Connect public, paid and private patent data with Google Patents Public Datasets

Semiconductor integrated circuit and method of testing same

Download PDF

Info

Publication number
US20060282731A1
US20060282731A1 US11439946 US43994606A US2006282731A1 US 20060282731 A1 US20060282731 A1 US 20060282731A1 US 11439946 US11439946 US 11439946 US 43994606 A US43994606 A US 43994606A US 2006282731 A1 US2006282731 A1 US 2006282731A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
clock
data
signal
circuit
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11439946
Other versions
US7743301B2 (en )
Inventor
Yasunori Sawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31703Comparison aspects, e.g. signature analysis, comparators

Abstract

A semiconductor integrated circuit includes an MISR (Multiple-Input Signature Register) for generating and storing compressed code based upon code from a ROM, and for reading out and outputting the compressed data that has been stored. The MISR has a clock change-over unit for changing over a clock in such a manner that the MISR is caused to operate at a high-speed clock when the compressed data is generated and stored, and at a low-speed clock when the stored compressed data is read out and output.

Description

    FIELD OF THE INVENTION
  • [0001]
    This invention relates to a semiconductor integrated circuit that incorporates a circuit to be tested, and to a method of testing the same. More particularly, the invention relates to a semiconductor integrated circuit and test method that enable the cost of manufacture to be reduced.
  • BACKGROUND OF THE INVENTION
  • [0002]
    A conventional example of a method of testing data (e.g., code) in a circuit under test [e.g., a ROM (Read-Only Memory), etc.] mounted on a semiconductor integrated circuit (e.g., a single-chip microcomputer) is as follows: On the basis of an address signal (one synchronized to a clock signal) that has been output in parallel from a CPU (Central Processing Unit) when a test mode (ROM dump test mode) is in effect, the code (synchronized to the clock signal) of the corresponding address is read out of the ROM in parallel, the code that has been read out is output (in parallel) to the exterior of the semiconductor integrated circuit, and the code that has been output is tested by an LSI (Large-Scale Integration) tester (not shown). Another method mounts an MISR (Multiple-Input Feedback Shift Register), which compresses and serially outputs the code that has been output from a ROM, on the semiconductor integrated circuit, and uses an LSI tester (not shown) to test the compressed code that has been serially output [see FIG. 7, e.g., FIG. 5(C) of Patent Document 1]. With this method, the code that has been output from the semiconductor integrated circuit is synchronized to the clock signal and compared with an expected value in the LSI tester, whereby the circuit is tested to determine whether the code is correct or not.
  • [0003]
    Since the speed of ROM read-out also is tested in the above-described method, the clock signal input to the semiconductor integrated circuit from the LSI tester has a frequency that is the maximum operating frequency of the ROM. Since the code that is output from the semiconductor integrated circuit to the LSI tester also is synchronized to this clock signal, it also has a frequency identical with the maximum operating frequency of the ROM. Also, in a case where a semiconductor integrated circuit having a mounted MISR is tested, the clock signal (CLK) supplied to the MISR is a single-channel signal. If code compression and serial output are performed by the MISR based upon a single-channel high-frequency clock signal, then the compressed data signal that is output from the MISR also will be a high-speed signal.
  • [0000]
    [Patent Document 1]
  • [0004]
    Japanese Patent Kokai Publication No. JP-P2000-137061A [FIG. 5(C)]
  • SUMMARY OF THE DISCLOSURE
  • [0005]
    In the method described above, it is required that the LSI tester be a high-speed LSI tester suited to the code output speed because of the high-speed code output from the semiconductor integrated circuit at the time of the test. In actuality, a high-speed LSI tester that is capable of supplying a high-frequency (e.g., 300 MHz) clock signal necessitates highly precise analysis and therefore is very high in cost.
  • [0006]
    Accordingly, there is much to be desired in the art. It is an object of the present invention to lower cost of manufacture while test reliability is maintained. Other objects will become apparent at the entire disclosure.
  • [0007]
    According to a first aspect of the present invention, there is provided a semiconductor integrated circuit that incorporates a circuit to be tested, the semiconductor integrated circuit comprising a clock signal change-over unit for changing over a clock signal in such a manner that a data storage unit is caused to operate based upon a first clock signal when data from the circuit to be tested is stored, and based upon a second clock signal, which has a frequency lower than that of the first clock signal, when the stored data is read out and output to the exterior after input of a clock change-over signal. Particularly, there is provided a semiconductor integrated circuit comprising;
  • [0008]
    a circuit to be tested that outputs data in sync with a first clock signal; and
  • [0009]
    a data storage unit that compresses data output from the circuit to be tested in sync with the first clock signal, stores the compressed data, and outputs the stored data in sync with a second clock signal;
  • [0010]
    wherein the second clock signal has a frequency lower than that of the first clock signal.
  • [0011]
    The data storage unit in the semiconductor integrated circuit of the present invention preferably stores compressed data, which is the result of compressing the above-mentioned data, when it stores data, and reads out this stored compressed data when the data is read out.
  • [0012]
    The semiconductor integrated circuit of the present invention further comprises: a clock generator for generating the first clock; a central processor for outputting an address signal in sync with the first clock signal; and a circuit under test for storing data on a per-address basis and reading out data at a corresponding address in sync with the first clock signal by inputting the address signal; wherein the data storage unit includes a compressed data generating section for generating compressed data obtained by compressing the data; a storage section for storing the compressed data; a read-out section for reading the compressed data out of the storage section; and a controller for exercising control based upon the clock signal from the clock signal change-over unit so as to supply the first clock signal to the compressed data generating section and storage section from start to end of read-out of the data from the circuit under test, and supply the second clock signal, the frequency of which is lower than that of the first clock signal, to the storage section and read-out section from start to end of read-out of the compressed data from the storage section.
  • [0013]
    According to a second aspect of the present invention, there is provided a method of testing a semiconductor integrated circuit, comprising the steps of: operating based upon a first clock signal when data from a circuit under test is stored; and operating based upon a second clock signal, which has a frequency lower than that of the first clock signal, when the stored data is read out and output. Particularly, there is provided a method for testing a semiconductor integrated circuit comprising;
  • [0014]
    a first step of reading out data from a circuit to be tested in sync with a first clock signal;
  • [0015]
    a second step of compressing data read-out at the first step;
  • [0016]
    a third step of storing the compressed data compressed at the second step;
  • [0017]
    a fourth step of outputting the stored data stored at the third step in sync with a second clock signal having a lower frequency than that of the first clock signal.
  • [0018]
    The meritorious effects of the present invention are summarized as follows.
  • [0019]
    In accordance with the present invention, a test is feasible using a low-speed LSI tester. The reason is that in an actual test, the read-out of data from the circuit under test can be performed at a high speed using the first clock, and the comparison of the output compressed data with an expected value can be performed at low speed using the second clock signal whose frequency is lower than that of the first clock signal. Further, it is no longer necessary to mount a costly high-speed input/output buffer of complicated structure solely for the purpose of conducting a test. As a result, the cost of manufacture can be reduced while test reliability is maintained. Furthermore, since it is no longer necessary to mount a high-speed input/output buffer, the amount of current at testing time is reduced, the problem of input/output simultaneous switching noise (SSO) is solved and testing can be conducted stably.
  • [0020]
    Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    FIG. 1 is a block diagram schematically illustrating the structure of a semiconductor integrated circuit according to a first embodiment of the present invention;
  • [0022]
    FIG. 2 is a block diagram schematically illustrating a first modification of the structure of a semiconductor integrated circuit according to the first embodiment of the present invention;
  • [0023]
    FIG. 3 is a block diagram schematically illustrating a second modification of the structure of a semiconductor integrated circuit according to the first embodiment of the present invention;
  • [0024]
    FIG. 4 is a block diagram schematically illustrating a third modification of the structure of a semiconductor integrated circuit according to the first embodiment of the present invention;
  • [0025]
    FIG. 5 is a flowchart schematically illustrating operation when the semiconductor integrated circuit of this embodiment is in a test mode;
  • [0026]
    FIG. 6 is a block diagram schematically illustrating the structure of a semiconductor integrated circuit according to a second embodiment of the present invention; and
  • [0027]
    FIG. 7 is a block diagram schematically illustrating the structure of an MISR according to an example of the prior art.
  • PREFERRED EMBODIMENTS OF THE INVENTION
  • [0028]
    A semiconductor integrated circuit according to a first embodiment of the present invention will now be described with reference to the drawings, in which FIG. 1 is a block diagram schematically illustrating the structure of a semiconductor integrated circuit according to the first embodiment of the present invention, and FIGS. 2 to 4 are block diagram schematically illustrating modifications of the structure of the semiconductor integrated circuit according to the first embodiment of the present invention.
  • [0029]
    As shown in FIG. 1, a semiconductor integrated circuit 1 according to the present invention includes a central processor 2, a circuit 3 under test, a clock generator 4, a data storage unit 5, an output unit 6, a data output terminal 7 a, a clock input terminal 7 b and a clock change-over signal input terminal 7 c.
  • [0030]
    The central processor 2, examples of which are a CPU and an MPU, processes information within the circuit 3 under test. When a test mode is in effect, the central processor 2 outputs an address signal (in parallel) to the circuit 3 under test in sync with a first clock signal from the clock generator 4. In the test mode, data corresponding to the address section enters the central processor 2 from the circuit 3 under test. The first clock signal is a signal generated by the clock generator 4. This is a clock signal having a frequency higher than that of a second clock signal.
  • [0031]
    The circuit 3 under test is a circuit to be tested by an LSI tester (not shown), and examples of the circuit are a ROM and a RAM, etc. The circuit 3 under test stores data on a per-address basis. In response to input of the first clock signal from the clock generator 4, the circuit 3 under test reads out the data of the corresponding address in sync with the first clock signal from the clock generator 4 and outputs the read data in parallel to the central processor 2 and data storage unit 5 (to the compressed data generator 5 a of the data storage unit 5).
  • [0032]
    The clock generator 4, an example of which is a PLL circuit, generates the first clock signal. As shown in FIG. 1, the first clock signal is input to the central processor 2, circuit 3 under test and data storage unit 5 (the controller 5 d of the data storage unit 5).
  • [0033]
    The data storage unit 5, an example of which is an MISR, compresses data from the circuit 3 under test and stores the compressed data. As shown in FIG. 1, the data storage unit 5 includes a compressed data generator 5 a, a storage section 5 b, a read-out section 5 c and a controller 5 d.
  • [0034]
    The compressed data generator 5 a generates compressed data obtained by compressing the data from the circuit 3 under test. The compressed data generator 5 a, which is supplied with the first clock signal from the controller 5 d from start to end of read-out of the data from the circuit 3 under test, generates compressed data in sync with the first clock signal. It should be noted that the second clock signal is not supplied to the compressed data generator 5 a from the controller 5 d.
  • [0035]
    The compressed data generator 5 a associates second compressed data, which is obtained, e.g., by compressing the data that has been output in parallel from the circuit 3 under test, with the first compressed data that has been output serially from the storage section 5 b, and outputs the associated data (i.e., first and second compressed data) to the storage section 5 b.
  • [0036]
    The storage section 5 b temporarily stores the compressed data generated by the compressed data generator 5 a. The storage section 5 b is supplied with the first clock signal from the controller 5 d from start to end of read-out of data from the circuit 3 under test, and temporarily stores compressed data in sync with the first clock signal during the storing operation. The storage section 5 b is supplied with the second clock signal from the controller 5 d from start to end of read-out of compressed data from the storage section 5 b, and outputs the stored compressed data in parallel in sync with the second clock signal at this read-out time. The second clock signal is one that has entered from the clock input terminal 7 b and has a frequency lower than that of the first clock signal.
  • [0037]
    The read-out section 5 c reads the compressed data out of the storage section 5 b. The read-out section 5 c is supplied with the second clock signal from the controller 5 d from start to end of read-out of the compressed data from the storage section 5 b, reads compressed data out of the storage section 5 b in parallel in sync with the second clock signal and outputs the read-out compressed data to the output unit 6 serially. It should be noted that the first clock signal is not supplied to the read-out section 5 c from the controller 5 d.
  • [0038]
    The controller 5 d controls the operation of the compressed data generator 5 a, storage section 5 b and read-out section 5 c. The inputs to the controller 5 d are the first clock signal from the clock generator 4, the second clock signal from the clock input terminal 7 b and the clock change-over signal from the clock change-over signal input terminal 7 c. The controller 5 d has a function of changing over the output clock signal from the first clock signal to the second clock signal when the clock change-over signal is input thereto. It should be noted that the function in the controller 5 d, of changing over from the first clock signal to the second clock signal may be separated from the controller 5 d it self and provided external to the data storage unit 5 (see a clock signal change-over unit 8 shown in FIG. 4). The controller 5 d exercises control so as to supply the first clock signal to the compressed data generator 5 a and storage section 5 b from start to end of read-out of data from the circuit 3 under test, and supply the second clock signal to the storage section 5 b and read-out section 5 c from start to end of read-out of compressed data from the storage section 5 b.
  • [0039]
    The clock change-over signal is a signal for changing over the clock signal, which is output by the controller 5 d, from the first clock signal to the second clock signal. It should be noted that the clock change-over signal is not limited to one that is input from the clock change-over signal input terminal 7 c. For example, use may be made of a status signal (see FIG. 2) that is output from the circuit 3 under test when read-out of data from the circuit 3 under test ends, or a status signal (see FIG. 3) that is output from the central processor 2 when output of the address signal ends.
  • [0040]
    The output unit 6 outputs the compressed data, which has been output serially from the data storage unit 5 (the read-out section 5 c of the data storage unit 5), to the data output terminal 7 a while buffering a difference in electrical characteristics between the data storage unit 5 and external circuitry (e.g., the LSI tester). An example of the output unit 6 is an input/output buffer (10 Buffer).
  • [0041]
    The data output terminal 7 a is a terminal for outputting compressed data, which has been output from the output unit 6, to a point external to the semiconductor integrated circuit 1. The data output terminal 7 a is electrically connected to the LSI tester (not shown).
  • [0042]
    The clock input terminal 7 b is a terminal for inputting the second clock signal to the data storage unit 5 (to the controller 5 d of the data storage unit 5). The clock input terminal 7 b is electrically connected to the LSI tester (not shown).
  • [0043]
    The clock change-over signal input terminal 7 c is a terminal for inputting the clock change-over signal to the data storage unit 5 (to the controller 5 d of the data storage unit 5). The clock change-over signal input terminal 7 c is electrically connected to the LSI tester (not shown). It should be noted that the clock change-over signal input terminal 7 c need not be provided (see FIGS. 2 and 3) in a case where a status signal is output as the clock change-over signal from the central processor 2 or circuit 3 under test, etc. In a further modified mode according to FIG. 4, a change-over unit 8 is provided before the controller 5 d. The change-over unit 8 receives the first and second clock signals and changes-over there between (i.e., from the first to the second clock signal, vice versa based on the clock change-over signal supplied via the clock change-over signal input terminal 7 c.
  • [0044]
    Next, reference will be had to the drawings to describe operation when the semiconductor integrated circuit according to this mode of the present invention is in the test mode (operation in a case where a read-out test is performed on the circuit 3 under test mounted on the semiconductor integrated circuit 1). FIG. 5 is a flowchart schematically illustrating operation when the semiconductor integrated circuit is in the test mode. Reference should be had to FIG. 1 with regard to the various components constructing the semiconductor integrated circuit 1.
  • [0045]
    First, when the semiconductor integrated circuit is in the test mode, the central processor 2, circuit 3 under test and data storage unit 5 operate in sync with the first clock signal (a high-speed clock) supplied from the clock generator 4, and the central processor 2 outputs an address signal (in parallel) (step A1). Next, on the basis of the address signal from the central processor 2, the circuit 3 under test reads out data at the corresponding address in sync with the first clock signal (high-speed clock) and outputs the data in parallel (step A2). Next, the data storage unit 5 generates compressed data based upon data from the circuit 3 under test and stores the compressed data (step A3).
  • [0046]
    When read-out of data at all addresses of the circuit 3 under test ends and storage of all of the compressed data ends, the data storage unit 5 changes-over from the first clock signal to the second clock signal (a low-speed clock signal) in response to input of the clock change-over signal (step A4). Next, the data storage unit 5 reads out the stored compressed data in sync with the second clock signal (low speed) and outputs the compressed data in parallel (step A5).
  • [0047]
    The compressed data that has been output from the data storage unit 5 is then supplied to the LSI tester (not shown) via the output unit 6, and a read-out test is conducted by the LSI tester (step A6).
  • [0048]
    In accordance with the first embodiment of the present invention, a test can be performed using a low-speed LSI tester. The reason is that in an actual test, the read-out of data from the circuit 3 under test can be performed at a high speed using the first clock signal from the clock generator 4 and the comparison of the output compressed data with an expected value can be performed at low speed using the second clock signal. As a result, the cost of manufacture can be reduced while test reliability is maintained.
  • Embodiment
  • [0049]
    A semiconductor integrated circuit according to a first embodiment of the present invention will now be described with reference to the drawings, whereas FIG. 6 is a block diagram schematically illustrating the structure of a semiconductor integrated circuit according to a second embodiment of the present invention.
  • [0050]
    In the semiconductor integrated circuit 1 according to the second embodiment, a CPU 10, a ROM 20, a PLL 50, an MISR 40 and an input/output unit 30 are employed as the central processor 2 (FIG. 1), circuit 3 (FIG. 1) under test, clock generator 4 (FIG. 1), data storage unit 5 (FIG. 1) and output unit 6 in (FIG. 1), respectively. The MISR 40 has a clock change-over unit 41. The clock change-over unit 41 corresponds to the clock signal change-over section of the controller 5 d (FIG. 1) in the above-described first embodiment of the invention. When the clock change-over signal is input thereto, the clock change-over unit 41 changes-over the output clock signal from the high-speed clock to the low-speed clock. The functions of these units are similar to those of the first embodiment of the invention described above.
  • [0051]
    Operation in a case where the ROM 20 mounted on the semiconductor integrated circuit 1 of this embodiment is subjected to a read-out test will now be described. First, in the test mode, the CPU 10, ROM 20 and MISR 40 operate at the high-speed clock supplied from the PLL 50, an address signal is output from the CPU 10, code (e.g., 32 bits+7 bits of error-correction code) at the address corresponding to the address signal is output from the ROM 20, and compressed code (Signature, e.g., 39 bits) is generated by the MISR 40 based upon the above-mentioned code and is stored. When read-out of code at all addresses of the ROM 20 ends, the MISR 40 halts the generation of compressed data. If the clock change-over signal is input to the MISR 40 under these conditions, a change-over is made from the high-speed clock to the low-speed clock and the MISR 40 reads out the stored compressed data and outputs it serially in sync with the low-speed clock. The compressed code that has been output from the MISR 40 is thenceforth supplied to the LSI tester (not shown) via the input/output unit 30, and a read-out test is conducted by the LSI tester. The probability that error will be overlooked is about 1/3239 in case of data having a bit length of 39 bits. This is a very low probability and hence there is no problem in terms of a decline in reliability. In accordance with this embodiment, it is possible to conduct a test using a low-speed LSI tester, and cost of manufacture can be reduced while test reliability is maintained.
  • [0052]
    As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.
  • [0053]
    It should be noted that other objects, features and aspects of the present invention will become apparent in the entire disclosure and that modifications may be done without departing the gist and scope of the present invention as disclosed herein and claimed as appended herewith.
  • [0054]
    Also it should be noted that any combination of the disclosed and/or claimed elements, matters and/or items may fall under the modifications aforementioned.

Claims (20)

1. A semiconductor integrated circuit comprising;
a circuit to be tested that outputs data in sync with a first clock signal; and
a data storage unit that compresses data output from said circuit to be tested in sync with said first clock signal, stores the compressed data, and outputs the stored data in sync with a second clock signal;
wherein said second clock signal has a frequency lower than that of the first clock signal.
2. The circuit as defined in claim 1, wherein said data storage unit comprises MISR.
3. The circuit as defined in claim 2, wherein said MISR comprises a clock change-over unit that changes-over between the first and second clock signals.
4. The circuit as defined in claim 3, wherein said changing-over between the first and second clock signals is performed based on a clock change-over signal, which is a signal output from a tester.
5. The circuit as defined in claim 3, wherein said circuit further comprises a central processing unit CPU;
said outputting of data from said circuit to be tested in sync with the first clock signal is performed by read-out processing of said CPU; and
said changing-over between the first and second clock signals is performed based on a clock change-over signal which is a signal output from said circuit to be tested when said data reading-out from said circuit to be tested ends.
6. The circuit as defined in claim 3, wherein said circuit further comprises a central processing unit CPU;
said outputting of data from said circuit to be tested in sync with the first clock signal is performed by read-out processing of said CPU; and
said changing-over between the first and second clock signals is performed based on a clock change-over signal which is a signal output from said CPU.
7. The circuit as defined in claim 2, wherein said MISR comprises a control unit that controls changing-over between the first and second signals;
said control unit selecting the first clock signal when data is input to said data storage unit, and selecting the second clock signal when data is output from said data storage unit.
8. The circuit as defined in claim 2, wherein said MISR comprises;
a compressed data generator that compresses data output from said circuit to be tested;
a storage section that stores data output from said compressed data generator; and
a read-out section that reads out data stored in said storage section;
the first clock signal being supplied to said compressed data generator;
the first and second clock signals being supplied to said storage section;
the second clock signal being supplied to said read-out section.
9. The circuit as defined in claim 8, wherein said storage section outputs stored data to a said compressed data generator;
said compressed data generator compressing data output from said circuit to be tested, associating the compressed data with the stored data, and outputting the associated data to said storage section.
10. The circuit as defined in claim 1, wherein said circuit further comprises a clock change-over unit that changes-over between the first and second clock signals.
11. The circuit as defined in claim 1, wherein said data storage unit comprises a controller that controls the changing-over between the first and second clock signals;
said controller selecting the first clock signal when data is input to said data storage unit, and selecting the second clock signal when data is output from said data storage unit.
12. The circuit as defined in claim 1, wherein said data storage unit comprises;
a compressed data generator that compresses data output from said circuit to be tested;
a storage section that stores data output from said compressed data generator; and
a read-out section that reads out data stored in said storage section;
the first clock signal being supplied to said compressed data generator;
the first and second clock signals being supplied to said storage section; and
the second clock signal being supplied to said read-out section.
13. The circuit as defined in claim 12, wherein
said storage section outputs stored data to said compressed data generator;
said compressed data generator compressing data output from said circuit to be tested, associating the compressed data with the stored data, and outputting the associated data to said storage section.
14. The circuit as defined in claim 1, wherein the second clock signal is a signal output from a tester.
15. The circuit as defined in claim 1, wherein said circuit to be tested comprises ROM.
16. A method for testing a semiconductor integrated circuit comprising;
reading out, as a first step, data from a circuit to be tested in sync with a first clock signal;
compressing, as a second step, data read-out at the first step;
storing, as a third step, the compressed data compressed at the second step;
outputting, as a fourth step, the stored data stored at the third step in sync with a second clock signal having a lower frequency than that of the first clock signal.
17. The method as defined in claim 16, further comprising;
before the fourth step, changing-over, as a fifth step, from the first clock signal to the second clock signal.
18. The method as defined in claim 17, further comprising;
before the fifth step, outputting, as a sixth step, from a tester, a control signal that controls said changing-over from the first to the second clock signal.
19. The method as defined in claim 17, further comprising;
before the fifth step, outputting, as a sixth step, from said circuit to be tested, a control signal that controls said changing-over from the first to the second clock signal.
20. The method as defined in claim 17, further comprising;
before the fifth step, outputting, as a sixth step, from a control processing unit CPU, a control signal that controls said changing-over from the first to the second clock signal.
US11439946 2005-05-26 2006-05-25 Semiconductor integrated circuit and method of testing same Active 2027-03-28 US7743301B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005153751A JP2006329810A (en) 2005-05-26 2005-05-26 Semiconductor integrated circuit and its testing method
JP2005-153751 2005-05-26

Publications (2)

Publication Number Publication Date
US20060282731A1 true true US20060282731A1 (en) 2006-12-14
US7743301B2 US7743301B2 (en) 2010-06-22

Family

ID=37525457

Family Applications (1)

Application Number Title Priority Date Filing Date
US11439946 Active 2027-03-28 US7743301B2 (en) 2005-05-26 2006-05-25 Semiconductor integrated circuit and method of testing same

Country Status (2)

Country Link
US (1) US7743301B2 (en)
JP (1) JP2006329810A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599673B2 (en) * 2014-10-15 2017-03-21 Freescale Semiconductor, Inc. Structural testing of integrated circuits

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340857A (en) * 1980-04-11 1982-07-20 Siemens Corporation Device for testing digital circuits using built-in logic block observers (BILBO's)
US4551837A (en) * 1983-03-25 1985-11-05 International Telephone & Telegraph Corp. High speed operational recurring signature evaluator for digital equipment tester
US5001713A (en) * 1989-02-08 1991-03-19 Texas Instruments Incorporated Event qualified testing architecture for integrated circuits
US5103450A (en) * 1989-02-08 1992-04-07 Texas Instruments Incorporated Event qualified testing protocols for integrated circuits
US5349587A (en) * 1992-03-26 1994-09-20 Northern Telecom Limited Multiple clock rate test apparatus for testing digital systems
US5355369A (en) * 1991-04-26 1994-10-11 At&T Bell Laboratories High-speed integrated circuit testing with JTAG
US5495487A (en) * 1988-09-07 1996-02-27 Texas Instruments Incorporated Testing buffer/register
US5631910A (en) * 1990-06-18 1997-05-20 Kabushiki Kaisha Toshiba Information processing system provided with self-diagnosing circuit and the self-diagnosing method therefor
US5640509A (en) * 1995-10-03 1997-06-17 Intel Corporation Programmable built-in self-test function for an integrated circuit
US5900753A (en) * 1997-03-28 1999-05-04 Logicvision, Inc. Asynchronous interface
US6003142A (en) * 1996-12-10 1999-12-14 Kabushiki Kaisha Toshiba Test facilitating circuit of microprocessor
US6223312B1 (en) * 1990-05-29 2001-04-24 Kabushiki Kaisha Toshiba Test-facilitating circuit for information processing devices
US20010040829A1 (en) * 2000-05-10 2001-11-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device capable of performing operational test for contained memory core at operating frequency higher than that of memory tester
US20020087931A1 (en) * 2000-12-29 2002-07-04 Jaber Talal K. Microprocessor on-chip testing architecture and implementation
US6438048B1 (en) * 1999-09-30 2002-08-20 Stmicroelectronics S.R.L. Nonvolatile memory and high speed memory test method
US6442722B1 (en) * 1999-10-29 2002-08-27 Logicvision, Inc. Method and apparatus for testing circuits with multiple clocks
US20030074616A1 (en) * 2001-10-12 2003-04-17 Dorsey Michael C. ASIC BIST controller employing multiple clock domains
US6658611B1 (en) * 1998-11-19 2003-12-02 Samsung Electronics Co., Ltd. Programmable built-in self-test system for semiconductor memory device
US6671839B1 (en) * 2002-06-27 2003-12-30 Logicvision, Inc. Scan test method for providing real time identification of failing test patterns and test bist controller for use therewith
US6996761B2 (en) * 1989-06-30 2006-02-07 Texas Instruments Incorporated IC with protocol selection memory coupled to serial scan path
US20060090105A1 (en) * 2004-10-27 2006-04-27 Woods Paul R Built-in self test for read-only memory including a diagnostic mode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940257B2 (en) * 1991-09-03 1999-08-25 日本電気株式会社 Self-test circuit
US6249893B1 (en) 1998-10-30 2001-06-19 Advantest Corp. Method and structure for testing embedded cores based system-on-a-chip
JP3434762B2 (en) * 1999-12-27 2003-08-11 エヌイーシーマイクロシステム株式会社 The semiconductor integrated circuit

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340857A (en) * 1980-04-11 1982-07-20 Siemens Corporation Device for testing digital circuits using built-in logic block observers (BILBO's)
US4551837A (en) * 1983-03-25 1985-11-05 International Telephone & Telegraph Corp. High speed operational recurring signature evaluator for digital equipment tester
US5495487A (en) * 1988-09-07 1996-02-27 Texas Instruments Incorporated Testing buffer/register
US5001713A (en) * 1989-02-08 1991-03-19 Texas Instruments Incorporated Event qualified testing architecture for integrated circuits
US5103450A (en) * 1989-02-08 1992-04-07 Texas Instruments Incorporated Event qualified testing protocols for integrated circuits
US7013416B2 (en) * 1989-06-30 2006-03-14 Texas Instruments Incorporated IC with expected data memory coupled to scan data register
US6996761B2 (en) * 1989-06-30 2006-02-07 Texas Instruments Incorporated IC with protocol selection memory coupled to serial scan path
US20060242523A1 (en) * 1989-06-30 2006-10-26 Whetsel Lee D IC with protocol selection memory coupled to serial scan path
US6223312B1 (en) * 1990-05-29 2001-04-24 Kabushiki Kaisha Toshiba Test-facilitating circuit for information processing devices
US5631910A (en) * 1990-06-18 1997-05-20 Kabushiki Kaisha Toshiba Information processing system provided with self-diagnosing circuit and the self-diagnosing method therefor
US5355369A (en) * 1991-04-26 1994-10-11 At&T Bell Laboratories High-speed integrated circuit testing with JTAG
US5349587A (en) * 1992-03-26 1994-09-20 Northern Telecom Limited Multiple clock rate test apparatus for testing digital systems
US5640509A (en) * 1995-10-03 1997-06-17 Intel Corporation Programmable built-in self-test function for an integrated circuit
US6003142A (en) * 1996-12-10 1999-12-14 Kabushiki Kaisha Toshiba Test facilitating circuit of microprocessor
US5900753A (en) * 1997-03-28 1999-05-04 Logicvision, Inc. Asynchronous interface
US6658611B1 (en) * 1998-11-19 2003-12-02 Samsung Electronics Co., Ltd. Programmable built-in self-test system for semiconductor memory device
US6438048B1 (en) * 1999-09-30 2002-08-20 Stmicroelectronics S.R.L. Nonvolatile memory and high speed memory test method
US6442722B1 (en) * 1999-10-29 2002-08-27 Logicvision, Inc. Method and apparatus for testing circuits with multiple clocks
US20010040829A1 (en) * 2000-05-10 2001-11-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device capable of performing operational test for contained memory core at operating frequency higher than that of memory tester
US20020087931A1 (en) * 2000-12-29 2002-07-04 Jaber Talal K. Microprocessor on-chip testing architecture and implementation
US20030074616A1 (en) * 2001-10-12 2003-04-17 Dorsey Michael C. ASIC BIST controller employing multiple clock domains
US20040003329A1 (en) * 2002-06-27 2004-01-01 Jean-Francois Cote Scan test method for providing real time identification of failing test patterns and test bist controller for use therewith
US6671839B1 (en) * 2002-06-27 2003-12-30 Logicvision, Inc. Scan test method for providing real time identification of failing test patterns and test bist controller for use therewith
US20060090105A1 (en) * 2004-10-27 2006-04-27 Woods Paul R Built-in self test for read-only memory including a diagnostic mode

Also Published As

Publication number Publication date Type
US7743301B2 (en) 2010-06-22 grant
JP2006329810A (en) 2006-12-07 application

Similar Documents

Publication Publication Date Title
US5726991A (en) Integral bit error rate test system for serial data communication links
US6978402B2 (en) Semiconductor memory
US20060190794A1 (en) Test apparatus and testing method
US20030005374A1 (en) Method and apparatus for testing an I/O buffer
US8046598B2 (en) Device and method for controlling supply voltage/frequency using information of process variation
US7587643B1 (en) System and method of integrated circuit testing
US6311300B1 (en) Semiconductor testing apparatus for testing semiconductor device including built in self test circuit
US6556505B1 (en) Clock phase adjustment method, and integrated circuit and design method therefor
US6857093B2 (en) Semiconductor integrated circuit device capable of self-testing internal power supply currents provided to internal circuits integrated on chip
US20070079204A1 (en) Integrated Circuit Testing Module Including Signal Shaping Interface
US7139957B2 (en) Automatic self test of an integrated circuit component via AC I/O loopback
US20010054166A1 (en) LSI having a built-in self-test circuit
US6301182B1 (en) Semiconductor memory device
US20090132879A1 (en) Multiplexing of scan inputs and scan outputs on test pins for testing of an integrated circuit
US20040250180A1 (en) Input/output circuit and semiconductor integrated circuit
US7446551B1 (en) Integrated circuit testing module including address generator
US6504772B2 (en) Testing method and test apparatus in semiconductor apparatus
US20050251359A1 (en) Method, apparatus and computer program product for high speed memory testing
US20040002832A1 (en) Method and apparatus for boundary scan of serial interfaces
US7146547B2 (en) Semiconductor device
US20020048211A1 (en) Semiconductor memory device with a rapid packet data input, capable of operation check with low speed tester
US20030193349A1 (en) Semiconductor integrated circuit
JP2006250824A (en) Semiconductor integrated circuit and data analysis method for the semiconductor integrated circuit
US6223318B1 (en) IC tester having region in which various test conditions are stored
US6556037B2 (en) Semiconductor integrated circuit and test board

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAWAI, YASUNORI;REEL/FRAME:017930/0619

Effective date: 20060523

Owner name: NEC ELECTRONICS CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAWAI, YASUNORI;REEL/FRAME:017930/0619

Effective date: 20060523

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEC ELECTRONICS CORPORATION;REEL/FRAME:025311/0833

Effective date: 20100401

FPAY Fee payment

Year of fee payment: 4

MAFP

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8