New! View global litigation for patent families

US20060290898A1 - System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules - Google Patents

System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules Download PDF

Info

Publication number
US20060290898A1
US20060290898A1 US11464362 US46436206A US2006290898A1 US 20060290898 A1 US20060290898 A1 US 20060290898A1 US 11464362 US11464362 US 11464362 US 46436206 A US46436206 A US 46436206A US 2006290898 A1 US2006290898 A1 US 2006290898A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
screen
light
display
fluorescent
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11464362
Inventor
Jianqiang Liu
Xiao-Dong Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Superimaging Inc
Original Assignee
Superimaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Abstract

A system and a method of a transparent color image display utilizing fluorescence conversion (FC) of nano-particles and molecules are disclosed. In one preferred embodiment, a color image display system consists of a light source equipped with two-dimensional optical scanning hardware and a FC display screen board. The FC display screen board consists of a fluorescence display layer, a wavelength filtering coating, and a visibly transparent substrate. In another preferred embodiment, two mechanisms of light excitation are utilized. One of the excitation mechanisms is up-conversion where excitation light wavelength is longer than fluorescence wavelength. The second mechanism is down-conversion where excitation wavelength is shorter than fluorescence wavelength. A host of preferred fluorescence materials for the FC screen are also disclosed. These materials fall into four categories: inorganic nano-meter sized phosphors; organic molecules and dyes; semiconductor based nano particles; and organometallic molecules. These molecules or nano-particles are incorporated in the screen in such a way that allows the visible transparency of the screen. Additionally, a preferred fast light scanning system is disclosed. The preferred scanning system consists of dual-axes acousto-optic light deflector, signal processing and control circuits equipped with a close-loop image feedback to maintain position accuracy and pointing stability of the excitation beam.

Description

  • [0001]
    This application claims priority to the provisional application entitled “Advanced laser fluorescent displays”, Ser. No. 60/471,968, filed by the same subject inventors and assignee as the subject invention on May 19, 2003.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to displays and more particularly to a system and a method for two-dimensional transparent displays utilizing special laser induced fluorescence media.
  • [0004]
    2. Background Art
  • [0005]
    Image display and associated technologies are a fundamental necessity of today's society. Application areas include communication, entertainment, military, medical and health. Traditionally, a display system consists of a source beam, beam masks or deflectors, and a projection screen. Although the basic concept of a display system served us well in the past, new technologies have been developed steadily. As demonstrated in FIG. 1, a prior art light beam based display system consists of a collimated light source 110, a light masking or deflecting unit 130, and the modified light beam (150) strikes a display screen 180. Typical example of this type of displays are: movie and film display systems, liquid crystal based display, MEMs and liquid crystal based reflective light projection systems for TV and computer. In these light based systems, the image can be viewed on the same side of the projection system as in the case of a movie display, or on the opposite side of the projection system, as in the case of back illuminated large screen projection TV. A common element in these light based display system is that the displaying screen does not change the color (or wavelength) of the illumination light. The screen preferably be opaque to increase scattering of the illuminated light to the viewers. Also the intensity of a particular color component is modulated, and/or the beam position is scanned. In FIG. 2, a prior art electron beam based display system is illustrated. These systems are used in Cathode Ray Tube (CRT) based displays for TV and computers and are gradually being replaced by liquid crystal based flat panel displays. A typical CRT display consists of an electron gun 210, horizontal and vertical beam deflecting conductive plates 230 and 240, and a conductive screen 280. A well-collimated electron beam is deflected by periodically changed electrical fields and strikes certain location of the screen at a specified time. The conductive screen is coated with phosphor particles that convert absorbed electrons into photons of a particular color. The intensity of the electron beam is controlled to regulate intensity patterns displayed on the CRT screen. The CRT screen is normally grounded or maintained at certain electrical potential to avoid charge build up. In order to operate properly, these CRT systems are evacuated and sealed in a glass vacuum tube (not shown). In both situations, the display screens are opaque and people cn only see the electronic information on the display surface but can not see through the screens.
  • [0006]
    Recently, several research groups have studied the potential of using light conversion as a mean to two- and three-dimensional displays. Of particular interests are the work by E. Downing et. al, as described in an article entitled: “A three-color, Solid-state, Three-dimensional Display” published in Science, vol. 273, pp 1185-89, 1996. The work described in the Science article formed basis for several US patents granted. See for example, U.S. Pat. Nos. 5,684,621; 5,764,403; 5,914,807; 5,943,160; and U.S. Pat. No. 5,956,172 all to Downing. M. Bass and co-workers, at the University at Central Florida, carried out other related research works. Several related US patents were issued. See for example, U.S. Pat. Nos. 6,327,074; 6,501,590; and 6,654,161; to Bass and co-inventors. These patents and article are thereby included herein by ways of reference.
  • [0007]
    The research work of Downing et. al, and M. Bass and co-inventors all employed a two color excitation scheme called up-conversion. In an up-conversion process, an absorption center must absorb at least two longer wavelength photons to emit one photon with a shorter wavelength. While Downing et. al, used a solid display material (fluoride ZBLAN glass) doped with rare earth cations, M. Bass and co-workers investigated the use of both dye doped plastics micron particles as well as rare earth cation containing fluoride micron particles (NaYF4) as display medium. The major difference is that the former uses solid glass layers whereas the latter uses solid particle sizes from 0.5 μm to 50 μm. The major drawback for both methods is the use of multiple lasers as the excitation sources. The use of multiple lasers is normally required for the up-conversion process due to the inefficiency of the process. The use of very intense, infrared lasers substantially limits the practical applicability of the research works and may introduce safety hazards for the viewers. For each displaying color, two laser beams with specified laser wavelengths need to be used to generate a particular color. Therefore, in order to realize a three-color display, a three-layered display solid structure doped with three color-specific emitters (rare earth cations, or dyes) together with six excitation lasers have to be used.
  • [0008]
    There are several areas that can be improved on these prior art two- and three-dimensional displays. For instance, it is desirable to use a single excitation laser to generate all three colors. Also desirable is methods using one laser for each color instead of the two lasers per color methods used in these prior art displays. Even more desirable is the use of regular safe dark light sources (e.g. Light emitting diodes or arc lamps of UV-blue emission) and a fluorescent “down-conversion” materials for a 2-D display with transparent screen. Inexpensive manufacturing processes are also the key to a practical display technology. There is a need therefore to have improvements to these prior arts such that inexpensive displays with reduced number of laser sources can be made.
  • SUMMARY OF THE INVENTION
  • [0009]
    The present invention discloses an improved system and method, materials and designs of an image display that utilizes fluorescence conversion (FC) process. The disclosed display consists of an excitation light source, a visibly transparent display screen containing fluorescent materials or particles, photo-acoustic light beam steering mechanisms, and a feedback loop. Once illuminated, the fluorescent screen converts the invisible (or less visible) excitation lights into red, green or blue emissions. Rastering or scanning of the excitation beam according to a predefined or a programmed data generates an image on the fluorescent screen.
  • [0010]
    Two schemes of FC are disclosed: The first scheme is termed down-conversion, where the excitation wavelength is shorter than fluorescence wavelength; the second scheme is called up-conversion, where laser wavelengths is longer than fluorescence wavelength. In the second case, two or more photons from the laser are necessary to excite the fluorescence particle in order to yield a visible fluorescence photon. A common approach for the first scheme is to apply a UV (or blue) light with wavelength shorter than 500 nm to excite the fluorescence molecules or particles on the image screen; the UV light sources include solid state lasers, semiconductor laser diodes, gas lasers, dye lasers, excimer lasers, and other UV-blue sources including LEDs, Xenon, mercury, or metal halide arc lamps, and other dark lamps familiar to those skilled in the art. A common approach for the second scheme is to apply infrared (IR) lasers with wavelength longer than 700 nm to excite the fluorescence molecules or particles on the Screen. The IR lasers include solid-state lasers, semiconductor laser diodes and other IR sources familiar to those skilled in the art. In both cases, excitation light intensities are modulated to yield visible fluorescence of varying intensity or gray scales.
  • [0011]
    To display multiple colors on the screen, fluorescent molecules or nano-particles of different emitting wavelengths are deposited on the displaying screen or dissolved in the screen; multiple excitation light sources of different wavelengths may be combined and illuminated on the screen. Composite displaying colors are obtained through the mixing of three basic fluorescent emitting colors. Molecules or nano-particles with different fluorescent colors are either premixed and deposited as a single layer; or are deposited as a multiple-layered structure on the displaying screen. The molecules and nano-particles are so small that they will not scatter the visible light and block the view through the transparent screen.
  • [0012]
    A host of preferred fluorescence materials are also disclosed. These materials fall into four categories: inorganic nano-meter sized phosphors; organic molecules and dyes; semiconductor based nano particles (quantum dots); and organometallic molecules.
  • [0013]
    Two methods of image display are disclosed. In the first preferred method, expanded static light beams are applied through a matrix of on-off switches (e.g., a matrix of tiny reflective mirrors), and a fluorescent image is created on the transparent displaying screen. Static images are typically generated from a lookup table. In the second preferred method, a light beam is coupled with a two-dimensional laser scanner (e.g., galvanometer, acousto-optic light deflector (AOLD), and electro-optic light deflector (EOLD)). Electrical signals are applied to steer the light beam to illuminate a particular spot on the screen at a given time. Additionally, signal processing and control circuits are used and equipped with a close-loop image feedback to maintain position accuracy and pointing stability of the laser beam.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    The aforementioned objects and advantages of the present invention, as well as additional objects and advantages thereof, will be more fully understood hereinafter as a result of a detailed description of a preferred embodiment when taken in conjunction with the following drawings in which:
  • [0015]
    FIG. 1 illustrates a prior art light beam based image display;
  • [0016]
    FIG. 2 shows the structure of a prior art electron beam based image display;
  • [0017]
    FIG. 3 displays an improved fluorescence conversion image display system;
  • [0018]
    FIGS. 4 a and 4 b depict energy level diagrams associated with down-conversion and up-conversion FC schemes;
  • [0019]
    FIGS. 5 a through 5 e provide chemical structure information of 5 organometallic molecules that can be used in the fluorescent screen;
  • [0020]
    FIG. 5 illustrates an improved FC image display systems.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0021]
    The present invention discloses an improved system and method, materials and designs of an transparent image display that utilizes fluorescence conversion (FC) process. The improved display system disclosed herein consists of an excitation light source, a transparent display screen containing fluorescent molecules or nano-particles, photo-acoustic light beam steering mechanisms, and a feed back mechanism. Once illuminated, the fluorescent screen converts the invisible (or less visible) excitation lights into red, green or blue emissions. Rastering or scanning of the excitation beam according to a predefined or a programmed data generates an image on the fluorescent screen.
  • [0022]
    The first preferred embodiment of the present invention is illustrated in FIG. 3. A radiation source 310 delivers an intense, collimated beam of invisible (or less visible) radiation. The radiation beam passes an optical image processor 330 and the modified radiation beam 350 is projected on to a FC displaying screen 380. Two methods of image display are disclosed. In the first preferred method, expanded static radiation beams are applied through an image processor 330 contains a matrix of on-off switches (e.g., a matrix of tiny reflective mirrors) to create a dark image, and a fluorescent visible image is created on the displaying screen 380 through fluorescent conversion of the dark image. Static images are typically generated from a lookup table. In the second preferred method, a radiation beam is coupled with an image processor 330 contains a two-dimensional beam scanner (e.g., galvanometer, acousto-optic light deflector (AOLD), and electro-optic light deflector (EOLD)). Electrical signals are applied to steer the radiation beam to illuminate a particular spot of the screen at a given time. The preferred FC screen typically has the following structure: a layer 384 contains fluorescent nano-particles or molecules attached to or dispersed in a uniform medium; a coating 388 reflects the visible emission while transmitting the invisible radiation; and a substrate layer 390 that absorbs the remaining invisible radiation. Alternatively, it comprises of a layer 384 containing fluorescent nano-particles or molecules attached to or dispersed in a uniform medium; a coating 388 absorbing the invisible radiation; and a visibly transparent substrate layer 390. Self adhesive layer and protective layers such as scratch resistance layer can also be assed to the screen structure.
  • [0023]
    Two preferred schemes of FC are disclosed and illustrated in FIGS. 4A and 4B, respectively. The first scheme is termed down-conversion, where the wavelength of the excitation light is shorter than fluorescence wavelength. FIG. 4A illustrates an energy level diagram of the down-conversion molecule or nano-particle. The photon of the shorter wavelength excitation light has more energy and induces a transition 415 from a lower energy level 410 to a higher energy level 420. The emission involves transition 425 associated with two energy levels with a smaller energy gap. The second scheme is called up-conversion, where excitation wavelengths are longer than fluorescence wavelength. In the second case, two or more photons from a laser are necessary to excite the fluorescence particle in order to yield a visible fluorescence photon. FIG. 4B illustrates an energy level diagram of the FC molecules or nano-particles associated with the second scheme. The longer wavelength excitation laser induces two transitions (455, 465) from a lower state 450 to a higher energy state 470 through an intermediate state 460. The emission involves transition 475 associated with two energy levels with an energy gap that is smaller than energy associated with two laser photons. A common approach for the first scheme is to apply a UV (or blue) light source with wavelength shorter than 500 nm to excite the fluorescence molecules or nano-particles on the image screen; the UV sources include solid state lasers, semiconductor laser diodes, gas lasers, dye lasers, excimer lasers, and other UV light sources familiar to those skilled in the art. A common approach for the second scheme is to apply infrared (IR) lasers with wavelength longer than 700 nm to excite the fluorescence molecules or particles on the Screen. The IR lasers include solid-state lasers, semiconductor laser diodes and other IR sources familiar to those skilled in the art. In both cases, excitation beam intensities are modulated to yield visible fluorescence of varying intensity or gray scales.
  • [0024]
    A host of preferred fluorescence materials are also disclosed. A common property of these materials is that the size of the fluorescent particles is very small. Typically, nano-particles or molecules with size between 0.5 nm to 500 nm are preferred to have minimum scattering effect that reduce the visible transparency of the screen. These materials fall into four categories: inorganic nano-meter sized phosphors; organic molecules and dyes; semiconductor based nano particles; and organometallic molecules.
  • [0025]
    For down-conversions the following materials are preferred to form FC displaying screen:
      • 1. Inorganic or ceramic phosphors or nano-particles, including but not limited to metal oxides, metal halides, metal chalcoginides (e.g. metal sulfides), or their hybrids, such as metal oxo-halides, metal oxo-chalcoginides. These inorganic phosphors have found wide applications in fluorescent lamps and electronic monitors. These materials can covert shorter wavelength photon (e.g. UV and blue) into longer wavelength visible light and can be readily deposited on displaying screens or dispersed in the screen.
      • 2. Laser dyes and small organic molecules, and fluorescent organic polymers. These can also be used to convert shorter wavelength laser photon (e.g. UV and blue) into longer wavelength visible light and can be readily deposited on a displaying screen. Since they are in the molecular state in the solid, the screen transparency is maintained due to lack of particle scattering.
      • 3. Semiconductor nano-particles, such as II-VI or III-V compound semiconductors, e.g. fluorescent quantum dots. Again, their addition in the screen does not affect the optical transparency
      • 4. Organometallic molecules. The molecules include at least a metal center such as rare earth elements (e.g. Eu, Tb, Ce, Er, Tm, Pr, Ho) and transitional metal elements such as Cr, Mn, Zn, Ir, Ru, V, and main group elements such as B, Al, Ga, etc. The metal elements are chemically bonded to organic groups to prevent the quenching of the fluorescence from the hosts or solvents. Such organomettalic compounds filled screen does not scatter light and affect the screen transparency either, unlike the micro-sized particles.
  • [0030]
    Of the down-conversion FC materials or molecules mentioned above, those that can be excited by lasers of long wave UV (e.g. >300 nm) to blue (<500 nm), and yield visible light emission are preferred for the current invention. For example, the phosphors can be Garnet series of phosphors: (YmA1-m)3(AlnB1-n)5O12, doped with Ce; where 0≦m, n≦1; A include other rare earth elements, B include B, Ga. In addition, phosphors containing metal silicates, metal borates, metal phosphates, and metal aluminates hosts are preferred in their applications to FC displays; In addition, nano-particulates phosphors containing common rare earth elements (e.g. Eu, Tb, Ce, Dy, Er, Pr, Tm) and transitional or main group elements (e.g. Mn, Cr, Ti, Ag, Cu, Zn, Bi, Pb, Sn, Tl) as the fluorescent activators, are also preferred in their applications to FC displays. Finally, some undoped materials (e.g. Metal (e.g. Ca, Zn, Cd) tungstates, metal vanadates, ZnO, etc) are also preferred FC display materials.
  • [0031]
    The commercial laser dyes are another class of preferred FC display materials. A list of commercial laser dyes can be obtained from several laser dye vendors, including Lambda Physik, and Exciton, etc. A partial list of the preferred laser dye classes includes: Pyrromethene, Coumarin, Rhodamine, Fluorescein, other aromatic hydrocarbons and their derivatives, etc. In addition, there are many polymers containing unsaturated carbon-carbon bonds, which also serve as fluorescent materials and find many optical and fluorescent applications. For example, MEH-PPV, PPV, etc have been used in opto-electronic devices, such as polymer light emitting diodes (PLED). Such fluorescent polymers can be used directly as the fluorescent layer of the transparent 2-D display screen.
  • [0032]
    In addition, the recently developed semiconductor nanoparticles (e.g., quantum dots) are also a preferred LIF display materials. The terms “semiconductor nanoparticies,” refers to an inorganic crystallite between 1 nm and 1000 nm in diameter, preferably between 2 nm to 50 nm. A semiconductor nano-particle is capable of emitting electromagnetic radiation upon excitation (i.e., the semiconductor nano-particle is luminescent). The nanoparticle can be either a homogeneous nano-crystal, or comprises of multiple shells. For example, it includes a “core” of one or more first semiconductor materials, and may be surrounded by a “shell” of a second semiconductor material. The core and/or the shell can be a semiconductor material including, but not limited to, those of the group II-VI (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, and the like) and III-V (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, and the like) and IV (Ge, Si, and the like) materials, and an alloy or a mixture thereof.
  • [0033]
    Finally, fluorescent organometallic molecules containing rare earth or transitional element cations are also preferred in the down-conversion fluorescent screens. Such molecules include a metal center of rare earth elements including Eu, Tb, Er, Tm, Ce protected with organic chelating groups. The metal center may also include transitional elements such as Zn, Mn, Cr, Ir, etc and main group elements such as B, Al, Ga. Such organometallic molecules can readily dissolved in liquid or transparent solid host media and form a transparent fluorescent screen for the disclosed 2-D transparent display with minimum light scattering. Some examples of such fluorescent organomettalic molecules include: 1. Tris(dibenzoylmethane) mono(phenanthroline)europium (III); 2. Tris(8-hydroxyquinoline)erbium; 3. Tris(1-phenyl-3-methyl-4-(2,2-dimethylpropan-1-oyl)-pyrazolin-5-one)terbium (III); 4. Bis(2-methyl-8-hydroxyquinolato)zinc; 5. Diphenylborane-8-hydroxyquinolate. Their molecular structures are given in FIGS. 5 a through 5 e.
  • [0034]
    Up-conversion phosphors are similar in chemical compositions as the down-conversion fluorescent materials discussed. The up-conversion phosphors for the fluorescent conversion display also include the following choice of materials or molecules:
      • 1. Laser dyes, the organic small molecules that can be excited by the absorption of at least two infrared photons with emission of visible light.
      • 2. Fluorescent polymers, the class of polymers that can be excited by the absorption of at least two infrared photons with emission of visible light
      • 3. Inorganic or ceramic particles or nano-particles, including the conventional up-conversion phosphors (e.g. metal fluorides, metal oxides) that can be excited by the absorption of at least two infrared photons with emission of visible light
      • 4. Semiconductor particles, including nano-particles such as III-VI or II-V compound semiconductors, e.g. quantum dots, described in details in the “down-conversion” semiconductors above.
  • [0039]
    The fluorescent up-conversion inorganic phosphors include but are not limited to metal oxides, metal halides, metal chalcoginides (e.g. sulfides), or their hybrids, such as metal oxo-halides, metal oxo-chalcoginides. They are usually doped with rare earth elements (e.g. Yb3+, Er3+, Tm3+). Some host examples include, but not limited to: NaYF4, YF3, BaYF5, LaF3, La2MoO8, LaNbO4, LnO2S; where Ln is the rare earth elements, such as Y, La, Gd).
  • [0040]
    These preferred FC displaying materials may be used to form a variety of FC displaying objects. These objects include: screens, plates, windows, walls, billboards, and other displaying surfaces. There are several means to incorporate these fluorescent molecules or materials onto a displaying surface:
      • 1. They can be dissolved (organic dyes) or dispersed (inorganic particles) into solvents (water or organic solvents). The liquid fluorescent formula can be either coated onto a surface and form a solid film or coating after drying, or they can be sandwiched between two surfaces in liquid form.
      • 2. They can be dissolved (organic dyes) or dispersed (inorganic particles) into solid hosts, such as glasses, polymers, gels, inorganic-organic hybrid hosts, cloths, papers, films, tapes, etc. and turn the solid into a fluorescent object for laser display.
      • 3. Some objects (e.g. cloths, paper, tapes, fluorescent polymers) may already contain fluorescent molecules or luminescent functional groups. In that circumstance, they can be directly used as laser display objects.
  • [0044]
    Referring now to FIG. 6, a detailed diagram illustrates an additional preferred embodiment of a two-dimensional light beam based FC display subsystem. The excitation source 610 preferably passes through a set of beam-diameter control optics 612 and a 2-D acousto-optical scanner 615. A scan control interface unit 620 coordinates the functions of a Direct Digital Synthesizer 622, an RF amplifier 625 and Beam-Diameter Control Optics 612. The processes image beam is projected on to a FC screen through an angle extender 650. In order to deliver consistent and stable image on the FC screen, a beam splitter deflects the image into a position sensitive detector 635 and processed through 630, feedback to 620. The close-loop image feedback formed by 632, 635, 630 and 620 is incorporated to maintain position accuracy and pointing stability of the laser beam.
  • [0045]
    It will be apparent to those with ordinary skill of the art that many variations and modifications can be made to the system, method, material and apparatus of FC based display disclosed herein without departing from the spirit and scope of the present invention. It is therefore intended that the present invention cover the modifications and variations of this invention provided that they come within the scope of the appended claims and their equivalents,

Claims (2)

  1. 1. A two-dimensional color image display setup with visibly transparent screen based on fluorescence conversion comprising:
    at least one excitation light beam operating in a wavelength range of >700 nm or <450 nm;
    an optional imaging processing unit projecting the said light beam to specified positions with specified light intensities;
    a displaying screen comprising at least one layer of transparent medium containing at least one type of electromagnetic radiation activated visible light emitting ingredients;
    a coating attached to the said layer of transparent medium of the said displaying screen separating the said visible light from the said excitation light;
    a covering layer of transparent materials protecting the said transparent layer of medium containing the said visible light emitting particles of the said displaying screen.
  2. 2-26. (canceled)
US11464362 2003-05-19 2006-08-14 System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules Abandoned US20060290898A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US47196803 true 2003-05-19 2003-05-19
US10848489 US7090355B2 (en) 2003-05-19 2004-05-18 System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules
US11464362 US20060290898A1 (en) 2003-05-19 2006-08-14 System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11464362 US20060290898A1 (en) 2003-05-19 2006-08-14 System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules
US11852297 US7976169B2 (en) 2003-05-14 2007-09-08 Waveguide display
US13153452 US8152306B2 (en) 2003-05-14 2011-06-05 Waveguide display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10848489 Continuation US7090355B2 (en) 2003-05-19 2004-05-18 System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11852297 Continuation-In-Part US7976169B2 (en) 2003-05-14 2007-09-08 Waveguide display

Publications (1)

Publication Number Publication Date
US20060290898A1 true true US20060290898A1 (en) 2006-12-28

Family

ID=33457294

Family Applications (2)

Application Number Title Priority Date Filing Date
US10848489 Active 2024-10-19 US7090355B2 (en) 2003-05-19 2004-05-18 System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules
US11464362 Abandoned US20060290898A1 (en) 2003-05-19 2006-08-14 System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10848489 Active 2024-10-19 US7090355B2 (en) 2003-05-19 2004-05-18 System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules

Country Status (1)

Country Link
US (2) US7090355B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228927A1 (en) * 2006-03-31 2007-10-04 David Kindler Multilayered fluorescent screens for scanning beam display systems
WO2007134329A3 (en) * 2006-05-15 2009-01-22 Sergey Bukesov Multilayered fluorescent screens for scanning beam display systems
US20090116107A1 (en) * 2007-05-17 2009-05-07 David Kindler Multilayered Screens with Light-Emitting Stripes for Scanning Beam Display Systems
US7697183B2 (en) 2007-04-06 2010-04-13 Prysm, Inc. Post-objective scanning beam systems
US7733310B2 (en) 2005-04-01 2010-06-08 Prysm, Inc. Display screens having optical fluorescent materials
US7791561B2 (en) 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials
US7878657B2 (en) 2007-06-27 2011-02-01 Prysm, Inc. Servo feedback control based on invisible scanning servo beam in scanning beam display systems with light-emitting screens
US7884816B2 (en) 2006-02-15 2011-02-08 Prysm, Inc. Correcting pyramidal error of polygon scanner in scanning beam display systems
US7942850B2 (en) 2006-10-13 2011-05-17 Endocross Ltd. Balloons and balloon catheter systems for treating vascular occlusions
US7994702B2 (en) 2005-04-27 2011-08-09 Prysm, Inc. Scanning beams displays based on light-emitting screens having phosphors
US8013506B2 (en) 2006-12-12 2011-09-06 Prysm, Inc. Organic compounds for adjusting phosphor chromaticity
US8089425B2 (en) 2006-03-03 2012-01-03 Prysm, Inc. Optical designs for scanning beam display systems using fluorescent screens
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
US8232957B2 (en) 2005-04-01 2012-07-31 Prysm, Inc. Laser displays using phosphor screens emitting visible colored light
US8384625B2 (en) 2006-02-15 2013-02-26 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
US8556430B2 (en) 2007-06-27 2013-10-15 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
WO2015102626A1 (en) * 2013-12-31 2015-07-09 Empire Technology Development Llc Three-dimensional display device using fluorescent material

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976169B2 (en) * 2003-05-14 2011-07-12 Sun Innovations, Inc. Waveguide display
US20060076882A1 (en) * 2004-09-27 2006-04-13 Advanced Optoelectronic Technology Inc. Color-adjustable light apparatus and manufacturing method thereof
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US20070044679A1 (en) * 2005-08-30 2007-03-01 Petrik Viktor I White-fluorescent anti-stokes compositions and methods
US7525094B2 (en) * 2005-12-21 2009-04-28 Los Alamos National Security, Llc Nanocomposite scintillator, detector, and method
EP2041478B1 (en) 2006-03-07 2014-08-06 QD Vision, Inc. An article including semiconductor nanocrystals
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US20070242324A1 (en) * 2006-04-18 2007-10-18 Li-Hung Chen Method for producing an active, real and three-dimensional image
US8884511B2 (en) * 2006-07-10 2014-11-11 Hewlett-Packard Development Company, L.P. Luminescent materials having nanocrystals exhibiting multi-modal energy level distributions
WO2008080117A3 (en) * 2006-12-21 2008-08-21 Annulex Inc Particle shutter device and associated displays
US20080158510A1 (en) * 2007-01-02 2008-07-03 Gm Global Technology Operations, Inc. Apparatus And Method For Displaying Information Within A Vehicle Interior
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US9525850B2 (en) 2007-03-20 2016-12-20 Prysm, Inc. Delivering and displaying advertisement or other application data to display systems
US8169454B1 (en) 2007-04-06 2012-05-01 Prysm, Inc. Patterning a surface using pre-objective and post-objective raster scanning systems
WO2009014707A9 (en) 2007-07-23 2009-05-07 Qd Vision Inc Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
WO2009047683A3 (en) * 2007-10-08 2009-05-28 Abraham R Balkenende Lighting device, array of lighting devices and optical projection device
DE102008006955B4 (en) * 2008-01-31 2010-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Preparation and applications of multi-functional optical module for photovoltaic power generation and for illumination purposes
JP2011524064A (en) 2008-05-06 2011-08-25 キユーデイー・ビジヨン・インコーポレーテツド Solid-state lighting device comprising a quantum confined semiconductor nanoparticles
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US7869112B2 (en) * 2008-07-25 2011-01-11 Prysm, Inc. Beam scanning based on two-dimensional polygon scanner for display and other applications
DE212009000221U1 (en) 2008-12-10 2012-04-24 Alvis Technologies Inc. Laser Projection System
US8830141B2 (en) * 2009-04-02 2014-09-09 GM Global Technology Operations LLC Full-windshield head-up display enhancement: anti-reflective glass hard coat
US8564502B2 (en) * 2009-04-02 2013-10-22 GM Global Technology Operations LLC Distortion and perspective correction of vector projection display
US8547298B2 (en) * 2009-04-02 2013-10-01 GM Global Technology Operations LLC Continuation of exterior view on interior pillars and surfaces
US8384531B2 (en) * 2009-04-02 2013-02-26 GM Global Technology Operations LLC Recommended following distance on full-windshield head-up display
US8427395B2 (en) * 2009-04-02 2013-04-23 GM Global Technology Operations LLC Full-windshield hud enhancement: pixelated field of view limited architecture
US7924146B2 (en) * 2009-04-02 2011-04-12 GM Global Technology Operations LLC Daytime pedestrian detection on full-windscreen head-up display
US8482486B2 (en) * 2009-04-02 2013-07-09 GM Global Technology Operations LLC Rear view mirror on full-windshield head-up display
US20100253595A1 (en) * 2009-04-02 2010-10-07 Gm Global Technology Operations, Inc. Virtual controls and displays by laser projection
US8629784B2 (en) 2009-04-02 2014-01-14 GM Global Technology Operations LLC Peripheral salient feature enhancement on full-windshield head-up display
US8358224B2 (en) * 2009-04-02 2013-01-22 GM Global Technology Operations LLC Point of interest location marking on full windshield head-up display
US8344894B2 (en) * 2009-04-02 2013-01-01 GM Global Technology Operations LLC Driver drowsy alert on full-windshield head-up display
US8269652B2 (en) * 2009-04-02 2012-09-18 GM Global Technology Operations LLC Vehicle-to-vehicle communicator on full-windshield head-up display
US8395529B2 (en) 2009-04-02 2013-03-12 GM Global Technology Operations LLC Traffic infrastructure indicator on head-up display
US8912978B2 (en) * 2009-04-02 2014-12-16 GM Global Technology Operations LLC Dynamic vehicle system information on full windshield head-up display
US8317329B2 (en) * 2009-04-02 2012-11-27 GM Global Technology Operations LLC Infotainment display on full-windshield head-up display
US8330673B2 (en) * 2009-04-02 2012-12-11 GM Global Technology Operations LLC Scan loop optimization of vector projection display
US8384532B2 (en) * 2009-04-02 2013-02-26 GM Global Technology Operations LLC Lane of travel on windshield head-up display
US8629903B2 (en) * 2009-04-02 2014-01-14 GM Global Technology Operations LLC Enhanced vision system full-windshield HUD
US8817090B2 (en) * 2009-04-02 2014-08-26 GM Global Technology Operations LLC Luminance uniformity compensation of vector projection display
US8072686B2 (en) * 2009-04-02 2011-12-06 GM Global Technology Operations LLC UV laser beamlett on full-windshield head-up display
US8704653B2 (en) * 2009-04-02 2014-04-22 GM Global Technology Operations LLC Enhanced road vision on full windshield head-up display
US8350724B2 (en) 2009-04-02 2013-01-08 GM Global Technology Operations LLC Rear parking assist on full rear-window head-up display
WO2010127135A3 (en) * 2009-04-29 2011-02-17 Photodigm, Inc. Rear projection display using laser excited photoluminescence
US8977489B2 (en) * 2009-05-18 2015-03-10 GM Global Technology Operations LLC Turn by turn graphical navigation on full windshield head-up display
US8164543B2 (en) * 2009-05-18 2012-04-24 GM Global Technology Operations LLC Night vision on full windshield head-up display
FR2946336B1 (en) 2009-06-03 2011-05-20 Saint Gobain Glazed puff visualization system for high head
DE102009044181A1 (en) * 2009-10-05 2011-04-07 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Laminated glass pane as head-up display
KR101466284B1 (en) * 2010-03-11 2014-11-28 국립대학법인 치바대학 Display device
US8085467B1 (en) 2010-06-16 2011-12-27 Eastman Kodak Company Projection display surface providing speckle reduction
US8469519B2 (en) 2010-06-16 2013-06-25 Eastman Kodak Company Projection apparatus providing reduced speckle artifacts
US8466438B2 (en) 2010-07-22 2013-06-18 Delphi Technologies, Inc. System and method of using fluorescent material to display information on a vehicle window
ES2525917T3 (en) 2010-09-21 2015-01-02 Saint-Gobain Glass France Glass panel display as high head
US8098170B1 (en) 2010-10-08 2012-01-17 GM Global Technology Operations LLC Full-windshield head-up display interface for social networking
US8606430B2 (en) 2010-10-08 2013-12-10 GM Global Technology Operations LLC External presentation of information on full glass display
US8514099B2 (en) 2010-10-13 2013-08-20 GM Global Technology Operations LLC Vehicle threat identification on full windshield head-up display
US8098171B1 (en) 2010-12-28 2012-01-17 GM Global Technology Operations LLC Traffic visibility in poor viewing conditions on full windshield head-up display
US8686872B2 (en) 2010-12-29 2014-04-01 GM Global Technology Operations LLC Roadway condition warning on full windshield head-up display
US8924150B2 (en) 2010-12-29 2014-12-30 GM Global Technology Operations LLC Vehicle operation and control system for autonomous vehicles on full windshield display
US8633979B2 (en) 2010-12-29 2014-01-21 GM Global Technology Operations LLC Augmented road scene illustrator system on full windshield head-up display
US8605011B2 (en) 2010-12-29 2013-12-10 GM Global Technology Operations LLC Virtual viewfinder on full windshield head-up display
US9057874B2 (en) 2010-12-30 2015-06-16 GM Global Technology Operations LLC Virtual cursor for road scene object selection on full windshield head-up display
US9008904B2 (en) 2010-12-30 2015-04-14 GM Global Technology Operations LLC Graphical vehicle command system for autonomous vehicles on full windshield head-up display
JP2014518530A (en) 2011-04-15 2014-07-31 サン−ゴバン グラス フランスSaint−Gobain Glass France Preparation of a film having a light-emitting particle
US9922621B2 (en) 2011-08-29 2018-03-20 Sekisui Chemical Co., Ltd. Device for generating a display image on a composite glass pane
US8692739B2 (en) 2011-09-22 2014-04-08 GM Global Technology Operations LLC Dynamic information presentation on full windshield head-up display
US8514101B2 (en) * 2011-12-02 2013-08-20 GM Global Technology Operations LLC Driving maneuver assist on full windshield head-up display
US8818708B2 (en) 2011-12-02 2014-08-26 GM Global Technology Operations LLC Optimum driving path on full windshield display
US8781170B2 (en) 2011-12-06 2014-07-15 GM Global Technology Operations LLC Vehicle ghosting on full windshield display
US9443429B2 (en) 2012-01-24 2016-09-13 GM Global Technology Operations LLC Optimum gaze location on full windscreen display
KR20130092905A (en) * 2012-02-13 2013-08-21 삼성전자주식회사 Solar cell
FR2987363A1 (en) 2012-02-24 2013-08-30 Saint Gobain thermoplastic sheet for viewing high-head system
JP6019762B2 (en) * 2012-05-30 2016-11-02 日亜化学工業株式会社 Light source device and a projector which includes the light source unit
US9335027B2 (en) 2013-01-02 2016-05-10 Massachusetts Institute Of Technology Methods and apparatus for transparent display using scattering nanoparticles
WO2014107425A8 (en) 2013-01-02 2015-09-11 Massachusetts Institute Of Technology Methods and apparatus for transparent display using scattering nanoparticles
FR3002767B1 (en) 2013-03-01 2015-02-27 Saint Gobain A display for transparent glazing
US9488335B2 (en) 2013-04-11 2016-11-08 The Boeing Company Electromagnetic radiation shielding assembly
JP5962604B2 (en) * 2013-07-11 2016-08-03 トヨタ自動車株式会社 Vehicle control system
US9395301B2 (en) * 2014-10-02 2016-07-19 General Electric Company Methods for monitoring environmental barrier coatings
DE102014015695A1 (en) * 2014-10-21 2016-04-21 Isophon Glas Gmbh Glass plate and glass assembly

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598995A (en) * 1967-10-09 1971-08-10 Tokyo Shibaura Electric Co Method of evaluating ultraviolet radiations and qualitative analysis involving such evaluations
US3881800A (en) * 1972-03-30 1975-05-06 Harris Intertype Corp Multicolor image memory
US3953117A (en) * 1975-06-10 1976-04-27 The United States Of America As Represented By The Secretary Of The Army Single image plane two color photochromic display technique
US4158210A (en) * 1977-09-13 1979-06-12 Matsushita Electric Industrial Co., Ltd. Picture image display device
US4689522A (en) * 1985-12-03 1987-08-25 The United States Of America As Represented By The Administator Of The National Aeronautics And Space Administration Flat-panel, full-color, electroluminescent display
US4713577A (en) * 1985-12-20 1987-12-15 Allied Corporation Multi-layer faceted luminescent screens
US4814666A (en) * 1985-07-15 1989-03-21 Kasei Optonix, Ltd. Electron-beam existed display tube, the screen of which has a fluorescent component of a Eu containing red fluorescent component and a blue or green fluorescent component
US4960314A (en) * 1988-07-05 1990-10-02 Hughes Aircraft Company Diffraction optics diffusing screen laminate for full color on-axis viewing
US4989956A (en) * 1989-01-04 1991-02-05 Hughes Aircraft Company Visual display device with fluorescent dye-doped edge-illuminating emitter panel
US5045706A (en) * 1989-10-30 1991-09-03 Pioneer Electronic Corporation Fluorescent screen
US5078462A (en) * 1986-11-25 1992-01-07 Gravisse Philippe E Process and screen for disturbing the transmission of electromagnetic radiation particularly infra-red radiation
US5142387A (en) * 1990-04-11 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Projection-type display device having light source means including a first and second concave mirrors
US5162160A (en) * 1989-07-24 1992-11-10 Pioneer Electronic Corporation Fluorescent screen
US5233197A (en) * 1991-07-15 1993-08-03 University Of Massachusetts Medical Center High speed digital imaging microscope
US5289315A (en) * 1991-05-29 1994-02-22 Central Glass Company, Limited Head-up display system including a uniformly reflecting layer and a selectively reflecting layer
US5347644A (en) * 1992-06-11 1994-09-13 Sedlmayr Steven R Three-dimensional image display device and systems and methods for implementation thereof
US5424535A (en) * 1993-04-29 1995-06-13 The Boeing Company Optical angle sensor using polarization techniques
US5473396A (en) * 1993-09-08 1995-12-05 Matsushita Electric Industrial Co., Ltd. Display apparatus and method of making the same
US5566025A (en) * 1988-07-01 1996-10-15 Robert Bosch Gmbh Head-up display device for motor vehicles
US5646479A (en) * 1995-10-20 1997-07-08 General Motors Corporation Emissive display including field emitters on a transparent substrate
US5684621A (en) * 1995-05-08 1997-11-04 Downing; Elizabeth Anne Method and system for three-dimensional display of information based on two-photon upconversion
US5764403A (en) * 1995-05-08 1998-06-09 Downing; Elizabeth A. Panel display using two-frequency upconversion fluorescence
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US5786582A (en) * 1992-02-27 1998-07-28 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and two-dimensional symbologies at variable depths of field
US5921650A (en) * 1998-02-27 1999-07-13 International Business Machines Corporation High efficiency field-sequential color projector using two SLMs
US5957560A (en) * 1996-12-12 1999-09-28 Samsung Display Devices Co., Ltd. Light shutter projector with a fluorescent screen
US6064521A (en) * 1997-05-14 2000-05-16 Burke; Douglas Polarizing resonant scattering three dimensional image screen and display systems
US6128131A (en) * 1997-11-13 2000-10-03 Eastman Kodak Company Scaleable tiled flat-panel projection color display
US6166852A (en) * 1997-10-04 2000-12-26 Film Technologies International, Inc. Window film with optical brightener
US6221112B1 (en) * 1992-07-15 2001-04-24 Cp Films, Inc. Process for producing a colored polyester film
US6239907B1 (en) * 1999-09-03 2001-05-29 3M Innovative Properties Company Rear projection screen using birefringent optical film for asymmetric light scattering
US20010005282A1 (en) * 1999-12-22 2001-06-28 Kimoto Co., Ltd. See-through light transmitting type screen
US6261402B1 (en) * 1997-10-24 2001-07-17 Sony Corporation Planar type lens manufacturing method
US6327074B1 (en) * 1998-11-25 2001-12-04 University Of Central Florida Display medium using emitting particles dispersed in a transparent host
US6337769B1 (en) * 1999-06-24 2002-01-08 Hanil Vision Information Co., Ltd. Image display system using blinds
US20020024495A1 (en) * 1998-08-05 2002-02-28 Microvision, Inc. Scanned beam display
US20020048058A1 (en) * 2000-08-08 2002-04-25 Shinji Nishikawa Head-up display system
US6381068B1 (en) * 1999-03-19 2002-04-30 3M Innovative Properties Company Reflective projection screen and projection system
US20020080482A1 (en) * 2000-12-22 2002-06-27 Hitomu Watanabe Lens sheet, projection screen using the same, and method of molding the lens sheet
US20020088925A1 (en) * 1998-08-05 2002-07-11 Microvision, Inc. Low light viewer with image simulation
US6439888B1 (en) * 1999-05-03 2002-08-27 Pls Liquidating Llc Optical source and method
US20020120916A1 (en) * 2001-01-16 2002-08-29 Snider Albert Monroe Head-up display system utilizing fluorescent material
US20020140338A1 (en) * 2001-03-27 2002-10-03 Esther Sluzky Luminous low excitation voltage phosphor display structure deposition
US6466184B1 (en) * 1998-12-29 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Three dimensional volumetric display
US20020190224A1 (en) * 2001-04-04 2002-12-19 Fuji Photo Film Co., Ltd. Radiation image recording/read-out method and apparatus, and stimulable phosphor sheet
US20030002153A1 (en) * 2000-10-19 2003-01-02 Masanori Hiraishi Anisotropic scattering sheet and its use
US6507436B2 (en) * 1997-06-30 2003-01-14 Central Glass Company, Limited Display system where polarized light impinges on platelike laminate at brewster's angle or emerges therefrom at angle equal thereto
US20030198456A1 (en) * 1998-07-07 2003-10-23 Honeywell International Inc. Optical array and collimated light distribution
US20030213967A1 (en) * 1994-12-13 2003-11-20 Forrest Stephen R. Transparent contacts for organic devices
US20030214724A1 (en) * 2002-03-08 2003-11-20 Takayuki Fujikawa Head-up display
US6654161B2 (en) * 1998-11-25 2003-11-25 University Of Central Florida Dispersed crystallite up-conversion displays
US20030227004A1 (en) * 2002-06-06 2003-12-11 Dopps Daniel A. Clear neon aerosol paint
US20040022071A1 (en) * 2002-08-02 2004-02-05 Delta Electronic, Inc. Optical energy collection system to provide economical light source
US20040041988A1 (en) * 2002-09-02 2004-03-04 Funai Electric Co., Ltd. DMD equipped projector
US20040070824A1 (en) * 2001-12-13 2004-04-15 Atsushi Toda Screen, its manufacturing method and image display system
US20040090794A1 (en) * 2002-11-08 2004-05-13 Ollett Scott H. High intensity photocuring system
US20040100692A1 (en) * 2002-11-27 2004-05-27 Alpha Hou Method and apparatus to increase visual contrast for video projection screen
US20040114219A1 (en) * 1997-04-09 2004-06-17 Tim Richardson Color translating UV microscope
US20040135976A1 (en) * 2002-10-15 2004-07-15 Jun Ishihara Projection-type display apparatus
US6769773B1 (en) * 2003-05-20 2004-08-03 Jiahn-Chang Wu Projector with UV light source
US20040149998A1 (en) * 2002-12-02 2004-08-05 Henson Gordon D. Illumination system using a plurality of light sources
US20040164669A1 (en) * 2003-02-20 2004-08-26 Koji Kawaguchi Color conversion filter substrate and organic multicolor light emitting device
US6809781B2 (en) * 2002-09-24 2004-10-26 General Electric Company Phosphor blends and backlight sources for liquid crystal displays
US20040224154A1 (en) * 2003-01-28 2004-11-11 Atsushi Toda Fine particle structure and optical medium
US20040233526A1 (en) * 2003-05-22 2004-11-25 Eastman Kodak Company Optical element with nanoparticles
US20040257650A1 (en) * 2002-11-05 2004-12-23 Markus Parusel Rear projection screen and method for the production thereof
US6844950B2 (en) * 2003-01-07 2005-01-18 General Electric Company Microstructure-bearing articles of high refractive index
US20050030617A1 (en) * 2003-08-07 2005-02-10 Dai Nippon Prtg. Co., Ltd. Projection screen and projection system comprising the same
US6870671B2 (en) * 2000-10-03 2005-03-22 Cambridge 3D Display Limited Flat-panel display
US20050063054A1 (en) * 2003-09-19 2005-03-24 Dai Nippon Printing Co., Ltd. Projection screen and projection system comprising the same
US20050088736A1 (en) * 2003-10-23 2005-04-28 Adam Ghozeil Projection screen
US20050088737A1 (en) * 2003-10-23 2005-04-28 Piehl Arthur R. Projection screen
US6897999B1 (en) * 1998-11-25 2005-05-24 The Research Foundation Of The University Of Central Florida Optically written display
US20050152032A1 (en) * 2003-12-11 2005-07-14 3M Innovative Properties Company Composition for microstructured screens
US20050174635A1 (en) * 2002-06-20 2005-08-11 Bayerische Motoren Werke Aktiengesellschaft Projection system and method comprising a fluorescence projection screen and a radiation source which can emit in the non-visible spectrum

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281422A (en) 1991-03-08 1992-10-07 Canon Inc Head-up display device

Patent Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598995A (en) * 1967-10-09 1971-08-10 Tokyo Shibaura Electric Co Method of evaluating ultraviolet radiations and qualitative analysis involving such evaluations
US3881800A (en) * 1972-03-30 1975-05-06 Harris Intertype Corp Multicolor image memory
US3953117A (en) * 1975-06-10 1976-04-27 The United States Of America As Represented By The Secretary Of The Army Single image plane two color photochromic display technique
US4158210A (en) * 1977-09-13 1979-06-12 Matsushita Electric Industrial Co., Ltd. Picture image display device
US4814666A (en) * 1985-07-15 1989-03-21 Kasei Optonix, Ltd. Electron-beam existed display tube, the screen of which has a fluorescent component of a Eu containing red fluorescent component and a blue or green fluorescent component
US4689522A (en) * 1985-12-03 1987-08-25 The United States Of America As Represented By The Administator Of The National Aeronautics And Space Administration Flat-panel, full-color, electroluminescent display
US4713577A (en) * 1985-12-20 1987-12-15 Allied Corporation Multi-layer faceted luminescent screens
US5078462A (en) * 1986-11-25 1992-01-07 Gravisse Philippe E Process and screen for disturbing the transmission of electromagnetic radiation particularly infra-red radiation
US5566025A (en) * 1988-07-01 1996-10-15 Robert Bosch Gmbh Head-up display device for motor vehicles
US4960314A (en) * 1988-07-05 1990-10-02 Hughes Aircraft Company Diffraction optics diffusing screen laminate for full color on-axis viewing
US4989956A (en) * 1989-01-04 1991-02-05 Hughes Aircraft Company Visual display device with fluorescent dye-doped edge-illuminating emitter panel
US5162160A (en) * 1989-07-24 1992-11-10 Pioneer Electronic Corporation Fluorescent screen
US5045706A (en) * 1989-10-30 1991-09-03 Pioneer Electronic Corporation Fluorescent screen
US5142387A (en) * 1990-04-11 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Projection-type display device having light source means including a first and second concave mirrors
US5289315A (en) * 1991-05-29 1994-02-22 Central Glass Company, Limited Head-up display system including a uniformly reflecting layer and a selectively reflecting layer
US5233197A (en) * 1991-07-15 1993-08-03 University Of Massachusetts Medical Center High speed digital imaging microscope
US5786582A (en) * 1992-02-27 1998-07-28 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and two-dimensional symbologies at variable depths of field
US5347644A (en) * 1992-06-11 1994-09-13 Sedlmayr Steven R Three-dimensional image display device and systems and methods for implementation thereof
US6221112B1 (en) * 1992-07-15 2001-04-24 Cp Films, Inc. Process for producing a colored polyester film
US5424535A (en) * 1993-04-29 1995-06-13 The Boeing Company Optical angle sensor using polarization techniques
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US5473396A (en) * 1993-09-08 1995-12-05 Matsushita Electric Industrial Co., Ltd. Display apparatus and method of making the same
US20030213967A1 (en) * 1994-12-13 2003-11-20 Forrest Stephen R. Transparent contacts for organic devices
US5764403A (en) * 1995-05-08 1998-06-09 Downing; Elizabeth A. Panel display using two-frequency upconversion fluorescence
US5684621A (en) * 1995-05-08 1997-11-04 Downing; Elizabeth Anne Method and system for three-dimensional display of information based on two-photon upconversion
US5914807A (en) * 1995-05-08 1999-06-22 3D Technology Laboratories, Inc. Method and system for three-dimensional display of information based on two-photon upconversion
US5943160A (en) * 1995-05-08 1999-08-24 3D Technology Laboratories, Inc. System and method for co-doped three-dimensional display using two-photon upconversion
US5956172A (en) * 1995-05-08 1999-09-21 3D Technology Laboratories, Inc. System and method using layered structure for three-dimensional display of information based on two-photon upconversion
US5646479A (en) * 1995-10-20 1997-07-08 General Motors Corporation Emissive display including field emitters on a transparent substrate
US5957560A (en) * 1996-12-12 1999-09-28 Samsung Display Devices Co., Ltd. Light shutter projector with a fluorescent screen
US20040114219A1 (en) * 1997-04-09 2004-06-17 Tim Richardson Color translating UV microscope
US6064521A (en) * 1997-05-14 2000-05-16 Burke; Douglas Polarizing resonant scattering three dimensional image screen and display systems
US6507436B2 (en) * 1997-06-30 2003-01-14 Central Glass Company, Limited Display system where polarized light impinges on platelike laminate at brewster's angle or emerges therefrom at angle equal thereto
US6166852A (en) * 1997-10-04 2000-12-26 Film Technologies International, Inc. Window film with optical brightener
US6261402B1 (en) * 1997-10-24 2001-07-17 Sony Corporation Planar type lens manufacturing method
US6128131A (en) * 1997-11-13 2000-10-03 Eastman Kodak Company Scaleable tiled flat-panel projection color display
US5921650A (en) * 1998-02-27 1999-07-13 International Business Machines Corporation High efficiency field-sequential color projector using two SLMs
US20030198456A1 (en) * 1998-07-07 2003-10-23 Honeywell International Inc. Optical array and collimated light distribution
US20020024495A1 (en) * 1998-08-05 2002-02-28 Microvision, Inc. Scanned beam display
US20020088925A1 (en) * 1998-08-05 2002-07-11 Microvision, Inc. Low light viewer with image simulation
US6897999B1 (en) * 1998-11-25 2005-05-24 The Research Foundation Of The University Of Central Florida Optically written display
US6654161B2 (en) * 1998-11-25 2003-11-25 University Of Central Florida Dispersed crystallite up-conversion displays
US6327074B1 (en) * 1998-11-25 2001-12-04 University Of Central Florida Display medium using emitting particles dispersed in a transparent host
US6501590B2 (en) * 1998-11-25 2002-12-31 University Of Central Florida Display medium using emitting particles dispersed in a transparent host
US6466184B1 (en) * 1998-12-29 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Three dimensional volumetric display
US6381068B1 (en) * 1999-03-19 2002-04-30 3M Innovative Properties Company Reflective projection screen and projection system
US6439888B1 (en) * 1999-05-03 2002-08-27 Pls Liquidating Llc Optical source and method
US6337769B1 (en) * 1999-06-24 2002-01-08 Hanil Vision Information Co., Ltd. Image display system using blinds
US6239907B1 (en) * 1999-09-03 2001-05-29 3M Innovative Properties Company Rear projection screen using birefringent optical film for asymmetric light scattering
US6804053B2 (en) * 1999-12-22 2004-10-12 Kimoto Co., Ltd. See-through light transmitting type screen
US20010005282A1 (en) * 1999-12-22 2001-06-28 Kimoto Co., Ltd. See-through light transmitting type screen
US20020048058A1 (en) * 2000-08-08 2002-04-25 Shinji Nishikawa Head-up display system
US6870671B2 (en) * 2000-10-03 2005-03-22 Cambridge 3D Display Limited Flat-panel display
US20030002153A1 (en) * 2000-10-19 2003-01-02 Masanori Hiraishi Anisotropic scattering sheet and its use
US20020080482A1 (en) * 2000-12-22 2002-06-27 Hitomu Watanabe Lens sheet, projection screen using the same, and method of molding the lens sheet
US20020120916A1 (en) * 2001-01-16 2002-08-29 Snider Albert Monroe Head-up display system utilizing fluorescent material
US20040070551A1 (en) * 2001-01-16 2004-04-15 Walck Scott D. Image display system utilizing light emitting material
US20020140338A1 (en) * 2001-03-27 2002-10-03 Esther Sluzky Luminous low excitation voltage phosphor display structure deposition
US20020190224A1 (en) * 2001-04-04 2002-12-19 Fuji Photo Film Co., Ltd. Radiation image recording/read-out method and apparatus, and stimulable phosphor sheet
US20040070824A1 (en) * 2001-12-13 2004-04-15 Atsushi Toda Screen, its manufacturing method and image display system
US20030214724A1 (en) * 2002-03-08 2003-11-20 Takayuki Fujikawa Head-up display
US20030227004A1 (en) * 2002-06-06 2003-12-11 Dopps Daniel A. Clear neon aerosol paint
US20050174635A1 (en) * 2002-06-20 2005-08-11 Bayerische Motoren Werke Aktiengesellschaft Projection system and method comprising a fluorescence projection screen and a radiation source which can emit in the non-visible spectrum
US20040022071A1 (en) * 2002-08-02 2004-02-05 Delta Electronic, Inc. Optical energy collection system to provide economical light source
US20040041988A1 (en) * 2002-09-02 2004-03-04 Funai Electric Co., Ltd. DMD equipped projector
US6809781B2 (en) * 2002-09-24 2004-10-26 General Electric Company Phosphor blends and backlight sources for liquid crystal displays
US20040135976A1 (en) * 2002-10-15 2004-07-15 Jun Ishihara Projection-type display apparatus
US20040257650A1 (en) * 2002-11-05 2004-12-23 Markus Parusel Rear projection screen and method for the production thereof
US20040090794A1 (en) * 2002-11-08 2004-05-13 Ollett Scott H. High intensity photocuring system
US20040100692A1 (en) * 2002-11-27 2004-05-27 Alpha Hou Method and apparatus to increase visual contrast for video projection screen
US20040149998A1 (en) * 2002-12-02 2004-08-05 Henson Gordon D. Illumination system using a plurality of light sources
US6844950B2 (en) * 2003-01-07 2005-01-18 General Electric Company Microstructure-bearing articles of high refractive index
US20040224154A1 (en) * 2003-01-28 2004-11-11 Atsushi Toda Fine particle structure and optical medium
US20040164669A1 (en) * 2003-02-20 2004-08-26 Koji Kawaguchi Color conversion filter substrate and organic multicolor light emitting device
US6769773B1 (en) * 2003-05-20 2004-08-03 Jiahn-Chang Wu Projector with UV light source
US20040233526A1 (en) * 2003-05-22 2004-11-25 Eastman Kodak Company Optical element with nanoparticles
US20050030617A1 (en) * 2003-08-07 2005-02-10 Dai Nippon Prtg. Co., Ltd. Projection screen and projection system comprising the same
US20050063054A1 (en) * 2003-09-19 2005-03-24 Dai Nippon Printing Co., Ltd. Projection screen and projection system comprising the same
US20050088736A1 (en) * 2003-10-23 2005-04-28 Adam Ghozeil Projection screen
US20050088737A1 (en) * 2003-10-23 2005-04-28 Piehl Arthur R. Projection screen
US20050152032A1 (en) * 2003-12-11 2005-07-14 3M Innovative Properties Company Composition for microstructured screens

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232957B2 (en) 2005-04-01 2012-07-31 Prysm, Inc. Laser displays using phosphor screens emitting visible colored light
US8698713B2 (en) 2005-04-01 2014-04-15 Prysm, Inc. Display systems having screens with optical fluorescent materials
US7733310B2 (en) 2005-04-01 2010-06-08 Prysm, Inc. Display screens having optical fluorescent materials
US7791561B2 (en) 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials
US7994702B2 (en) 2005-04-27 2011-08-09 Prysm, Inc. Scanning beams displays based on light-emitting screens having phosphors
US8451195B2 (en) 2006-02-15 2013-05-28 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
US7884816B2 (en) 2006-02-15 2011-02-08 Prysm, Inc. Correcting pyramidal error of polygon scanner in scanning beam display systems
US8384625B2 (en) 2006-02-15 2013-02-26 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
US8089425B2 (en) 2006-03-03 2012-01-03 Prysm, Inc. Optical designs for scanning beam display systems using fluorescent screens
US8203785B2 (en) 2006-03-31 2012-06-19 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
US8000005B2 (en) 2006-03-31 2011-08-16 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
US20070228927A1 (en) * 2006-03-31 2007-10-04 David Kindler Multilayered fluorescent screens for scanning beam display systems
US8233217B2 (en) 2006-03-31 2012-07-31 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
WO2007134329A3 (en) * 2006-05-15 2009-01-22 Sergey Bukesov Multilayered fluorescent screens for scanning beam display systems
US7942850B2 (en) 2006-10-13 2011-05-17 Endocross Ltd. Balloons and balloon catheter systems for treating vascular occlusions
US8013506B2 (en) 2006-12-12 2011-09-06 Prysm, Inc. Organic compounds for adjusting phosphor chromaticity
US7697183B2 (en) 2007-04-06 2010-04-13 Prysm, Inc. Post-objective scanning beam systems
US8045247B2 (en) 2007-04-06 2011-10-25 Prysm, Inc. Post-objective scanning beam systems
US8038822B2 (en) 2007-05-17 2011-10-18 Prysm, Inc. Multilayered screens with light-emitting stripes for scanning beam display systems
US20090116107A1 (en) * 2007-05-17 2009-05-07 David Kindler Multilayered Screens with Light-Emitting Stripes for Scanning Beam Display Systems
US8814364B2 (en) 2007-06-27 2014-08-26 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
US7878657B2 (en) 2007-06-27 2011-02-01 Prysm, Inc. Servo feedback control based on invisible scanning servo beam in scanning beam display systems with light-emitting screens
US8556430B2 (en) 2007-06-27 2013-10-15 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
US9467668B2 (en) 2007-06-27 2016-10-11 Prysm, Inc. Feedback control of display systems with light-emitting screens having excitation light source and phosphor layer
US8372034B2 (en) 2007-10-22 2013-02-12 Endocross Ltd. Balloons and balloon catheter systems for treating vascular occlusions
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
WO2015102626A1 (en) * 2013-12-31 2015-07-09 Empire Technology Development Llc Three-dimensional display device using fluorescent material

Also Published As

Publication number Publication date Type
US7090355B2 (en) 2006-08-15 grant
US20040232826A1 (en) 2004-11-25 application

Similar Documents

Publication Publication Date Title
US3634614A (en) Infrared-energized visual displays using up-converting phosphor
US3560784A (en) Dark field, high contrast light emitting display
US3715611A (en) Cathode-ray tube containing cerium activated yttrium silicate phosphor
US7075707B1 (en) Substrate design for optimized performance of up-conversion phosphors utilizing proper thermal management
US5804919A (en) Resonant microcavity display
US5764403A (en) Panel display using two-frequency upconversion fluorescence
US6392341B2 (en) Resonant microcavity display with a light distribution element
US6653765B1 (en) Uniform angular light distribution from LEDs
US5910706A (en) Laterally transmitting thin film electroluminescent device
US6982046B2 (en) Light sources with nanometer-sized VUV radiation-absorbing phosphors
US5648181A (en) Inorganic thin film electroluminescent device having a light emission layer
Rapaport et al. Review of the properties of up-conversion phosphors for new emissive displays
US6333600B1 (en) Plasma display panel with photoreflection/absorption
US7431463B2 (en) Light emitting diode projection display systems
US20030111955A1 (en) Light-emitting device with organic electroluminescent material and photoluminescent materials
US6654161B2 (en) Dispersed crystallite up-conversion displays
US6180029B1 (en) Oxygen-containing phosphor powders, methods for making phosphor powders and devices incorporating same
US6100633A (en) Plasma display panel with phosphor microspheres
US20070090755A1 (en) Color converting substrate, method for producing the same and light emitting device
US6028977A (en) All-optical, flat-panel display system
US20010019240A1 (en) Display apparatus
US20090021148A1 (en) Color converting material composition and color converting medium including same
US20060221022A1 (en) Laser vector scanner systems with display screens having optical fluorescent materials
US20080246388A1 (en) Infrared display with luminescent quantum dots
US7015893B2 (en) Photoluminescent electrophoretic display

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUPERIMAGING, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUN, XIAO-DONG;LIU, JIAN-QIANG;REEL/FRAME:018276/0575;SIGNING DATES FROM 20041226 TO 20041227