 Application
 Patent type
 Prior art keywords
 bep
 distribution
 bit
 signal
 decisions
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Abandoned
Links
Images
Classifications

 H—ELECTRICITY
 H04—ELECTRIC COMMUNICATION TECHNIQUE
 H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
 H04L1/00—Arrangements for detecting or preventing errors in the information received
 H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
 H04L1/206—Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals

 H—ELECTRICITY
 H04—ELECTRIC COMMUNICATION TECHNIQUE
 H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
 H04L1/00—Arrangements for detecting or preventing errors in the information received
 H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
 H04L1/203—Details of error rate determination, e.g. BER, FER or WER

 H—ELECTRICITY
 H04—ELECTRIC COMMUNICATION TECHNIQUE
 H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
 H04L1/00—Arrangements for detecting or preventing errors in the information received
 H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
 H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
 H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

 H—ELECTRICITY
 H04—ELECTRIC COMMUNICATION TECHNIQUE
 H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
 H04L1/00—Arrangements for detecting or preventing errors in the information received
 H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
 H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

 H—ELECTRICITY
 H04—ELECTRIC COMMUNICATION TECHNIQUE
 H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
 H04L1/00—Arrangements for detecting or preventing errors in the information received
 H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
 H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
 H04L1/0026—Transmission of channel quality indication
Abstract
Distribution parameter mapping determines the bit error probability (BEP) of a burst transmitted from a base station to the mobile station using a modulation and coding scheme (MCS) specified in the EDGE standard. Depending on whether the multibit soft decisions of the burst most resemble a Gaussian or a Rician distribution, the statistical parameters μ and □ or A and □ are determined. The ratio μ/□ or A/□ is mapped to an empirically determined BEP in a Gaussian or Rician lookup table, respectively. The BEPs are not influenced by the degree of code redundancy in the MCS. The BEPs for the four bursts in a radio block are then averaged, filtered and quantized according to the EDGE standard. The quantization level of the average BEP is reported to the base station so that subsequent radio blocks can be transmitted using an MCS that is appropriate for the estimated BEP.
Description
 [0001]1. Field
 [0002]The present disclosure relates generally to wireless communication devices and, more specifically, to a method for estimating the bit error probability (BEP) in a wireless channel between a base station and a mobile station.
 [0003]2. Background
 [0004]As mobile telecommunications evolves, increasing speeds of data transmission to mobile stations enables new types of services to be offered to mobile subscribers. Usage of these services, in turn, generates a demand for ever increasing data rates. The European Telecommunications Standards Institute (ETSI) introduced the General Packet Radio Service (GPRS) as an initial standard to increase data rates by providing packetswitched data to mobile stations based on the Global System for Mobile communications (GSM). Then as an enhancement to GSM data services, ETSI promulgated the Enhanced Data rates for GSM Evolution (EDGE) standard, with a packetswitched portion called Enhanced GPRS (EGPRS). Together, EDGE and EGPRS are described in the TIA/EIA136370 standard published by the Telecommunications Industry Association (TIA). Further enhancements to highspeed data transmission based on GSM include the GSM/EDGE radio access network (GERAN) standard specified by the 3^{rd }Generation Partnership Project (3GPP). The TIA has described the GERAN enhancements in the TIA/EIA136370A revision to its EGPRS136 standard. For simplicity, the EDGE, EGPRS, TIA/EIA136370 and TIA/EIA136370A standards are collectively referred to herein as the “EDGE standard.”
 [0005]The physical layer dedicated to packet data traffic in the EDGE standard is called the Packet Data Channel (PDCH). The physical layer of the EDGE standard is specified in ETSI standard TS 145.008 (3GPP TS 45.008). Both signaling and traffic channels are transmitted over the PDCH. One of the signaling channels is the Packet Associated Control Channel (PACCH). The traffic channel transmitted over the PDCH is called the Packet Data Traffic Channel (PDTCH).
 [0006]Unlike basic GSM, several of the higherspeed versions of GSM transmit data at multiple data rates. For example, data is transmitted at nine different data rates over the PDTCH. In a process called “link adaptation,” the data rate over the wireless channel is adjusted based on the channel condition. When the channel condition is good and the signaltonoise ratio of the wireless channel is high, data can be transmitted at higher data rates. Conversely, when the channel condition is poor and the signaltonoise ratio is low, data must be transmitted at slower data rates. Transmitting data using a particular modulation and coding scheme (MCS) at a data rate that is too high for the channel's signaltonoise ratio can result in a loss of data. Link adaptation increases overall data throughput by using the highest data rate that can dependably be supported using a particular MCS at the signaltonoise ratio that momentarily exists on the wireless channel. The EDGE standard requires the mobile station periodically to report the channel condition in the PACCH to the base station. The condition of the channel between the base station and the mobile station is expressed in terms of the bit error probability (BEP). The BEP is the expected value of the actual Bit Error Rate (BER) of a signal received by the mobile station over the wireless channel. The base station then transmits data in the PDTCH to the mobile station at the appropriate data rate depending on the channel condition as indicated in the PACCH.
 [0007]Link adaptation can most effectively be performed when the mobile station reports a BEP that most accurately estimates the actual BER. One way to estimate the BEP is to attempt to calculate the BER itself. A “reencoding” method is based on determining the number of bit errors that are corrected in the decoding process. Error control decoding, such as that performed by a convolutional decoder, attempts to correct bit errors that are introduced in the wireless channel. Frames that are output from the block deinterleaver and the convolutional decoder of the mobile station are reencoded and reinterleaved. The resulting reencoded bits are then compared to the bits received by the block deinterleaver to determine the number of corrected bit errors. The reencoding method, however, yields inaccurate results because it relies on the assumption that the error control decoding corrects all of the errors that have been introduced by the wireless channel. Therefore, the BEP obtained using the reencoding method varies depending on the degree of redundancy employed by the various MCS schemes used to transmit the bits over the wireless channel. Even with a poor channel condition, a high redundancy level of the data allows the error control decoding to decode all of the bits correctly and thus yields a more accurate estimated BER. On the other hand, if the channel condition is poor and redundancy level of the data is low, the error control decoding is unable to correct all of the erroneous bits, and an inaccurate estimate of the BER results. Thus, a better channel quality is required to estimate the BER accurately using a lower redundancy MCS scheme, such as MCS9, than using a higher redundancy MCS scheme, such as MCS5.
 [0008]
FIG. 1 (prior art) compares the estimated BEP obtained using the reencoding method on data from two channels modulated with different MCSs at different redundancy levels of the data. Less error is introduced by the channel modulated with a higher redundancy code. A curve 10 shows the relationship between the signaltonoise ratio and the BEP of a channel modulated with Gaussian minimum shift keying (GMSK) at a redundancy level of 1.89. Another curve 11 shows the relationship between the signaltonoise ratio and the BEP of a channel modulated with GMSK at a redundancy level of 1.0. The reencoding method indicates that at higher noise levels the BEP of the channel modulated at a redundancy level of 1.0 is lower and thus less accurate than the BEP of the channel modulated at a redundancy level of 1.89. Thus, the estimated BEP at a given signaltonoise ration is not independent of the redundancy level of the data, as required by the EDGE specification.  [0009]
FIG. 2 (prior art) compares the BEP obtained using the reencoding method on data transmitted at three different redundancy levels and modulated with octal phase shift keying (8PSK). A curve 12 shows the relationship between the signaltonoise ratio and the BEP for a channel with a redundancy level of 2.70. A curve 13 shows the relationship between the signaltonoise ratio and the BEP for a channel with a redundancy level of 1.32. A curve 14 shows the relationship between the signaltonoise ratio and the BEP for a channel with a redundancy level of 1.0. Curves 1214 show that the reencoding method inaccurately indicates that the BEP decreases, and the channel condition improves, as the redundancy level decreases.  [0010]A second way of estimating the BEP involves first measuring the signaltonoise ratio of the radio frequency (RF) signal that carries the PDCH. The relationship between the measured signaltonoise ratio and the BER of the PDCH received by the mobile station is empirically determined in a laboratory. The values of BER that vary as a function of the measured signaltonoise ratio are then stored in a lookup table on the mobile station. This method requires the mobile station to have an estimator of the signaltonoise ratio in the RF signal. The BEP is determined by using the estimated signaltonoise ratio to look up the corresponding BER in the lookup table. The accuracy of the BEP in this method depends on the accuracy of the estimated signaltonoise ratio of the RF signal. Where the channel condition is affected by signal interference and fading, an accurate determination of the signaltonoise ratio of the RF signal can be difficult, and the BEP estimation is prone to inaccuracy.
 [0011]A method is sought for accurately determining the bit error probability (BEP) without requiring a direct estimation of the signaltonoise ratio of the RF signal and without reencoding the output of the convolutional decoder of the mobile station. Moreover, a method is sought for determining the BEP that is not influenced by the degree of redundancy in the modulation and coding scheme (MCS) used to transmit the data over the wireless channel.
 [0012]A distribution parameter mapping method estimates the bit error probability (BEP) of bits in a burst transmitted in a radio frequency (RF) signal from a base station to a mobile station using one of the nine modulation and coding schemes (MCSs) specified in the EDGE standard. The BEP estimated using the distribution parameter mapping method is not influenced by the degree of code redundancy in the particular MCS used to modulate data over the RF signal. The circuitry determines whether the multibit soft decisions that were equalized from demodulated I and Q samples of the burst most resemble a Gaussian distribution or a Rician distribution. The statistical parameters for the mean (μ) and the variance (σ) are determined for soft decisions having a Gaussian distribution. The statistical parameters A and σ are determined for soft decisions having a Rician distribution. The signaltonoise ratio of the RF signal is represented by the ratio μ/σ for a Gaussian distribution of soft decisions and by the ratio A/σ for a Rician distribution of soft decisions. The BEP for a burst having a Gaussian distribution of soft decisions is determined by mapping the ratio μ/σ to an empirically determined BEP in a Gaussian lookup table stored in nonvolatile memory on the mobile station. For a Rician distribution, the ratio A/σ is mapped to an empirically determined BEP in a Rician lookup table. The estimated BEPs for the four bursts of each radio block are then averaged, filtered and quantized into one of thirtytwo levels according to the EDGE standard. The quantization level of the average BEP is then reported to the base station to permit the base station to transmit subsequent radio blocks using an MCS that is appropriate for the estimated BEP of the signal.
 [0013]Circuitry in a mobile station that performs distribution parameter mapping to estimate the BEP includes an equalizer, a distribution analyzer, a BEP estimator, lookup tables, an averager, a filter and a nonlinear quantizer. The equalizer removes intersymbol interference from demodulated I and Q samples received in bursts from a demodulator in the mobile station. For each burst, the equalizer outputs a distribution of multibit soft decisions that are subsequently processed by the mobile station into singlebit hard decisions that comprise frames of data. The distribution analyzer receives the distribution of multibit soft decisions from the equalizer and determines the type of distribution that the distribution of multibit soft decisions resembles. For example, the distribution of multibit soft decisions can resemble a Gaussian distribution or a Rician distribution. The distribution analyzer outputs a distribution type identifier.
 [0014]The BEP estimator receives the distribution of multibit soft decisions from the equalizer, as well as the distribution type identifier from the distribution analyzer. The BEP estimator calculates various statistical parameters of the distribution of multibit soft decisions, depending on the type of distribution. When the soft decisions have a Gaussian distribution, the BEP estimator calculates the statistical parameters for the mean (μ) and the variance (σ). When the soft decisions have a Rician distribution, the BEP estimator calculates the statistical parameters A and σ. The BEP estimator also calculates the ratio μ/σ for a Guassian distribution and the ratio A/σ for a Rician distribution. The ratios μ/σ and A/σ correlate to the signaltonoise ratios of the I and Q samples.
 [0015]The BEP estimator estimates the BEP of a burst containing a Gaussian distribution of multibit soft decisions by mapping the ratio μ/σ to an empirically determined BEP in a Guassian lookup table stored on the mobile station. The BEP of a burst containing a Rician distribution of multibit soft decisions is estimated by mapping the ratio A/σ to an empirically determined BEP in a Rician lookup table stored on the mobile station.
 [0016]The averager then averages the estimated BEPs from four bursts and generates a MEAN_BEP. The filter filters the MEAN_BEP and outputs a filtered MEAN_BEP. The nonlinear quantizer quantizes the filtered MEAN_BEP into one of thirtytwo levels and outputs a value (MEAN_BEP_0 through MEAN_BEP_31) that represents the BEP of the four bursts on a logarithmic scale.
 [0017]Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
 [0018]The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
 [0019]
FIG. 1 (prior art) is a diagram plotting bit error probability (BEP) obtained using a reencoding method at various signaltonoise ratios of data modulated with two different GMSK modulation and coding schemes (MCSs), each with a different code redundancy level;  [0020]
FIG. 2 (prior art) is a diagram plotting BEP obtained using the reencoding method at various signaltonoise ratios of data modulated with three different 8PSK MCSs, each with a different code redundancy level;  [0021]
FIG. 3 is a simplified block diagram of circuitry that determines BEP using distribution parameter mapping;  [0022]
FIG. 4 is a flowchart of steps for performing the distribution parameter mapping employed by the circuitry ofFIG. 3 ;  [0023]
FIG. 5 is a table listing the data transmission rates of nine MCSs specified in the EDGE standard;  [0024]
FIG. 6 is a diagram of equations showing the derivation of statistical parameters of Gaussian and Rician distributions used in distribution parameter mapping;  [0025]
FIG. 7 is a flowchart illustrating certain steps of the distribution parameter mapping method ofFIG. 4 used to obtain a quantized, filtered, average BEP for four bursts of a radio block;  [0026]
FIG. 8 is a diagram plotting BEP at various signaltonoise ratios obtained using distribution parameter mapping for a static channel modulated with MCS4 (a GMSK scheme);  [0027]
FIG. 9 is a diagram plotting quantized, average BEP at various signaltonoise ratios obtained from groups of four consecutive BEP values ofFIG. 8 ;  [0028]
FIG. 10 is a diagram of the probability at various signaltonoise ratios that the quantized, average BEP ofFIG. 9 falls within a correct quantization level;  [0029]
FIG. 11 is a diagram plotting BEP at various signaltonoise ratios obtained using distribution parameter mapping for a static channel modulated with MCS9 (an 8PSK scheme);  [0030]
FIG. 12 is a diagram plotting BEP values at various signaltonoise ratios obtained using distribution parameter mapping for a static channel modulated with MCS9, wherein the BEP values represent an average of several BEP values that were most prevalent among the many bursts over which BEP values were estimated at each signaltonoise ratio;  [0031]
FIG. 13 is a diagram plotting quantized, average BEP at various signaltonoise ratios obtained from groups of four consecutive BEP values ofFIG. 11 ;  [0032]
FIG. 14 is a diagram of the probability at various signaltonoise ratios that the quantized, average BEP ofFIG. 13 falls within a correct quantization level; and  [0033]
FIG. 15 is a diagram plotting BEP at various signaltonoise ratios obtained using distribution parameter mapping for a fading channel modulated with MCS9.  [0034]Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
 [0035]
FIG. 3 is a simplified block diagram of circuitry 20 in a mobile station that performs distribution parameter mapping to determine a bit error probability (BEP). The BEP is an estimate of the bit error rate (BER) of a Packet Data Channel (PDCH) transmitted over a radio frequency (RF) signal from a base station to a mobile station using various modulation and coding schemes (MCSs) that conform to the EDGE standard.  [0036]
FIG. 4 is a flowchart showing steps of the by which circuitry 20 uses distribution parameter mapping to determine the BEP. The distribution parameter mapping method is not influenced by the degree of redundancy in the MCS used to modulate data over the RF signal. The operation of individual elements of circuitry 20, as shown inFIG. 3 , is explained in detail in connection with the steps listed inFIG. 4 . In an initial step 21, an input RF signal 22 is received by an antenna 23 of the mobile station that contains circuitry 20. In a step 24, an RF receiver 25 converts input RF signal 22 to digital inphase (I) and quadrature (Q) samples 26 for subsequent digital baseband processing. In the embodiment ofFIG. 3 , the digital baseband layer1 processing is performed by a digital baseband processor 27. Digital baseband processor 27 is part of a digital mobile station modem 28. RF receiver 25 is incorporated into an RF analog chip 29 that is separate from digital mobile station modem 28.  [0037]The BEP determined by circuitry 20 is an indication of the channel condition of the PDCH transmitted over input RF signal 22. The EDGE physical layer specification (ETSI standard TS 145.008; 3GPP standard TS 45.008) provides that the mobile station periodically reports the channel condition of the PDCH to the base station in the Packet Associated Control Channel (PACCH). The base station polls the mobile station for the channel condition. The PACCH is transmitted back to the base station over an output RF signal 30. The mobile station uses the BEP to obtain the channel condition that is reported to the base station. The channel condition is expressed as one of thirtytwo BEP levels. The base station then transmits data in the PDTCH over the PDCH back to the mobile station at the appropriate data rate depending on the BEP level indicated in the PACCH.
 [0038]Depending on the BEP level, data is transmitted at nine different data rates in the EDGE standard.
FIG. 5 lists nine MCSs that are associated with the nine data rates. The first four MCSs (MCS1MCS4) employ the Gaussian minimum shift keying (GMSK) modulation used by basic GSM. The major enhancement to the GSM standard to support higher data rates was the introduction in the EDGE standard of a higherlevel modulation technique, known as octal phase shift keying (8PSK). The highest five MCSs (MCS5MCS9) use 8PSK modulation. The EDGE standard describes a narrowband system that uses a combination of frequency division multiple access (FDMA) and time division multiple access (TDMA). The frequency band that is allocated to EDGE transmissions is first divided into various 200kHz carrier signals.FIG. 5 lists the data rates achievable with the listed modulation and coding schemes when using a single 200kHz carrier and one timeslot. The data rates can be increased by simultaneously using multiple 200kHz carriers, for example, six carriers. The carrier signals are then modulated and transmitted over an RF signal, such as input RF signal 22 and output RF signal 30. Each carrier signal is divided into eight timeslots. The data rates can be further increased by using multiple timeslots, for example, all eight timeslots. EDGE provides for the transmission of packetswitched data. Each packet is composed of frames and includes a data message and control information. Each frame in turn is transmitted as a burst during an appropriate timeslot. The frames are transmitted over the carrier signal in radio blocks. Each radio block is four frames transmitted as a sequence of four bursts. Each burst is 4.615 ms, and each radio block is 20 ms.  [0039]The first four MCSs have different coding schemes that provide for nearly no coding (MSC4) to highly redundant coding (MSC1). The code rate listed in
FIG. 5 is the inverse of the code redundancy. A higher code redundancy allows data to be recognized despite channel fading, but results in a lower data rate. For example, MSC1 has a data rate of 9.05 kbps per channel, and MSC4 has a data rate of 21.4 kbps per channel. By dynamically decreasing code redundancy during periods of lower fading and noise, a higher network performance can be achieved. Adapting the code redundancy and modulation technique to maximize throughput depending on the channel condition is called “Link Adaptation.”  [0040]The highest five MCSs support higher data rates because 8PSK signals are able to carry three bits per modulated symbol instead of one bit per symbol with GMSK modulation. Thus, the data rates of the MCSs employing 8PSK are approximately three times as fast. Signal propagation using 8PSK is diminished, however, in comparison to GMSK. The coverage area achieved with signals employing the higher data rates of 8PSK modulation is therefore smaller.
 [0041]In one mode of link adaptation, the mobile station reports the BEP level based on the mean BEP for each of the eight timeslots in a temporary block flow (TBF). The method of
FIG. 4 describes determining a BEP level based on the mean BEP for a particular timeslot. In a second mode of link adaptation, the mobile station reports the BEP level based on the mean BEP for the modulation for which the mobile station has received the largest number of radio blocks since the previous message. The BEP level is based on the mean and the coefficient of variation of the BEP measurements for the primary modulation averaged over all of the timeslots in the TBF. The EDGE standard provides that a single MCS is used for all the timeslots allocated to a carrier of a TBF based on the collective channel condition measurements for all of the timeslots.  [0042]Digital baseband processor 27 receives the I and Q samples 26 from the RF receiver 25 and outputs frames containing singlebit hard decisions 31. The singlebit hard decisions 31 are output by a convolutional decoder 32, such as a Viterbi decoder. The frames are processed as data or are analyzed as speech in a voice decoder. Circuitry 20 estimates the signaltonoise ratio of the PDCH transmitted over input RF signal 22 without reencoding the output of convolutional decoder 32. Circuitry 20 instead analyzes multibit soft decisions 33 that are generated as part of the digital baseband layer1 processing to estimate the signaltonoise ratio of the PDCH.
 [0043]In a step 34, a modulation detector 35 receives the I and Q samples 26 from RF receiver 25 and determines the type of modulation scheme by which data was modulated over the carrier signal on input RF signal 22. According to the EDGE standard, the modulation scheme is either GMSK or 8PSK. A detection algorithm is used to differentiate I and Q samples modulated with either GMSK or 8PSK based on the different phase characteristics of the GMSK and 8PSK modulations. One detection method, for example, first assumes that the data is modulated with GMSK and then performs a □by4 rotation. A signaltonoise ratio is then estimated for this GMSK hypothesis. A rotation is then performed assuming that the data is modulated with 8PSK, and the signaltonoise ratio is again estimated. The method determines that the modulation scheme corresponds to the modulation hypothesis for which the signaltonoise ratio was the greatest.
 [0044]In a step 36, the I and Q samples 26 are then demodulated. Depending on the modulation scheme identified in step 34, the I and Q samples 26 are demodulated by either a GMSK demodulator 37 or an 8PSK demodulator 38. A GMSK demodulator 37 demodulates I and Q samples 26 that were modulated with MCS1 through MCS4, which employ GMSK. An 8PSK demodulator 38 demodulates I and Q samples 26 that were modulated with MCS5 through MCS9, which employ 8PSK. In the embodiment of
FIG. 3 , GMSK demodulator 37 and 8PSK demodulator 38 are dedicated hardware within digital baseband processor 27. In other embodiments, the GMSK and 8PSK demodulation performed by GMSK demodulator 37 and 8PSK demodulator 38 is performed by a digital signal processor or a microcontroller that are part of digital baseband processor 27.  [0045]The demodulated I and Q samples 41 output by GMSK demodulator 37 and the demodulated I and Q samples 42 output by 8PSK demodulator 38 constitute symbols in baseband. Depending on the modulation scheme, a demodulated sample can have various number of bits, for example, 1, 2 or 10. The demodulated samples represent positive and negative numbers in GMSK and real and imaginary numbers in 8PSK. There are one inphase sample and one quadrature sample per symbol bit. In GMSK, there are 116 symbols in each of the four bursts of a radio block. In 8PSK, there are 348 symbols (3×116) per burst.
 [0046]In a step 39, an equalizer 40 equalizes demodulated I and Q samples 41 and 42 and outputs the multibit soft decisions 33. Thus, each I and Q sample bit is assigned a multibit soft decision value. The multibit soft decisions 33 constitute symbols for which intersymbol interference has been removed. Intersymbol interference results when one symbol is temporally modulated on top of another symbol. In one example, each of the multibit soft decisions 33 is a 16bit 2's complement signed digital value.
 [0047]Circuitry 20 estimates the BEP based on the multibit soft decisions 33. The multibit soft decisions 33 are also further processed by digital baseband processor 27 to obtain the singlebit hard decisions 31 that are included in the frames that contain voice and data information. A quantizer 41 quantizes the multibit soft decisions 33 into a lesser number of levels than the number of digital states available from the number of bits of the multibit soft decisions 33. A block deinterleaver 42 receives quantized symbols 43 from quantizer 41 and output deinterleaved symbols 44. The convolutional decoder 32 than decodes the deinterleaved symbols 44 and outputs the singlebit hard decisions 31.
 [0048]Returning to the distribution parameter mapping method of estimating the BEP, circuitry 20 next determines the type of statistical distribution of the multibit soft decisions 33. In a step 45, a distribution analyzer 46 determines the type of statistical distribution to which the soft decisions 33 of each burst correspond. Distribution analyzer 46 then outputs a corresponding distribution type identifier 47. For example, the distribution of the values of the multibit soft decisions 33 may resemble one of the following distribution types: a Gaussian distribution, a Rice (Rician) distribution, a Rayleigh distribution, a Poisson distribution or a Laplace distribution. The distribution of the multibit soft decisions 33 typically resembles either a Gaussian or a Rician distribution. In a static channel where the signaltonoise ratio is not significantly improving or deteriorating, the distribution of the multibit soft decisions 33 typically resembles a Gaussian distribution. On the other hand, if there is a line of sight path between the base station and the mobile station, the wireless channel is usually described by the Rician fading model, and the distribution of the multibit soft decisions 33 typically resembles a Rician distribution. Distribution analyzer 46 uses wellknown algorithms to determine the statistical distribution type that the distribution of the multibit soft decisions 33 most closely resembles. For example, the type of distribution can be recognized by the maximum value of the distribution, the location of the maximum value within the distribution, and the spread of the distribution.
 [0049]A BEP estimator 48 receives the soft decisions 33 for each burst that are output by equalizer 40. In addition, BEP estimator 47 receives distribution type identifier 47. In a decision step 49, BEP estimator 48 determines which statistical parameters to calculate. If the distribution type identifier 47 indicates that the soft decisions 33 resemble a Gaussian distribution, BEP estimator 48 proceeds to a step 50 and calculates the statistical parameters μ (mu) and σ (sigma). If the distribution type identifier 47 indicates that the soft decisions 33 resemble a Rician distribution, BEP estimator 48 proceeds to a step 51 and calculates the statistical parameters A and σ.
 [0050]In the following example of step 50, the statistical parameters μ and σ are calculated from soft decisions whose distribution is found to resemble a Gaussian distribution in decision step 49. Thus, the distribution of the soft decisions resembles the Gaussian probability density function (PDF) 52 shown in
FIG. 6 . In Gaussian PDF 52, μ represents the mean, and σ represents the variance of the distribution p(x). In this example, each of the multibit soft decisions 33 output by equalizer 40 is a 4bit 2's complement signed digital value. There are 116 soft decisions in one burst because the soft decisions 33 were equalized from I and Q samples modulated with GMSK. The 116 values are as follows: 15×[1100]; 30×[1101]; 15×[1110]; 15×[0000]; 30×[0001]; 11×[0010], where [1100]=−4; [1101]=−3; [1110]=−2; [0000]=0; [0001]=1; and [0010]=2. The statistical parameters μ and σ are calculated by first determining the second and fourth moments of the Gaussian DPF for the sample distribution. The second moment is defined as the sum of the each element squared, divided by the number of elements in the distribution. The fourth moment is defined as the sum of the each element to the fourth power, divided by the number of elements in the distribution. For the sample distribution of 116 soft decisions listed above, the second moment is 5.552, and the fourth moment is 57.897. The second and fourth moments can also be expressed in terms of the mean (μ) and the variance (σ).  [0051]
FIG. 6 shows an equation 53 for the second moment and an equation 54 for the fourth moment, each expressed in terms of μ and σ. The mean (μ) and the variance (σ) are determined by solving these two equations in two variables. An equation 55 expresses μ in terms of the second and fourth moments. An equation 56 expresses σ in terms of the second and fourth moments. For the sample distribution of 116 soft decisions listed above, μ is determined to be 2.039, and a is determined to be 1.181.  [0052]Returning to the next step in
FIG. 4 , the BEP is determined in a step 57 by mapping the quotient μ/σ to a BEP value in a lookup table. The quotient of the mean (μ) divided by the variance (σ) is indicative of the signaltonoise ratio of the data that comprise a distribution. For the sample Gaussian distributions the quotient μ/σ is 1.727. The relationship between the quotient μ/σ and the BER for channels whose data resembles a Gaussian distribution is empirically determined in a laboratory. The results are then stored in a Gaussian lookup table 58 in a processorreadable medium 59, as shown inFIG. 3 . The lookup table is then used to estimate the BEP based on the signaltonoise ratio estimated by the quotient μ/σ. BEP estimator 48 determines a BEP value 60 for each distribution of multibit soft decisions 33 of a burst. For the signaltonoise ratio of 1.727 of the sample Gaussian distribution, BEP value 60 is determined to be 0.050.  [0053]In a decision step 61, circuitry 20 determines whether the BEP value 60 of each of the four bursts in the radio block has been determined. If four BEP values have not yet been determined, BEP estimator 48 determines the BEP for the next distribution of 116 soft decisions on the next GMSK burst. Where the burst has been modulated with 8PSK, BEP estimator 48 determines the BEP for a distribution comprising 348 soft decisions per burst.
 [0054]Returning to step 51, the statistical parameters A and σ are calculated from the sample distribution of soft decisions listed above assuming that the distribution is found to resemble a Rician distribution in decision step 49. Thus, in this example, the sample distribution is found to resemble the Rician probability density function (PDF) 62 shown in
FIG. 6 . The statistical parameters A and a are calculated by first determining the second and fourth moments of the Rician DPF for the sample distribution. The values of the second and fourth moments of a distribution do not change when the distribution is characterized as resembling a different type of distribution. Therefore, the values of the second and fourth moments of the Rician distribution are the same as calculated above for the Gaussian distribution.  [0055]
FIG. 6 shows an equation 63 for the second moment and an equation 64 for the fourth moment, each expressed in terms of A and σ. These two equations in two variables are then solved to obtain an equation 65 expressing A in terms of the second and fourth moments. In addition, an equation 66 expresses σ in terms of the second and fourth moments. Assuming that the sample distribution of 116 soft decisions listed above resembles a Rician distribution, A is determined to be 1.391, and σ is determined to be 1.345.  [0056]In a step 67, the BEP is then determined by mapping the quotient A/σ to a BEP value in a lookup table. For the sample Rician distribution, the quotient A/σ is 1.035. The relationship between the quotient A/σ and the BER for channels whose data resembles a Rician distribution is also empirically determined in a laboratory. The results of the empirical determination are then stored in a Rician lookup table 68 in processorreadable medium 59. Rician lookup table 68 is then used to estimate the BEP based on the quotient A/σ. Where the quotient A/σ of the sample Rician distribution equals 1.035 in this example, BEP value 60 is determined to be 0.079.
 [0057]In a step 69, an averager 70 calculates the average of four BEP values 60 when circuitry 20 determines in decision step 61 that the BEP of each of the four bursts in a radio block has been determined. Averager 70 outputs a signal MEAN_BEP 71 that represents the average of the four BEP values 60.
 [0058]In a step 72, a filter 73 receives and filters the MEAN_BEP 71. Filter 73 is a digital low pass filter, such as an infinite impulse response (IIR) filter. Filter 73 outputs a filtered MEAN_BEP 74.
 [0059]In a step 75, a nonlinear quantizer 76 quantizes the filtered MEAN_BEP 74 into one of thirtytwo nonlinear levels or intervals. Nonlinear quanitizer 76 outputs one of thirtytwo values MEAN_BEP_0 through MEAN_BEP_31 (77) that represents the average, filtered BEP on a logarithmic scale. The quantized MEAN_BEP 77 is then received by an RF transmitter 78 on RF analog chip 29. In one embodiment, most of the circuitry of digital baseband processor 27 is part of a digital signal processor (DSP) 79, including distribution analyzer 46, BEP estimator 48, averager 70, filter 73 and nonlinear quantizer 76.
 [0060]In a step 80, the quantized MEAN_BEP 77 (MEAN_BEP_0—MEAN_BEP_31) of the level of the average BEP is transmitted back to the base station in PACCH over output RF signal 30. The base station then transmits subsequent radio blocks using an MCS that is chosen based on the quantized MEAN_BEP 77. For example, the base station chooses the MCS with the fastest data rate that can be supported under the channel condition described by the quantized MEAN_BEP 77.
 [0061]
FIG. 7 is a flowchart illustrating the various steps performed by circuitry 20 to obtain the quantized MEAN_BEP 77 for a radio block.FIG. 7 shows that the steps 50 and 57 (for GMSK) and the steps 51 and 67 (for 8PSK) are performed for each of four bursts of a radio block, whereas the steps 69 (averaging), 72 (filtering) and 75 (quantizing) are performed only once per radio block.  [0062]
FIG. 8 shows the results of using distribution parameter mapping to determine BEP values for a channel modulated with MCS4 at signaltonoise ratios ranging from −6 dB to 10 dB. The BEP values are estimated from bursts transmitted over a static channel with a constant signal strength exhibiting no fading. Thus, the distribution of the multibit soft decisions 33 used to derive the BEP values resembles a Gaussian distribution. The BEP values are obtained using the method ofFIG. 4 through step 50, and the BEP values 60 are determined by mapping the ratio μ/□ to BEP values in the Gaussian lookup table 58. A curve 81 shows the actual bit error rate (BER) of the channel over the range of signaltonoise ratios from −6 dB to 10 dB. The actual BER is determined by transmitting a known bit sequence over thousands of radio blocks and comparing the bits from the demodulated I and Q samples to the known bit sequence. A curve 82 shows the estimated BEP value 60 obtained at each signaltonoise ratio using distribution parameter mapping. The estimated BEP value 60 plotted inFIG. 8 for each signaltonoise ratio is the BEP value that resulted the most number of times from among the thousands of bursts over which the known bit sequence was transmitted.  [0063]
FIG. 9 shows the values of the quantized MEAN_BEP 77 obtained from groups of four consecutive BEP values 60 ofFIG. 8 . At lower signaltonoise ratios, the quantized MEAN_BEP 77 is assigned a value closer to zero. At higher signaltonoise ratios, the quantized MEAN_BEP 77 is assigned a value closer to thirtytwo. A curve 83 shows the estimated, quantized average BEP values obtained using distribution parameter mapping. A curve 84 shows the values of the quantization levels that would be output using demodulated I and Q samples that exhibit the actual BER.  [0064]
FIG. 10 shows the probability, at signaltonoise ratios from −6 dB to 10 dB, that the MEAN_BEP value 71 will be correctly determined and reported to the base station as the correct quantization level. The EDGE standard specifies how to test the circuitry that generates the values of the quantization levels. The test requires that a certain percentage of the quantized MEAN_BEP values 77 reported by the mobile station fall within a narrow range of correct quantization levels, for example, three quantization levels. For example, at a signaltonoise ratio of 5 dB, at least 65% of the quantized MEAN_BEP values 77 must fall within one of the quantization levels MEAN_BEP_11, MEAN_BEP_12 and MEAN_BEP_13 in order to pass the test. A dotted curve 85 shows the minimum probability of achieving an acceptable quantization level when estimating the BEP of a channel modulated with MCS1 through MCS4 (GMSK) in order to comply with the EDGE standard. A curve 86 shows the probability that a quantized MEAN_BEP 77 obtained using distribution parameter mapping falls within an acceptable quantization level.  [0065]
FIG. 11 shows the results of using distribution parameter mapping to determine BEP values obtained from a channel modulated with MCS9 employing 8PSK. The BEP values are estimated from bursts transmitted over a static channel exhibiting no fading. As inFIG. 8 , the BEP values 60 are determined by mapping the ratio μ/□ to BEP values in the Gaussian lookup table 58. A curve 87 shows the actual BER of the channel over a range of signaltonoise ratios from −1 dB to 20 dB. A curve 88 shows the BEP value 60 obtained at each signaltonoise ratio using distribution parameter mapping. The estimated BEP values 60 plotted inFIG. 11 for each signaltonoise ratio is the BEP value obtained the most number of times from the thousands of bursts over which the known bit sequence was transmitted.  [0066]
FIG. 12 shows BEP values obtained from a channel modulated with MCS9 over the same signaltonoise ratio as inFIG. 11 . The BEP values and the values of the actual BER, however, fluctuate over different bursts at each signaltonoise ratio. The BEP values and the values of the actual BER plotted inFIG. 12 represent an average of the three BEP or BER values that were most prevalent in the multiple bursts over which the known bit sequence was transmitted at a particular signaltonoise ratio. A curve 89 shows the actual BER at each signaltonoise ratio from −1 dB to 20 dB. A curve 90 shows the BEP value obtained at each signaltonoise ratio using distribution parameter mapping.  [0067]
FIG. 13 shows the values of the quantized MEAN_BEP 77 obtained from the BEP values 60 ofFIG. 11 . The values of the quantized MEAN_BEP 77 range from zero to thirtytwo. A curve 91 shows the estimated, quantized average BEP values obtained using distribution parameter mapping. A curve 92 shows the quantization levels obtained from the values of the actual BER.  [0068]
FIG. 14 shows the probability at signaltonoise ratios from −1 dB to 20 dB that the MEAN_BEP value 71 will be correctly determined from a channel and reported to the base station as a correct quantization level. A dotted curve 93 shows the minimum probability that must be achieved at each signaltonoise ratio to comply with the EDGE standard. Dotted curve 93 applies to quantization levels obtained from average BEP values from channels modulated with MCS5 through MCS9 (8PSK). A curve 94 shows the probability that a quantized MEAN_BEP 77 obtained using distribution parameter mapping is at the correct quantization level using the test specified in the EDGE standard.  [0069]
FIG. 15 shows the results of using distribution parameter mapping to determine BEP values obtained from a channel modulated with MCS9. Unlike the results shown inFIG. 11 , the BEP values inFIG. 15 are estimated from bursts transmitted over a fading channel. The channel analyzed inFIG. 15 is a TU50 channel, which is a channel in a typical urban environment where the mobile station is moving at 50 km/hr. Thus, the distribution of the multibit soft decisions 33 used to derive the BEP values resembles a Rician distribution. The BEP values are obtained using the method ofFIG. 4 through step 51, and the BEP values 60 are determined by mapping the ratio A/□ to BEP values in the Rician lookup table 68. A curve 95 shows the actual BER of the channel over a range of signaltonoise ratios from −1 dB to 27 dB. A curve 96 shows the BEP value 60 obtained at each signaltonoise ratio using distribution parameter mapping. At signaltonoise ratios above about 7 dB, the BER of the fading channel inFIG. 15 is greater than the BER of the static channel inFIG. 11 , where both channels are modulated using MCS9. The estimated BEP values 60 plotted inFIG. 15 for each signaltonoise ratio is the BEP value obtained the most number of times from the thousands of bursts over which the known bit sequence was transmitted.  [0070]Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Most of the circuitry of digital baseband processor 27 is described above as being part of DSP 79. In other embodiments, some components of circuitry 20 are implemented as sets of instructions operating on a processor separate from DSP 79. For example, the separate processor can be an ARM processor. The instructions are stored on processorreadable medium 59, and the separate processor reads the instructions from processorreadable medium 59 before performing the instructions. Thus, processorreadable medium 59 stores not only Gaussian lookup table 58 and Rician lookup table 68, but also program instructions. In this case, processorreadable medium 59 is a type of nonvolatile memory, such as read only memory (ROM). In one embodiment, for example, each of equalizer 40, distribution analyzer 46, BEP estimator 48, averager 70, filter 73 and nonlinear quantizer 76 is implemented as a set of instructions operating on the separate processor.
 [0071]The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Accordingly, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principle and novel features disclosed herein.
Claims (38)
1. A method comprising:
(a) receiving I and Q samples, wherein the I and Q samples exhibit a bit error rate (BER); and
(b) using distribution parameter mapping to estimate the BER.
2. The method of claim 1 , wherein the I and Q samples have been modulated and coded with a modulation and coding scheme (MCS) that conforms to a standard for Enhanced Data rates for GSM Evolution (EDGE).
3. The method of claim 1 , further comprising, between (a) and (b):
(c) demodulating the I and Q samples to obtain demodulated I and Q samples; and
(d) equalizing the demodulated I and Q samples to obtain soft decision bits, wherein the soft decision bits have a statistical distribution, and wherein the using the distribution parameter mapping in (b) involves determining a type of the statistical distribution.
4. The method of claim 3 , wherein the type of the statistical distribution is taken from the group consisting of: a Gaussian distribution, a Rice distribution, a Rayleigh distribution, a Poisson distribution and a Laplace distribution.
5. A method comprising:
(a) equalizing demodulated I and Q samples to obtain a plurality of multibit soft decisions, wherein the demodulated I and Q samples exhibit a bit error probability (BEP), wherein the plurality of multibit soft decisions has a distribution, and wherein the distribution has a mean and a variance;
(b) determining a type of the distribution;
(c) calculating the mean and the variance of the distribution; and
(d) estimating the BEP based on the mean and the variance of the distribution.
6. The method of claim 5 , wherein calculating the mean and the variance in (c) is performed based on the type of the distribution.
7. The method of claim 5 , wherein the type of the distribution is taken from the group consisting of: a Gaussian distribution and a Rician distribution.
8. The method of claim 5 , further comprising:
(e) deinterleaving the plurality of multibit soft decisions; and
(f) convolutionally decoding the deinterleaved plurality of multibit soft decisions to obtain singlebit hard decisions.
9. The method of claim 5 , wherein the multibit soft decisions comprise symbols, and wherein each symbol has three bits.
10. The method of claim 5 , wherein a frame payload comprises the plurality of multibit soft decisions.
11. The method of claim 5 , wherein a radio block is comprised of four pluralities of multibit soft decisions.
12. The method of claim 5 , wherein the estimating the BEP in (d) involves finding the BEP in a lookup table using a ratio equaling the mean divided by the variance.
13. The method of claim 5 , further comprising before (a):
(e) demodulating I and Q samples to obtain the demodulated I and Q samples, wherein the demodulating involves a modulation scheme taken from the group consisting of: Gaussian minimum shift keying (GMSK) and octal phase shift keying (8PSK).
14. The method of claim 5 , further comprising:
(e) equalizing second demodulated I and Q samples to obtain a second plurality of multibit soft decisions, wherein the second demodulated I and Q samples exhibit a second BEP;
(f) determining a mean BEP, wherein the mean BEP is an average of a plurality of bit error probabilities, and wherein the plurality of bit error probabilities includes at least the BEP and the second BEP; and
(g) filtering the mean BEP to obtain a filtered mean BEP.
15. The method of claim 14 , further comprising:
(h) quantizing the filtered mean BEP.
16. A processorreadable medium for storing instructions operable in a wireless device to:
(a) equalize demodulated I and Q samples to obtain a plurality of multibit soft decisions, wherein the demodulated I and Q samples exhibit a bit error probability (BEP), wherein the plurality of multibit soft decisions has a distribution, and wherein the distribution has a mean and a variance;
(b) determine a type of the distribution;
(c) calculate the mean and the variance of the distribution; and
(d) estimate the BEP based on the mean and the variance of the distribution.
17. The processorreadable medium of claim 16 , wherein the mean and the variance are calculated in (c) based on the type of the distribution.
18. The processorreadable medium of claim 16 , and further for storing instructions operable in the wireless device to:
(e) deinterleave the plurality of multibit soft decisions; and
(f) convolutionally decode the deinterleaved plurality of multibit soft decisions to obtain singlebit hard decisions.
19. The processorreadable medium of claim 16 , wherein the BEP is estimated in (d) by finding the BEP in a lookup table using a ratio equaling the mean divided by the variance.
20. The processorreadable medium of claim 16 , and further for storing instructions operable in the wireless device to:
(e) demodulate I and Q samples to obtain the demodulated I and Q samples, wherein the I and Q samples are demodulated using a modulation scheme taken from the group consisting of: Gaussian minimum shift keying (GMSK) and octal phase shift keying (8PSK).
21. The processorreadable medium of claim 16 , and further for storing instructions operable in the wireless device to:
(e) equalize second demodulated I and Q samples to obtain a second plurality of multibit soft decisions, wherein the second demodulated I and Q samples exhibit a second BEP;
(f) determine a mean BEP, wherein the mean BEP is an average of a plurality of bit error probabilities, and wherein the plurality of bit error probabilities includes at least the BEP and the second BEP; and
(g) filter the mean BEP to obtain a filtered mean BEP.
22. The processorreadable medium of claim 21 , and further for storing instruction operable in the wireless device to:
(h) quantize the filtered mean BEP.
23. A device comprising:
(a) means for equalizing demodulated I and Q samples to obtain a plurality of multibit soft decisions, wherein the demodulated I and Q samples exhibit a bit error probability (BEP), wherein the plurality of multibit soft decisions has a distribution, and wherein the distribution has a mean and a variance;
(b) means for determining a type of the distribution;
(c) means for calculating the mean and the variance of the distribution; and
(d) means for estimating the BEP based on the mean and the variance of the distribution.
24. The device of claim 23 , wherein the means in (c) calculates the mean and the variance based on the type of the distribution.
25. The device of claim 23 , further comprising:
(e) means for deinterleaving the plurality of multibit soft decisions; and
(f) means for convolutionally decoding the deinterleaved plurality of multibit soft decisions to obtain singlebit hard decisions.
26. The device of claim 23 , further comprising:
(e) means for demodulating I and Q samples to obtain the demodulated I and Q samples, wherein the means in (e) demodulates the I and Q samples using a modulation scheme taken from the group consisting of: Gaussian minimum shift keying (GMSK) and octal phase shift keying (8PSK).
27. The device of claim 23 , further comprising:
(e) means for equalizing second demodulated I and Q samples to obtain a second plurality of multibit soft decisions, wherein the second demodulated I and Q samples exhibit a second BEP;
(f) means for determining a mean BEP, wherein the mean BEP is an average of a plurality of bit error probabilities, and wherein the plurality of bit error probabilities includes at least the BEP and the second BEP; and
(g) means for filtering the mean BEP to obtain a filtered mean BEP.
28. A circuit comprising:
a distribution analyzer that receives a distribution of multibit soft decisions, wherein the distribution of multibit soft decisions exhibits a distribution type, and wherein the distribution analyzer determines the distribution type;
a bit error probability estimator that receives the distribution of multibit soft decisions, wherein the bit error probability estimator calculates statistical parameters of the distribution of multibit soft decisions; and
a lookup table, wherein the bit error probability estimator determines a bit error probability (BEP) by mapping the statistical parameters to the BEP in the lookup table.
29. The circuit of claim 28 , wherein the statistical parameters of the distribution of multibit soft decisions approximate a signaltonoise ratio of the multibit soft decisions, and wherein the lookup table correlates the statistical parameters of the distribution of multibit soft decisions to bit error probabilities of the multibit soft decisions.
30. The circuit of claim 28 , wherein the distribution type is Rician, wherein the statistical parameters include a mean (A) and a variance (sigma), and wherein the bit error probability estimator determines the BEP by mapping a quotient A/sigma to the BEP in the lookup table.
31. The circuit of claim 28 , wherein the distribution type is Gaussian, wherein the statistical parameters include a mean (mu) and a variance (sigma), and wherein the bit error probability estimator determines the BEP by mapping a quotient mu/sigma to the BEP in the lookup table.
32. The circuit of claim 28 , wherein the distribution analyzer and the bit error probability estimator are dedicated hardware in a digital baseband processor.
33. The circuit of claim 28 , wherein the bit error probability estimator is a processor executing instructions stored on a processorreadable medium.
34. The circuit of claim 28 , further comprising:
an equalizer that outputs the distribution of multibit soft decisions.
35. The circuit of claim 28 , further comprising:
a convolutional decoder that outputs hard decision bits based on the multibit soft decisions.
36. A circuit comprising:
an equalizer that receives demodulated I and Q samples and outputs multibit soft decisions; and
means for estimating a bit error probability (BEP) based on the multibit soft decisions.
37. The circuit of claim 36 , wherein the means estimates the BEP based on a statistical distribution of the multibit soft decisions.
38. The circuit of claim 36 , wherein the demodulated I and Q samples are demodulated using a modulation and coding scheme (MCS) that conforms to a standard for Enhanced Data rates for GSM Evolution (EDGE).
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

US11165297 US20060291591A1 (en)  20050622  20050622  Estimating bit error probability (BEP) in an edge wireless system 
Applications Claiming Priority (8)
Application Number  Priority Date  Filing Date  Title 

US11165297 US20060291591A1 (en)  20050622  20050622  Estimating bit error probability (BEP) in an edge wireless system 
EP20060773847 EP1908204B1 (en)  20050622  20060622  Estimating bit error probability (bep) in an edge wireless system 
PCT/US2006/024502 WO2007002417A1 (en)  20050622  20060622  Estimating bit error probability (bep) in an edge wireless system 
CN 200680028910 CN101238675B (en)  20050622  20060622  Estimating bit error probability(BEP) in an EDGE wireless system 
KR20087001655A KR101014474B1 (en)  20050622  20060622  Estimating bit error probabilitybep in an edge wireless system 
JP2008518440A JP4834088B2 (en)  20050622  20060622  Edge estimation of the bit error probability in a radio system (bep) 
EP20100153460 EP2182668A1 (en)  20050622  20060622  Estimating bit error probability (BEP) in an edge wireless system 
US12843247 US8532232B2 (en)  20050622  20100726  Estimating bit error probability (BEP) in an edge wireless system 
Related Child Applications (1)
Application Number  Title  Priority Date  Filing Date 

US12843247 Continuation US8532232B2 (en)  20050622  20100726  Estimating bit error probability (BEP) in an edge wireless system 
Publications (1)
Publication Number  Publication Date 

US20060291591A1 true true US20060291591A1 (en)  20061228 
Family
ID=36954907
Family Applications (2)
Application Number  Title  Priority Date  Filing Date 

US11165297 Abandoned US20060291591A1 (en)  20050622  20050622  Estimating bit error probability (BEP) in an edge wireless system 
US12843247 Active 20260415 US8532232B2 (en)  20050622  20100726  Estimating bit error probability (BEP) in an edge wireless system 
Family Applications After (1)
Application Number  Title  Priority Date  Filing Date 

US12843247 Active 20260415 US8532232B2 (en)  20050622  20100726  Estimating bit error probability (BEP) in an edge wireless system 
Country Status (6)
Country  Link 

US (2)  US20060291591A1 (en) 
EP (2)  EP2182668A1 (en) 
JP (1)  JP4834088B2 (en) 
KR (1)  KR101014474B1 (en) 
CN (1)  CN101238675B (en) 
WO (1)  WO2007002417A1 (en) 
Cited By (10)
Publication number  Priority date  Publication date  Assignee  Title 

US20080063102A1 (en) *  20060911  20080313  Symbol Technologies, Inc.  Adaptive RFID receiver for 16QAM signals 
US20080165696A1 (en) *  20070105  20080710  Lg Electronics Inc.  Method of reporting channel quality in egprs system 
US20090196343A1 (en) *  20071227  20090806  Electronics And Telecommunications Research Institute  Channel capacity estimation and prediction method and apparatus for rate adaptive wireless video 
US20090304096A1 (en) *  20080604  20091210  Ahmed Khattab  System and method for randomized antenna allocation in asynchronous mimo multihop networks 
US20100171882A1 (en) *  20090106  20100708  Electronics And Telecommunications Research Institute  Method for tuning coding rate and applying unequal error protection for adaptive video transmission, and video transmission/reception apparatus using the method 
US20100215056A1 (en) *  20090223  20100826  Naoki Ide  Communication system, communication apparatus, and packet length control method 
US20110096876A1 (en) *  20091022  20110428  Stmicroelectronics (Grenoble 2) Sas  Method and device for detecting a phase error of a signal 
US8532232B2 (en)  20050622  20130910  Qualcomm Incorporated  Estimating bit error probability (BEP) in an edge wireless system 
EP2191591A4 (en) *  20080213  20151007  Lg Electronics Inc  Method of reporting channel quality in egprs system 
US20160056981A1 (en) *  20140825  20160225  Broadcom Corporation  Twodimensional (2D) decision feedback equalizer (DFE) slicer within communication systems 
Families Citing this family (3)
Publication number  Priority date  Publication date  Assignee  Title 

JP5140663B2 (en) *  20070427  20130206  株式会社エヌ・ティ・ティ・ドコモ  Mobile communication system, a base station controller, the base station apparatus, mobile station apparatus, and a base station radio parameter control method 
CN101645755B (en)  20090907  20131204  中兴通讯股份有限公司南京分公司  Device and method for realizing link adaptation of radio access network system 
US9088356B2 (en) *  20121102  20150721  Alcatel Lucent  Translating between testing requirements at different reference points 
Citations (8)
Publication number  Priority date  Publication date  Assignee  Title 

US20020172302A1 (en) *  20010314  20021121  Pantelis Monogioudis  Compensation based biterrorrate estimation for convolutionally encoded transmissions in wireless systems 
US20030115028A1 (en) *  20011010  20030619  Vpisystems Pty Ltd  Optical error simulation system 
US20040243889A1 (en) *  20030127  20041202  Peng Li  Ndimensional determination of biterror rates 
US20040253968A1 (en) *  20030616  20041216  Chang Li Fung  Adaptive channel quality estimation algorithm to support link adaptation 
US20050018794A1 (en) *  20030722  20050127  Xiangguo Tang  High speed, lowcost process for the demodulation and detection in EDGE wireless cellular systems 
US20050182807A1 (en) *  20040212  20050818  Texas Instruments Incorporated  Methodology for designing high speed receivers below a target biterrorrate 
US20060062363A1 (en) *  20040919  20060323  Sirenada, Inc.  Method and apparatus for interacting with broadcast programming 
US20060203943A1 (en) *  20050310  20060914  Comsys Communication & Signal Processing Ltd.  Single antenna interference suppression in a wireless receiver 
Family Cites Families (6)
Publication number  Priority date  Publication date  Assignee  Title 

GB9810395D0 (en) *  19980514  19980715  Simoco Int Ltd  Radio channel quality estimation 
KR100713239B1 (en) *  19990920  20070502  노키아 코포레이션  Quality measurement of circuit switched service in cellular radion network 
EP1293060A1 (en) *  20000620  20030319  Nokia Corporation  Error estimation method and apparatus 
US7573805B2 (en) *  20011228  20090811  Motorola, Inc.  Data transmission and reception method and apparatus 
EP1463229A1 (en)  20030327  20040929  Motorola Inc.  Quality of service metric for communication systems 
US20060291591A1 (en)  20050622  20061228  Kaushik Ghosh  Estimating bit error probability (BEP) in an edge wireless system 
Patent Citations (8)
Publication number  Priority date  Publication date  Assignee  Title 

US20020172302A1 (en) *  20010314  20021121  Pantelis Monogioudis  Compensation based biterrorrate estimation for convolutionally encoded transmissions in wireless systems 
US20030115028A1 (en) *  20011010  20030619  Vpisystems Pty Ltd  Optical error simulation system 
US20040243889A1 (en) *  20030127  20041202  Peng Li  Ndimensional determination of biterror rates 
US20040253968A1 (en) *  20030616  20041216  Chang Li Fung  Adaptive channel quality estimation algorithm to support link adaptation 
US20050018794A1 (en) *  20030722  20050127  Xiangguo Tang  High speed, lowcost process for the demodulation and detection in EDGE wireless cellular systems 
US20050182807A1 (en) *  20040212  20050818  Texas Instruments Incorporated  Methodology for designing high speed receivers below a target biterrorrate 
US20060062363A1 (en) *  20040919  20060323  Sirenada, Inc.  Method and apparatus for interacting with broadcast programming 
US20060203943A1 (en) *  20050310  20060914  Comsys Communication & Signal Processing Ltd.  Single antenna interference suppression in a wireless receiver 
Cited By (18)
Publication number  Priority date  Publication date  Assignee  Title 

US8532232B2 (en)  20050622  20130910  Qualcomm Incorporated  Estimating bit error probability (BEP) in an edge wireless system 
US7929630B2 (en) *  20060911  20110419  Symbol Technologies, Inc.  Adaptive RFID receiver for QAM signals 
US20080063102A1 (en) *  20060911  20080313  Symbol Technologies, Inc.  Adaptive RFID receiver for 16QAM signals 
US7782791B2 (en) *  20070105  20100824  Lg Electronics Inc.  Method of reporting channel quality in EGPRS system 
US20080165696A1 (en) *  20070105  20080710  Lg Electronics Inc.  Method of reporting channel quality in egprs system 
US20090196343A1 (en) *  20071227  20090806  Electronics And Telecommunications Research Institute  Channel capacity estimation and prediction method and apparatus for rate adaptive wireless video 
US8505059B2 (en) *  20071227  20130806  Electronics And Telecommunications Research Institute  Channel capacity estimation and prediction method and apparatus for rate adaptive wireless video 
EP2191591A4 (en) *  20080213  20151007  Lg Electronics Inc  Method of reporting channel quality in egprs system 
US20090304096A1 (en) *  20080604  20091210  Ahmed Khattab  System and method for randomized antenna allocation in asynchronous mimo multihop networks 
US9768992B2 (en) *  20080604  20170919  William Marsh Rice University  System and method for randomized antenna allocation in asynchronous MIMO multihop networks 
US8654834B2 (en) *  20090106  20140218  Electronics And Telecommunications Research Institute  Method for tuning coding rate and applying unequal error protection for adaptive video transmission, and video transmission/reception apparatus using the method 
US20100171882A1 (en) *  20090106  20100708  Electronics And Telecommunications Research Institute  Method for tuning coding rate and applying unequal error protection for adaptive video transmission, and video transmission/reception apparatus using the method 
US20100215056A1 (en) *  20090223  20100826  Naoki Ide  Communication system, communication apparatus, and packet length control method 
US8385365B2 (en)  20090223  20130226  Sony Corporation  Communication system, communication apparatus, and packet length control method 
US20110096876A1 (en) *  20091022  20110428  Stmicroelectronics (Grenoble 2) Sas  Method and device for detecting a phase error of a signal 
US8588356B2 (en) *  20091022  20131119  Stmicroelectronics (Grenoble 2) Sas  Method and device for detecting a phase error of a signal 
US20160056981A1 (en) *  20140825  20160225  Broadcom Corporation  Twodimensional (2D) decision feedback equalizer (DFE) slicer within communication systems 
US9553743B2 (en) *  20140825  20170124  Broadcom Corporation  Twodimensional (2D) decision feedback equalizer (DFE) slicer within communication systems 
Also Published As
Publication number  Publication date  Type 

JP2008547327A (en)  20081225  application 
EP1908204A1 (en)  20080409  application 
JP4834088B2 (en)  20111207  grant 
US8532232B2 (en)  20130910  grant 
EP1908204B1 (en)  20110727  grant 
KR101014474B1 (en)  20110214  grant 
CN101238675A (en)  20080806  application 
US20100290512A1 (en)  20101118  application 
EP2182668A1 (en)  20100505  application 
CN101238675B (en)  20120801  grant 
WO2007002417A1 (en)  20070104  application 
KR20080027362A (en)  20080326  application 
Similar Documents
Publication  Publication Date  Title 

US6775521B1 (en)  Bad frame indicator for radio telephone receivers  
US5828695A (en)  QAM system in which the constellation is modified in accordance with channel quality  
US6865233B1 (en)  Method and system for control signalling enabling flexible link adaptation in a radiocommunication system  
US7149245B2 (en)  Link adaption in enhanced general packet radio service networks  
US20020056066A1 (en)  Mode lookup tables for data transmission in wireless communication channels based on statistical parameters  
US20070026803A1 (en)  Method and apparatus for link adaptation  
US20020080735A1 (en)  Method and system for evaluating a wireless link  
US6070074A (en)  Method for enhancing the performance of a regenerative satellite communications system  
US20030021243A1 (en)  Method for determining whether to perform link adaptation in WCDMA communications  
US5323421A (en)  Method and apparatus of estimating channel quality in a receiver  
US6529730B1 (en)  System and method for adaptive multirate (AMR) vocoder rate adaption  
US6986096B2 (en)  Scaling and quantizing softdecision metrics for decoding  
Balachandran et al.  Channel quality estimation and rate adaptation for cellular mobile radio  
US20050064890A1 (en)  Modulation scheme management  
US7720136B2 (en)  Adaptive coding and modulation based on link performance prediction  
US20040022176A1 (en)  Base station apparatus, mobile station apparatus, radio communication system, and radio communication method  
US8553821B1 (en)  Adaptive nonlinear model for highlyspectrallyefficient communications  
US5737365A (en)  Method and apparatus for determining a received signal quality estimate of a trellis code modulated signal  
US20080232340A1 (en)  Method and Transmission Unit for Adaptive Coding, Modulation and Transmittion of Data Words in a Wireless Communication System  
EP0689312A2 (en)  Soft decision signal outputting receiver  
US7206564B2 (en)  System and method to perform adaptive channel filtering on a radio frequency burst in a cellular wireless network  
US6111912A (en)  Method and apparatus for detecting the subrate of a punctured data packet for a multirate transmission scheme  
US7065371B1 (en)  Channel order selection and channel estimation in wireless communication system  
US20030097623A1 (en)  Method and apparatus for performance optimization and adaptive bit loading for wireless modems with convolutional coder, FEC, CRC and ARQ  
EP0701334A2 (en)  Method and device to measure the impulse response of a radio channel 
Legal Events
Date  Code  Title  Description 

AS  Assignment 
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GHOSH, KAUSHIK;REEL/FRAME:016657/0593 Effective date: 20050802 