US20060258698A1 - Liquid formulations for treatment of diseases or conditions - Google Patents

Liquid formulations for treatment of diseases or conditions Download PDF

Info

Publication number
US20060258698A1
US20060258698A1 US11/351,761 US35176106A US2006258698A1 US 20060258698 A1 US20060258698 A1 US 20060258698A1 US 35176106 A US35176106 A US 35176106A US 2006258698 A1 US2006258698 A1 US 2006258698A1
Authority
US
United States
Prior art keywords
rapamycin
liquid formulation
therapeutic agent
rabbit eye
vitreous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/351,761
Other languages
English (en)
Inventor
Sreenivasu Mudumba
Philippe Dor
Thierry Nivaggioli
David Weber
Sidiq Farooq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santen Pharmaceutical Co Ltd
Original Assignee
MacuSight Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MacuSight Inc filed Critical MacuSight Inc
Priority to US11/351,761 priority Critical patent/US20060258698A1/en
Assigned to MACUSIGHT, INC. reassignment MACUSIGHT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAROOQ, SIDIQ, JM DOR, PHILIPPE, MUDUMBA, SREENIVASU, NIVAGGIOLI, THIERRY, WEBER, DAVID A.
Publication of US20060258698A1 publication Critical patent/US20060258698A1/en
Priority to US12/193,686 priority patent/US8663639B2/en
Priority to US12/778,872 priority patent/US8367097B2/en
Assigned to SANTEN PHARMACEUTICAL CO., LTD. reassignment SANTEN PHARMACEUTICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACUSIGHT, INC.
Priority to US13/741,103 priority patent/US8927005B2/en
Priority to US14/553,947 priority patent/US9381153B2/en
Priority to US15/183,649 priority patent/US20170020809A1/en
Priority to US15/806,226 priority patent/US20180311152A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0046Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/08Mydriatics or cycloplegics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • liquid formulations for treatment, prevention, inhibition, delaying onset of, or causing regression of a disease or condition by delivery of therapeutic agents to a subject, including but not limited to a human subject, including but not limited to the treatment of age-related macular degeneration (“AMD”) by delivery of a liquid formulation comprising a therapeutic agent, including but not limited to rapamycin (sirolimus), to the eye of a subject, including but not limited to a human subject.
  • AMD age-related macular degeneration
  • liquid formulations include solutions, suspensions, and in situ gelling formulations.
  • the retina of the eye contains the cones and rods that detect light.
  • the macula lutea which is about 1 ⁇ 3to 1 ⁇ 2 cm in diameter.
  • the macula provides detailed vision, particularly in the center (the fovea), because the cones are higher in density. Blood vessels, ganglion cells, inner nuclear layer and cells, and the plexiform layers are all displaced to one side (rather than resting above the cones), thereby allowing light a more direct path to the cones.
  • the choroid comprising a collection of blood vessels embedded within a fibrous tissue, and the deeply pigmented epithelium, which overlays the choroid layer.
  • the choroidal blood vessels provide nutrition to the retina (particularly its visual cells).
  • retinal disorders there are a variety of retinal disorders for which there is currently no treatment or for which the current treatment is not optimal.
  • Retinal disorders such as uveitis (an inflammation of the uveal tract: iris, ciliary body, and choroid), central retinal vein occlusive diseases (CRVO), branch retinal venous occlusion (BRVO), macular degeneration, macular edema, proliferative diabetic retinopathy, and retinal detachment generally are all retinal disorders that are difficult to treat with conventional therapies.
  • Age-related macular degeneration is the major cause of severe visual loss in the United States for individuals over the age of 60. AMD occurs in either an atrophic or less commonly an exudative form.
  • the atrophic form of AMD is also called “dry AMD,” and the exudative form of AMD is also called “wet AMD.”
  • Photodynamic therapy is a form of phototherapy, a term encompassing all treatments that use light to produce a beneficial reaction in a subject.
  • PDT destroys unwanted tissue while sparing normal tissue.
  • a compound called a photosensitizer is administered to the subject.
  • the photosensitizer alone has little or no effect on the subject.
  • the photosensitizer When light, often from a laser, is directed onto a tissue containing the photosensitizer, the photosensitizer is activated and begins destroying targeted tissue. Because the light provided to the subject is confined to a particularly targeted area, PDT can be used to selectively target abnormal tissue, thus sparing surrounding healthy tissue.
  • PDT is currently used to treat retinal diseases such as AMD.
  • PDT is currently the mainstay of treatment for subfoveal choroidal neovascularization in subjects with AMD (Photodynamic Therapy for Subfoveal Choroidal Neovascularization in Age Related Macular Degeneration with Verteporfin (TAP Study Group) Arch Ophthalmol. 1999 117:1329-1345.
  • CNV Choroidal neovascularization
  • Conventional laser treatment can ablate CNV and help to preserve vision in selected cases not involving the center of the retina, but this is limited to only about 10% of the cases.
  • the neovascularization recurs in about 50-70% of eyes (50% over 3 years and >60% at 5 years).
  • Macular Photocoagulation Study Group Arch. Ophthalmol. 204:694-701 (1986)
  • many subjects who develop CNV are not good candidates for laser therapy because the CNV is too large for laser treatment, or the location cannot be determined so that the physician cannot accurately aim the laser.
  • Photodynamic therapy although utilized in up to 50% of new cases of subfoveal CNV has only marginal benefits over natural history, and generally delays progression of visual loss rather than improving vision which is already decreased secondary to the subfoveal lesion.
  • PDT is neither preventive or definitive.
  • Several PDT treatments are usually required per subject and additionally, certain subtypes of CNV fare less well than others.
  • choroidal neovascularization is associated with such retinal disorders as presumed ocular histoplasmosis syndrome, myopic degeneration, angioid streaks, idiopathic central serous chorioretinopathy, inflammatory conditions of the retina and or choroid, and ocular trauma.
  • Angiogenic damage associated with neovascularization occurs in a wide range of disorders including diabetic retinopathy, venous occlusions, sickle cell retinopathy, retinopathy of prematurity, retinal detachment, ocular ischemia and trauma.
  • Uveitis is another retinal disorder that has proven difficult to treat using existing therapies.
  • Uveitis is a general term that indicates an inflammation of any component of the uveal tract.
  • the uveal tract of the eye consists of the iris, ciliary body, and choroid. Inflammation of the overlying retina, called retinitis, or of the optic nerve, called optic neuritis, may occur with or without accompanying uveitis.
  • Uveitis is most commonly classified anatomically as anterior, intermediate, posterior, or diffuse.
  • Posterior uveitis signifies any of a number of forms of retinitis, choroiditis, or optic neuritis.
  • Diffuse uveitis implies inflammation involving all parts of the eye, including anterior, intermediate, and posterior structures.
  • the symptoms and signs of uveitis' may be subtle, and vary considerably depending on the site and severity of the inflammation.
  • posterior uveitis the most common symptoms include the presence of floaters and decreased vision.
  • Cells in the vitreous humor, white or yellow-white lesions in the retina and/or underlying choroid, exudative retinal detachments, retinal vasculitis, and optic nerve edema may also be present in a subject suffering from posterior uveitis.
  • Ocular complications of uveitis may produce profound and irreversible loss of vision, especially when unrecognized or treated improperly.
  • the most frequent complications of posterior uveitis include retinal detachment; neovascularization of the retina, optic nerve, or iris; and cystoid macular edema.
  • Macular edema can occur if the swelling, leaking, and hard exudates noted in background diabetic retinopathy (BDR) occur within the macula, the central 5% of the retina most critical to vision.
  • Background diabetic retinopathy typically consists of retinal microaneurisms that result from changes in the retinal microcirculation. These microaneurisms are usually the earliest visible change in retinopathy seen on exam with an ophthalmoscope as scattered red spots in the retina where tiny, weakened blood vessels have ballooned out.
  • the ocular findings in background diabetic retinopathy progress to cotton wool spots, intraretinal hemorrhages, leakage of fluid from the retinal capillaries, and retinal exudates.
  • the increased vascular permeability is also related to elevated levels of local growth factors such as vascular endothelial growth factor.
  • the macula is rich in cones, the nerve endings that detect color and upon which daytime vision depends.
  • ME is a common cause of severe visual impairment.
  • Direct delivery of therapeutic agents to the eye rather than systemic administration may be advantageous because the therapeutic agent concentration at the site of action is increased relative to the therapeutic agent concentration in a subject's circulatory system Additionally, therapeutic agents may have undesirable side effects when delivered systemically to treat posterior segment disease. Thus, localized drug delivery may promote efficacy while decreasing side effects and systemic toxicity.
  • the methods, compositions, and liquid formulations described herein allow delivery of a therapeutic agent to a subject, including but not limited to a human subject or to the eye of a subject. Described herein are methods, compositions, and liquid formulations for delivering a variety of therapeutic agents for extended periods of time which can be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of a number of conditions or diseases, including but not limited to diseases or conditions of the eye.
  • the liquid formulations include, without limitation, solutions, suspensions, and in situ gelling formulations.
  • Described herein are methods, compositions and liquid formulations for administering to a human subject an amount of rapamycin effective to treat, prevent, inhibit, delay onset of, or cause regression of wet AMD.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a human subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of wet AMD.
  • the methods, compositions, and liquid formulations are used to treat wet AMD.
  • the methods, compositions, and liquid formulations are used to prevent wet AMD.
  • the methods and formulations described herein are used to prevent the transition from dry AMD to wet AMD.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a subject of therapeutically effective amount units of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of CNV.
  • the methods, compositions and liquid formulations are used to treat CNV.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a subject of therapeutically effective amounts of rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of angiogenesis in the eye.
  • the methods, compositions and liquid formulations are used to treat angiogenesis.
  • Other diseases and conditions that may be treated, prevented, inhibited, have onset delayed, or caused to regress using rapamycin are described in the Diseases and Conditions section of the Detailed Description.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a subject of therapeutically effective amounts of therapeutic agents other than rapamycin for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of wet AMD.
  • the methods, compositions and liquid formulations are used to treat wet AMD.
  • Therapeutic agents that may be used are described in detail in the Therapeutic Agents section. Such therapeutic agents include but are not limited to immunophilin binding compounds.
  • Immunophilin binding compounds that may be used include but are not limited to the limus family of compounds described further in the Therapeutic Agents section herein, including rapamycin, SDZ-RAD, tacrolimus, everolimus, pimecrolimus, CCI-779, AP23841, ABT-578, derivatives, analogs, prodrugs, salts and esters thereof.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a subject of therapeutically effective amounts of therapeutic agents for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of CNV. In some variations, the methods, compositions and liquid formulations are used to treat CNV.
  • the methods, compositions and liquid formulations may also be used for delivery to a subject, including but not limited to a human subject or to the eye of a subject of therapeutically effective amounts of therapeutic agents for the treatment, prevention, inhibition, delaying of the onset of, or causing the regression of angiogenesis in the eye.
  • the methods, compositions and liquid formulations are used to treat angiogenesis.
  • Other diseases and conditions that may be treated, prevented, inhibited, have onset delayed, or caused to regress using therapeutic agents other than rapamycin are described in the Diseases and Conditions section of the Detailed Description.
  • One liquid formulation described herein comprises a solution that includes a therapeutic agent dissolved in a solvent.
  • any solvent that has the desired effect may be used in which the therapeutic agent dissolves and which can be administered to a subject, including but not limited to a human subject or an eye of a subject.
  • any concentration of therapeutic agent that has the desired effect can be used.
  • the formulation in some variations is a solution which is unsaturated, a saturated or a supersaturated solution.
  • the solvent may be a pure solvent or may be a mixture of liquid solvent components.
  • the solution formed is an in situ gelling formulation. Solvents and types of solutions that may be used are well known to those versed in such drug delivery technologies.
  • the liquid formulations described herein may form a non-dispersed mass when placed into a rabbit eye, including but not limited to the vitreous of a rabbit eye.
  • the non-dispersed mass comprises a gel.
  • the liquid formulation comprises a therapeutic agent and a plurality of polymers.
  • one of the polymers is polyacrylate or polymethacrylate.
  • one of the polymers is polyvinylpyrrolidone.
  • the non-dispersed mass comprises a depot. In some variations, the non-dispersed mass consists of a depot.
  • the non-dispersed mass may generally be any geometry or shape.
  • the non-dispersed mass-forming liquid formulations may, for instance, appear as a compact spherical mass when placed in the vitreous.
  • the liquid formulations described herein form a milky or whitish colored semi-contiguous or semi-solid non-dispersed mass relative to the medium in which it is placed, when placed in the vitreous.
  • the liquid formulations may generally be administered in any volume that has the desired effect.
  • a volume of a liquid formulation is administered to the vitreous and the liquid formulation is less than one half the volume of the vitreous.
  • Routes of administration that may be used to administer a liquid formulation include but are not limited to (1) placement of the liquid formulation by placement, including by injection, into a medium, including but not limited to an aqueous medium in the body, including but not limited to intraocular or periocular injection; or (2) oral administration of the liquid formulation.
  • the liquid formulation may be administered systemically, including but not limited to the following delivery routes: rectal, vaginal, infusion, intramuscular, intraperitoneal, intraarterial, intrathecal, intrabronchial, intracisternal, cutaneous, subcutaneous, intradermal, transdermal, intravenous, intracervical, intraabdominal, intracranial, intrapulmonary, intrathoracic, intratracheal, nasal, buccal, sublingual, oral, parenteral, or nebulised or aerosolized using aerosol propellants.
  • the liquid formulation is administered subconjunctivally.
  • the liquid formulation is administered intravitreally.
  • liquid formulations described herein may be delivered to any medium of a subject, including but not limited to a human subject, including but not limited to an aqueous medium of a subject.
  • liquid formulation described herein comprises a liquid formulation of rapamycin or other therapeutic agent.
  • the liquid formulations may comprise a solution, suspension, an in situ gelling formulation, or an emulsion.
  • the droplets in the emulsion may generally be of any size, including but not limited to up to about 5,000 nm.
  • the liquid formulations may comprise a therapeutic agent including but not limited to rapamycin, and one or more solubilizing agents or solvents.
  • the solubilizing agent or solvent is glycerin, DMSO, DMA, N-methylpyrrolidone, ethanol, benzyl alcohol, isopropyl alcohol, polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, or propylene glycol or a mixture of one or more thereof.
  • the liquid formulation includes hyaluronic acid.
  • the liquid formulations described herein may deliver a therapeutic agent or agents for an extended period of time.
  • a liquid formulation that delivers a therapeutic agent or agents to a subject, including but not limited to a human subject or to the eye of a subject in an amount sufficient to maintain an amount effective to treat, prevent, inhibit, delay onset of, or cause regression of a disease or condition in a subject for an extended period of time.
  • the liquid formulation is used to treat a disease or condition in a subject, including but not limited to a human subject.
  • the liquid formulation delivers the therapeutic agent for at least about one, about two, about three, about six, about nine, or about twelve months.
  • the liquid formulations described herein may deliver rapamycin or other therapeutic agents for an extended period of time.
  • an extended release delivery system is a liquid formulation that delivers rapamycin to a subject, including but not limited to a human subject or to the eye of a subject in an amount sufficient to maintain an amount effective to treat, prevent, inhibit, delay onset of, or cause regression of wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to treat wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to prevent wet age-related macular degeneration for an extended period of time.
  • the liquid formulation is used to prevent transition of dry AMD to wet AMD for an extended period of time.
  • the liquid formulation delivers the rapamycin to the vitreous, sclera, retina, choroid, macula, or other tissues of a subject, including but not limited to a human subject in an amount sufficient to treat, prevent, inhibit, delay onset of, or cause regression of wet age-related macular degeneration for at least about three, about six, about nine, or about twelve months.
  • the level of rapamycin is sufficient to treat AMD. In some variations, the level of rapamycin is sufficient to prevent onset of wet AMD.
  • FIGS. 1A-1C schematically depicts formation of a non-dispersed mass, after injection of a liquid formulation into the vitreous of an eye, as it is believed to occur in some variations.
  • FIG. 2 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) of rabbit eyes at 20, 40, 67, and 90 days after subconjunctival injection of a 1.256% solution of rapamycin in water, ethanol, and F127 (Lutrol).
  • FIG. 3 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) of rabbit eyes at 14, 35, 62, and 85 days after subconjunctival injection of a 5% solution of rapamycin in PEG 400 and ethanol.
  • the level of rapamycin present in the vitreous (ng/ml) is also shown at 2 days after injection.
  • FIG. 4 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) of rabbit eyes at 14, 35, 62, and 90 days after intravitreal injection of a 5% solution of rapamycin in PEG 400 and ethanol.
  • the level of rapamycin present in the vitreous (ng/ml) is also shown at 2 days after injection.
  • FIG. 5 depicts images of rabbit eyes 8 days after intravitreal injection of 10 ⁇ l ( FIG. 4A ), 20 ⁇ l ( FIG. 4B ), and 40 ⁇ l ( FIG. 4C ) of a 6% rapamycin suspension in PEG400.
  • FIG. 6 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid tissues (ng/mg), and sclera (ng/mg) of rabbit eyes at 7, 32, 45, and 90 days after subconjunctival injection of a 4.2% solution of rapamycin in ethanol, PVP K90, PEG 400, and Eudragit RL 100.
  • FIG. 7 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid tissues (ng/mg), and sclera (ng/mg) of rabbit eyes at 14, 42, 63, and 91 days after subconjunctival injection of a 3% suspension of rapamycin in PEG 400.
  • FIG. 8 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid tissues (ng/mg) and sclera (ng/mg) of rabbit eyes at 14, 42, 63, and 91 days after intravitreal injection of a 3% suspension of rapamycin in PEG 400, and in the vitreous at 63 and 91 days after injection.
  • FIG. 9 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid tissues (ng/mg), and sclera (ng/mg) of rabbit eyes at 14, 42, 63, and 91 days after subconjunctival injection of a 2% solutin of rapamycin in ethanol and PEG 400.
  • FIG. 10 depicts the level of rapamycin in the retina choroid tissues (ng/mg) and sclera (ng/mg) of rabbit eyes at 14, 42, 63, and 91 days after intravitreal injection of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 11 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 63 and 91 days after intravitreal injection of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 12 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 ⁇ l, 40 ⁇ l, and 60 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 13 depicts the level of rapamycin in the retina choroid tissues (ng/mg) of rabbit eyes at 5, 30, 60, 90, and 120 days after subconjunctival injection of 20 ⁇ l, 40 ⁇ l, and 60 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 14 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 ⁇ l and 40 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400 and of a 100 ⁇ l dose of a 0.4% rapamycin solution in ethanol and PEG 400.
  • FIG. 15 depicts the level of rapamycin in the retina choroid tissues (ng/mg) of rabbit eyes at 5, 30, 60, 90, and 120 days after intravitreal injection of 20 ⁇ l and 40 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400 and of a 100 ⁇ l dose of a 0.4% rapamycin solution in ethanol and PEG 400.
  • FIG. 16 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 5 and 14 days after subconjunctival injection of a single 10 ⁇ l dose, a single 60 ⁇ l dose, two 30 ⁇ l doses, and three 30 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 17 depicts the level of rapamycin in the retina choroid tissues (ng/mg) of rabbit eyes at 5 and 14 days after subconjunctival injection of a single 10 ⁇ l dose, a single 60 ⁇ l dose, two 30 ⁇ l doses, and three 30 ⁇ l doses of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 18 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 5, 14, and 30 days after subconjunctival injection of a single 10 ⁇ l dose, a single 30 ⁇ l dose, and three 30 ⁇ l doses of a 3% suspension of rapamycin in PEG 400.
  • FIG. 19 depicts the level of rapamycin in the retina choroid tissues (ng/mg) of rabbit eyes at 5, 14, and 30 days after subconjunctival injection of a single 10 ⁇ l dose, a single 30 ⁇ l dose, and three 30 ⁇ l doses of a 3% suspension of rapamycin in PEG 400.
  • FIG. 20 depicts the level of rapamycin in the retina choroid tissues (ng/mg) of rabbit eyes at 5, 30, and 90 days after intravitreal injection of 10 ⁇ l of a 0.2% solution of rapamycin in ethanol and PEG 400, of 10 ⁇ l of a 0.6% solution of rapamycin in ethanol and PEG 400, and of 10 ⁇ l of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 21 depicts the level of rapamycin in the vitreous (ng/ml) of rabbit eyes at 5, 30, and 90 days after intravitreal injection of 10 ⁇ l of a 0.2% solution of rapamycin in ethanol and PEG 400, of 10 ⁇ l of a 0.6% solution of rapamycin in ethanol and PEG 400, and of 10 ⁇ l of a 2% solution of rapamycin in ethanol and PEG 400.
  • FIG. 22 depicts the level of rapamycin in the aqueous humor (ng/ml) of rabbit eyes, the cornea (ng/mg), and the retina choroid tissues (ng/mg) at 1, 4, 7, 11, 14, 21, 28, 35, 54, and 56 days after subconjunctival injection of 40 ⁇ l of a 2% solution of rapamycin in ethanol and PEG 400.
  • compositions, liquid formulations and methods relating to delivery of therapeutic agents to a subject, including but not limited to a human subject or to the eye of a subject.
  • These compositions, liquid formulations, and methods may be used for the treatment, prevention, inhibition, delaying onset of, or causing regression of diseases and conditions of the eye including but not limited to diseases or conditions of the posterior segment, including but not limited to choroidal neovascularization; macular degeneration; age-related macular degeneration, including wet AMD and dry AMD; retinal angiogenesis; chronic uveitis; and other retinoproliferative conditions.
  • the compositions, liquid formulations, and methods are used for the treatment of the aforementioned diseases or conditions of the eye.
  • the therapeutic agents that may be delivered to a subject, including but not limited to a human subject or an eye of a subject using the compositions, liquid formulations, and methods described herein, (2) the diseases and conditions that may be treated, prevented, inhibited, onset delayed, or regression caused by delivery of the therapeutic agents, (3) liquid formulations that may be used to deliver the therapeutic agents, (4) routes of administration for delivery of the liquid formulations, (5) extended delivery of therapeutic agents including but not limited to rapamycin, and (6) description of the treatment of CNV and wet AMD by delivery of rapamycin to a subject, including but not limited to a human subject or to the eye of a subject for an extended period of time using the described compositions and liquid formulations.
  • any compounds and compositions currently known or yet to be discovered that are useful in treating, preventing, inhibiting, delaying the onset of, or causing the regression of the diseases and conditions described herein may be therapeutic agents for use in the compositions, liquid formulations, and methods described herein.
  • Immunophilin binding compounds include compounds that act by binding members of the immunophilin family of cellular proteins. Such compounds are known as “immunophilin binding compounds.” Immunophilin binding compounds include but are not limited to the “limus” family of compounds. Examples of limus compounds that may be used include but are not limited to cyclophilins and FK506-binding proteins (FKBPs), including sirolimus (rapamycin) and its water soluble analog SDZ-RAD (Novartis), TAFA-93 (Isotechnika), tacrolimus, everolimus, RAD-001 (Novartis), pimecrolimus, temsirolimus, CCI-779 (Wyeth), AP23841 (Ariad), AP23573 (Ariad), and ABT-578 (Abbott Laboratories).
  • FKBPs FK506-binding proteins
  • Limus compound analogs and derivatives that may be used include but are not limited to the compounds described in U.S. Pat. Nos. 5,527,907; 6,376,517; and 6,329,386 and U.S. patent application Ser. No. 09/950,307, each of which is incorporated herein by reference in their entirety.
  • Therapeutic agents also include analogs, prodrugs, salts and esters of limus compounds.
  • rapamycin rapa, and sirolimus are used interchangeably herein.
  • rapamycin derivatives that may be used include, without limitation, 7-epi-rapamycin, 7-thiomethyl-rapamycin, 7-epi-trimethoxyphenyl-rapamycin, 7-epi-thiomethyl-rapamycin, 7-demethoxy-rapamycin, 32-demethoxy-rapamycin, 2-desmethyl-rapamycin, mono- and di-ester derivatives of rapamycin, 27-oximes of rapamycin; 42-oxo analog of rapamycin; bicyclic rapamycins; rapamycin dimers; silyl ethers of rapamycin; rapamycin arylsulfonates and sulfamates, mono-esters and di-esters at positions 31 and 42, 30-demethoxy rapamycin, and other derivatives described in Vezina et al., “Rapamycin (AY-22,989), A New Antifungal Antibiotic.
  • the limus family of compounds may be used in the compositions, liquid formulations and methods for the treatment, prevention, inhibition, delaying the onset of, or causing the regression of angiogenesis-mediated diseases and conditions of the eye, including choroidal neovascularization.
  • the limus family of compounds may be used to prevent, treat, inhibit, delay the onset of, or cause regression of AMD, including wet AMD.
  • Rapamycin and rapamycin derivatives and analogs may be used to prevent, treat, inhibit, delay the onset of, or cause regression of angiogenesis-mediated diseases and conditions of the eye, including choroidal neovascularization. Rapamycin may be used to prevent, treat, inhibit, delay the onset of, or cause regression of AMD, including wet AMD.
  • a member of the limus family of compounds or rapamycin is used to treat wet AMD or angiogenesis mediated diseases and conditions of the eye including choroidal neovascularization.
  • therapeutic agents include pyrrolidine, dithiocarbamate (NF ⁇ B inhibitor); squalamine; TPN 470 analogue and fumagillin; PKC (protein kinase C) inhibitors; Tie-1 and Tie-2 kinase inhibitors; inhibitors of VEGF receptor kinase; proteosome inhibitors such as VelcadeTM (bortezomib, for injection; ranibuzumab (LucentisTM) and other antibodies directed to the same target; pegaptanib (MacugenTM); vitronectin receptor antagonists, such as cyclic peptide antagonists of vitronectin receptor-type integrins; ⁇ -v/ ⁇ -3 integrin antagonists; ⁇ -v/ ⁇ -1 integrin antagonists; thiazolidinediones such as rosiglitazone or troglitazone; interferon, including ⁇ -interferon or interferon targeted to CNV by use of dextran and metal coordination; pigment epithelium
  • anti-inflammatory agents include, but not limited to nonsteroidal anti-inflammatory agents and steroidal anti-inflammatory agents.
  • active agents that may be used in the liquid formulations are ace-inhibitors, endogenous cytokines, agents that influence basement membrane, agents that influence the growth of endothelial cells, adrenergic agonists or blockers, cholinergic agonists or blockers, aldose reductase inhibitors, analgesics, anesthetics, antiallergics, antibacterials, antihypertensives, pressors, antiprotozoal agents, antiviral agents, antifungal agents, anti-infective agents, antitumor agents, antimetabolites, and antiangiogenic agents.
  • Steroidal therapeutic agents that may be used include but are not limited to 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisol
  • cortisone dexamethasone, fluocinolone, hydrocortisone, methylprednisolone, prednisolone, prednisone, and triamcinolone, or their derivatives, may be used.
  • the liquid formulation may include a combination of two or more steroidal therapeutic agents.
  • the steroidal therapeutic agents may constitute from about 0.05% to about 50% by weight of the liquid formulation.
  • the steroid constitutes from about 0.05% to about 10%, between about 10% to about 20%; between about 30% to about 40%; or between about 40% to about 50% by weight of the liquid formulation.
  • therapeutic agents include but are not limited to anaesthetics, analgesics, cell transport/mobility impending agents such as colchicines, vincristine, cytochalasin B and related compounds; carbonic anhydrase inhibitors such as acetazolamide, methazolamide, dichlorphenamide, diamox and neuroprotectants such as nimodipine and related compounds; antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, cephalexin, oxytetracycline, chloramphenicol, rifampicin, ciprofloxacin, aminosides, gentamycin, erythromycin and penicillin, quinolone, ceftazidime, vancomycine imipeneme; antifungals such as amphotericin B, fluconazole, ketoconazole and miconazole; antibacterials such as
  • anti VEGF, interferons antibodies (monoclonal, polyclonal, humanized, etc.) or antibodies fragments, oligoaptamers, aptamers and gene fragments (oligonucleotides, plasmids, ribozymes, small interference RNA (SiRNA), nucleic acid fragments, peptides), immunomodulators such as endoxan, thalidomide, tamoxifene; antithrombolytic and vasodilator agents such as rtPA, urokinase, plasmin; nitric oxide donors, nucleic acids, dexamethasone, cyclosporin A, azathioprine, brequinar, gusperimus, 6-mercaptopurine, mizoribine, rapamycin, tacrolimus (FK-506), folic acid analogs (e.g., denopterin, edatrexate, methotrexate, piritrexim,
  • the formulation comprises a combination of one or more therapeutic agents.
  • therapeutic agents that may be used in the formulations described herein include antibacterial antibiotics, aminoglycosides (e.g., amikacin, apramycin, arbekacin, bambermycins, butirosin, dibekacin, dihydrostreptomycin, fortimicin(s), gentamicin, isepamicin, kanamycin, micronomicin, neomycin, neomycin undecylenate, netilmicin, paromomycin, ribostamycin, sisomicin, spectinomycin, streptomycin, tobramycin, trospectomycin), amphenicols (e.g., azidamfenicol, chloramphenicol, florfenicol, thiamphenicol), ansamycins (e.g., rifamide, rifampin, rifamycin sv, rifapentine, rifaximin), P-lactam
  • folic acid analogs e.g., denopterin, edatrexate, methotrexate, piritrexim, pteropterin, Tomudex®, trimetrexate
  • purine analogs e.g., cladribine, fludarabine, 6-mercaptopurine, thiamiprine, thioguanine
  • pyrimidine analogs e.g., ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, doxifluridine, emitefur, enocitabine, floxuridine, fluorouracil, gemcitabine, tagafur
  • antiinflammatory agents steroidal antiinflammatory agents, acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clobetasone, clocortol
  • the therapeutic agents may also be used in combination with other therapeutic agents and therapies, including but not limited to agents and therapies useful for the treatment, prevention, inhibition, delaying onset of, or causing regression of angiogenesis or neovascularization, particularly CNV.
  • agents and therapies useful for the treatment, prevention, inhibition, delaying onset of, or causing regression of angiogenesis or neovascularization, particularly CNV.
  • the additional agent or therapy is used to treat regression of angiogenesis or neovascularization, particularly CNV.
  • Non-limiting examples of such additional agents and therapies include pyrrolidine, dithiocarbamate (NF ⁇ B inhibitor); squalamine; TPN 470 analogue and fumagillin; PKC (protein kinase C) inhibitors; Tie-1 and Tie-2 kinase inhibitors; inhibitors of VEGF receptor kinase; proteosome inhibitors such as VelcadeTM (bortezomib, for injection; ranibuzumab (LucentisTM) and other antibodies directed to the same target; pegaptanib (MacugenTM); vitronectin receptor antagonists, such as cyclic peptide antagonists of vitronectin receptor-type integrins; ⁇ -v/ ⁇ -3 integrin antagonists; ⁇ -v/ ⁇ -1 integrin antagonists; thiazolidinediones such as rosiglitazone or troglitazone; interferon, including ⁇ -interferon or interferon targeted to CNV by use of dextran and metal coordination; pigment
  • diseases and conditions that may be treated, prevented, inhibited, onset delayed, or regression caused using the therapeutic agents and the formulations, liquid formulations, and methods described herein.
  • the diseases or conditions are treated using the therapeutic agents and the formulations, liquid formulations, and methods described herein.
  • the subjects on whom all of the methods of treatment may be performed include, but are not limited to, human subjects.
  • any diseases or condition of the eye susceptible to treatment, prevention, inhibition, delaying the onset of, or causing the regression of using the therapeutic agents and the formulations, liquid formulations and methods described herein may be treated, prevented, inhibited, onset delayed, or regression caused treated or prevented.
  • diseases or conditions of the eye include, but are not limited to, diseases or conditions associated with neovascularization including retinal and/or choroidal neovascularization.
  • Diseases or conditions associated with retinal and/or choroidal neovascularization that can be treated, prevented inhibited, have onset delayed, or be caused to regress using the formulations, liquid formulations, and methods described herein include, but are not limited to, diabetic retinopathy, macular degeneration, wet and dry AMD, retinopathy of prematurity (retrolental fibroplasia), infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, myopic degeneration, angioid streaks, and ocular trauma.
  • diseases and conditions of the eye that may be treated, prevented inhibited, have onset delayed, or be caused to regress using the formulations, liquid formulations, and methods described herein include, but are not limited to, pseudoxanthoma elasticum, vein occlusion, artery occlusion, carotid obstructive disease, Sickle Cell anemia, Eales disease, myopia, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma, polypoidal choroidal vasculopathy, post-laser complications, complications of idiopathic central serous chorioretinopathy, complications of choroidal inflammatory conditions, rubeosis, diseases associated with rubeosis (neovascularization of the angle), neovascular glaucoma, uveitis and chronic uveitis, macular edema, proliferative retinopathies and diseases or conditions caused by the abnormal proliferation of fibrovascular or fibrous tissue, including
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of a disease or condition of the eye where the subject, including but not limited to a human subject, is at heightened risk of developing the disease or condition of the eye.
  • a subject with a heightened risk of developing a disease or condition is a subject with one or more indications that the disease or condition is likely to develop in the particular subject.
  • the subject with a heightened risk of developing wet AMD is a subject with dry AMD in at least one eye.
  • the subject with a heightened risk of developing wet AMD in a fellow eye is a subject with wet AMD in the other eye.
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in a subject at heightened risk of developing CNV, including but not limited to prevention or delaying onset of CNV in the fellow eye of a subject, including but not limited to a human subject with AMD in one eye.
  • the formulations and pharmaceutical formulations described herein are used to prevent or delay onset of CNV in the fellow eye of a subject with wet AMD in one eye.
  • the formulations and pharmaceutical formulations comprise a limus compound, including but not limited to rapamycin.
  • the formulations and pharmaceutical formulations are administered periocularly, including without limitation subconjunctivally, to a human subject with vision of 20/40 or better.
  • the formulations and pharmaceutical formulations are administered periocularly, including without limitation subconjunctivally, to the eye of a human subject where the eye to which the formulation is administered has vision of 20/40 or better.
  • the formulations and pharmaceutical formulations described herein are used to treat, prevent, or delay onset of AMD. In some variations, the formulations and pharmaceutical formulations described herein are used to treat, prevent, or delay onset of dry AMD. In some variations, subjects including but not limited to human subjects with non-central geographic atrophy are administered a formulation or pharmaceutical formulations described herein to treat, prevent, or delay onset of central geographic atrophy. In some variations, the formulations and pharmaceutical formulations comprise a limus compound, including but not limited to rapamycin. In some variations the formulations and pharmaceutical formulations are administered periocularly, including without limitation subconjunctivally, to a human subject with vision of 20/40 or better.
  • the formulations and pharmaceutical formulations described herein are administered and the subject, including but not limited to a human subject is also treated with a second therapy for treating the disease or disorder.
  • the formulations and pharmaceutical formulations described herein are used to treat, prevent, or delay onset of wet or dry AMD and the subject, including but not limited to a human subject is also treated with laser therapy such as photodynamic laser therapy, either before, during, or after treatment with the formulations or pharmaceutical formulations described herein.
  • formulations and pharmaceutical formulations described herein are used to treat one or more of uveitis, allergic conjunctivitis, macular edema, glaucoma, or dry eye.
  • a formulations or pharmaceutical formulation comprises a limus compound such as rapamycin, and is administered to treat, prevent, or delay onset of dry eye. In some variations, a formulations or pharmaceutical formulation comprises a limus compound such as rapamycin, and is administered to treat, prevent, or delay onset of allergic conjunctivitis.
  • the formulations and pharmaceutical formulations described herein are used to treat glaucoma.
  • the formulations and pharmaceutical formulations described herein for treating glaucoma comprise a limus compound such as rapamycin, and are used as a surgical adjuvant to prevent, reduce or delay surgical complications.
  • the formulations and pharmaceutical formulations described herein for treating glaucoma comprise a limus compound such as rapamycin, and are used to improve or prolong surgical implant success.
  • the formulations and pharmaceutical formulations described herein for treating glaucoma comprise a limus compound such as rapamycin, and are used to improve or prolong success of an argon laser trabeculectomy or other glaucoma-related surgery.
  • the formulations and pharmaceutical formulations described herein have a neuroprotective effect and are used to treat glaucoma.
  • the formulations and pharmaceutical formulations described herein are used to treat retinitis pigmentosa.
  • the formulations and pharmaceutical formulations described herein for treating glaucoma comprise a limus compound such as rapamycin, and are used to treat, prevent, or delay onset of retinitis pigmentosa.
  • the formulations and pharmaceutical formulations described herein have a neuroprotective effect and are used to treat retinitis pigmentosa.
  • the formulations and pharmaceutical formulations described herein are used to treat one or more of central retinal vein occlusive diseases (CRVO), branch retinal venous occlusion (BRVO), retinal vascular diseases and conditions, macular edema, diabetic macular edema, iris neovascularization, diabetic retinopathy, or corneal graft rejection.
  • a formulations or pharmaceutical formulation comprises a limus compound such as rapamycin, and is administered to treat, prevent, or delay onset of one or more of these diseases or conditions.
  • the formulations and pharmaceutical formulations are administered subconjunctivally to an eye with vision of 20/40 or better.
  • the formulations and pharmaceutical formulations described herein may be administered by a variety of routes as is known in the art, including but not limited to by ocular or oral administration. Other routes of administration are known and are routine in the art.
  • the formulations described herein comprise rapamycin and are used to treat uveitis.
  • AMD One disease that may be treated, prevented, inhibited, have onset delayed, or be caused to regress using the formulation, liquid formulations and methods described herein is the wet form of AMD.
  • wet AMD is treated using the formulations, liquid formulations and methods described herein.
  • the wet form of AMD is characterized by blood vessels growing from their normal location in the choroid into an undesirable position under the retina. Leakage and bleeding from these new blood vessels results in vision loss and possibly blindness.
  • formulations, liquid formulation's, and methods described herein may also be used to prevent or slow the transition from the dry form of AMD (wherein the retinal pigment epithelium or RPE degenerates and leads to photoreceptor cell death and the formation of yellow deposits called drusen under the retina) to the wet form of AMD.
  • AMD retinal pigment epithelium
  • RPE retinal pigment epithelium
  • Macular degeneration is characterized by the excessive buildup of fibrous deposits in the macula and retina and the atrophy of the retinal pigment epithelium.
  • an eye “afflicted” with macular degeneration is understood to mean that the eye exhibits at least one detectable physical characteristic associated with the disease of macular degeneration.
  • the administration of rapamycin appears to limit and regress angiogenesis, such as choroidal neovascularization in age-related macular degeneration (AMD), which may occur without treatment.
  • AMD age-related macular degeneration
  • angiogenesis means the generation of new blood vessels (“neovascularization”) into a tissue or organ.
  • an “angiogenesis-mediated disease or condition” of the eye or retina is one in which new blood vessels are generated in a pathogenic manner in the eye or retina, resulting in dimunition or loss of vision or other problem, e.g., choroidal neovascularization associated with AMD.
  • the formulations and liquid formulations described herein may also be used to treat, prevent, inhibit, delay the onset of, or cause regression of various immune-related diseases and conditions, including but not limited to organ transplant rejection in a host, graft vs. host disease, autoimmune diseases, diseases of inflammation, hyperproliferative vascular disorders, solid tumors, and fungal infections.
  • various immune-related diseases and conditions including but not limited to organ transplant rejection in a host, graft vs. host disease, autoimmune diseases, diseases of inflammation, hyperproliferative vascular disorders, solid tumors, and fungal infections.
  • the formulations and liquid formulations described herein, including but not limited to rapamycin-containing formulations and liquid formulations are used to treat various immune-related diseases and conditions, including but not limited to organ transplant rejection in a host, graft vs.
  • the formulations and liquid formulations described herein including but not limited to rapamycin-containing formulations and liquid formulations, may be used as immunosuppressants.
  • the formulations and liquid formulations described herein, including but not limited to rapamycin-containing formulations and liquid formulations may be used to treat, prevent, inhibit, or delay the onset of rejection of transplanted organs or tissues including but not limited to transplanted heart, liver, kidney, spleen, lung, small bowel, pancreas, and bone marrow.
  • the formulations and liquid formulations described herein are used to treat the onset of rejection of transplanted organs or tissues including but not limited to transplanted heart, liver, kidney, spleen, lung, small bowel, pancreas, and bone marrow.
  • the formulations and liquid formulations described herein may be administered by a variety of routes as is known in the art, including but not limited to by oral administration.
  • Systemic administration may be achieved by oral administration of the liquid formulation.
  • Other systemic routes of administration are known and are routine in the art. Some examples thereof are listed in the Detailed Description section.
  • to “inhibit” a disease or condition by administration of a therapeutic agent means that the progress of at least one detectable physical characteristic or symptom of the disease or condition is slowed or stopped following administration of the therapeutic agent as compared to the progress of the disease or condition without administration of the therapeutic agent.
  • to “prevent” a disease or condition by administration of a therapeutic agent means that the detectable physical characteristics or symptom of the disease or condition do not develop following administration of the therapeutic agent.
  • to “delay onset of” a disease or condition by administration of a therapeutic agent means that at least one detectable physical characteristic or symptom of the disease or condition develops later in time following administration of the therapeutic agent as compared to the progress of the disease or condition without administration of the therapeutic agent.
  • to “treat” a disease or condition by administration of a therapeutic agent means that the progress of at least one detectable physical characteristic or symptom of the disease or condition is slowed, stopped, or reversed following administration of the therapeutic agent as compared to the progress of the disease or condition without administration of the therapeutic agent.
  • to “cause regression of” a disease or condition by administration of a therapeutic agent means that the progress of at least one detectable physical characteristic or symptom of the disease or condition is reversed to some extent following administration of the therapeutic agent.
  • a subject including but not limited to a human subject, having a predisposition for or in need of prevention may be identified by the skilled practitioner by established methods and criteria in the field given the teachings herein. The skilled practitioner may also readily diagnose individuals as in need of inhibition or treatment based upon established criteria in the field for identifying angiogenesis ahd/or neovascularization given the teachings herein.
  • a “subject” is generally any animal that may benefit from administration of the therapeutic agents described herein.
  • the therapeutic agents are administered to a mammalian subject.
  • the therapeutic agents are administered to a human subject.
  • the therapeutic agents may be administered to a veterinary animal subject.
  • the therapeutic agents may be administered to a model experimental animal subject.
  • liquid formulations described herein contain a therapeutic agent and may generally be any liquid formulation, including but not limited to solutions, suspensions, and emulsions. In some variations the liquid formulations form a non-dispersed mass relative to a surrounding medium when placed in the vitreous of a rabbit eye.
  • a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's, including but not limiting a human subject's eye that is less than about 500 ⁇ l, less than about 400 ⁇ l, less than about 300 ⁇ l, less than about200 ⁇ l, less than about 100 ⁇ l, less than about 90 ⁇ l, less than about 80 ⁇ l, less than about 70 ⁇ l, less than about 60 ⁇ l, less than about 50 ⁇ l, less than about 40 ⁇ l, less than about 30 ⁇ l, less than about 20 ⁇ l, less than about 10 ⁇ l, less than about 5 ⁇ l, less than about 3 ⁇ l, or less than about 1 ⁇ l.
  • a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or subject's, including but not limited to a human subject's eye that is less than about 20 ⁇ l. In some variations, a volume of a liquid formulation described herein is administered to the vitreous that is less than about 10 ⁇ l.
  • a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 150 ⁇ l, between about 0.1 ⁇ l and about 100 ⁇ l, between about 0.1 ⁇ l and about 50 ⁇ l, between about 1 ⁇ l and about 40 ⁇ l, between about 1 ⁇ l and about 30 ⁇ l, between about 1 ⁇ l and about 20 ⁇ l, between about 1 ⁇ l and about 10 ⁇ l, or between about 1 ⁇ l and about 5 ⁇ l.
  • a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 1 ⁇ l and about 10 ⁇ l. In some variations, a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid formulation described herein is administered to the vitreous of a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l.
  • a total volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is less than about 1000 ⁇ l, less than about 900 ⁇ l, less than about 800 ⁇ l, less than about 700 ⁇ l, less than about 600 ⁇ l, less than about 50011, less than about 400 ⁇ l, less than about 300 ⁇ l, less than about 200 ⁇ l, less than about 100 ⁇ l, less than about 90 ⁇ l, less than about 80 ⁇ l, less than about 70 ⁇ l, less than about 60 ⁇ l, less than about 50 ⁇ l, less than about 40 ⁇ l, less than about 30 ⁇ l, less than about 20 ⁇ l, less than about 10 ⁇ l, less than about 5 ⁇ l, less than about 3 ⁇ l, or less than about 1 ⁇ l.
  • a volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human suibject's eye that is less than about 20 ⁇ l. In some variations, a volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is less than about 10 ⁇ l.
  • a volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l, between about 50 ⁇ l and about 200 ⁇ l, between about 200 ⁇ l and about 300 ⁇ l, between about 300 ⁇ l and about 400 ⁇ l, between about 400 ⁇ l and about 500 ⁇ l, between about 600 ⁇ l and about 700 ⁇ l, between about 700 ⁇ l and about 800 ⁇ l, between about 800 ⁇ l and about 900 ⁇ l, between about 900 ⁇ l and about 1000 ⁇ l, between about 50 ⁇ l and about 1501 ⁇ l, between about 0.1 ⁇ l and about 100 ⁇ l, between about 0.1 ⁇ l and about 50 ⁇ l, between about 1 ⁇ l and about 40 ⁇ l, between about 1 ⁇ l and about 30 ⁇ l, between about 1 ⁇ l and about 20 ⁇ l, between about 1 ⁇
  • a volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 1 ⁇ l and about 10 ⁇ l. In some variations, a volume of a liquid formulation described herein is subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 1 ⁇ l and about 5 ⁇ l. In some variations, a volume of a liquid formulation described herein is administered to subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 1 ⁇ l and about 5 ⁇ l.
  • a volume of a liquid formulation described herein is administered to subconjunctivally administered to a rabbit eye or a subject's, including but not limited to a human subject's eye that is between about 0.1 ⁇ l and about 200 ⁇ l.
  • liquid formulations described herein are administered in multiple subconjunctival locations within a period of time, including without limitation within an hour of one another. Without being bound by theory, it is thought that such multiple administrations, such as multiple injections, allow for a greater total dose to be administered subconjunctivally than a single dose due to a potentially limited ability of the local ocular tissues to absorb larger volumes.
  • One liquid formulation described herein is an in situ gelling formulation.
  • In situ gelling formulations as described herein, comprise a therapeutic agent and a plurality of polymers which give a formulation that forms a gel or a gel-like substance when placed in an aqueous medium, including but not limited to an aqueous medium of the eye.
  • the therapeutic agent is a solution or suspension of rapamycin in a liquid medium.
  • Liquid media include but are not limited to solvents, including but not limited to those in the Solubilization of Therapeutic Agents section.
  • the liquid formulations described herein may comprise a solubilizing agent component.
  • the solubilizing agent component is a surfactant.
  • a liquid formulation that comprises a therapeutic agent and a component that may be considered either a solvent or a solubilizing agent or surfactant will be considered a solvent if it is playing the role of a solvent; if the component is not playing the role of the solvent, the component may be considered a solubilizing agent or surfactant.
  • Liquid formulations may optionally further comprise stabilizers, excipients, gelling agents, adjuvants, antioxidants, and/or other components as described herein.
  • all components in the liquid formulation, other than the therapeutic agent, are liquid at room temperature.
  • the liquid formulation comprises a release modifying agent.
  • the release modifying agent is a film-forming polymer component.
  • the film-forming polymer component may comprise one or more film-forming polymers. Any film-forming polymer may be used in the excipient component.
  • the film-forming polymer component comprises a water insoluble film forming polymer.
  • the release modifying agent component comprises an acrylic polymer, including but not limited to polymethacrylate, including but not limited to Eudragit RL.
  • compositions and liquid formulations for delivery of the therapeutic agents described in the Therapeutic Agents section. Delivery of therapeutic agents using the compositions and liquid formulations described herein may be used to treat, prevent, inhibit, delay the onset of, or cause the regression of the diseases and conditions described in the Diseases and Conditions section.
  • the compositions and liquid formulations described herein may comprise any of the therapeutic agents described in the Therapeutic Agents section, including but not limited to rapamycin.
  • the compositions and liquid formulations described herein may comprise one or more than one therapeutic agent. Other compositions and liquid formulations in addition to those explicitly described herein may be used.
  • the compositions and liquid formulations may be used to maintain an amount of rapamycin in the vitreous effective to treat wet AMD.
  • a liquid formulation delivering rapamycin to maintain a concentration of rapamycin of about 10 pg/ml to about 2 ⁇ g/ml in the vitreous over a period of time may be used for the treatment of wet AMD.
  • the rapamycin is in a liquid formulation that forms a non-dispersed mass
  • the stated concentration of rapamycin represents the amount that is effectively treating the disease or condition of the eye, and not merely present in the form of the non-dispersed mass.
  • a delivery system delivering rapamycin to maintain a concentration of rapamycin of about 0.01 pg/mg to about 10 ng/mg in the retina choroid tissues over a period of time may be used for treatment of wet AMD.
  • Other therapeutically effective amounts of therapeutic agent are also possible, and can be readily determined by one of skill in the art given the teachings herein.
  • compositions and liquid formulations described herein may be used to deliver a dose of rapamycin to a subject, including but not limited to a human subject or to the eye of a subject.
  • a liquid formulation containing a dose of about 20 ⁇ g to about 4 mg may be used for the treatment of wet AMD.
  • the therapeutic agent in the liquid formulation comprises between about 0.01 to about 30% of the total weight of the composition; between about 0.05 to about 15%; between about 0.1 to about 10%; between about 1 to about 5%; or between about 5 to about 15%; between about 8 to about 10%; between about 0.01 to about 1%; between about 0.05 to about 5%; between about 0.1 to about 0.2%; between about 0.2 to about 0.3%; between about 0.3 to about 0.4%; between about 0.4 to about 0.5%; between about 0.5 to about 0.6%; between about 0.6 to about 0.7%; between about 0.7 to about 1%; between about 1 to about 5%; between about 5 to about 10%; between about 15 to about 30%, between about 20 to about 30%; or between about 25 to about 30%.
  • a given therapeutic agent can determine what amount or concentration of a given therapeutic agent is equivalent to an amount or concentration of rapamycin by, for example, administering the therapeutic agent at various amounts or concentrations to a disease model system, such as an in vivo or in vivo model system, and comparing the results in the model system relative to the results of various amounts or concentrations of rapamycin.
  • a disease model system such as an in vivo or in vivo model system
  • rapamycin may have a different equivalent level of rapamycin when, for example, a different disease or disorder is being evaluated, or a different type of formulation is used.
  • Nonlimiting examples of scientific references with comparative studies of rapamycin and other therapeutic agents on ocular disease are Ohia et al., Effects of steroids and immunosuppressive drugs on endotoxin - uveitis in rabbits , J. Ocul. Pharmacol. 8(4):295-307 (1992); Kulkarni, Steroidal and nonsteroidal drugs in endotoxin - induced uveitis , J. Ocul. Pharmacol.
  • a concentration of 10 ng/ml of the therapeutic agent would be equivalent to a 1 ng/ml concentration of rapamycin.
  • a 10-fold amount of the therapeutic agent would be administered relative to the amount of rapamycin.
  • the solvent component may comprise, for instance, between about 0.01 to about 99.9% of the total weight of the composition; between about 0.1 to about 99%; between about 25 to about 55%; between about 30 to about 50%; or between about 35 to about 45%; between about 0.1 to about 10%; between about 10 to about 20%; between about 20 to about 30%; between about 30 to about 40%; between about 40 to about 45%; between about 40 to about 45%; between about 45 to about 50%; between about 50 to about 60%; between about 50 to about 70%; between about 70 to about 80%; between about 80 to about 90%; or between about 90 to about 100%.
  • the solubilizing agent component may comprise, for instance, between about 0.01 to about 30% of the total weight of the composition; between about 0.1 to about 20%; between about 2.5 to about 15%; between about 10 to about 15%; or between about 5 to about 10%; between about 8 to about 12%; between about 10 to about 20%; between about 20 to about 30%.
  • liquid formulations described herein have a viscosity of between 40% and 120% centipoise. In some variations the liquid formulations described herein have a viscosity of between 60% and 80% centipoise.
  • the liquid formulations described herein comprise a therapeutic agent and a solvent component.
  • the solvent component may comprise a single solvent or a combination of solvents.
  • the therapeutic agent component may comprise a single therapeutic agent or a combination of therapeutic agents.
  • the solvent is glycerin, dimethylsulfoxide, N-methylpyrrolidone, dimethyl acetamide (DMA), dimethyl formamide, glycerol formal, ethoxy diglycol, triethylene glycol dimethyl ether, triacetin, diacetin, corn oil, acetyl triethyl citrate (ATC), ethyl lactate, polyglycolated capryl glycerides butyrolactone, dimethyl isosorbide, benzyl alcohol, ethanol, isopropyl alcohol, polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, or propylene glycol, or a mixture of one or more thereof.
  • DMA dimethyl acetamide
  • liquid formulations described herein are solutions, and comprise a therapeutic agent and a solvent component.
  • the solvent component comprises ethanol.
  • the solvent component comprises ethanol and a polyethylene glycol, including but not limited to a liquid polyethylene glycol, including but not limited to one or more of PEG 300 or PEG 400.
  • the liquid formulations described herein contain no greater than about 250 ⁇ l of polyethylene glycol. In some variations the liquid formulations described herein contain no greater than about 250 ⁇ l, no greater than about 200 ⁇ l, no greater than about 150 ⁇ l, no greater than about 125 ⁇ l, no greater than about 100 ⁇ l, no greater than about 75 ⁇ l, no greater than about 50 ⁇ l, no greater than about 25 ⁇ l, no greater than about 20 ⁇ l, no greater than about 15 ⁇ l, no greater than about 10 ⁇ l, no greater than about 7.5 ⁇ l, no greater than about 5 ⁇ l, no greater than about 2.5 ⁇ l, no greater than about 1.0 ⁇ l, or no greater than about 0.5 ⁇ l of polyethylene glycol.
  • Formulations containing polyethylene glycol may contain, for example, PEG 300 or PEG 400.
  • the liquid formulations described herein are suspensions, and comprise a therapeutic agent and a diluent component.
  • the diluent component comprises one or more components listed herein as solvents or solubilizing agents, wherein the resulting mixture is a suspension.
  • liquid formulation is partly a solution and partly a suspension.
  • the liquid formulation is an in situ gelling formulation, and comprises a therapeutic agent and a polymer component, wherein the polymer component may comprise a plurality of polymers.
  • the liquid formulation comprises a polymethacrylate polymer.
  • the liquid formulation comprises a polyvinylpyrrolidone polymer.
  • liquid formulations include a therapeutic agent or agents such as but not limited to rapamycin between about 0.01% and about 20% by weight of the total, a solvent between about 5% and about 15% by weight of the total, a solubilizing agent including but not limited to a surfactant between about 5% and about 15% by weight of the total, with water as the primary remaining component.
  • the formulations further comprise stabilizing agents, excipients, adjuvants, or antioxidants, between about 0 and about 40% by weight of the total.
  • a liquid formulation comprises up to about 5% therapeutic agent, including but not limited to rapamycin, per weight of the total; and up to about 99.9% of a solvent component, by weight of the total. In some variations the liquid formulation comprises up to about 5% therapeutic agent, including but not limited to rapamycin, per weight of the total; and up to about 99.9% of a diluent component.
  • a liquid formulation may comprise up to about 5% therapeutic agent, including but not limited to rapamycin, per weight of the total; up to about 10% solvent by weight of the total; and up to about 85% of a solubilizing component, by weight of the total.
  • the solubilizing component is an aqueous solution of a surfactant.
  • a plurality of polymers component may comprise, for instance, between about 0.01 to about 30% of the total weight of the composition; between about 0.1 to about 20%; between about 2.5 to about 15%; between about 10 to about 15%; between about 3 to about 5%; between about 5 to about 10%; between about 8 to about 12%; between about 10 to about 20%; or between about 20 to about 30%.
  • liquid formulations includes a therapeutic agent or agents such as but not limited to rapamycin between about 0.01% and about 20% by weight of the total, a solvent component between about 60% and about 98% by weight of the total, and a plurality of polymers, whose combined percentage is between about 0.1% and about 15% by weight of the total.
  • the formulations further comprise stabilizing agents, excipients, adjuvants, or antioxidants, between about 0 and about 40% by weight of the total.
  • a liquid formulation may comprise about 4% therapeutic agent, including but not limited to rapamycin, per weight of the total; about 91% solvent by weight of the total; and about 5% polymeric component, per weight of the total.
  • liquid formulations described herein were prepared and are listed in Table 1. Depending on their type, the listed formulations are denoted one or more of solutions (“S”), suspensions (“SP”), emulsions (“E”) or in situ gelling (“ISG”). Median particle size is listed for some of the suspensions.
  • S solutions
  • SP suspensions
  • E emulsions
  • ISG in situ gelling
  • Median particle size is listed for some of the suspensions.
  • some liquid formulations form a non-dispersed mass after, for example, injection into an aqueous environment such as the vitreous of an eye.
  • the right-hand column of Table 1 indicates whether or not a non-dispersed mass (NDM) formed after a specified volume was injected into the vitreous of the rabbit eye.
  • NDM non-dispersed mass
  • non-dispersed mass refers to the structure formed or shape assumed when the liquid formulation is placed into an environment, relative to the environment in which it is placed.
  • a non-dispersed mass of a liquid formulation is anything other than a homogeneous distribution of the liquid formulation in the surrounding medium.
  • the non-dispersed mass may, for instance, be indicated by visually inspecting the administered liquid formulation and characterizing its appearance relative to the surrounding medium.
  • the aqueous medium is water.
  • the water is deionized, distilled, sterile, or tap water, including but not limited to tap water available at the place of business of MacuSight in Union City, Calif.
  • the aqueous medium is an aqueous medium of a subject. In some variations the aqueous medium is an aqueous medium of the eye of a subject, including but not limited to the vitreous of an eye of a subject. In some variations the subject is a human subject. In some variations the subject is a rabbit.
  • the liquid formulation forms a non-dispersed mass when exposed to a certain temperature or range of temperatures, including but not limited to about room temperature, about ambient temperature, about 30° C., about 37° C., or about the temperature of the aqueous medium of the subject.
  • liquid formulation forms a non-dispersed mass when exposed to a certain pH or range of pH, including but not limited to a pH between about 6 and about 8.
  • the non-dispersed mass comprises a gel or gel-like substance.
  • the non-dispersed mass comprises a polymer matrix. In some variations, the non-dispersed mass comprises a polymer matrix in which a therapeutic agent is dispersed.
  • the liquid formulations described herein may generally be of any geometry or shape after administration to a subject or the eye of a subject, including but not limited to a human subject.
  • the non-dispersed mass is between about 0.1 and about 5 mm. In some variations, the non-dispersed mass is between about 1 and about 3 mm.
  • the non-dispersed mass-forming liquid formulations may, for instance, appear as a compact spherical mass when administered to the vitreous. In some instances, the liquid formulation may appear as a non-dispersed mass relative to the surrounding medium, wherein the non-dispersed mass is less clearly defined and the geometry is more amorphous than spherical.
  • the non-dispersed mass-forming liquid formulations described herein may form a non-dispersed mass immediately upon placement in the medium or the non-dispersed mass may form some period of time after placement of the liquid formulation. In some variations the non-dispersed mass forms over the course of about 1, about 2, about 3, about 4, about 5, about 6, or about 7 days. In some variations the non-dispersed mass forms over the course of about 1 week, about 2 weeks, or about 3 weeks.
  • liquid formulations described herein that form a non-dispersed mass appear as a milky or whitish colored semi-contiguous or semi-solid non-dispersed mass relative to the medium in which it is placed.
  • One liquid formulation described herein forms a non-dispersed mass which has the form of a solid depot when the formulation is injected into any or all of water, the vitreous of a rabbit eye, or between the sclera and the conjunctiva of a rabbit eye.
  • One liquid formulation described herein forms a non-dispersed mass which has the form of a semi-solid when the formulation is injected into any or all of water, the vitreous of a rabbit eye, or between the sclera and the conjunctiva of a rabbit eye.
  • One liquid formulation described herein forms a non-dispersed mass which has the form of a polymeric matrix when the formulation is injected into any or all of water, the vitreous of a rabbit eye, or between the sclera and the conjunctiva of a rabbit eye.
  • One liquid formulation described herein forms a non-dispersed mass which has the form of a gel, a hydrogel, or a gel-like substance when the formulation is injected into any or all of water, the vitreous of a rabbit eye, or between the sclera and the conjunctiva of a rabbit eye.
  • the liquid formulation forms a non-dispersed mass relative to a surrounding medium where the surrounding medium is aqueous.
  • aqueous medium or “aqueous environment” is one that contains at least about 50% water.
  • aqueous media include but are not limited to water, the vitreous, extracellular fluid, conjunctiva, sclera, between the sclera and the conjunctiva, aqueous humor, gastric fluid, and any tissue or body fluid comprised of at least about 50% of water.
  • Aqueous media include but are not limited to gel structures, including but not limited to those of the conjunctiva and sclera.
  • the liquid formulations described herein form a non-dispersed mass when a test volume of the liquid formulation is placed in the vitreous of a rabbit eye.
  • the test volume administered to a rabbit eye and the test volume is equal to the volume of the liquid formulation administered to a subject's, including but not limited to a human subject's eye.
  • the test volume administered to a rabbit eye is equal to the volume administered to the subject's eye multiplied by a scale factor, and the scale factor is equal to the average volume of a rabbit eye divided by the average volume of a subject eye.
  • the “average volume” of an eye refers to the average volume of an eye of a member of similar age of the species under consideration generally, as opposed to the average volume of any particular individual's eye.
  • the test volume administered to the rabbit eye is between about 10 ⁇ l and about 50 ⁇ l. In some variations, the test volume administered to the rabbit eye is between about 1 ⁇ l and about 30 ⁇ l. In some variations, the test volume administered to the rabbit eye is between about 50 ⁇ l and about 100 ⁇ l. In some variations, the test volume administered to the rabbit eye is between about 25 ⁇ l and about 75 ⁇ l. In some variations, the test volume administered to the rabbit eye is about 30 ⁇ l.
  • the liquid formulation that forms a non-dispersed mass when placed in the medium may comprises a therapeutic agent or agents with a concentration of between about 0.01% and about 10% by weight of the total, and a solvent between about 10% and about 99% by weight of the total.
  • the formulation further comprises a solubilizing agent including but not limited to a surfactant.
  • the liquid formulation further comprises a stabilizing agent, excipient, adjuvant, or antioxidant, etc., between about 0 and about 40% by weight of the total.
  • the therapeutic agent is about 5% by weight of the total, and the solvent component is about 95% by weight of the total.
  • Whether a liquid formulation exhibits a non-dispersed mass relative to a surrounding medium when present in a subject may be determined by, for instance, mixing a therapeutic agent with a solvent, administering it to the vitreous of an eye of a subject, including but not limited to a human subject, and comparing the liquid formulation to the surrounding medium.
  • One liquid formulation that may be used for treating, preventing, inhibiting, delaying the onset of, or causing the regression of the diseases and conditions of a subject is a liquid formulation that forms a non-dispersed mass when placed into the vitreous of a rabbit eye.
  • the liquid formulation is administered to the subject.
  • the liquid formulation may or may not form a non-dispersed mass in the subject.
  • One liquid formulation described herein forms a non-dispersed mass when administered to a subject and forms a non-dispersed mass when administered to a rabbit eye.
  • the low solubility of rapamycin in the vitreous contributes to the formation of a non-dispersed mass by some rapamycin-containing liquid formulations described herein.
  • the vitreous is a clear gel composed almost entirely of water (up to 99%).
  • factors believed to affect the formation of and geometry of a non-dispersed mass include the concentration of rapamycin in the formulation, the viscosity of the formulation, ethanol content of the formulation, and the volume of injection. It is believed that maintaining a higher local concentration of rapamycin after injection of the formulation favors formation of a non-dispersed mass, as opposed to a lower local concentration of rapamycin after injection of the formulation. As volume is increased for a given dose, formation of a non-dispersed mass may become less favorable. Formation of a non-dispersed mass may become more favorable as rapamycin concentration is increased and/or as viscosity is increased. Ethanol content affects both the solubility of the rapamycin in the formulation and the viscosity of the formulation.
  • the non-dispersed masses described herein consists of at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% by volume of therapeutic agent when injected into the vitreous of a rabbit eye.
  • a non-dispersed mass comprising rapamycin upon formation a non-dispersed mass comprising rapamycin, for example, delivers the drug continuously at approximately a constant rate for an extended period of time.
  • delivery of rapamycin from a non-dispersed mass in the vitreous depends on dissolution of the rapamycin in the vitreous, which depends in turn on clearance of the drug from the vitreous to other tissues.
  • this release process is believed to maintain a steady-state concentration of rapamycin in the vitreous.
  • formation of a non-dispersed mass reduces the toxicity of the injected liquid formulation compared to an equivalent dose that did not form a non-dispersed mass.
  • the drug e.g., rapamycin
  • the drug appears to disperse in the vitreous body. In some variations this may interfere with vision.
  • liquid formulations that are suspensions form a non-dispersed mass upon injection into the vitreous. Formation of a non-dispersed mass from an injected suspension may become more favorable as the suspension particle size increases.
  • liquid formulations will form a visually observable non-dispersed mass when injected into the eye of a subject, including but not limited to a human subject.
  • liquid formulations are believed to form non-dispersed masses when injected subconjunctivally. In some variations it is believed that when subconjunctivally administered the liquid formulation forms a depot in the scleral tissue. That is, it is believed that the therapeutic agent is absorbed into the sclera proximate to the injection site and forms a local concentration of drug in the sclera.
  • non-dispersed mass-forming liquid formulations which form a gel or gel-like substance when placed in an aqueous medium.
  • the non-dispersed mass comprises a gel; in some variations the gel is a hydrogel.
  • an “in situ gelling formulation,” as used herein, refers to a liquid formulation which forms a gel-like non-dispersed mass when the liquid formulation is placed in an aqueous medium, including but not limited to aqueous media that are water, the vitreous of a rabbit eye, and between the sclera and the conjunctiva of a rabbit eye.
  • an in situ gelling formulation forms a gel-like non-dispersed mass when placed in tap water.
  • the in situ gelling formulation is a suspension prior to placement in an aqueous medium, and forms a gel in situ upon placement in an aqueous medium. In some variations, the in situ gelling formulation is a solution prior to placement in an aqueous medium, and forms a gel in situ upon placement in an aqueous medium. In some variations, the in situ gelling formulation is an emulsion prior to placement in an aqueous medium, and forms a gel in situ upon placement in an aqueous medium.
  • a gel-like non-dispersed mass forms after placement of the in situ gelling formulation into an aqueous medium, including but not limited to any or all of water, the vitreous, or between the sclera and the conjunctiva of an eye.
  • the in situ gel is formed of a polymer matrix.
  • a therapeutic agent is dispersed in the polymer matrix.
  • in situ gelling formulations which may be used for treating, preventing, inhibiting, delaying the onset of, or causing the regression of the diseases and conditions of a subject including but not limited to a human subject.
  • the in situ gelling formulation is administered to the subject.
  • One liquid formulation described herein comprises an in situ gelling formulation which forms a non-dispersed mass when administered to a subject and forms a non-dispersed mass when administered to a rabbit eye.
  • the in situ gelling formulation comprises one or more polymers. Described herein are various types of polymers, including polymers which are solvents, polymers which are solubilizing agents, polymers which are release modifying agents, polymers which are stabilizing agents, etc. In some variations, any combination of polymers is used wherein the polymers when combined with the therapeutic agent form any or all of a non-dispersed mass, a gel, a hydrogel, or polymeric matrix when placed in an aqueous medium, including but not limited to any or all of water, the vitreous, or between the sclera and the conjunctiva.
  • the in situ gelling formulation delivers extended release of therapeutic agents to a subject when administered to the subject.
  • the liquid formulation comprises a therapeutic agent and a plurality of polymers, wherein one of the polymers is a polymethacrylate.
  • Polymethacrylates are known by various names and are available in various preparations, including but not limited to polymeric methacrylates, methacrylic acid-ethyl acrylate copolymer (1:1), methacrylic acid-ethyl acrylate copolymer (1:1) dispersion 30 percent, methacrylic acid-methyl methacrylate copolymer (1:1), methacrylic acid-methyl methacrylate copolymer (1:2), acidum methacrylicum et ethylis acrylas polymerisatum 1:1, acidum methacrylicum et ethylis acrylas polymerisatum 1:1 dispersio 30 per centum, acidum methacrylicum et methylis methacrylas polymerisatum 1:1, acidum methacrylicum et methylis methacryla
  • one of the polymers is polyvinylpyrrolidone.
  • Polyvinylpyrrolidone is known by various names and is available in various preparations, including but not limited to povidone, povidonum, kollidon; plasdone; poly[1-(2-oxo-1-pyrrolidinyl)ethylene]; polyvidone; PVP; 1-vinyl-2-pyrrolidinone polymer, and 1-Ethenyl-2-pyrrolidinone homopolymer.
  • One liquid formulation described herein comprises a therapeutic agent and a solvent component.
  • the solvent component may comprise a single solvent or a combination of solvents.
  • the solvent is glycerin, dimethylsulfoxide, N-methylpyrrolidone, ethanol, isopropyl alcohol, polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, or propylene glycol, or a mixture of one or more thereof.
  • the solvent is polyethylene glycol.
  • Polyethylene glycol is known by various names and is available in various preparations, including but not limited to macrogels, macrogel 400, macrogel 1500, macrogel 4000, macrogel 6000, macrogel 20000, macrogola, breox PEG; carbowax; carbowax sentry; Hodag PEG; Lipo; Lipoxol; Lutrol E; PEG; Pluriol E; polyoxyethylene glycol, and ⁇ -Hydro- ⁇ -hydroxy-poly(oxy-1,2-ethanediyl).
  • compositions and Liquid Formulations for Delivery of Therapeutic Agents are Compositions and Liquid Formulations for Delivery of Therapeutic Agents
  • compositions and liquid formulations described herein may be used to deliver amounts of the therapeutic agents effective for treating, preventing, inhibiting, delaying on set of, or causing the regression of the diseases and conditions described in the Diseases and Conditions section.
  • compositions and liquid formulations described herein deliver one or more therapeutic agents over an extended period of time.
  • an “effective amount,” which is also referred to herein as a “therapeutically effective amount,” of a therapeutic agent for administration as described herein is that amount of the therapeutic agent that provides the therapeutic effect sought when administered to the subject, including but not limited to a human subject.
  • the achieving of different therapeutic effects may require different effective amounts of therapeutic agent.
  • the therapeutically effective amount of a therapeutic agent used for preventing a disease or condition may be different from the therapeutically effective amount used for treating, inhibiting, delaying the onset of, or causing the regression of the disease or condition.
  • the therapeutically effective amount may depend on the age, weight, and other health conditions of the subject as is well know to those versed in the disease or condition being addressed. Thus, the therapeutically effective amount may not be the same in every subject to which the therapeutic agent is administered.
  • An effective amount of a therapeutic agent for treating, preventing, inhibiting, delaying the onset of, or causing the regression of a specific disease or condition is also referred to herein as the amount of therapeutic agent effective to treat, prevent, inhibit, delay the onset of, or cause the regression of the disease or condition.
  • liquid formulations may be administered in animal models for the diseases or conditions of interest, and the effects may be observed.
  • dose ranging human clinical trials may be conducted to determine the therapeutically effective amount of a therapeutic agent.
  • the therapeutic agent may be formulated in any composition or liquid formulation capable of delivery of a therapeutically effective amount of the therapeutic agent to a subject or to the eye of a subject for the required delivery period.
  • compositions include liquid formulations.
  • composition or liquid formulation that may be used is a composition or liquid formulation in which the therapeutic agent is dissolved in a solvent component.
  • a solvent component any solvent which has the desired effect may be used in which the therapeutic agent dissolves.
  • the solvent is aqueous.
  • the solvent is non-aqueous.
  • An “aqueous solvent” is a solvent that contains at least about 50% water.
  • the solvent component may be a single solvent or may be a mixture of solvents.
  • the solvent component may be a single solvent or may be a mixture of solvents. Solvents and types of solutions are well known to those versed in such drug delivery technologies. See for example, Remington: The Science and Practice of Pharmacy, Twentieth Edition, Lippincott Williams & Wilkins; 20th edition (Dec.
  • solvents may also serve as solubilizing agents.
  • Solvents that may be used include but are not limited to DMSO, ethanol, methanol, isopropyl alcohol; castor oil, propylene glycol, glycerin, polysorbate 80, benzyl alcohol, dimethyl acetamide (DMA), dimethyl formamide (DMF), triacetin, diacetin, corn oil, acetyl triethyl citrate (ATC), ethyl lactate, glycerol formal, ethoxy diglycol (Transcutol, Gattefosse), tryethylene glycol dimethyl ether (Triglyme), dimethyl isosorbide (DMI), ⁇ -butyrolactone, N-Methyl-2-pyrrolidinone (NMP), polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, and polyglycolated capryl glyceride (Labrasol, Gattefosse), combinations of any one or more of the foregoing, or analogs or derivatives
  • the solvent is a polyethylene glycol.
  • Polyethylene glycol is known by various names and is available in various preparations, including but not limited to macrogels, macrogel 400, macrogel 1500, macrogel 4000, macrogel 6000, macrogel 20000, macrogola, breox PEG; carbowax; carbowax sentry; Hodag PEG; Lipo; Lipoxol; Lutrol E; PEG; Pluriol E; polyoxyethylene glycol, and ⁇ -Hydro- ⁇ -hydroxy-poly(oxy-1,2-ethanediyl).
  • polyethylene glycol is a liquid PEG, and is one or more of PEG 300 or PEG 400.
  • solvents include an amount of a C 6 -C 24 fatty acid sufficient to solubilize a therapeutic agent.
  • Phospholipid solvents may also be used, such as lecithin, phosphatidylcholine, or a mixture of various diglycerides of stearic, palmitic, and oleic acids, linked to the choline ester of phosphoric acid; hydrogenated soy phosphatidylcholine (HSPC), distearoylphosphatidylglycerol (DSPG), L- ⁇ -dimyristoylphosphatidylcholine (DMPC), L- ⁇ -dimyristoylphosphatidylglycerol (DMPG).
  • HSPC hydrogenated soy phosphatidylcholine
  • DSPG distearoylphosphatidylglycerol
  • DMPC L- ⁇ -dimyristoylphosphatidylcholine
  • DMPG L- ⁇ -dimyristoylphosphatidylglycerol
  • solvents include, for example, components such as alcohols, propylene glycol, polyethylene glycol of various molecular weights, propylene glycol esters, propylene glycol esterified with fatty acids such as oleic, stearic, palmic, capric, linoleic, etc; medium chain mono-, di-, or triglycerides, long chain fatty acids, naturally occurring oils, and a mixture thereof.
  • the oily components for the solvent system include commercially available oils as well as naturally occurring oils.
  • the oils may further be vegetable oils or mineral oils.
  • the oils can be characterized as non-surface active oils, which typically have no hydrophile lipophile balance value.
  • Captex 100 Commercially available substances comprising medium chain triglycerides include, but are not limited to, Captex 100, Captex 300, Captex 355, Miglyol 810, Miglyol 812, Miglyol 818, Miglyol 829, and Dynacerin 660.
  • Propylene glycol ester compositions that are commercially available encompass Captex 200 and Miglyol 840, and the like.
  • the commercial product, Capmul MCM comprises one of many possible medium chain mixtures comprising monoglycerides and diglycerides.
  • solvents include naturally occurring oils such as peppermint oil, and seed oils.
  • exemplary natural oils include oleic acid, castor oil, safflower seed oil, soybean oil, olive oil, sunflower seed oil, sesame oil, and peanut oil.
  • Soy fatty acids may also be used.
  • fully saturated non-aqueous solvents include, but are not limited to, esters of medium to long chain fatty acids (such as fatty acid triglycerides with a chain length of about C 6 to about C 24 ).
  • Hydrogenated soybean oil and other vegetable oils may also be used. Mixtures of fatty acids may be split from the natural oil (for example coconut oil, palm kernel oil, babassu oil, or the like) and refined.
  • medium chain (about C 8 to about C 12 ) triglycerides such as caprilyic/capric triglycerides derived from coconut oil or palm seed oil, may be used.
  • Medium chain mono- and diglycerides may also be used.
  • Other fully saturated non-aqueous solvents include, but are not limited to, saturated coconut oil (which typically includes a mixture of lauric, myristic, palmitic, capric and caproic acids), including those sold under the MiglyolTM trademark from Huls and bearing trade designations 810, 812, 829 and 840). Also noted are the NeoBeeTM products sold by Drew Chemicals.
  • Non-aqueous solvents include isopropyl myristate.
  • Examples of synthetic oils include triglycerides and propylene glycol diesters of saturated or unsaturated fatty acids having 6 to 24 carbon atoms such as, for example hexanoic acid, octanoic (caprylic), nonanoic (pelargonic), decanoic (capric), undecanoic, lauric, tridecanoic, tetradecanoic (myristic), pentadecanoic, hexadecanoic (palmitic), heptadecanoic, octadecanoic (stearic), nonadecanoic, heptadecanoic, eicosanoic, heneicosanoic, docosanoic and lignoceric acids, and the like.
  • hexanoic acid octanoic (caprylic), nonanoic (pelargonic), decanoic (capric), undecanoic, lauric, tridecanoic,
  • the non-aqueous solvent can comprise the mono-, di- and triglyceryl esters of fatty acids or mixed glycerides and/or propylene glycol mono- or diesters wherein at least one molecule of glycerol has been esterified with fatty acids of varying carbon atom length.
  • a non-limiting example of a “non-oil” useful as a solvent is polyethylene glycol.
  • Exemplary vegetable oils include cottonseed oil, corn oil, sesame oil, soybean oil, olive oil, fractionated coconut oil, peanut oil, sunflower oil, safflower oil, almond oil, avocado oil, palm oil, palm kernel oil, babassu oil, beechnut oil, linseed oil, rape oil and the like. Mono-, di-, and triglycerides of vegetable oils, including but not limited to corn, may also be used.
  • Polyvinyl pyrrolidone (PVP) cross-linked or not may also be used as a solvent.
  • Further solvents include but are not limited to C 6 -C 24 fatty acids, oleic acid, Imwitor 742, Capmul, F68, F68 (Lutrol), PLURONICS including but not limited to PLURONICS F108, F127, and F68, Poloxamers, Jeffamines), Tetronics, F127; cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, sulfobutylether- ⁇ -cyclodextrin (Captisol); CMC, polysorbitan 20, Cavitron, polyethylene glycol of various molecular weights including but not limited to PEG 300 and PEG 400.
  • Solvents for use in the liquid formulations can be determined by a variety of methods known in the art, including but not limited to (1) theoretically estimating their solubility parameter values and choosing the ones that match with the therapeutic agent, using standard equations in the field; and (2) experimentally determining the saturation solubility of therapeutic agent in the solvents, and choosing the ones that exhibit the desired solubility.
  • solvents that may be used for making solutions or suspensions of rapamycin include but are not limited to any solvent described herein, including but not limited to any one or more of DMSO, glycerin, ethanol, methanol, isopropyl alcohol; castor oil, propylene glycol, polyvinylpropylene, glycerin, polysorbate 80, benzyl alcohol, dimethyl acetamide (DMA), dimethyl formamide (DMF), glycerol formal, ethoxy diglycol (Transcutol, Gattefosse), tryethylene glycol dimethyl ether (Triglyme), dimethyl isosorbide (DMI), ⁇ -butyrolactone, N-Methyl-2-pyrrolidinone (NMP), polyethylene glycol of various molecular weights, including but not limited to PEG 300 and PEG 400, and polyglycolated capryl glyceride (Labrasol, Gattefosse).
  • solvents that may be used for making solutions or suspensions of
  • Further solvents include but are not limited to C 6 -C 24 fatty acids, oleic acid, Imwitor 742, Capmul, F68, F68 (Lutrol), PLURONICS including but not limited to PLURONICS F108, F127, and F68, Poloxamers, Jeffamines), Tetronics, F127, beta-cyclodextrin, CMC, polysorbitan 20, Cavitron, softigen 767, captisol, and sesame oil.
  • rapamycin can be dissolved in 5% DMSO or methanol in a balanced salt solution.
  • the rapamycin solution can be unsaturated, a saturated or a supersaturated solution of rapamycin.
  • the rapamycin solution can be in contact with solid rapamycin.
  • rapamycin can be dissolved in a concentration of up to about 400 mg/ml. Rapamycin can also, for example, be dissolved in propylene glycol esterified with fatty acids such as oleic, stearic, palmic, capric, linoleic, etc.
  • any solubilizing agent or combination of solubilizing agents may be used in the liquid formulations described herein.
  • the solubilizing agent is a surfactant or combination of surfactants.
  • surfactants are possible.
  • Combinations of surfactants, including combinations of various types of surfactants, may also be used.
  • surfactants which are nonionic, anionic (i.e. soaps, sulfonates), cationic (i.e. CTAB), zwitterionic, polymeric or amphoteric may be used.
  • Surfactants that can be used may be determined by mixing a therapeutic agent of interest with a putative solvent and a putative surfactant, and observing the characteristics of the formulation after exposure to a medium.
  • surfactants include but are not limited to fatty acid esters or amides or ether analogues, or hydrophilic derivatives thereof; monoesters or diesters, or hydrophilic derivatives thereof; or mixtures thereof; monoglycerides or diglycerides, or hydrophilic derivatives thereof; or mixtures thereof; mixtures having enriched mono- or/and diglycerides, or hydrophilic derivatives thereof; surfactants with a partially derivatized with a hydrophilic moiety; monoesters or diesters or multiple-esters of other alcohols, polyols, saccharides or oligosaccharides or polysaccharides, oxyalkylene oligomers or polymers or block polymers or hydrophilic derivatives thereof, or the amide analogues thereof; fatty acid derivatives of amines, polyamines, polyimines, aminoalcohols, aminosugars, hydroxyalkylamines, hydroxypolyimines, peptides, polypeptides, or the
  • Hydrophilic Lipophilic Balance is an expression of the relative simultaneous attraction of a surfactant for water and oil (or for the two phases of the emulsion system being considered).
  • HLB hydrophilic-lipophilic balance
  • Surfactants that may be used include but are not limited to those with an HLB greater than 10, 11, 12, 13 or 14.
  • surfactants include polyoxyethylene products of hydrogenated vegetable oils, polyethoxylated castor oils or polyethoxylated hydrogenated castor oil, polyoxyethylene-sorbitan-fatty acid esters, polyoxyethylene castor oil derivatives and the like, for example, Nikkol HCO-50, Nikkol HCO-35, Nikkol HCO-40, Nikkol HCO-60 (from Nikko Chemicals Co.
  • Cremophor from BASF
  • Cremophor RH40 Cremophor RH60
  • Cremophor EL TWEENs (from ICI Chemicals) e.g., TWEEN 20, TWEEN 21, TWEEN 40, TWEEN 60, TWEEN 80, TWEEN 81, Cremophor RH 410, Cremophor RH 455 and the like.
  • the surfactant component may be selected from compounds having at least one ether formed from at least about 1 to 100 ethylene oxide units and at least one fatty alcohol chain having from at least about 12 to 22 carbon atoms; compounds having at least one ester formed from at least about 1 to 100 ethylene oxide units and at least one fatty acid chain having from at least about 12 to 22 carbon atoms; compounds having at least one ether, ester or amide formed from at least about 1 to 100 ethylene oxide units and at least one vitamin or vitamin derivative; and combinations thereof consisting of no more than two surfactants.
  • surfactants include Lumulse GRH-40, TGPS, Polysorbate-80 (TWEEN-80), Polysorbate-20 (TWEEN-20), polyoxyethylene (20) sorbitan mono-oleate), glyceryl glycol esters, polyethylene glycol esters, polyglycokzed glycerides, and the like, or mixtures thereof; polyethylene sorbitan fatty acid esters, polyoxyethylene glycerol esters, such as Tagat TO, Tagat L, Tagat I, tagat I2 and Tagat 0 (commercially available from Goldschmidt Chemical Co., Essen, Germany); ethylene glycol esters, such as glycol stearate and distearate; propylene glycol esters, such as propylene glycol myristate; glyceryl esters of fatty acids, such as glyceryl stearates and monostearates; sorbitan esters, such as spans and TWEENs; polyglyceryl esters, such
  • Solutol HS-15 PEG-ethers (Mirj®), sorbitan derivatives (TWEENs), sorbitan monooleate or Span 20, aromatic compounds (Tritons®), PEG-glycerides (PECEOLTM),PEG-PPG (polypropylene glycol) copolymers (PLURONICS including but not limited to PLURONICS F108, F127, and F68, Poloxamers, Jeffamines), Tetronics, Polyglycerines, PEG-tocopherols, PEG-LICOL 6-oleate; propylene glycol derivatives, sugar and polysaccharide alkyl and acyl derivatives (octylsucrose, sucrose stearate, laurolydextran etc.) and/or a mixture thereof; surfactants based on an oleate or laureate ester of a polyalcohol copolymerized with ethylene oxide; Labrasol Gelucire 44/14; polyoxytheylene ste
  • Polyoxyethylene sorbitan fatty acid esters can include polysorbates, for example, polysorbate 20, polysorbate 40, polysorbate 60, and polysorbate 80.
  • Polyoxyethylene stearates can include polyoxyl 6 stearate, polyoxyl 8 stearate, polyoxyl 12 stearate and polyoxyl 20 stearate.
  • Saturated polyglycolyzed glycerides are, for example, GELUCIRE 44/14 or GELUCIRETM 50/13 (Gattefosse, Westwood, N.J., U.S.A.). Poloxamers used herein include poloxamer. 124 and poloxamer 188.
  • Surfactants include d- ⁇ -tocopheryl polyethylene glycol 1000 succinate (TPGS), polyoxyl 8 stearate (PEG 400 monostearate), polyoxyl 40 stearate (PEG 1750 monostearate) and peppermint oil.
  • TPGS d- ⁇ -tocopheryl polyethylene glycol 1000 succinate
  • PEG 400 monostearate polyoxyl 8 stearate
  • PEG 1750 monostearate polyoxyl 40 stearate
  • peppermint oil peppermint oil.
  • surfactants having an HLB lower than 10 are used. Such surfactants may optionally be used in combination with other surfactants as co-surfactants.
  • examples of some surfactants, mixtures, and other equivalent compositions having an HLB less than or equal to 10 are propylene glycols, glyceryl fatty acids, glyceryl fatty acid esters, polyethylene glycol esters, glyceryl glycol esters, polyglycolyzed glycerides and polyoxyethyl steryl ethers.
  • Propylene glycol esters or partial esters form the composition of commercial products, such as Lauroglycol FCC, which contains propylene glycol laureate.
  • the commercially available excipient Maisine 35-1 comprises long chain fatty acids, for example glyceryl linoleate.
  • Labrafil M 1944 CS is one example of a surfactant wherein the composition contains a mixture of glyceryl glycol esters and polyethylene glycol esters.
  • solubilizing agents may be used for rapamycin, including but not limited to those in the solubilizing agents section above.
  • the solubilizing agent is a surfactant.
  • surfactants that may be used for rapamycin include but are not limited to surfactants with an HLB greater than 10, 11, 12, 13 or 14.
  • One nonlimiting example is Cremophor EL.
  • the surfactant may be a polymeric surfactant including but not limited to PLURONICS F108, F127, and F68, and Tetronics.
  • some solvents may also serve as surfactants.
  • liquid formulations described herein may be administered with or further comprise a viscosity modifying agent.
  • Hyaluronic acid is a glycosaminoglycan. It is made of a repetitive sequence of glucuronic acid and glucosamine. Hyaluronic acid is present in many tissues and organs of the body, and contributes to the viscosity and consistency of such tissues and organs. Hyaluronic acid is present in the eye, including the vitreous of the eye, and along with collagen contributes to the viscosity thereof.
  • the liquid formulations described herein may further comprise or be administered with hyaluronic acid.
  • viscosity modifying agents include polyalkylene oxides, glycerol, carboxymethyl cellulose, sodium alginate, chitosan, dextran, dextran sulfate and collagen. These viscosity modifying agents can be chemically modified.
  • viscosity modifying agents include but are not limited to carrageenan, cellulose gel, colloidal silicon dioxide, gelatin, propylene carbonate, carbonic acid, alginic acid, agar, carboxyvinyl polymers or carbomers and polyacrylamides, acacia, ester gum, guar gum, gum arabic, ghatti, gum karaya, tragacanth, terra, pectin, tamarind seed, larch arabinogalactan, alginates, locust bean, xanthan gum, starch, veegum, tragacanth, polyvinyl alcohol, gellan gum, hydrocolloid blends, and povidone.
  • carrageenan cellulose gel, colloidal silicon dioxide, gelatin, propylene carbonate, carbonic acid, alginic acid, agar, carboxyvinyl polymers or carbomers and polyacrylamides, acacia, ester gum, guar gum, gum arabic, ghatt
  • viscosity modifying agents known in the art can also be used, including but not limited to sodium carboxymethyl cellulose, algin, carageenans, galactomannans, hydropropyl methyl cellulose, hydroxypropyl cellulose, polyethylene glycol, polyvinylpyrrolidone, sodium carboxymethyl chitin, sodium carboxymethyl dextran, sodium carboxymethyl starch, xanthan gum, and zein.
  • the formulations described herein may further comprise various other components such as stabilizers, for example.
  • Stabilizers that may be used in the formulations described herein include but are not limited to agents that will (1) improve the compatibility of excipients with the encapsulating materials such as gelatin, (2) improve the stability (e.g. prevent crystal growth of a therapeutic agent such as rapamycin) of a therapeutic agent such as rapamycin and/or rapamycin derivatives, and/or (3) improve formulation stability. Note that there is overlap between components that are stabilizers and those that are solvents, solubilizing agents or surfactants, and the same component can carry out more than one role.
  • Stabilizers may be selected from fatty acids, fatty alcohols, alcohols, long chain fatty acid esters, long chain ethers, hydrophilic derivatives of fatty acids, polyvinylpyrrolidones, polyvinylethers, polyvinyl alcohols, hydrocarbons, hydrophobic polymers, moisture-absorbing polymers, and combinations thereof.
  • Amide analogues of the above stabilizers can also be used.
  • the chosen stabilizer may change the hydrophobicity of the formulation (e.g. oleic acid, waxes), or improve the mixing of various components in the formulation (e.g. ethanol), control the moisture level in the formula (e.g.
  • PVP polyvinyl urethane
  • control the mobility of the phase substances with melting points higher than room temperature such as long chain fatty acids, alcohols, esters, ethers, amides etc. or mixtures thereof; waxes
  • encapsulating materials e.g. oleic acid or wax.
  • Some of these stabilizers may be used as solvents/co-solvents (e.g. ethanol).
  • Stabilizers may be present in sufficient amount to inhibit the therapeutic agent's (such as rapamycin's) crystallization.
  • stabilizers include, but are not limited to, saturated, monoenoic, polyenoic, branched, ring-containing, acetylenic, dicarboxylic and functional-group-containing fatty acids such as oleic acid, caprylic acid, capric acid, caproic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, linoleic acid, linolenic acid, eicosapentaenoic acid (EPA), DHA; fatty alcohols such as stearyl alcohol, cetyl alcohol, ceteryl alcohol; other alcohols such as ethanol, isopropyl alcohol, butanol; long chain fatty acid esters, ethers or amides such as glyceryl stearate, cetyl stearate, oleyl ethers, stearyl ethers, cetyl ethers, oleyl amides, stearyl amides; hydrophil
  • the formulations described may further contain a gelling agent that alters the texture of the final formulation through formation of a gel.
  • the therapeutic agents for use as described herein may be subjected to conventional pharmaceutical operations, such as sterilization and compositions containing the therapeutic agent may also contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
  • the therapeutic agents may also be formulated with pharmaceutically acceptable excipients for clinical use to produce a pharmaceutical composition.
  • Formulations for ocular administration may be presented as a solution, suspension, particles of solid material, a discrete mass of solid material, incorporated within a polymer matrix, liquid formulations or in any other form for ocular administration.
  • the therapeutic agents may be used to prepare a medicament to treat, prevent, inhibit, delay onset, or cause regression of any of the conditions described herein. In some variations, the therapeutic agents may be used to prepare a medicament to treat any of the conditions described herein.
  • a composition containing a therapeutic agent such as rapamycin may contain one or more adjuvants appropriate for the indicated route of administration.
  • adjuvants with which the therapeutic agent may be admixed with include but are not limited to lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulphuric acids, acacia, gelatin, sodium alginate, polyvinylpyrrolidine, and/or polyvinyl alcohol.
  • the therapeutic agent may be in a solvent including but not limited to polyethylene glycol of various molecular weights, propylene glycol, carboxymethyl cellulose colloidal solutions, methanol, ethanol, DMSO, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
  • a solvent including but not limited to polyethylene glycol of various molecular weights, propylene glycol, carboxymethyl cellulose colloidal solutions, methanol, ethanol, DMSO, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
  • Other adjuvants and modes of administration are well known in the pharmaceutical art and may be used in the practice of the methods, compositions and liquid formulations described herein.
  • the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
  • adjuvants and excipients include but are not limited to C 8 -C 10 fatty acid esters such as softigen 767, polysorbate 80, PLURONICS, Tetronics, Miglyol, and Transcutol.
  • Additives and diluents normally utilized in the pharmaceutical arts can optionally be added to the pharmaceutical composition and the liquid formulation. These include thickening, granulating, dispersing, flavoring, sweetening, coloring, and stabilizing agents, including pH stabilizers, other excipients, anti-oxidants (e.g., tocopherol, BHA, BHT, TBHQ, tocopherol acetate, ascorbyl palmitate, ascorbic acid propyl gallate, and the like), preservatives (e.g., parabens), and the like.
  • thickening granulating, dispersing, flavoring, sweetening, coloring, and stabilizing agents, including pH stabilizers, other excipients, anti-oxidants (e.g., tocopherol, BHA, BHT, TBHQ, tocopherol acetate, ascorbyl palmitate, ascorbic acid propyl gallate, and the like), preservatives (e.g., parabens), and
  • Exemplary preservatives include, but are not limited to, benzylalcohol, ethylalcohol, benzalkonium chloride, phenol, chlorobutanol, and the like.
  • Some useful antioxidants provide oxygen or peroxide inhibiting agents for the formulation and include, but are not limited to, butylated hydroxytoluene, butylhydroxyanisole, propyl gallate, ascorbic acid palmitate, ⁇ -tocopherol, and the like.
  • Thickening agents such as lecithin, hydroxypropylcellulose, aluminum stearate, and the like, may improve the texture of the formulation.
  • the therapeutic agent is rapamycin, and the rapamycin is formulated as rapamune in solid or liquid form. In some variations, the rapamune is formulated as an oral dosage.
  • a viscous polymer may be added to the suspension, assisting the localization and ease of placement and handling.
  • a pocket in the sclera may be surgically formed to receive an injection of the liquid formulations.
  • the hydrogel structure of the sclera can act as a rate-controlling membrane.
  • Particles of therapeutic agent substance for forming a suspension can be produced by known methods including but not limited to via ball milling, for example by using ceramic beads.
  • a Cole Parmer ball mill such as Labmill 8000 may be used with 0.8 mm YTZ ceramic beads available from Tosoh or Norstone Inc.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the therapeutic agent and the pharmaceutical carrier(s) or excipient(s).
  • the formulations may be prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • the formulations described herein are provided in one Or more unit dose forms, wherein the unit dose form contains an amount of a liquid formulation described herein that is effective to treat or prevent the disease or condition for which it is being administered. In some variations, the formulations described herein are provided in one or more unit dose forms, wherein the unit dose form contains an amount of a liquid rapamycin formulation described herein that is effective to treat or prevent the disease or condition for which it is being administered.
  • the unit dose form is prepared in the concentration at which it will be administered. In some variations, the unit dose form is diluted prior to administration to a subject. In some variations, a liquid formulation described herein is diluted in an aqueous medium prior to administration to a subject. In some variations the aqueous medium is an isotonic medium. In some variations, a liquid formulation described herein is diluted in an non-aqueous medium prior to administration to a subject.
  • kits comprising one or more unit dose forms as described herein.
  • the kit comprises one or more of packaging and instructions for use to treat one or more diseases or conditions.
  • the kit comprises a diluent which is not in physical contact with the formulation or pharmaceutical formulation.
  • the kit comprises any of one or more unit dose forms described herein in one or more sealed vessels.
  • the kit comprises any of one or more sterile unit dose forms.
  • the unit dose form is in a container, including but not limited to a sterile sealed container.
  • the container is a vial, ampule, or low volume applicator, including but not limited to a syringe.
  • a low-volume applicator is pre-filled with rapamycin for treatment of an ophthalmic disease or condition, including but not limited to a limus compound for treatment of age-related macular degeneration. Described herein is a pre-filled low-volume applicator pre-filled with a formulation comprising a therapeutic agent, including but not limited to rapamycin.
  • a low-volume applicator is pre-filled with a solution comprising a therapeutic agent, including but not limited to rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol.
  • a pre-filled low-volume applicator is pre-filled with a solution comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol.
  • kits comprising one or more containers.
  • a kit comprises one or more low-volume applicators is pre-filled with a formulation described herein comprising a therapeutic agent, including but not limited to formulations comprising rapamycin, formulations comprising rapamycin and a polyethylene glycol, and optionally further comprises one or more additional components including but not limited to ethanol, and formulations in liquid form comprising about 2% rapamycin, about 94% PEG-400, about 4% ethanol.
  • the kit comprises one or more containers, including but not limited to pre-filled low-volume applicators, with instructions for its use.
  • a kit comprises one or more low-volume applicators pre-filled with rapamycin, with instructions for its use in treating a disease or condition of the eye.
  • the containers described herein are in a secondary packaging.
  • compositions, methods, and liquid formulations described herein deliver one or more therapeutic agents to a subject, including but not limited to a human subject.
  • compositions, methods, and liquid formulations described herein deliver one or more therapeutic agents to an aqueous medium of a human subject.
  • compositions, methods, and liquid formulations described herein deliver one or more therapeutic agents to an aqueous medium in or proximal to an area where a disease or condition is to be treated, prevented, inhibited, onset delayed, or regression caused.
  • compositions, methods, and liquid formulations described herein deliver one or more therapeutic agents to an eye of a subject, including the macula and the retina choroid tissues, in an amount and for a duration effective to treat, prevent, inhibit, delay the onset of, or cause the regression of the diseases and conditions described in the Diseases and Conditions section.
  • Retina choroid and “retina choroid tissues,” as used herein, are synonymous and refer to the combined retina and choroid tissues of the eye.
  • compositions, liquid formulations, and methods described in herein may be administered to the vitreous, aqueous humor, sclera, conjunctiva, between the sclera and conjunctiva, the retina choroid tissues, macula, or other area in or proximate to the eye of a subject, either by direct administration to these tissues or by periocular routes, in amounts and for a duration effective to treat, prevent, inhibit, delay the onset of, or cause the regression of CNV and wet AMD.
  • the effective amounts and durations may be different for each of treating, preventing, inhibiting, delaying the onset of, or causing the regression of CNV and wet AMD, and for each of the different sites of delivery.
  • Intravitreal administration is more invasive than some other types of ocular procedures. Because of the potential risks of adverse effects, intravitreal administration may not be optimal for treatment of relatively healthy eyes. By contrast, periocular administration, such as subconjunctival administration, is much less invasive than intravitreal administration. When a therapeutic agent is delivered by a periocular route, it may be possible to treat patients with healthier eyes than could be treated using intravitreal administration. In some variations, subconjunctival injection is used to prevent or delay onset of a disease or condition of the eye, where the eye of the subject has visual acuity of 20/40 or better.
  • Subconjunctival placement or injection refers to placement or injection between the sclera and conjunctiva. Subconjunctival is sometimes referred to herein as “sub-conj” administration.
  • Routes of administration that may be used to administer a liquid formulation include but are not limited to placement of the liquid formulation, for example by injection, into an aqueous medium in the subject, including but not limited to placement, including but not limited to by injection, into the eye of a subject, including but not limited to a human subject.
  • the liquid formulation may be administered systemically, including but not limited to the following delivery routes: rectal, vaginal, infusion, intramuscular, intraperitoneal, intraarterial, intrathecal, intrabronchial, intracisternal, cutaneous, subcutaneous, intradermal, transdermal, intravenous, intracervical, intraabdominal, intracranial, intraocular, intrapulmonary, intrathoracic, intratracheal, nasal, buccal, sublingual, oral, parenteral, or nebulised or aerosolized using aerosol propellants.
  • compositions and liquid formulations comprising therapeutic agent can be administered directly to the eye using a variety of procedures, including but not limited to procedures in which (1) the therapeutic agent is administered by injection using a syringe and hypodermic needle, (2) a specially designed device is used to inject the therapeutic agent, (3) prior to injection of the therapeutic agent, a pocket is surgically formed within the sclera to serve as a receptacle for the therapeutic agent or therapeutic agent composition.
  • a surgeon forms a pocket within the sclera of the eye followed by injection of a solution or liquid formulation comprising the therapeutic agent into the pocket.
  • Other administration procedures include, but are not limited to procedures in which (1) a formulation of the therapeutic agent, is injected through a specially designed curved cannula to place the therapeutic agent directly against a portion of the eye, (2) a compressed form of the therapeutic agent is placed directly against a portion of the eye, (3) the therapeutic agent is inserted into the sclera by a specially designed injector or inserter, (4) the liquid formulation comprising the therapeutic agent is incorporated within a polymer, (5) a surgeon makes a small conjunctival incision through which to pass a suture and any therapeutic agent delivery structure so as to secure the structure adjacent to the sclera, (6) a needle is used for injection directly into the vitreous of an eye, or into any other site described.
  • liquid formulations described herein may be used directly, for example, by injection, as an elixir, for topical administration including but not limited to via eye drops, or in hard or soft gelatin or starch capsules.
  • the capsules may be banded to prevent leakage.
  • compositions and liquid formulations described herein are delivery by injection.
  • compositions and liquid formulations may be injected into a subject, including but not limited to a human subject, or into a position in or proximate to an eye of the subject for delivery to a subject or to the eye of a subject.
  • Injection includes but is not limited to intraocular and periocular injection.
  • positions that are in or proximate to an eye of a subject are as follows.
  • Injection of therapeutic agent into the vitreous may provide a high local concentration of therapeutic agent in the vitreous and retina. Further, it has been found that in the vitreous the clearance half-lives of drugs increases with molecular weight.
  • Intracameral injection or injection into the anterior chamber of they eye, may also be used. In one example, up to about 100 ⁇ l may be injected intracamerally.
  • Periocular routes of delivery may deliver therapeutic agent to the retina without some of the risks of intravitreal delivery.
  • Periocular routes include but are not limited to subconjunctival, subtenon, retrobulbar, peribulbar and posterior juxtascleral delivery.
  • a “periocular” route of administration means placement near or around the eye.
  • liquid formulations described herein are administered intraocularly.
  • Intraocular administration includes placement or injection within the eye, including in the vitreous.
  • Subconjunctival injection may be by injection of therapeutic agent underneath the conjunctiva, or between the sclera and conjunctiva. In one example, up to about 500 ⁇ l may be injected subconjunctivally. As one nonlimiting example, a needle of up to about 25 to about 30 gauge and about 30 mm long may be used. Local pressure to the subconjunctival site of therapeutic agent administration may elevate delivery of the therapeutic agent to the posterior segment by reducing local choroidal blood flow.
  • Subtenon injection may be by injection of therapeutic agent into the tenon's capsule around the upper portion of the eye and into the “belly” of the superior rectus muscle. In one example, up to about 4 ml may be injected subtenon. As one nonlimiting example, a blunt-tipped cannula about 2.5 cm long may be used.
  • Retrobulbar injection refers to injection into the conical compartment of the four rectus muscles and their intermuscular septa, behind the globe of the eye. In one example, up to about 5 ml may be injected retrobulbarly. As one nonlimiting example, a blunt needle of about 25- or about 27-gauge may be used.
  • Peribulbar injection may be at a location external to the confines of the four rectus muscles and their intramuscular septa, i.e., outside of the muscle cone.
  • a volume of, for example, up to about 10 ml may be injected peribulbarly.
  • a blunt-tipped cannula about 1.25 inches long and about 25-gauge may be used.
  • Posterior juxtascleral deliver refers to placement of a therapeutic agent near and above the macula, in direct contact with the outer surface of the sclera, and without puncturing the eyeball. In one example, up to about 500 ml may be injected posterior juxtasclerally. As one nonlimiting example, a blunt-tipped curved cannula, specially designed at 56°, is used to place the therapeutic agent in an incision in the sclera.
  • liquid formulations described herein are injected intraocularly.
  • Intraocular injection includes injection within the eye.
  • Sites to which the compositions and liquid formulations may be administered include but are not limited to the vitreous, aqueous humor, sclera, conjunctiva, between the sclera and conjunctiva, the retina choroid tissues, macula, or other area in or proximate to the eye of a subject.
  • Methods that may be used for placement of the compositions and liquid formulations include but are not limited to injection.
  • the therapeutic agent is dissolved in an solvent or solvent mixture and then injected into or proximate to the vitreous, aqueous humor, sclera, conjunctiva, between the sclera and conjunctiva, the retina choroid tissues, macula, other area in or proximate to the eye of a subject, or other medium of a subject, according to any of the procedures mentioned above.
  • the therapeutic agent is rapamycin in a liquid formulation.
  • the compositions and liquid formulations may be used to deliver or maintain an amount of rapamycin in tissues of the eye, including without limitation retina, choroid, or the Vitreous, which amount is effective to treat AMD.
  • a liquid formulation delivering rapamycin in an amount capable of providing a concentration of rapamycin of about 0.1 pg/ml to about 2 ⁇ g/ml in the vitreous may be used for treatment of wet AMD.
  • a liquid formulation delivering a concentration of rapamycin of about 0.1 ⁇ g/mg to about 1 ⁇ g/mg in the retina choroid tissues may be used for treatment of wet AMD.
  • Other effective concentrations are readily ascertainable by those of skill in the art based on the teachings described herein.
  • One nonlimiting method that may be used for preparing the liquid formulations described herein, including but not limited to liquid formulations comprising rapamycin, is by mixing a solvent and a therapeutic agent together at room temperature or at slightly elevated temperature until a solution or suspension is obtained, with optional use of a sonicator, and then cooling the formulation. Other components including but not limited to those described above may then be mixed with the formulation.
  • Other preparation methods that may be used are described herein including in the examples, and those of skill in the art will be able to select other preparation methods based on the teachings herein.
  • compositions and liquid formulations showing in vivo delivery or clearance profiles with one or more of the following characteristics.
  • the delivery or clearance profiles are for clearance of the therapeutic agent in vivo after injection of the composition or liquid formulations subconjunctivally or into the vitreous of a rabbit eye.
  • the delivery or clearance profiles are for clearance of rapamycin in vivo after injection of the composition or liquid formulations subconjunctivally or into the vitreous of a rabbit eye.
  • the volume of the rabbit vitreous is approximately 30-40% of the volume of the human vitreous.
  • the amount of therapeutic agent is measured using techniques as described in Example 2, but without limitation to the formulation and therapeutic agent described in Example 2.
  • the therapeutic agents with the in vivo delivery or clearance profiles described herein include but are not limited to those described in the Therapeutic Agents section.
  • the therapeutic agent is rapamycin.
  • the liquid formulations described herein are used to deliver therapeutic agents in a concentration equivalent to rapamycin.
  • the liquid formulations described herein may comprise any therapeutic agent including but not limited to those in the Therapeutic Agents section, in a concentration equivalent to rapamycin including but not limited to those concentrations described herein including in the examples.
  • Average percentage in vivo level means that an average concentration of therapeutic agent is obtained across multiple rabbit eyes for a given timepoint, and the average concentration of therapeutic agent at one timepoint is divided by the average concentration of therapeutic agent at another timepoint.
  • the therapeutic agent is rapamycin.
  • the average concentration of a therapeutic agent in the tissue of a rabbit eye at a given time after administration of a formulation containing the therapeutic agent may be measured according to the following method. Where volumes below 1011 are to be injected, a Hamilton syringe is used.
  • the liquid formulations are stored at a temperature of 2-8° C. prior to use.
  • the experimental animals are specific pathogen free (SPF) New Zealand White rabbits.
  • SPF pathogen free
  • a mixed population of about 50% male, about 50% female is used.
  • the rabbits are at least 12 weeks of age, usually at least 14 weeks of age, at the time of dosing.
  • the rabbits each weigh at least 2.2 kg, usually at least 2.5 kg, at the time of dosing.
  • Prior to the study the animals are quarantined for at least one week and examined for general health parameters. Any unhealthy animals are not used in the study. At least 6 eyes are measured and averaged for a given timepoint.
  • Housing and sanitation are performed according to standard procedures used in the industry.
  • the animals are provided approximately 150 grams of Teklad Certified Hi-Fiber Rabbit Diet daily, and are provided tap water ad libitum. No contaminants are known to exist in the water and no additional analysis outside that provided by the local water district is performed. Environmental Conditions are monitored.
  • Gentamicin ophthalmic drops are placed into both eyes of each animal twice daily on the day prior to dosing, on the day of dosing (Day 1), and on the day after dosing (Day 2). Dosing is performed in two phases, the first including one set of animals and the second including the other animals. Animals are randomized separately into masked treatment groups prior to each phase of dosing according to modified Latin squares. Animals are fasted at least 8 hours prior to injection. The start time of the fast and time of injection are recorded.
  • ketamine/xylazine cocktail (87 mg/mL ketamine, 13 mg/mL xylazine) at a volume of 0.1-0.2 mL/kg. Both eyes of each animal are prepared for injection as follows: approximately five minutes prior to injection, eyes are moistened with an ophthalmic Betadine solution. After five minutes, the Betadine is washed out of the eyes with sterile saline. Proparacaine hydrochloride 0.5% (1-2 drops) is delivered to each eye. For eyes to be intravitreally injected, 1% Tropicamide (1 drop) is delivered to each eye.
  • both eyes of each animal receive an injection of test or control article. Animals in selected groups are dosed a second time on Day 90 ⁇ 1. Dosing is subconjunctival or intravitreal. Actual treatments, injection locations, and dose volumes are masked and revealed at the end of the study.
  • Subconjunctival injections are given using an insulin syringe and 30 gauge ⁇ 1 ⁇ 2-inch needle.
  • the bulbar conjunctiva in the dorsotemporal quadrant is elevated using forceps.
  • Test article is injected into the subconjunctival space.
  • Intravitreal injections are given using an Insulin syringe and 30 gauge ⁇ 1 ⁇ 2-inch needle.
  • the needle is introduced through the ventral-nasal quadrant of the eye, approximately 2-3 mm posterior to the limbus, with the bevel of the needle directed downward and posteriorly to avoid the lens.
  • Test article is injected in a single bolus in the vitreous near the retina.
  • Animals are weighed at randomization, on Day 1 prior to dosing, and prior to euthanasia.
  • Ophthalmic observations are performed on all animals on Days 5 ⁇ 1, 30 ⁇ 1, 60 ⁇ 1, 90 ⁇ 1, and at later dates in some variations. Observations are performed by a board certified veterinary ophthalmologist. For animals to be dosed on Day 90 ⁇ 1, ophthalmic observations are performed prior to dosing. Ocular findings are scored according to the McDonald and Shadduck scoring system as described in Dermatoxicology, F. N. Marzulli and H. I. Maibach, 1977 “Eye Irritation”, T. O. McDonald and J. A. Shadduck (pages 579-582), and observations are recorded using a standardized data collection sheet.
  • Euthanasia Animals are euthanized with an intravenous injection of commercial euthanasia solution. Euthanasia is performed according to standard procedures used in the industry.
  • Frozen samples submitted for pharmacokinetic analysis are dissected with disposable instruments. One set of instruments is used per eye, and then discarded. The samples are thawed at room temperature for 1 to 2 minutes to ensure that the frost around the tissue has been removed.
  • the sclera is dissected into 4 quadrants, and the vitreous is removed. If a non-dispersed mass (NDM) is clearly visible within the vitreous, the vitreous is separated into two sections. The section with the NDM is approximately two-thirds of the vitreous. The section without the NDM is the portion of the vitreous that is the most distant from the NDM.
  • the aqueous humor, lens, iris, and cornea are separated. The retina choroid tissue is removed using a forceps and collected for analysis. The conjunctiva is separated from the sclera.
  • the various tissue types are collected into separate individual pre-weighed vials which are then capped and weighed.
  • the vials of tissue are stored at ⁇ 80° C. until analyzed.
  • the sirolimus content of the retina choroid, sclera, vitreous humor, and whole anti-coagulated blood is determined by high-pressure liquid chromatography/tandem mass spectroscopy (HPLC/MS/MS) using 32-O-desmethoxyrapamycin as an internal standard. Where an NDM was observed in the vitreous, the section of the vitreous containing the NDM and the section of the vitreous not containing the NDM are analyzed separately.
  • the average concentration of a therapeutic agent over a period of time means for representative timepoints over the period of time the average concentration at each time point. For example, if the time period is 30 days, the average concentration may be measured at 5 day intervals: for the average concentration at day 5, the average of a number of measurements of concentration at day 5 would be calculated; for the average concentration at day 10, the average of a number of measurements of the concentration at day 10 would be calculated, etc.
  • the liquid formulations described herein may have in vivo delivery to the vitreous profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • FIG. 2 One nonlimiting variation of in vivo delivery to the vitreous profiles is shown in FIG. 2 .
  • the average percentage in vivo vitreal level may be between about 70% and about 100%, and more usually between about 80% and about 90%, relative to the level present at day 20 after injection.
  • the average percentage in vivo vitreal level may be greater than about 70%, and more usually greater than about 80%, relative to the level present at day 20 after injection.
  • the average percentage in vivo vitreal level may be between about 75% and about 115%, and more usually between about 85% and about 105%, relative to the level present at day 20 after injection.
  • the average percentage in vivo vitreal level may be greater than about 75%, and more usually greater than about 85%, relative to the level present at day 20 after injection.
  • the average percentage in vivo vitreal level may be between about 20% and about 50%, and more usually between about 30% and about 40%, relative to the level present at day 2′ after injection.
  • the average percentage in vivo vitreal level may be greater than about 20%, and more usually greater than about 30%, relative to the level present at day 20 after injection.
  • the average percentage in vivo vitreal level has the following characteristics relative to the level present at day 20 after injection: at 40 days after injection it is less than about 100%; at 67 days after injection it is less than about 115%; and 90 days after injection it is less than about 50%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.01 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulations described herein may have in vivo delivery to the retina choroid profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the average percentage in vivo retina choroid level may be between about 350% and about 410%, and more usually between about 360% and about 400%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 350%, and more usually greater than about 360%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level may be between about 125% and about 165%, and more usually between about 135% and about 155%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 125%, and more usually greater than about 135%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level may be between about 10% and about 50%, and more usually between about 20% and about 40%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 10%, and more usually greater than about 20%, relative to the level present at day 20 after injection.
  • the average percentage in vivo retina choroid level has the following characteristics relative to the level present at day 20 after injection: at 40 days after injection it is less than about 410%; at 67 days after injection it is less than about 165%; and 90 days after injection it is less than about 0.50%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least about 0.001 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least about 0.01 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the level of therapeutic agent present in the retina choroid first increases, then peaks and decreases.
  • the peak may, for instance, occur at about day 40 after injection.
  • the liquid formulations described herein may have in vivo clearance from the sclera profiles with the following described characteristics, where the clearance profiles are for clearance of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye. Where injection is between the sclera and the conjunctiva, the scleral level is thought to include the injected liquid formulation.
  • the average percentage in vivo scleral level may be between about 150% and about 230%, and more usually between about 170% and about 210%, relative to the level present at day 20 after injection.
  • the average percentage in vivo scleral level may be greater than about 150%, and more usually greater than about 170%, relative to the level: present at day 20 after injection.
  • the average percentage in vivo scleral level may be between about 30% and about 70%, and more usually between about 40% and about 60%, relative to the level present at day 20 after injection.
  • the average percentage in vivo scleral level may be greater than about 30%, and more usually greater than about 40%, relative to the level present at day 20 after injection.
  • the average percentage in vivo scleral level may be between about 110% and about 160%, and more usually between about 125% and about 145%, relative to the level present at day 20 after injection.
  • the average percentage in vivo scleral level may be greater than about 110%, and more usually greater than about 125%, relative to the level present at day 20 after injection.
  • the average percentage in vivo scleral level has the following characteristics relative to the level present at day 20 after injection: at 40 days after injection it is less than about 230%; at 67 days after injection it is less than about 70%; and 90 days after injection it is less than about 160%.
  • the level of therapeutic agent present in the sclera first increases, then peaks and decreases.
  • the peak may, for instance, occur at about day 40 after injection.
  • the liquid formulations described herein may have in vivo delivery to the vitreous profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the average percentage in vivo vitreal level may be between about 1350% and about 1650%, and more usually between about 1450% and about 1550%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be greater than about 1350%, and more usually greater than about 1450%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be between about 200% and about 300%, and more usually between about 225% and about 275%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be greater than about 200%, and more usually greater than about 225%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be between about 100% and about 160%, and more usually between about 115% and about 145%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be greater than about 100%, and more usually greater than about 115%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be between about 5% and about 30%, and more usually between about 10% and about 25%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level may be greater than about 5%, and more usually greater than about 10%, relative to the level present at day 2 after injection.
  • the average percentage in vivo vitreal level has the following characteristics relative to the level present at day 2 after injection: at 14 days after injection it is less than about 1600%; at 35 days after injection it is less than about 300%; at 62 days after injection it is less than about 160% and 85 days after injection it is less than about 30%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.01 ng/mL for at least about 30, at least about 60, or at least about 85 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.1 ng/mL for at least about 30, at least about 60, or at least about 85 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 1 ng/mL for at least about 30, or at least about 60 days after administration of the liquid formulation to the rabbit eyes.
  • the level of therapeutic agent present in the vitreous first increases, then peaks and decreases.
  • the peak may, for instance, occur at about day 14 after injection.
  • the liquid formulations described herein may have in vivo delivery to the retina choroid profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the average percentage in vivo retina choroid level may be between about 320% and about 400%, and more usually between about 340% and about 380%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 320%, and more usually greater than about 340%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be between about 3% and about 25%, and more usually between about 6% and about 20%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 3%, and more usually greater than about 6%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be between about 0.1% and about 6%, and more usually between about 0.5% and about 4%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 0.1%, and more usually greater than about 0.5%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level has the following characteristics relative to the level present at day 14 after injection: at 35 days after injection it is less than about 400%; at 62 days after injection it is less than about 25%; and 85 days after injection it is less than about 6%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least about 0.001 ng/mg for at least about 30, at least about 60, or at least about 85 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least about 0.01 ng/mg for at least about 30, at least about 60, or at least about 85 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulations described herein may have in vivo clearance from the sclera profiles with the following described characteristics, where the clearance profiles are for clearance of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the scleral level is thought to include the injected liquid formulation.
  • the average percentage in vivo scleral level may be between about 0.1% and about 0.7%, and more usually between about 0.2% and about 0.6%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 0.1%, and more usually greater than about 0.2%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be between about 0.05% and about 0.35%, and more usually between about 0.07% and about 0.3%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 0.05%, and more usually greater than about 0.07%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be between about 0.1% and about 0.9%, and more usually between about 0.3% and about 0.7%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 0.1%, and more usually greater than about 0.3%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level has the following characteristics relative to the level present at day 14 after injection: at 35 days after injection it is less than about 0.7%; at 62 days after injection it is less than about 0.35%; and 85 days after injection it is less than about 0.9%.
  • the liquid formulations described herein may have in vivo clearance from the vitreous profiles with the following described characteristics, where the clearance profiles are for clearance of therapeutic agent in vivo after injection of the liquid formulation into the vitreous of a rabbit eye. Where injection is into the vitreous, the measured vitreous level is thought to include the injected formulation.
  • the average percentage in vivo vitreal level may be between about 1% and about 40%, and more usually between about 1% and about 10%, relative to the level present at day 14 after injection.
  • the average percentage in vivo vitreal level may be greater than about 1% relative to the level present at day 14 after injection.
  • the average percentage in vivo vitreal level may be between about 1% and about 40%, and more usually between about 5% and about 25%, relative to the level present at day 14 after injection.
  • the average percentage in vivo vitreal level may be greater than about 1% relative to the level present at day 14 after injection, and more usually greater than about 5% relative to the level present at day 14 after injection.
  • the average percentage in vivo vitreal level may be between about 1% and about 40%, and more usually between about 10% and about 30%, relative to the level present at day 14 after injection.
  • the average percentage in vivo vitreal level may be greater than about 1% relative to the level present at day 14 after injection, and more usually greater than about 10% relative to the level present at day 14 after injection.
  • the level of therapeutic agent present in the vitreous first increases, then peaks and decreases.
  • the peak may, for instance, occur at about day 14 after injection.
  • the liquid formulations described herein may have in vivo delivery to the retina choroid profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation into the vitreous of a rabbit eye.
  • the average percentage in vivo retina choroid level may be between about 3400% and about 5100%, and more usually between about 3750% and about 4750%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 3400%, and more usually greater than about 3750%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be between about 0.1% and about 5%, and more usually between about 1% and about 3%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 0.1%, and more usually greater than about 1%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be between about 10% and about 50%, and more usually between about 20% and about 40%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level may be greater than about 10%, and more usually greater than about 20%, relative to the level present at day 14 after injection.
  • the average percentage in vivo retina choroid level has the following characteristics relative to the level present at day 14 after injection: at 35 days after injection it is less than about 5100%; at 62 days after injection it is less than about 5%; and 90 days after injection it is less than about 50%.
  • the liquid formulations described herein may have in vivo delivery to the sclera profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation into the vitreous of a rabbit eye.
  • the average percentage in vivo scleral level may be between about 1700% and about 2600%, and more usually between about 1900% and about 2400%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 1700%, and more usually greater than about 1900%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be between about 120% and about 180%, and more usually between about 140% and about 160%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 120%, and more usually greater than about 140%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be between about 95% and about 155%, and more usually between about 115% and about 135%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level may be greater than about 95%, and more usually greater than about 115%, relative to the level present at day 14 after injection.
  • the average percentage in vivo scleral level has the following characteristics relative to the level present at day 14 after injection: at 35 days after injection it is less than about 2600%; at 62 days after injection it is less than about 180%; and 90 days after injection it is less than about 155%.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the sclera of the rabbit eye of at least about 0.001 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the sclera of the rabbit eye of at least about 0.01 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the sclera of the rabbit eye of at least about 0.1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eyes.
  • the level of therapeutic agent present in the vitreous first increases, then peaks and decreases.
  • the peak may, for instance, occur at about day 35 after injection.
  • in situ gelling liquid formulations described herein may have in vivo delivery to the vitreous profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the average percentage in vivo vitreal level may be between about 25% and about 85%, and more usually between about 45% and about 65%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level may be greater than about 25%, and more usually greater than about 45%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level may be between about 2% and about 50%, and more usually between about 8% and about 20%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level may be greater than about 2%, and more usually greater than about 5%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level may be between about 40% and about 100%, and more usually between about 60% and about 80%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level may be greater than about 40%, and more usually greater than about 60%, relative to the level present at day 7 after injection.
  • the average percentage in vivo vitreal level has the following characteristics relative to the level present at day 7 after injection: at 32 days after injection it is less than about 80%; at 45 days after injection it is less than about 30%; and 90 days after injection it is less than about 100%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.1 pg/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.01 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 10 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 0.001 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 0.01 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 0.1 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 0.5 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of between 0.001 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of between 0.01 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of between 0.1 ng/mL and 10 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of between 0.5 ng/mL and 10.0 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of a rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of a rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of a rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of a rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • Approximately constant means that the average level does not vary by more than one order of magnitude over the extended period of time, i.e., the difference between the maximum and minimum is less than a 10-fold difference for measurements of the average concentration at times in the relevant period of time.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the solution to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of a rabbit eye that is approximately constant at a value greater than 0.1 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of a rabbit eye that is approximately constant at a value of 1.0 ng/mL for days 36 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.005 ng/mg for at least 30, at least 66, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.15 ng/mg for at least 30, at least 66, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.001 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.005 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 1.0 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.50 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.15 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of between 0.01 ng/mg and 0.1 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye less than 5 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.001 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.005 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of a rabbit eye that is approximately constant at a value greater than 0.01 ng/mg for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 100 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 1000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least 10,000 ng/mL for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye between 100 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye between 100 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye between 1000 ng/mL and 100,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye between 1000 ng/mL and 50,000 ng/mL for day 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of the rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of the rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the vitreous of the rabbit eye to a minimum average concentration of therapeutic agent in the vitreous of the rabbit eye less than 10 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye that is approximately constant at a value greater than 100 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye that is approximately constant at a value greater than 1000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye that is approximately constant at a value greater than 10,000 ng/mL for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.001 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.01 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.05 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least 0.10 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.001 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.01 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.05 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 10.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 5.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye between 0.10 ng/mg and 1.00 ng/mg for at least 30, at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye less than 100 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • the liquid formulation when injected into the vitreous of a rabbit eye delivers therapeutic agent giving a ratio of a maximum average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye to a minimum average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye less than 50 for days 30 to at least 60, at least 90, or at least 120 days after administration of the liquid formulation to the rabbit eyes.
  • in situ gelling liquid formulations described herein may have in vivo delivery to the retina choroid tissue profiles with the following described characteristics, where the delivery profiles are for delivery of therapeutic agent in vivo after injection of the liquid formulation between the sclera and the conjunctiva of a rabbit eye.
  • the percentage in vivo vitreal level may be between about 20% and about 80%, and more usually between about 40% and about 60%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level may be greater than about 20%, and more usually greater than about 40%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level may be between about 15% and about 55%, and more usually between about 25% and about 45%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level may be greater than about 15%, and more usually greater than about 25%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level may be between about 60% and about 100%, and more usually between about 70% and about 90%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level may be greater than about 60%, and more usually greater than about 70%, relative to the level present at day 7 after injection.
  • the percentage in vivo vitreal level has the following characteristics relative to the level present at day 7 after injection: at 32 days after injection it is less than about 80%; at 45 days after injection it is less than about 60%; and 90 days after injection it is less than about 100%.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the retina choroid tissues of the rabbit eye of at least about 0.1 pg/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.01 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 0.1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the liquid formulation when injected between the sclera and conjunctiva of a rabbit eye delivers therapeutic agent giving an average concentration of therapeutic agent in the vitreous of the rabbit eye of at least about 1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the ratio of the base ten logarithms of the average levels of a therapeutic agent in two or more of the retina choroid tissues, the sclera, and the vitreous is approximately constant over an extended period of time after placement of the in situ gelling formulation in or proximate to the eye. In some variations, the ratio of the base ten logarithms of the average levels of a therapeutic agent in two or more of the retina choroid tissues, the sclera, and the vitreous is approximately constant over an extended period of time after placement of the in situ gelling formulation between the sclera and the conjunctiva of an eye.
  • the ratio of the base ten logarithms of the average levels of a therapeutic agent in the vitreous and the sclera is approximately constant over an extended period of time after placement of the in situ gelling formulation between the sclera and the conjunctiva of an eye.
  • the ratio of the base ten logarithms of the average levels of a therapeutic agent in the vitreous and the retina choroid tissues is approximately constant over an extended period of time. Put another way, as the level of therapeutic agent in the vitreous rises, the level of therapeutic agent in the retina choroid tissues rises to a similar degree when considered on the logarithmic scale, and vice versa.
  • the ratio of the base ten logarithms of the average levels of a therapeutic agent in the vitreous versus the retina choroid tissues is approximately constant over an extended period of time of about 7, about 30, about 60, or about 90 days. In some variations, the ratio of the average level of therapeutic agent in the vitreous relative to the level of therapeutic agent in the retina choroid tissues after placement of the in situ gelling formulation between the sclera and the conjunctiva of an eye is constant at about 37:1 at day 7, about 40:1 at day 32, about 10:1 at day 45, and about 34:1 at day 90.
  • the ratio of the average level of therapeutic agent in the vitreous relative to the level of therapeutic agent in the retina choroid tissues is constant at about 40:1 over a period of about 7, about 32, about 45, or about 90 days.
  • the average level of the therapeutic agent in any or all of the retina choroid tissues, the sclera, and the vitreous is approximately constant over an extended period of time after placement of the in situ gelling formulation in or proximate to the eye.
  • the average level of therapeutic agent in the vitreous is approximately constant at about 8.1 ng/ml. In some variations, after placement of an in situ gelling formulation between the sclera and the conjunctiva, the average level of therapeutic agent in the retina choroid tissues is approximately constant at about 0.25 ng/mg. In some variations, after placement of an in situ gelling formulation between the sclera and the conjunctiva, the average level of therapeutic agent in the sclera is approximately constant at about 1930 ng/mg.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 0.1 pg/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 0.001 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 0.01 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 0.1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 1 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 10 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the vitreous that is approximately constant at about 100 ng/mL for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 0.1 pg/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 0.001 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 0.01 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 0.1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the retina choroid tissues that is approximately constant at about 10 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 0.1 pg/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 0.001 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 0.01 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 0.1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 1 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 10 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 100 ng/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 1 ⁇ g/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • the in situ gelling formulation when injected between the sclera and conjunctiva of a rabbit eye maintains an average level of therapeutic agent in the sclera that is approximately constant at about 10 ⁇ g/mg for at least about 30, at least about 60, or at least about 90 days after administration of the liquid formulation to the rabbit eye.
  • a therapeutically effective amount of agent may be delivered for an extended period by a liquid formulation or composition that maintains for the extended period a concentration of agent in a subject or an eye of a subject sufficient to deliver a therapeutically effective amount of agent for the extended time.
  • Delivery of a therapeutically effective amount of the therapeutic agent for an extended period may be achieved via placement of one composition or liquid formulation or may be achieved by application of two or more doses of composition or liquid formulations.
  • maintenance of the therapeutic amount of rapamycin for 3 months for treatment, prevention, inhibition, delay of onset, or cause of regression of wet AMD may be achieved by application of one liquid formulation or composition delivering a therapeutic amount for 3 months or by sequential application of a plurality of liquid formulations or compositions.
  • the optimal dosage regime will depend on the therapeutic amount of the therapeutic agent needing to be delivered, and the period over which it need be delivered. Those versed in such extended therapeutic agent delivery dosing will understand how to identify dosing regimes that may be used based on the teachings provided herein.
  • the therapeutic agent When using certain therapeutic agents or for the treatment, prevention, inhibition, delaying the onset of, or causing the regression of certain diseases, it may be desirable for delivery of the therapeutic agent not to commence immediately upon placement of the liquid formulation or composition into the eye region, but for delivery to commence after some delay.
  • such delayed release may be useful where the therapeutic agent inhibits or delays wound healing and delayed release is desirable to allow healing of any wounds occurring upon placement of the liquid formulation or composition.
  • this period of delay before delivery of the therapeutic agent commences may be about 1 hour, about 6 hours, about 12 hours, about 18 hours, about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 111 days, about 12 days, about 13 days, about 14 days, about 21 days, about 28 days, about 35 days, or about 42 days. Other delay periods may be possible. Delayed release formulations that may be used are known to people versed in the technology.
  • a liquid formulation comprising rapamycin is delivered subconjunctivally or to the vitreous of an eye to prevent, treat, inhibit, delay onset of, or cause regression of angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD.
  • the liquid formulation is used to treat angiogenesis in the eye, including but not limited to treating CNV as observed, for example, in AMD.
  • Rapamycin has been shown to inhibit CNV in rat and mice models, as described in U.S. application Ser. No. 10/665,203, which is incorporated herein by reference in its entirety. Rapamycin has been observed to inhibit MatrigelTM and laser-induced CNV when administered systemically and subretinally. Also, periocular injection of rapamycin inhibits laser-induced CNV.
  • therapeutic agents that may be delivered to the eye, particularly the vitreous of an eye, for treatment, prevention, inhibition, delaying onset, or causing regression of angiogenesis in the eye (such as CNV) are members of the limus family of compounds other than rapamycin including but not limited to everolimus and tacrolimus (FK-506).
  • tissue concentrations of therapeutic agents expressed in units of mass per volume generally refer to tissues that are primarily aqueous such as the vitreous, for example.
  • Tissue concentrations of therapeutic agents expressed in unit of mass per mass generally refer to other tissues such as the sclera or retina choroid tissues, for example.
  • One concentration of rapamycin that may be used in the methods described herein is one that provides about 0.01 pg/ml or pg/mg or more of rapamycin at the tissue level. Another concentration that may be used is one that provides about 0.1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides about 1 pg/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides about 0.01 ng/ml or ng/mg, or more at the tissue level. Another concentration that may be used is one that provides about 0.1 ng/ml or ng/mg or more at the tissue level.
  • Another concentration that may be used is one that provides about 0.5 ng/ml or ng/mg or more at the tissue level. Another concentration that may be used is one that provides about 1 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 2 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 3 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 5 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 10 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 15 ng/ml or more at the tissue level.
  • Another concentration that may be used is one that provides about 20 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 30 ng/ml or more at the tissue level. Another concentration that may be used is one that provides about 50 ng/ml or more at the tissue level.
  • the amount of rapamycin administered in a liquid formulation is an amount sufficient to treat, prevent, inhibit, delay the onset, or cause regression of the disease or condition of the eye for the required amount of time.
  • the amount of rapamycin administered in the liquid formulation is an amount sufficient to treat the disease or condition of the eye for the required amount of time.
  • a total amount of rapamycin less than about 5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 5.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 4.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 3.0 mg is administered subconjunctivally.
  • a total amount of rapamycin less than about 2.5 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.2 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 1.0 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.8 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.6 mg is administered subconjunctivally. In some variations, a total amount of rapamycin less than about 0.4 mg is administered subconjunctivally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is subconjunctivally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 0.2 ⁇ g and about 4 mg is subconjunctivally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein. In some variations, a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 2 mg is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 100 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 1 mg is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 500 ⁇ g is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 25 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 300 ⁇ g is subconjunctivally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 200 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 300 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 400 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 500 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 600 ⁇ g is administered intravitreally. In some variations, a total amount of rapamycin less than about 800 ⁇ g is administered intravitreally.
  • a total amount of rapamycin less than about 1 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 2.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 3.5 mg is administered intravitreally. In some variations, a total amount of rapamycin less than about 4 mg is administered intravitreally. In some variations, a volume of a formulation is administered that contains an amount of rapamycin described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 6% is intravitreally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 0.5% and about 4% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing a concentration of rapamycin by weight of the total of between about 1.5% and about 3.5% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein. In some variations, a liquid formulation containing a concentration of rapamycin by weight of the total of about 2% is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 1 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 0.2 ⁇ g and about 4 mg is intravitreally administered to a human subject by administering between about 0.1 ⁇ l and about 200 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 1 ⁇ g and about 2 mg is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 100 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 1 mg is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 50 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 500 ⁇ g is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 25 ⁇ l of a liquid formulation described herein.
  • a liquid formulation containing an amount of rapamycin of between about 20 ⁇ g and about 300 ⁇ g is intravitreally administered to a human subject by administering between about 1 ⁇ l and about 15 ⁇ l of a liquid formulation described herein.
  • a liquid formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for treatment of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of wet AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 60 ⁇ g and about 120 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 100 ⁇ g and about 400 ⁇ g is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 400 ⁇ g and about 1 mg is administered to a human subject for treatment of wet AMD. In some variations an amount of rapamycin of between about 1 mg and about 5 mg is administered to a human subject for treatment of wet AMD.
  • an amount of rapamycin of between about 3 mg and about 7 mg is administered to a human subject for treatment of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and about 10 mg is administered to a human subject for treatment of wet AMD.
  • a liquid formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for prevention of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for prevention of wet AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for prevention of wet AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 60 ⁇ g and about 120 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 100 ⁇ g and about 400 ⁇ g is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 400 ⁇ g and about 1 mg is administered to a human subject for prevention of wet AMD. In some variations an amount of rapamycin of between about 1 mg and about 5 mg is administered to a human subject for prevention of wet AMD.
  • an amount of rapamycin of between about 3 mg and about 7 mg is administered to a human subject for prevention of wet AMD. In some variations, an amount of rapamycin of between about 5 mg and about 10 mg is administered to a human subject for prevention of wet AMD.
  • a liquid formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of dry AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to a human subject for treatment of dry AMD. In some variations a liquid formulation as described herein containing an amount of rapamycin of between about 20 ⁇ g and about 1.2 mg is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of dry AMD.
  • an amount of rapamycin of between about 10 ⁇ g and 90 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 60 ⁇ g and about 120 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 100 ⁇ g and about 400 ⁇ g is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 400 ⁇ g and about 1 mg is administered to a human subject for treatment of dry AMD. In some variations an amount of rapamycin of between about 1 mg and about 5 mg is administered to a human subject for treatment of dry AMD.
  • an amount of rapamycin of between about 3 mg and about 7 mg is administered to a human subject for treatment of dry AMD. In some variations, an amount of rapamycin of between about 5 mg and about 10 mg is administered to a human subject for treatment of dry AMD.
  • a liquid formulation as described herein containing an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of angiogenesis, including but not limited to choroidal neovascularization.
  • an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to the human subject; between about 20 ⁇ g and about 1.2 mg; between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of wet AMD, between about 10 ⁇ g and 90 ⁇ g, between about 60 ⁇ g and 120 ⁇ g is administered to the human subject; between about 100 ⁇ g and 400 ⁇ g, between about 400 ⁇ g and 1 mg is administered to the human subject; in some variations, an amount of rapamycin of between about 1 mg and 5 mg is administered to the human subject; in some variations, an amount of rapamycin of between about 3 mg and 7 mg is administered to the human subject; in some variations, an amount of rapamycin of between about 5 mg and 10
  • a liquid formulation as described herein contains an amount of a therapeutic agent equivalent to an amount of rapamycin.
  • a liquid formulation as described herein containing an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of wet AMD.
  • an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to the human subject; between about 20 ⁇ g and about 1.2 mg; between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of wet AMD, between about 10 ⁇ g and 90 ⁇ g, between about 60 ⁇ g and 120 ⁇ g is administered to the human subject; between about 100 ⁇ g and 400 ⁇ g, between about 400 ⁇ g and 1 mg is administered to the human subject is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 mg and 5 mg is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 3 mg and
  • a liquid formulation as described herein containing an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for treatment of dry AMD.
  • an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to the human subject; between about 20 ⁇ g and about 1.2 mg; between about 10 ⁇ g and about 0.5 mg is administered to a human subject for treatment of wet AMD, between about 10 ⁇ g and 90 ⁇ g, between about 60 ⁇ g and 120 ⁇ g is administered to the human subject; between about 100 ⁇ g and 400 ⁇ g, between about 400 ⁇ g and 1 mg is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 400 ⁇ g and 1 mg is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 mg and 5 mg is administered to
  • a liquid formulation as described herein containing an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 ⁇ g and about 5 mg is administered to a human subject for prevention of wet AMD.
  • an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 20 ⁇ g and about 4 mg is administered to the human subject; between about 20 ⁇ g and about 1.2 mg; between about 10 ⁇ g and about 0.5 mg is administered to a human subject for prevention of wet AMD, between about 10 ⁇ g and 90 ⁇ g, between about 60 ⁇ g and 120 ⁇ g is administered to the human subject; between about 100 ⁇ g and 400 ⁇ g, between about 400 ⁇ g and 1 mg is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 400 ⁇ g and 1 mg is administered to the human subject; in some variations, an amount of a therapeutic agent equivalent to an amount of rapamycin of between about 1 mg and 5 mg is administered
  • any one or more of the formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD.
  • any one or more of the formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD.
  • any one or more of the rapamycin formulations described herein are administered intravitreally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, to prevent wet AMD, or to prevent progression of dry AMD to wet AMD.
  • any one or more of the rapamycin formulations described herein are administered subconjunctivally every 3 or more months, every 6 or more months, every 9 or more months, or every 12 or more months, or longer, to treat one or more of choroidal neovascularization, wet AMD, dry AMD, or to prevent wet AMD.
  • the effect of the rapamycin persists beyond the period during which it is present in the ocular tissues.
  • Delivery of the therapeutic agents described herein may, for example, be delivered at a dosage range between about 1 ng/day and about 100 ⁇ g/day, or at dosages higher or lower than this range, depending on the route and duration of administration.
  • the therapeutic agents are delivered at a dosage range of between about 0.1 ⁇ g/day and about 10 ⁇ g/day.
  • the therapeutic agents are delivered at a dosage range of between about 1 ⁇ g/day and about 5 ⁇ g/day. Dosages of various therapeutic agents for treatment, prevention, inhibition, delay of onset, or cause of regression of various diseases and conditions described herein can be refined by the use of clinical trials.
  • liquid formulations including but not limited to solutions, suspensions, emulsions and situ gelling formulations, and compositions described herein may be used for delivery to the eye, as one nonlimiting example by ocular or periocular administration, of therapeutically effective amounts of rapamycin for extended periods of time to treat, prevent, inhibit, delay the onset of, or cause regression of CNV, and thus may be used to treat, prevent, inhibit, delay the onset of, or cause regression of wet AMD, or transition of dry AMD to wet AMD.
  • the liquid formulations described herein may be used to deliver therapeutically effective amounts of rapamycin to the eye for a variety of extended time periods including delivery of therapeutic amounts for greater than about 1 week, for greater than about 2 weeks, for greater than about 3 weeks, for greater than about 1 month, for greater than about 3 months, for greater than about 6 months, for greater than about 9 months, for greater than about 1 year.
  • rapamycin When a therapeutically effective amount of rapamycin is administered to a subject suffering from wet AMD, the rapamycin may treat, inhibit, or cause regression of the wet AMD. Different therapeutically effective amounts may be required for treatment, inhibition or causing regression.
  • a subject suffering from wet AMD may have CNV lesions, and it is believed that administration of a therapeutically effective amount of rapamycin may have a variety of effects, including but not limited to causing regression of the CNV lesions, stabilizing the CNV lesion, and preventing progression of an active CNV lesion.
  • rapamycin When a therapeutically effective amount of rapamycin is administered to a subject suffering from dry AMD, it is believed that the rapamycin may prevent or slow the progression of dry AMD to wet AMD.
  • Example 1 50 ⁇ l of the solution described in Example 1 was injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits.
  • FIG. 2 depicts the average concentration of rapamycin present in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) on a logarithmic scale at 20, 40, 67, and 90 days after injection.
  • LCMS liquid chromatography mass spectroscopy
  • each timepoint represents the average of either two eyes of each of two rabbits (four eyes at that timepoint) or the average of two eyes of one rabbits (two eyes at that timepoint).
  • the full vitreous was homogenized and analyzed.
  • the average concentration of the vitreous was calculated by dividing the mass of rapamycin measured by the volume of vitreous analyzed.
  • the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the vitreous via the solution.
  • the average level of rapamycin in the vitreous at 20, 40, 67, and 90 days after subconjunctival injection was about 4.425, 3.800, 4.100, and 1.500 ng/ml, respectively.
  • the full retina choroid was homogenized and analyzed.
  • the average concentration of the retina choroid was calculated by dividing the mass of rapamycin measured by the mass of retina choroid analyzed.
  • the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid via the solution.
  • the average level of rapamycin in the retina choroid at 20, 40, 67, and 90 days after subconjunctival injection was about 0.055, 0.209, 0.080, and 0.017 ng/mg, respectively.
  • the sclera was analyzed in the same way as the retina choroid.
  • the scleral sample included the site of injection; thus, this measurement indicated clearance of rapamycin from the sclera.
  • the average level of rapamycin in the sclera at 20, 40, 67, and 90 days after subconjunctival injection was about 0.141, 0.271, 0.067, and 0.192 ng/mg, respectively.
  • rapamycin (per weight of the total of the formulation after all components were added) was dissolved in 0.4177 g of EtOH; the quantity of EtOH was reduced by forced evaporation (heat) to 0.1296 g (6.344%, w/w). PEG 400 was added under continuous agitation. Final concentrations as a percentage of the total weight were approximately: rapamycin 5.233%, ethanol 6.344%, and PEG 400 88.424%. When contacted with the vitreous, the formulation formed a non-dispersed mass relative to the surrounding medium. This solution is listed as formulation #34 in Table 1.
  • Example 3 25 ⁇ l of the solution described in Example 3 were injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits.
  • FIG. 3 depicts the level of rapamycin present in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) on a logarithmic scale at 14, 35, 62, and 85 days after injection. The level of rapamycin present in the vitreous (ng/ml) is also shown at 2 days after injection.
  • the vitreous was homogenized and analyzed as described in Example 2, except on day 2 a single eye of each of three rabbits was analyzed; at day 14 two eyes from each of two rabbits were analyzed; at day 35 two eyes from a single rabbit were analyzed; at day 62 two eyes from a single rabbit were analyzed; and at day 85 one eye from a single rabbit plus two eyes from a second rabbit were analyzed.
  • the vitreous sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the vitreous via the solution.
  • the average level of rapamycin in the vitreous at 2, 14, 35, 62, and 85 days after subconjunctival injection was about 3.57, 53.65, 9.00, 4.700, and 0.600 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken on the days as described for the vitreous above. No day 2 analysis was done.
  • the retina choroid sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid via the solution.
  • the average level of rapamycin in the retina choroid at 14, 35, 62, and 85 days after subconjunctival injection was about 0.4815, 1.725, 0.057, and 0.009 ng/mg, respectively.
  • the scleral sample was analyzed as described in Example 2, and the samples were taken on the days as described for the retina choroid as above.
  • the scleral sample included the site of injection; thus, this measurement indicated clearance of rapamycin from the sclera.
  • the average level of rapamycin in the sclera at 14, 35, 62, and 85 days after subconjunctival injection was about 34.5815, 0.135, 0.042, and 0.163666667 ng/mg, respectively.
  • FIG. 4 depicts the level of rapamycin present in the vitreous (ng/ml), retina choroid (ng/mg), and sclera (ng/mg) on a logarithmic scale at 14, 35, 62, and 90 days after injection.
  • the level o present in the vitreous (ng/ml) is also shown at 2 days after injection.
  • the vitreous was homogenized and analyzed as described in Example 2, except on day 2 approximately 1 ⁇ l of a single eye of each of three rabbits was analyzed; at day 14 two eyes from each of two rabbits were analyzed; at day 35 two eyes from a single rabbit were analyzed; at day 62 two eyes from a single rabbit were analyzed; and at day 90 two eyes from each of two rabbits were analyzed.
  • the vitreous samples included the site of administration. An effort was made to avoid the administered solution where possible. However, the accuracy of the measured levels of rapamycin was potentially affected by sampling errors due to inadvertent inclusion of the administered solution.
  • the average level of rapamycin in the vitreous at 2, 14, 35, 62, and 90 days after intravitreal injection was about 11.4, 136538, 2850.3, 21820.35, and 27142.75 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken on the days described for the vitreous above. No day 2 analysis was done.
  • the retina choroid sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid via the solution.
  • the average level of rapamycin in the retina choroid at 14, 35, 62, and 90 days after intravitreal injection was about 5.78975, 244.485, 0.105, and 1.782 ng/mg, respectively.
  • the scleral sample was analyzed as described in Example 2, and the samples were taken on the days as described for the retina choroid above.
  • the scleral sample did not include the site of injection; thus, this measurement indicated level of rapamycin delivered to the sclera.
  • the average level of rapamycin in the sclera at 14, 35, 62, and 90 days after intravitreal injection was about 0.5695, 12.34, 0.8505, and 0.71175 ng/mg, respectively.
  • FIG. 5 depicts images of rabbit eyes after intravitreal injection of 10 ⁇ L ( FIG. 5A ), 20 ⁇ l ( FIG. 5B ), and 40 ⁇ l ( FIG. 5C ) of a 6% rapamycin suspension in PEG400. This resulted in an injected dose of about 0.6, about 1.2, and about 2.4 mg.
  • the images were focused on the administered suspension. These images show that the suspension forms a non-dispersed mass relative to the surrounding vitreal medium.
  • a liquid formulation of 4.2% rapamycin obtained from LC laboratories in Woburn, Mass., and Chunghwa Chemical Synthesis & BioTech. Co, Ltd in Taiwan
  • 4.3% ethanol obtained from Gold Shield Chemical in Hayward, Calif.
  • 2.2% PVP K90 obtained from BASF
  • 87.1% PEG 400 obtained from DOW Chemical
  • 2.2% Eudragit RL 100 obtained from Rohm Pharma Polymers
  • Eudragit RL 100 was dissolved in ethanol. Sonication and heat may be required at this step. Ethanol—Eudragit was added to PEG 400. PVP was slowly added to the Eudragit-Ethanol-PEG solution, and a uniformly mixed solution was obtained. Vigorous mixing may be required for this step.
  • Rapamycin was added to and dissolved in the Eudragit-ethanol-PEG-PVP mix. Heat and sonication may be used. The formulation was mixed thoroughly (using a vortex or mixer) to achieve uniformity. This formulation is listed as #37 in Table 1.
  • the liquid formulation When placed in deionized water or tap water, the liquid formulation formed a non-dispersed mass.
  • the non-dispersed mass appeared as a gel-like substance.
  • Example 8 50 ⁇ l of the solution described in Example 8 was injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits.
  • FIG. 6 depicts the average concentration of rapamycin present in the vitreous (ng/ml), retina choroid tissues (ng/mg), and sclera (ng/mg) on a logarithmic scale at 7, 32, 45, and 90 days after injection of the in situ gelling formulation.
  • the average concentration of rapamycin was calculated by adding the concentrations of rapamycin obtained for each eye from each rabbit, and dividing the total by the number of eyes analyzed.
  • the vitreous day 7 and the sclera day 7, 32, and 45 timepoints represent a single eye, as opposed to an average level.
  • the remaining day 7, 32, and 45 timepoints represent the average of two eyes of one rabbit, and the day 90 timepoint represents the average of two eyes of each of two rabbits (four eyes total).
  • the full vitreous was homogenized and analyzed.
  • the average concentration of the vitreous was calculated by dividing the mass of rapamycin measured by the volume of vitreous analyzed.
  • the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the vitreous via the in situ gelling formulation.
  • the average level of rapamycin in the vitreous at 7, 32, 45, and 90 days after subconjunctival injection was about 13.9, about 7.4, about 1.35, and about 9.9 ng/ml, respectively.
  • the full retina choroid tissues were homogenized and analyzed.
  • the average concentration of the retina choroid tissues was calculated by dividing the mass of rapamycin measured by the mass of retina choroid tissues analyzed.
  • the sample did not include the site of administration; thus, this measurement indicated the level of rapamycin delivered to the retina choroid tissues via the in situ gelling formulation.
  • the average level of rapamycin in the retina choroid tissues at 7, 32, 45, and 90 days after subconjunctival injection was about 0.376, about 0.1875, about 0.136, and about 0.29 ng/mg, respectively.
  • the sclera was analyzed in the same way as the retina choroid tissues.
  • the scleral sample may have included the injected liquid formulation; thus, this measurement was indicative of clearance of rapamycin from the sclera.
  • the average level of rapamycin in the sclera at 7, 32, 45, and 90 days after subconjunctival injection was about 2033, about 1653, about 3626, and about 420.5 ng/mg, respectively.
  • a rapamycin containing suspension was formed by dispersing 150.5 mg of rapamycin (3.004% by weight) in 4860.3 mg of PEG 400 (96.996% by weight). This formulation is listed as #49 in Table 1. 150.5 mg rapamycin (3.004% by weight) and 4860.3 mg of PEG 400 (96.996% by weight) were placed in an amber vial. High Wear Resistant Zirconia Grinding Media (beads) of 3 mm diameter were added, up to three quarters of the total volume. The vial was sealed and placed in a Cole-Parmer milling apparatus for 48 hrs. The particle size median for rapamycin was 2.8386 mm and the mean was 3.1275 mm. The formulation was kept at 4 C until use. Volumes of 20 ⁇ l and 40 ⁇ l each formed a non-dispersed mass when placed in the vitreous of a rabbit eye.
  • FIG. 7 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid (ng/mg), and the sclera (ng/mg) on a logarithmic scale at 14, 42, 63, and 91 days after injection.
  • the vitreous was homogenized and analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point except for day 91, on which two eyes from one rabbit were analyzed. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous.
  • the average level of rapamycin in the vitreous at 14, 42, 63, and 91 days after subconjunctival injection was about 4.031, 23.11, 53.27, and 13.94 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 14, 42, 63, and 91 days after subconjunctival injection was about 0.1577, 4.965, 0.385, and 0.05 ng/mg, respectively.
  • the scleral sample was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the scleral sample included the site of injection.
  • the average level of rapamycin in the sclera at 14, 42, 63, and 91 days after subconjunctival injection was about 1283, 476.3, 854.2, and 168.5 ng/mg, respectively.
  • FIG. 8 depicts the level of rapamycin in the retina choroid (ng/mg) and the sclera (ng/mg) on a logarithmic scale at 14, 42, 63, and 91 days after injection and in the vitreous (ng/ml) at 63 and 91 days after injection.
  • the vitreous was homogenized and, analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 63 and 91 days after intravitreal injection was about 381,600 and 150,400 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 14, 42, 63, and 91 days after intravitreal injection was about 2.588, 4.249, 21.42, and 0.922 ng/mg, respectively.
  • the scleral sample was homogenized and analyzed as described in Example 2, with the samples taken as described for the retina choroid above.
  • the scleral sample did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the sclera.
  • the average level of rapamycin in the sclera at 14, 42, 63, and 91 days after intravitreal injection was about 0.7327, 6.053, 1.373, and 17.49 ng/mg, respectively.
  • a rapamycin containing solution was formed by placing 116.6 mg of rapamycin in ethanol and storing the mixture at 4° C. for 6 hours. This solution was then mixed with 4647.5 mg of PEG 400 to give a solution having final concentrations by weight of 2.29% rapamycin, 6.05% ethanol, and 91.66% PEG 400. This solution is listed as formulation #51 in Table 1. A volume of 30 ⁇ l formed a non-dispersed mass when placed in the vitreous of rabbit eyes.
  • FIG. 9 depicts the level of rapamycin in the vitreous (ng/ml), retina choroid (ng/mg), and the sclera (ng/mg) on a linear scale at 14, 42, 63, and 91 days after injection.
  • the vitreous was homogenized and analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point except for day 91, on which two eyes from one rabbit were analyzed. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous.
  • the average level of rapamycin in the vitreous at 14, 42, 63, and 91 days after subconjunctival injection was about 1.804, 1.854, 1.785, and 1.255 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 14, 42, 63, and 91 days after subconjunctival injection was about 1.221, 4.697, 0.1075, and 0.02 ng/mg, respectively.
  • the scleral sample was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the scleral sample included the site of injection.
  • the average level of rapamycin in the sclera at 14, 42, 63, and 91 days after subconjunctival injection was about 1.987, 1.884, 0.56, and 10.84 ng/mg, respectively.
  • FIG. 10 depicts the level of rapamycin in the retina choroid (ng/mg) and the sclera (ng/mg) on a linear scale at 14, 42, 63, and 91 days after injection.
  • the retina choroid was homogenized and analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point. The retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 14, 42, 63, and 91 days after intravitreal injection was about 5.515, 5.388, 0.3833, and 11.52 ng/mg, respectively.
  • the scleral sample was homogenized and analyzed as described in Example 2, with the samples taken as described for the retina choroid above.
  • the scleral sample did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the sclera.
  • the average level of rapamycin in the sclera at 14, 42, 63, and 91 days after intravitreal injection was about 1.077, 0.9239, 0.0975, and 2.0825 ng/mg, respectively.
  • FIG. 11 depicts the level of rapamycin in the vitreous (ng/ml) on a linear scale at 63 and 91 days after injection.
  • the vitreous was homogenized and analyzed as described in Example 2. Two eyes from each of two rabbits were analyzed at each time point. The vitreous sample may have included the site of administration.
  • the average level of rapamycin in the vitreous at 63 and 91 days after intravitreal injection was about 299,900 and 196,600 ng/ml, respectively.
  • ethanol About 320 g of ethanol was sparged with N 2 for about 10 minutes, and then about 40 g of sirolimus was added to the ethanol. The mixture was sonicated for about 20 minutes, by the end of which all of the sirolimus had gone into solution to form a sirolimus stock solution.
  • a diluent solvent was prepared by sonicating about 1880 g of PEG 400 for about 60 minutes, and then sparging the solvent with Nitrogen for about 10 minutes.
  • sirolimus stock solution and the PEG 400 were then rotated at about room temperature in a rotary evaporator for about 10 minutes to mix the stock solution with the diluent solvent. After mixing, the solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes. After the solution was sparged and filled with nitrogen, about 240 g of excess ethanol was evaporated from the solution by increasing the solution temperature, maintaining a temperature that did not exceed 40° C. for an extended period of time and continuing to rotate the solution for about 2.5 hours.
  • the resulting solution comprised about 40 g of sirolimus (about 2% by weight), about 80 g of ethanol (about 4% by weight), and about 1880 g of PEG 400 (about 94% by weight).
  • This solution was sparged with nitrogen for about 10 minutes and blanketed with nitrogen for about 5 minutes.
  • the solution was then filtered through a 0.2 micron filter.
  • HPLC vials were filled with 2 ml each of the filtered solution to leave a head space in each container of about 400 ⁇ l. This head space was filled with nitrogen gas and capped.
  • Rapamycin, ethanol and PEG 400 were placed in a container to give final concentrations by weight of about 2.00% rapamycin, about 4.00% ethanol, and about 94.00% PEG 400.
  • the mixture was capped and sonicated for 1-2 hours.
  • the sonication generated heat, with temperatures of up to about 40 or 50° C.
  • This solution is listed as formulation #100 in Table 1. Volumes of 1 ⁇ l, 3 ⁇ l, 20 ⁇ l, and 40 ⁇ l formed a non-dispersed mass in the vitreous of rabbit eyes.
  • FIG. 12 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 13 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • FIG. 12 and FIG. 13 also depict results of similar studies, performed with 40 ⁇ l and 60 ⁇ l injections, described below in Example 19 and Example 20.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 1.81, 0.45, 0.39, 1.85, and 1.49 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.14, 0.03, 0.02, 0.02, and 0.01 ng/mg, respectively.
  • FIG. 12 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 13 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 2.39, 0.65, 0.54, 2.07, and 1.92 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.47, 0.04, 0.01, 0.05, and 0.0 ng/mg, respectively.
  • FIG. 12 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 13 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 8.65, 0.29, 0.18, 2.00, 1.41 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after subconjunctival injection was about 0.63, 0.02, 0.02, 0.06, and 0.01 ng/mg, respectively.
  • FIG. 14 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection.
  • FIG. 15 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 14 and FIG. 15 also depict results of other studies described below in Example 22 and Example 24.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 162,100; 18,780; 57,830; 94,040; and 13,150 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 2.84, 2.26, 0.17, 0.22, and 0.05 ng/mg, respectively.
  • FIG. 14 depicts the level of rapamycin in the vitreous on a logarithmic scale 5, 30, 60, 90, and 120 days after injection.
  • FIG. 15 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 415,600; 4,830; 74,510; 301,300; and 7,854 ng/ml respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 5.36, 0.23, 1.27, 1.08, and 0.08 ng/mg, respectively.
  • Rapamycin, ethanol and PEG 400′ were added to a container to give final concentrations by weight of about 0.4% rapamycin, 4.0% ethanol, and 95.6% PEG 400.
  • the mixture was sonicated for 1-2 hours. Sonication resulted in elevated temperatures of up to about 40 to 50° C. This solution is listed as formulation #99 in Table 1.
  • FIG. 14 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 30, 60, 90, and 120 days after injection.
  • FIG. 15 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Between two and five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, 60, 90, and 120 days after intravitreal injection was about 151,000; 14,890; 4,743; and 1620 ng/ml respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, 60, 90, and 120 days after intravitreal injection was about 1.21, 1.84, 0.04, 0.71, and 0.0 ng/mg, respectively.
  • a rapamycin containing solution was formed by placing 102.4 mg of rapamycin in ethanol, adding 4719.3 mg of PEG 400, and vortexing. The resulting solution had final concentrations by weight of 2.036% rapamycin, 4.154%% ethanol, and 93.81% PEG 400. This solution is listed as formulation #139 in Table 1.
  • FIG. 16 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5 and 14 days after injection.
  • FIG. 17 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 16 and FIG. 17 also depict results of other studies described below in Examples 27-29.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5 and 14 days after subconjunctival injection was about 2.45 and 20.13 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 14 days after subconjunctival injection was about 0.13 and 0.19 ng/mg, respectively.
  • FIG. 16 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5 and 14 days after injection.
  • FIG. 17 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5 and 14 days after subconjunctival injection was about 17.98 and 87.03 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 14 days after subconjunctival injection was about 0.27 and 0.21 ng/mg, respectively.
  • FIG. 16 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5 and 14 days after injection.
  • FIG. 17 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5 and 14 days after subconjunctival injection was about 502.2 and 31.80 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 14 days after subconjunctival injection was about 0.8,0 and 0.0.15 ng/mg, respectively.
  • FIG. 16 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5 and 14 days after injection.
  • FIG. 17 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5 and 14 days after subconjunctival injection was about 39.05 and 13.63 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 14 days after subconjunctival injection was about 0.83 and 0.10 ng/mg, respectively.
  • a rapamycin containing suspension was formed by placing 201.6 mg of rapamycin (3.000% by weight) in 6518.8 mg of PEG 400 (97.000% by weight) and vortexing. The resulting particle size was not quantified but it was large, estimated at about 10 ⁇ m. This suspension is listed as formulation #147 in Table 1.
  • FIG. 18 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 14, and 30 days after injection.
  • FIG. 19 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points. For comparison, FIG. 18 and FIG. 19 also depict results of other studies described below in Example 32 and Example 33.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 14, and 30 days after subconjunctival injection was about 2.68, 0.90, and 5.43 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 14, and 30 days after subconjunctival injection was about 0.20, 0.06, and 1.23 ng/mg, respectively.
  • FIG. 18 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 14, and 30 days after injection.
  • FIG. 19 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 14, and 30 days after subconjunctival injection was about 84.55, 11.23, and 66.35 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 14, and 30 days after subconjunctival injection was about 1.09, 0.19, and 1.02 ng/mg, respectively.
  • FIG. 18 depicts the level of rapamycin in the vitreous on a logarithmic scale at 5, 14, and 30 days after injection.
  • FIG. 19 depicts the level of rapamycin in the retina choroid on a logarithmic scale at the same time points.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the vitreous. The average level of rapamycin in the vitreous at 5, 14, and 30 days after subconjunctival injection was about 29.95, 15.30, and 49.20 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 14, and 30 days after subconjunctival injection was about 0.55, 1.31, and 5.74 ng/mg, respectively.
  • rapamycin 10.3 mg was placed in ethanol, 4995.8 mg of PEG 400 was added, and the mixture was vortexed to give a solution having final concentrations by weight of 0.205% rapamycin, 0.544% ethanol, and 99.251% PEG 400.
  • This solution is listed as formulation # 140 in Table 1.
  • a volume of 10 ⁇ l of this solution formed a non-dispersed mass when placed in the vitreous of a rabbit eye.
  • FIG. 20 depicts the level of rapamycin in the retina choroid on a logarithmic scale at 5 and 30 days after injection.
  • FIG. 21 depicts the level of rapamycin in the vitreous on a logarithmic scale at the same timepoints. For comparison, FIG. 20 and FIG. 21 also depict results of other studies described below in Example 37 and Example 39.
  • the vitreous was homogenized and analyzed as described in Example 2. Five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5 and 30 days after intravitreal injection was about 12.02 and 6.92 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 30 days after intravitreal injection was about 0.08 and 0.02 ng/mg, respectively.
  • rapamycin 31.5 mg was placed in ethanol, 4918.9 mg of PEG 400 was added, and the solution was vortexed. Final concentrations by weight were 0.6238% rapamycin, 1.337% ethanol, and 98.035% PEG 400.
  • This solution is listed as formulation #142 in Table 1. The formulation was stored at 4° C. until use. A volume of 1011 of this solution formed a non-dispersed mass when placed in the vitreous of a rabbit eye.
  • FIG. 20 depicts the level of rapamycin in the retina choroid on a logarithmic scale at 5 and 30 days after injection.
  • FIG. 21 depicts the level of rapamycin in the vitreous on a logarithmic scale at the same timepoints.
  • the vitreous was homogenized and analyzed as described in Example 2. Five rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5 and 30 days after intravitreal injection was about 87.46 and 44.34 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5 and 30 days after intravitreal injection was about 1.40 and 0.01 ng/mg, respectively.
  • FIG. 20 depicts the level of rapamycin in the retina choroid on a logarithmic scale at 5, 30, and 90 days after injection.
  • FIG. 21 depicts the level of rapamycin in the vitreous on a logarithmic scale at the same timepoints.
  • the vitreous was homogenized and analyzed as described in Example 2. Four rabbit eyes were analyzed at each time point. The vitreous sample may have included the site of administration. The average level of rapamycin in the vitreous at 5, 30, and 90 days after intravitreal injection was about 120,500; 55,160; and 0.55 ng/ml, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above except that five rabbit eyes were analyzed at the 5 and 30 day time points.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 5, 30, and 90 days after intravitreal injection was about 4.75, 0.17, and 0.01 ng/mg, respectively.
  • FIG. 22 depicts on a logarithmic scale the level of rapamycin in the aqueous humor (ng/ml) at 1, 4, 7, 11, 14, 21, 28, 35, 54, and 56 days after injection, and the levels of rapamycin in the cornea (ng/mg) and the retina choroid (ng/mg) at 4, 14, 21, and 35 days after injection.
  • the retina choroid level is labeled as “R/Choroid” in FIG. 22 .
  • the aqueous humor was homogenized and then analyzed by liquid chromatography and mass spectroscopy. Four rabbit eyes were analyzed for each time point. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor.
  • the average level of rapamycin in the aqueous humor at 1, 4, 7, 11, 14, 21, 28, 35, 54, and 56 days after injection was about 0.875, 1.0, 7.0, 0.725, 0.5, 0.525, 0.0, 0.125, 0.014, and 0.0485 ng/ml, respectively.
  • the cornea was homogenized and then analyzed by liquid chromatography and mass spectroscopy.
  • the cornea did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the cornea.
  • Four rabbit eyes were analyzed for each time point.
  • the average level of rapamycin in the cornea at 4, 14, 21, and 35 days after injection was about 0.3225, 0.1, 0.0275, and 0.0125 ng/mg, respectively.
  • the retina choroid was homogenized and analyzed as described in Example 2, with the samples taken as described for the vitreous above.
  • the retina choroid did not include the site of administration, so this measurement indicated the level of rapamycin delivered to the retina choroid.
  • the average level of rapamycin in the retina choroid at 4, 14, 21, and 35 days after injection was about 11.61, 0.2, 0.0275, and 2.655 ng/mg, respectively.
  • Example 17 1.0 ⁇ l of the solution described in Example 17 was injected into the vitreous of the eye of New Zealand white rabbits.
  • the injected solution formed a non-dispersed mass relative to the surrounding medium.
  • Table 2 reports the average level of rapamycin in the aqueous humor one day after injection. For comparison, Table 2 also reports results of studies described in Examples 42-45 below.
  • the aqueous humor was homogenized and analyzed as described in Example 40. Two rabbit eyes were analyzed. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor. The average level of rapamycin in the aqueous humor at 1 day after injection was about 0.438 ng/ml with a standard deviation of about 0.141 ng/ml.
  • Example 17 3.0 ⁇ l of the solution described in Example 17 were injected into the vitreous of the eye of New Zealand white rabbits. The injected solution formed a non-dispersed mass relative to the surrounding medium. Table 2 reports the average level of rapamycin in the aqueous humor one day after injection.
  • the aqueous humor was homogenized and analyzed as described in Example 40. Two rabbit eyes were analyzed. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor.
  • the average level of rapamycin in the aqueous humor at 1 day after injection was about 0.355 ng/ml with a standard deviation of about 0.234 mg/ml.
  • Example 17 3.0 ⁇ l of the solution described in Example 17 were injected between the sclera and the conjunctiva of the eye of New Zealand white rabbits. The injected solution formed a non-dispersed mass relative to the surrounding medium. Table 2 reports the average level of rapamycin in the aqueous humor one day after injection.
  • the aqueous humor was homogenized and analyzed as described in Example 40. Two rabbit eyes were analyzed. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor. The average level of rapamycin in the aqueous humor at 1 day after injection was about 0.338 ng/ml with a standard deviation of about 0.122 ng/ml.
  • Example 17 5.0 ⁇ l of the solution described in Example 17 were injected into the anterior chamber of the eye of New Zealand white rabbits by injection into the front-end of the eye.
  • the aqueous humor was withdrawn using a syringe.
  • Table 2 reports the average level of rapamycin in the aqueous humor 14 days after injection.
  • the aqueous humor was homogenized and analyzed as described in Example 40. Two rabbit eyes were analyzed. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor. The average level of rapamycin in the aqueous humor at 14 days after injection was about 0.166 ng/ml with a standard deviation of about 0.183 ng/ml.
  • the aqueous humor was homogenized and analyzed as described in Example 40. Two rabbit eyes were analyzed. The aqueous humor did not include the site of injection, so this measurement indicated the level of rapamycin delivered to the aqueous humor. The average level of rapamycin in the aqueous humor at 14 days after injection was about 0.004 ng/ml with a standard deviation of about 0.006 ng/ml.
  • # 168 800 ⁇ l S Form.
  • # 154 100 ⁇ l S Form.
  • # 168 900 ⁇ l 214 Form.
  • # 154 100 ⁇ l S Form.
  • # 168 900 ⁇ l 215 Form.
  • # 154 100 ⁇ l S Form.
  • # 168 900 ⁇ l 216 Form.
  • # 168 800 ⁇ l 234 Form.
  • # 154 200 ⁇ l S Form.
  • # 168 800 ⁇ l 235 Form.
  • # 154 200 ⁇ l S Form.
  • # 168 800 ⁇ l 236 Form.
  • # 154 200 ⁇ l S Form.
  • # 168 800 ⁇ l 237 Form.
  • Rapa concentration (ng/mL) (ng/mL) 1.0 ⁇ L intravitreal 0.438 (1 day after injection) 0.141 3.0 ⁇ L intravitreal 0.355 (1 day after injection) 0.234 3.0 ⁇ L sub-conj 0.338 (1 day after injection) 0.122 5.0 ⁇ L into anterior chamber 0.167 (14 days after injection) 0.183 10.0 ⁇ L into anterior chamber 0.004 (14 days after injection) 0.006
US11/351,761 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions Abandoned US20060258698A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/351,761 US20060258698A1 (en) 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions
US12/193,686 US8663639B2 (en) 2005-02-09 2008-08-18 Formulations for treating ocular diseases and conditions
US12/778,872 US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions
US13/741,103 US8927005B2 (en) 2005-02-09 2013-01-14 Liquid formulations for treatment of diseases or conditions
US14/553,947 US9381153B2 (en) 2005-02-09 2014-11-25 Liquid formulations for treatment of diseases or conditions
US15/183,649 US20170020809A1 (en) 2005-02-09 2016-06-15 Liquid formulations for treatment of diseases or conditions
US15/806,226 US20180311152A1 (en) 2005-02-09 2017-11-07 Liquid formulations for treatment of diseases or conditions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US65179005P 2005-02-09 2005-02-09
US66430605P 2005-03-21 2005-03-21
US66404005P 2005-03-21 2005-03-21
US11/351,761 US20060258698A1 (en) 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/352,092 Continuation-In-Part US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/386,290 Continuation-In-Part US20060257450A1 (en) 2005-02-09 2006-03-21 Drug delivery systems for treatment of diseases or conditions
US12/193,686 Continuation-In-Part US8663639B2 (en) 2005-02-09 2008-08-18 Formulations for treating ocular diseases and conditions
US12/778,872 Continuation US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions

Publications (1)

Publication Number Publication Date
US20060258698A1 true US20060258698A1 (en) 2006-11-16

Family

ID=36793384

Family Applications (11)

Application Number Title Priority Date Filing Date
US11/351,761 Abandoned US20060258698A1 (en) 2005-02-09 2006-02-09 Liquid formulations for treatment of diseases or conditions
US11/352,092 Expired - Fee Related US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use
US11/351,844 Abandoned US20060182771A1 (en) 2005-02-09 2006-02-09 Formulations for ocular treatment
US12/778,872 Active 2026-06-16 US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions
US13/741,103 Active US8927005B2 (en) 2005-02-09 2013-01-14 Liquid formulations for treatment of diseases or conditions
US14/151,647 Active 2026-04-17 US9387165B2 (en) 2005-02-09 2014-01-09 Rapamycin formulations and methods of their use
US14/553,947 Active US9381153B2 (en) 2005-02-09 2014-11-25 Liquid formulations for treatment of diseases or conditions
US15/183,649 Abandoned US20170020809A1 (en) 2005-02-09 2016-06-15 Liquid formulations for treatment of diseases or conditions
US15/197,568 Abandoned US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use
US15/611,701 Abandoned US20170266109A1 (en) 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use
US15/806,226 Abandoned US20180311152A1 (en) 2005-02-09 2017-11-07 Liquid formulations for treatment of diseases or conditions

Family Applications After (10)

Application Number Title Priority Date Filing Date
US11/352,092 Expired - Fee Related US8637070B2 (en) 2005-02-09 2006-02-09 Rapamycin formulations and methods of their use
US11/351,844 Abandoned US20060182771A1 (en) 2005-02-09 2006-02-09 Formulations for ocular treatment
US12/778,872 Active 2026-06-16 US8367097B2 (en) 2005-02-09 2010-05-12 Liquid formulations for treatment of diseases or conditions
US13/741,103 Active US8927005B2 (en) 2005-02-09 2013-01-14 Liquid formulations for treatment of diseases or conditions
US14/151,647 Active 2026-04-17 US9387165B2 (en) 2005-02-09 2014-01-09 Rapamycin formulations and methods of their use
US14/553,947 Active US9381153B2 (en) 2005-02-09 2014-11-25 Liquid formulations for treatment of diseases or conditions
US15/183,649 Abandoned US20170020809A1 (en) 2005-02-09 2016-06-15 Liquid formulations for treatment of diseases or conditions
US15/197,568 Abandoned US20160303093A1 (en) 2005-02-09 2016-06-29 Rapamycin formulations and methods of their use
US15/611,701 Abandoned US20170266109A1 (en) 2005-02-09 2017-06-01 Rapamycin formulations and methods of their use
US15/806,226 Abandoned US20180311152A1 (en) 2005-02-09 2017-11-07 Liquid formulations for treatment of diseases or conditions

Country Status (17)

Country Link
US (11) US20060258698A1 (zh)
EP (3) EP1853259A1 (zh)
JP (2) JP2008530127A (zh)
KR (3) KR101492584B1 (zh)
CN (1) CN104147005B (zh)
AU (2) AU2006213673A1 (zh)
BR (2) BRPI0608152A2 (zh)
CA (2) CA2597596C (zh)
CY (1) CY1117357T1 (zh)
DK (1) DK1848431T3 (zh)
ES (1) ES2564194T3 (zh)
GB (1) GB2438544A (zh)
HK (3) HK1110215A1 (zh)
HU (1) HUE027352T2 (zh)
PL (1) PL1848431T3 (zh)
SI (1) SI1848431T1 (zh)
WO (2) WO2006086744A1 (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257450A1 (en) * 2005-03-21 2006-11-16 Sreenivasu Mudumba Drug delivery systems for treatment of diseases or conditions
US20070173538A1 (en) * 2005-12-23 2007-07-26 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
US20070203173A1 (en) * 2006-02-09 2007-08-30 Sreenivasu Mudumba Stable formulations, and methods of their preparation and use
US20080132475A1 (en) * 2006-12-05 2008-06-05 Charles Gerald Connor Treatment for dry eye
WO2008134644A1 (en) * 2007-04-30 2008-11-06 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US20090017097A1 (en) * 2007-07-09 2009-01-15 Sawhney Amarpreet S Hydrogel polymeric compositions and methods
WO2009014510A1 (en) * 2007-07-20 2009-01-29 Alcon, Inc. Pharmaceutical formulation for delivery of receptor tyrosine kinase inhibiting (rtki) compounds to the eye
US20090042834A1 (en) * 2004-05-07 2009-02-12 S.K. Pharmaceuticals, Inc. Stabilized Glycosaminoglycan Preparations and Related Methods
US20090074786A1 (en) * 2005-02-09 2009-03-19 Macusight, Inc. Formulations for treating ocular diseases and conditions
WO2009023877A3 (en) * 2007-08-16 2009-04-09 Macusight Inc Formulations for treatment of ocular diseases or conditions
US20090163408A1 (en) * 2006-08-08 2009-06-25 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
US20090275529A1 (en) * 2008-05-05 2009-11-05 Reiss Allison B Method for improving cardiovascular risk profile of cox inhibitors
US20100016264A1 (en) * 2007-12-05 2010-01-21 Connor Charles G Treatment for dry eye using testosterone and progestagen
WO2010065024A1 (en) * 2008-12-05 2010-06-10 Kador Peter F Topical treatment of cataracts in dogs
US7872068B2 (en) 2006-05-30 2011-01-18 Incept Llc Materials formable in situ within a medical device
US20110071091A1 (en) * 2009-09-23 2011-03-24 Chowhan Masood A Injectable aqueous ophthalmic composition and method of use therefor
US20120071865A1 (en) * 2010-09-17 2012-03-22 Peter Jarrett Flowable hydrogels for control of cell in-migration
US8222271B2 (en) 2006-03-23 2012-07-17 Santen Pharmaceutical Co., Ltd. Formulations and methods for vascular permeability-related diseases or conditions
WO2012111877A1 (ko) * 2011-02-15 2012-08-23 한림대학교 산학협력단 Fk506 결합 단백질 융합 단백질을 함유하는 안과 질환 예방 및 치료용 점안제 조성물
US8367097B2 (en) 2005-02-09 2013-02-05 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US8409606B2 (en) 2009-02-12 2013-04-02 Incept, Llc Drug delivery through hydrogel plugs
WO2013049496A1 (en) * 2011-09-28 2013-04-04 Globus Medical, Inc. Biodegradable putty compositions and implant devices, methods, and kits relating to the same
US20130150389A1 (en) * 2011-12-07 2013-06-13 Dong Liang Etravirine Formulations and Uses Thereof
US20130245119A1 (en) * 2010-11-19 2013-09-19 Keio University Therapeutic or prophylactic agent for corneal epithelium disorders and/or conjunctival epithelium disorders
US20160038599A1 (en) * 2013-04-18 2016-02-11 Hong Kong University Of Science And Technology Biocompatible in situ Hydrogel
US20170304260A1 (en) * 2014-10-08 2017-10-26 Maamar Achacha Altrenogest formulation and uses thereof for estrus synchronisation in animals
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
AU2017202760B2 (en) * 2007-04-30 2019-04-18 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
WO2021051003A1 (en) * 2019-09-13 2021-03-18 Aldeyra Therapeutics, Inc. Ophthalmic formulations of methotrexate
US11065217B2 (en) 2017-01-27 2021-07-20 Temple University—Of the Commonwealth System of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
US11298444B2 (en) 2005-04-01 2022-04-12 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
US11400080B2 (en) 2016-05-25 2022-08-02 Santen Pharmaceutical Co., Ltd. Use of sirolimus to treat exudative age-related macular degeneration with persistent edema
US11911385B1 (en) 2022-12-14 2024-02-27 Aldeyra Therapeutics, Inc. Methotrexate treatment methods

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
AU2004274026A1 (en) * 2003-09-18 2005-03-31 Macusight, Inc. Transscleral delivery
AU2013200089B2 (en) * 2006-02-09 2016-03-03 Santen Pharmaceutical Co., Ltd Stable formulations, and methods of their preparation and use
US20070249546A1 (en) * 2006-04-22 2007-10-25 Sawaya Assad S Ophthalmic and related aqueous solutions containing antifungal agents, uses therefor and methods for preparing them
US20100081681A1 (en) * 2006-08-16 2010-04-01 Blagosklonny Mikhail V Methods and compositions for preventing or treating age-related diseases
WO2008063563A2 (en) 2006-11-16 2008-05-29 Transderm, Inc. Methods of treating keratin hyperproliferation disorders using mtor inhibitors
WO2008120249A1 (en) * 2007-03-30 2008-10-09 Sifi S.P.A. Pharmaceutical formulations based on apolar and polar lipids for ophthalmic use
US8642067B2 (en) 2007-04-02 2014-02-04 Allergen, Inc. Methods and compositions for intraocular administration to treat ocular conditions
US20100303887A1 (en) * 2007-07-30 2010-12-02 Bazan Nicolas G DHA and PEDF, a Therapeutic Composition for Nerve and Retinal Pigment Epithelial Cells
AU2008310956B2 (en) 2007-10-08 2014-08-07 Aurinia Pharmaceuticals Inc. Ophthalmic compositions comprising calcineurin inhibitors or mTOR inhibitors
US20090118262A1 (en) * 2007-11-01 2009-05-07 Rohrs Brian R Non-Aqueous Water-Miscible Materials as Vehicles for Drug Delivery
US20110034854A1 (en) * 2007-11-20 2011-02-10 Ceramoptec Industries, Inc. Pdt assisted vision correction and scar prevention
US8821870B2 (en) * 2008-07-18 2014-09-02 Allergan, Inc. Method for treating atrophic age related macular degeneration
US20120064143A1 (en) 2008-11-11 2012-03-15 The Board Of Regents Of The University Of Texas System Inhibition of mammalian target of rapamycin
DE102008059201A1 (de) * 2008-11-27 2010-06-02 GÖPFERICH, Achim, Prof. Dr. In situ präzipitierende Arzneistofflösungen
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
CN102612564B (zh) * 2009-04-10 2015-08-26 齐海燕 新的抗衰老试剂及其鉴别方法
JP2010260857A (ja) * 2009-04-10 2010-11-18 Santen Pharmaceut Co Ltd シロリムス誘導体を有効成分として含有する網脈絡膜疾患の治療剤
US20120114637A1 (en) * 2009-05-04 2012-05-10 Santen Pharmaceutical Co., Ltd. Mtor pathway inhibitors for treating ocular disorders
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
WO2012071476A2 (en) 2010-11-24 2012-05-31 David Haffner Drug eluting ocular implant
US20100305046A1 (en) * 2009-06-02 2010-12-02 Abbott Medical Optics Inc. Stable cyclosporine containing ophthalmic emulsion for treating dry eyes
AU2014250656B2 (en) * 2009-06-02 2016-05-05 Johnson & Johnson Surgical Vision, Inc. Omega-3 oil containing ophthalmic emulsions
US9480645B2 (en) * 2009-06-02 2016-11-01 Abbott Medical Optics Inc. Omega-3 oil containing ophthalmic emulsions
US20100303915A1 (en) * 2009-06-02 2010-12-02 Abbott Medical Optics Inc. Therapeutic opthalmic emulsions
CN102458370A (zh) 2009-06-09 2012-05-16 卢克斯生物科技公司 用于眼科用途的表面药物递送系统
WO2011006012A1 (en) 2009-07-08 2011-01-13 Charleston Laboratories Inc. Pharmaceutical compositions
EP2308468A1 (en) * 2009-10-08 2011-04-13 Novaliq GmbH Novel pharmaceutical composition comprising a macrolide immunosuppressant drug
EP2488022B1 (en) 2009-10-16 2018-01-10 Mochida Pharmaceutical Co., Ltd. Compositions
US9283211B1 (en) 2009-11-11 2016-03-15 Rapamycin Holdings, Llc Oral rapamycin preparation and use for stomatitis
WO2015161139A1 (en) 2014-04-16 2015-10-22 Rapamycin Holdings, Llc Oral rapamycin preparation and use for stomatitis
ES2758554T3 (es) 2009-12-08 2020-05-05 Univ Case Western Reserve Aminoácidos gama para tratamiento de trastornos oculares
US20130058999A1 (en) 2010-01-12 2013-03-07 Novo Nordisk A/S Pharmaceutical compositions for oral administration of insulin peptides
CN102653779B (zh) * 2011-03-04 2014-02-19 北京科润三联生物技术有限责任公司 一种新型重组抗菌多肽药物的制备方法
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
CN103127052A (zh) * 2011-12-05 2013-06-05 维瑞斯特姆有限公司 治疗组合物和相关使用方法
WO2013086015A1 (en) 2011-12-05 2013-06-13 Incept, Llc Medical organogel processes and compositions
CA2926747A1 (en) 2012-10-12 2014-04-17 Arlan RICHARDSON Use of mtor inhibitors to treat vascular cognitive impairment
WO2014160328A1 (en) 2013-03-13 2014-10-02 The Board Of Regents Of The University Of Texas System Mtor inhibitors for prevention of intestinal polyp growth
MY163236A (en) 2013-09-20 2017-08-30 Santen Pharmaceutical Co Ltd Polyethylene glycol-containing composition
US9700544B2 (en) 2013-12-31 2017-07-11 Neal K Vail Oral rapamycin nanoparticle preparations
EP3089737B1 (en) 2013-12-31 2021-11-03 Rapamycin Holdings, LLC Oral rapamycin nanoparticle preparations and use
EP2946788A1 (en) 2014-05-23 2015-11-25 Immundiagnostik AG Method and composition for treating heart failure with preserved ejection fraction
AU2015266850B2 (en) 2014-05-29 2019-12-05 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US20180000816A1 (en) * 2015-02-06 2018-01-04 Unity Biotechnology, Inc. Use of a Heterocyclic Bcl-xL Inhibitor and Related Analogs for Removing Senescent Cells in the Treatment of Eye Diseases and Other Age-Related Conditions
US20180036233A1 (en) * 2015-03-05 2018-02-08 Allergan, Inc. Self-emulsifying drug delivery (sedds) for ophthalmic drug delivery
KR20230104762A (ko) * 2015-03-18 2023-07-10 산텐 세이야꾸 가부시키가이샤 서방성 의약 조성물
AU2016263176A1 (en) 2015-05-20 2017-12-07 Novartis Ag Pharmaceutical combination of everolimus with dactolisib
AR106018A1 (es) 2015-08-26 2017-12-06 Achillion Pharmaceuticals Inc Compuestos de arilo, heteroarilo y heterocíclicos para el tratamiento de trastornos médicos
ES2908479T3 (es) 2015-08-26 2022-04-29 Achillion Pharmaceuticals Inc Compuestos para el tratamiento de trastornos inmunitarios e inflamatorios
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
BR112018005315A2 (pt) 2015-09-17 2018-10-09 Jrx Biotechnology Inc abordagens para aprimorar hidratação ou umidificação de pele
US10166217B2 (en) 2015-09-18 2019-01-01 Santen Pharmaceutical Co., Ltd. Fungal keratitis prophylactic or therapeutic agent
WO2017047618A1 (ja) * 2015-09-18 2017-03-23 日本化薬株式会社 ラパマイシン又はその誘導体を含有する医薬組成物
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
CA3008849A1 (en) 2015-12-17 2017-06-22 Bioelectron Technology Corporation Flouroalkyl, flouroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders
JP2019507181A (ja) 2016-03-04 2019-03-14 チャールストン ラボラトリーズ,インコーポレイテッド 医薬組成物
CN115120405A (zh) 2016-04-20 2022-09-30 多斯医学公司 生物可吸收眼部药物的递送装置
ES2902006T3 (es) 2016-06-27 2022-03-24 Achillion Pharmaceuticals Inc Quinazolina y compuestos indol para tratar trastornos médicos
US10682340B2 (en) 2016-06-30 2020-06-16 Durect Corporation Depot formulations
JP7051721B2 (ja) 2016-06-30 2022-04-11 デュレクト コーポレーション デポー製剤
WO2018096402A1 (en) 2016-11-23 2018-05-31 Novartis Ag Methods of enhancing immune response with everolimus, dactolisib or both
EA201990127A1 (ru) 2016-12-30 2020-08-18 Дьюрект Корпорейшн Депо-препарат
EP3565520A4 (en) * 2017-01-06 2020-08-19 Palvella Therapeutics, Inc. Anhydrous compositions of MTOR inhibitors and method of use
US11285081B2 (en) * 2017-02-17 2022-03-29 Santen Pharmaceutical Co., Ltd. Sealed preparation container and use for same
US20190224275A1 (en) 2017-05-12 2019-07-25 Aurinia Pharmaceuticals Inc. Protocol for treatment of lupus nephritis
WO2018213352A1 (en) 2017-05-15 2018-11-22 C.R. Bard, Inc. Medical device with drug-eluting coating and intermediate layer
WO2018220444A2 (en) * 2017-05-30 2018-12-06 Eximore Ltd. Compositions and methods for treating dry eye syndrome delivering antibiotic macrolide
CA3067332A1 (en) 2017-06-16 2018-12-20 The Doshisha Mtor-inhibitor-containing medicine for treating or preventing ophthalmic symptoms, disorders, or diseases, and application thereof
IL271443B2 (en) 2017-06-30 2024-01-01 Univ California Preparations and methods for regulating hair growth
JP7150281B2 (ja) * 2017-07-20 2022-10-11 国立研究開発法人理化学研究所 連続的な上皮を含む網膜組織の成熟化方法
US10596165B2 (en) 2018-02-12 2020-03-24 resTORbio, Inc. Combination therapies
KR20210018199A (ko) 2018-03-26 2021-02-17 씨4 테라퓨틱스, 인코포레이티드 이카로스의 분해를 위한 세레블론 결합제
WO2020010073A1 (en) 2018-07-02 2020-01-09 Palvella Therapeutics, Inc. ANHYDROUS COMPOSITIONS OF mTOR INHIBITORS AND METHODS OF USE
US20230022157A1 (en) 2018-08-20 2023-01-26 Achillion Pharmaceuticals, Inc. Pharmaceutical compounds for the treatment of complement factor d medical disorders
WO2020081723A1 (en) 2018-10-16 2020-04-23 Georgia State University Research Foundation, Inc. Carbon monoxide prodrugs for the treatment of medical disorders
JP7262581B2 (ja) 2018-11-14 2023-04-21 ルトニックス,インコーポレーテッド 改質されたデバイス表面に薬物溶出コーティングを有する医療用デバイス
CN113226309A (zh) * 2018-12-03 2021-08-06 珠海岐微生物科技有限公司 一种治疗年龄相关性黄斑变性的方法
US20220079899A1 (en) * 2019-01-14 2022-03-17 The Regents Of The University Of California Compositions and methods for treating ocular conditions
WO2020209828A1 (en) 2019-04-08 2020-10-15 Bard Peripheral Vascular, Inc. Medical device with drug-eluting coating on modified device surface
CN115916183A (zh) * 2020-01-10 2023-04-04 布里奥里生物技术公司 含有罗非昔布的局部用组合物及其制备和使用方法
AU2022300265A1 (en) * 2021-06-21 2024-01-18 Palvella Therapeutics, Inc. Methods and compositions for treating gorlin syndrome
WO2023225373A1 (en) * 2022-05-20 2023-11-23 Dermbiont, Inc. Compositions and formulations for use of a pk inhibitor for the prevention, treatment, and improvement of skin diseases, conditions, and disorders

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023262A (en) * 1990-08-14 1991-06-11 American Home Products Corporation Hydrogenated rapamycin derivatives
US5100899A (en) * 1989-06-06 1992-03-31 Roy Calne Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof
US5120842A (en) * 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5120725A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Bicyclic rapamycins
US5120727A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Rapamycin dimers
US5177203A (en) * 1992-03-05 1993-01-05 American Home Products Corporation Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents
US5192802A (en) * 1991-09-25 1993-03-09 Mcneil-Ppc, Inc. Bioadhesive pharmaceutical carrier
US5387589A (en) * 1991-07-25 1995-02-07 University Of Louisville Research Foundation, Inc. Method of treating ocular inflammation
US5527907A (en) * 1993-11-19 1996-06-18 Abbott Laboratories Macrolide immunomodulators
US5536729A (en) * 1993-09-30 1996-07-16 American Home Products Corporation Rapamycin formulations for oral administration
US5773021A (en) * 1994-03-14 1998-06-30 Vetoquinol S.A. Bioadhesive ophthalmic insert
US6015815A (en) * 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6376517B1 (en) * 1998-08-14 2002-04-23 Gpi Nil Holdings, Inc. Pipecolic acid derivatives for vision and memory disorders
US6416777B1 (en) * 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US6455518B2 (en) * 1996-07-30 2002-09-24 Novartis Ag Pharmaceutical compositions for the treatment of transplant rejection, autoimmune or inflammatory conditions comprising cyclosporin a and 40-O-(2-hydroxyethyl)-rapamycin
US20030171320A1 (en) * 2001-11-09 2003-09-11 Guyer David R. Methods for treating ocular neovascular diseases
US20030203892A1 (en) * 1998-12-23 2003-10-30 G.D. Searle, Llc Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
US6713081B2 (en) * 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
US6777000B2 (en) * 2001-02-28 2004-08-17 Carrington Laboratories, Inc. In-situ gel formation of pectin
US20050064010A1 (en) * 2003-09-18 2005-03-24 Cooper Eugene R. Transscleral delivery
US6890546B2 (en) * 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20050142162A1 (en) * 2003-11-20 2005-06-30 Angiotech International Ag Soft tissue implants and anti-scarring agents
US20050187241A1 (en) * 2002-09-18 2005-08-25 Rong Wen Method of inhibiting choroidal neovascularization
US7026374B2 (en) * 2002-06-25 2006-04-11 Aruna Nathan Injectable microdispersions for medical applications
US7083802B2 (en) * 2003-07-31 2006-08-01 Advanced Ocular Systems Limited Treatment of ocular disease
US20060182783A1 (en) * 2004-04-30 2006-08-17 Allergan, Inc. Sustained release intraocular drug delivery systems
US20060182771A1 (en) * 2005-02-09 2006-08-17 Dor Philippe J Formulations for ocular treatment
US20060216288A1 (en) * 2005-03-22 2006-09-28 Amgen Inc Combinations for the treatment of cancer
US20060257450A1 (en) * 2005-03-21 2006-11-16 Sreenivasu Mudumba Drug delivery systems for treatment of diseases or conditions
US20070203173A1 (en) * 2006-02-09 2007-08-30 Sreenivasu Mudumba Stable formulations, and methods of their preparation and use
US20070265294A1 (en) * 2006-03-23 2007-11-15 Kleinman David M Formulations and methods for vascular permeability-related diseases or conditions

Family Cites Families (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007538A (en) * 1934-04-10 1935-07-09 Louis Stern Company Bracelet end hook
US3416530A (en) 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3630200A (en) 1969-06-09 1971-12-28 Alza Corp Ocular insert
US3828777A (en) 1971-11-08 1974-08-13 Alza Corp Microporous ocular device
US3914402A (en) 1973-06-14 1975-10-21 Alza Corp Ophthalmic dosage form, for releasing medication over time
US3926188A (en) 1974-11-14 1975-12-16 Alza Corp Laminated drug dispenser
US4093709A (en) * 1975-01-28 1978-06-06 Alza Corporation Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates)
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
FR2382240A1 (fr) 1977-03-03 1978-09-29 Mouls Pierre Dispositif permettant d'instiller des liquides medicamenteux dans l'oeil
US4300557A (en) 1980-01-07 1981-11-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method for treating intraocular malignancies
AU543727B2 (en) 1980-06-02 1985-05-02 Ayerst Mckenna & Harrison Inc. Injectable composition of rapamycin
IT1141715B (it) 1980-06-06 1986-10-08 Sadepan Chimica Spa Collante a base di resina urea-formaldeide additivato con ligninsolfonato di calcio e/o ammonio,resina urea formaldeide modificata con ligninsolfonato di calcio e/o ammonio e metodo di produzione degli stessi,per la preparazione di pannelli agglomerati di legno
US4316885A (en) * 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US4650803A (en) * 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
US5147647A (en) 1986-10-02 1992-09-15 Sohrab Darougar Ocular insert for the fornix
US5322691A (en) * 1986-10-02 1994-06-21 Sohrab Darougar Ocular insert with anchoring protrusions
JPH0667850B2 (ja) 1987-09-03 1994-08-31 ユニバーシティ オブ ジョージア リサーチ ファウンデーション,インコーポレイテッド 眼科用サイクロスポリン組成物
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4997652A (en) * 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
EP0356399A3 (en) * 1988-08-26 1991-03-20 Sandoz Ag Substituted 4-azatricyclo (22.3.1.04.9) octacos-18-ene derivatives, their preparation and pharmaceutical compositions containing them
US4946450A (en) 1989-04-18 1990-08-07 Biosource Genetics Corporation Glucan/collagen therapeutic eye shields
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5883082A (en) * 1990-08-14 1999-03-16 Isis Pharmaceuticals, Inc. Compositions and methods for preventing and treating allograft rejection
US5192773A (en) * 1990-07-02 1993-03-09 Vertex Pharmaceuticals, Inc. Immunosuppressive compounds
JPH04230389A (ja) 1990-07-16 1992-08-19 American Home Prod Corp ラパマイシン誘導体
DE4022553A1 (de) 1990-07-16 1992-01-23 Hund Helmut Gmbh Vorrichtung zur hochreproduzierbaren applikation definierter volumina von loesungen und suspensionen diagnostisch oder therapeutisch wirksamer substanzen auf der cornea-oberflaeche
PT98990A (pt) 1990-09-19 1992-08-31 American Home Prod Processo para a preparacao de esteres de acidos carboxilicos de rapamicina
US5290892A (en) * 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
IE65341B1 (en) 1990-11-08 1995-10-18 Fujisawa Pharmaceutical Co Suspensions containing tricyclic compounds
US5378475A (en) * 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US5078999A (en) * 1991-02-22 1992-01-07 American Home Products Corporation Method of treating systemic lupus erythematosus
ES2154262T3 (es) * 1991-04-26 2001-04-01 Fujisawa Pharmaceutical Co Uso de compuestos macrolidos para enfermedades oculares.
US5565560A (en) 1991-05-13 1996-10-15 Merck & Co., Inc. O-Aryl,O-alkyl,O-alkenyl and O-alkynylmacrolides having immunosuppressive activity
US5189042A (en) * 1991-08-22 1993-02-23 Merck & Co. Inc. Fluoromacrolides having immunosuppressive activity
US5457111A (en) 1991-09-05 1995-10-10 Abbott Laboratories Macrocyclic immunomodulators
US5770592A (en) * 1991-11-22 1998-06-23 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization using angiostatic steroids
US5679666A (en) 1991-11-22 1997-10-21 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization by treatment with angiostatic steroids
US5516781A (en) * 1992-01-09 1996-05-14 American Home Products Corporation Method of treating restenosis with rapamycin
WO1993019763A1 (en) 1992-03-30 1993-10-14 American Home Products Corporation Rapamycin formulation for iv injection
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
FR2690846B1 (fr) * 1992-05-05 1995-07-07 Aiache Jean Marc Forme galenique pour administration oculaire et procede de preparation.
US5858340A (en) * 1992-05-22 1999-01-12 The Procter & Gamble Company Cosmetic compositions
WO1994005257A1 (en) 1992-09-08 1994-03-17 Allergan, Inc. Sustained release of ophthalmic drugs from a soluble polymer drug delivery vehicle
GB9221220D0 (en) 1992-10-09 1992-11-25 Sandoz Ag Organic componds
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
US5601844A (en) * 1992-11-18 1997-02-11 Fujisawa Pharmaceutical Co., Ltd. Sustained release medicinal preparation
WO1994021642A1 (en) 1993-03-17 1994-09-29 Abbott Laboratories Macrocyclic amide and urea immunomodulators
GB2278780B (en) 1993-05-27 1998-10-14 Sandoz Ltd Macrolide formulations
US5798355A (en) 1995-06-07 1998-08-25 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity
ATE154757T1 (de) * 1993-07-19 1997-07-15 Angiotech Pharm Inc Anti-angiogene mittel und verfahren zu deren verwendung
WO1995003009A1 (en) * 1993-07-22 1995-02-02 Oculex Pharmaceuticals, Inc. Method of treatment of macular degeneration
US5516770A (en) * 1993-09-30 1996-05-14 American Home Products Corporation Rapamycin formulation for IV injection
US5616588A (en) * 1993-09-30 1997-04-01 American Home Products Corporation Rapamycin formulation for IV injection
IL111004A (en) 1993-09-30 1998-06-15 American Home Prod Oral formulations of rapamycin
IL111003A0 (en) 1993-09-30 1994-11-28 American Home Prod Multi-component oral rapamycin formulation
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
CA2175215C (en) 1993-11-19 2008-06-03 Yat Sun Or Semisynthetic analogs of rapamycin (macrolides) being immunomodulators
ATE191218T1 (de) * 1993-12-17 2000-04-15 Novartis Ag Rapamycin-derivate als immunosuppressoren
US5788687A (en) 1994-02-01 1998-08-04 Caphco, Inc Compositions and devices for controlled release of active ingredients
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
CA2185699A1 (en) 1994-04-04 1995-10-12 William R. Freeman Use of phosphonylmethoxyalkyl nucleosides for the treatment of raised intraocular pressure
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
US5621108A (en) * 1994-12-05 1997-04-15 Trustees Of The University Of Pennsylvania Processes and intermediates for preparing macrocycles
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
AU5857396A (en) 1995-05-14 1996-11-29 Optonol Ltd. Intraocular implant, delivery device, and method of implanta tion
KR19990022651A (ko) 1995-06-07 1999-03-25 데이비드 엘. 버스테인 생물학적 사건에 대한 라파마이신 기재 조절방법
US5696135A (en) 1995-06-07 1997-12-09 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity effective at stimulating neuronal growth
US5614547A (en) * 1995-06-07 1997-03-25 Guilford Pharmaceuticals Inc. Small molecule inhibitors of rotamase enzyme
US6037370A (en) 1995-06-08 2000-03-14 Vertex Pharmaceuticals Incorporated Methods and compositions for stimulating neurite growth
FR2736550B1 (fr) 1995-07-14 1998-07-24 Sandoz Sa Composition pharmaceutique sous la forme d'une dispersion solide comprenant un macrolide et un vehicule
JPH0930966A (ja) 1995-07-24 1997-02-04 Gakuzo Tamura 眼科用新規製剤
KR100523754B1 (ko) * 1995-09-19 2007-06-04 아스텔라스세이야쿠 가부시키가이샤 에어졸조성물
US5773019A (en) * 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
AU712015B2 (en) 1995-10-31 1999-10-28 Merck & Co., Inc. Triterpene derivatives with immunosuppressant activity
GB9601120D0 (en) * 1996-01-19 1996-03-20 Sandoz Ltd Organic compounds
WO1997029775A1 (en) 1996-02-13 1997-08-21 G.D. Searle & Co. Compositions comprising a cyclooxygenase-2 inhibitor and a leukotriene b4 receptor antagonist
US6034239A (en) 1996-03-08 2000-03-07 Takeda Chemical Industries, Ltd. Tricyclic compounds, their production and use
US5743274A (en) 1996-03-18 1998-04-28 Peyman; Gholam A. Macular bandage for use in the treatment of subretinal neovascular members
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
JP3309175B2 (ja) 1996-03-25 2002-07-29 参天製薬株式会社 タンパク性薬物含有強膜プラグ
JPH09315954A (ja) 1996-05-30 1997-12-09 Kita:Kk 眼科手術後の眼組織混濁防止剤。
GB9710962D0 (en) * 1997-05-28 1997-07-23 Univ Cambridge Tech Polyketides and their synthesis
RU2123314C1 (ru) 1996-06-27 1998-12-20 Павлова Татьяна Вячеславовна Способ постановки ирригационной системы в теноново пространство
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
US6142969A (en) 1996-10-25 2000-11-07 Anamed, Inc. Sutureless implantable device and method for treatment of glaucoma
AUPO427196A0 (en) 1996-12-19 1997-01-23 University Of Sydney, The A method for preventing or controlling cataract
US5800807A (en) 1997-01-29 1998-09-01 Bausch & Lomb Incorporated Ophthalmic compositions including glycerin and propylene glycol
JPH10218787A (ja) 1997-02-06 1998-08-18 Akio Okamoto 神経栄養因子による眼科用組成物
TW450810B (en) * 1997-02-20 2001-08-21 Fujisawa Pharmaceutical Co Macrolides antibiotic pharmaceutical composition for preventing and treating skin diseases
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
EP1003569B1 (en) * 1997-08-11 2004-10-20 Allergan, Inc. Sterile bioerodible implant device containing retinoid with improved biocompatability and method of manufacture
US5902598A (en) 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6342507B1 (en) 1997-09-05 2002-01-29 Isotechnika, Inc. Deuterated rapamycin compounds, method and uses thereof
US20060198867A1 (en) 1997-09-25 2006-09-07 Abbott Laboratories, Inc. Compositions and methods of administering rapamycin analogs using medical devices for long-term efficacy
US20030190286A1 (en) 1997-10-01 2003-10-09 Dugger Harry A. Buccal, polar and non-polar spray or capsule containing drugs for treating allergies or asthma
KR20010031363A (ko) 1997-10-22 2001-04-16 젠스 포니카우 진균류에 의한 점막염을 국소 치료하기 위한 항진균제의용도
AR043071A1 (es) 1997-10-31 2005-07-20 Abbott Lab Uso de macrolidos para el tratamiento del cancer y degeneracion macular y una composicion farmaceutica
CZ287497B6 (cs) 1997-12-30 2000-12-13 Galena, A. S. Topické oční přípravky s imunosupresivními látkami
AU2337599A (en) 1998-01-23 1999-08-09 Microcide Pharmaceuticals, Inc. Efflux pump inhibitors
DE19810655A1 (de) 1998-03-12 1999-09-16 Univ Eberhard Karls Arzneimittel mit einem Gehalt an Ciclosporin
WO1999045920A2 (en) 1998-03-13 1999-09-16 Johns Hopkins University School Of Medicine The use of a protein tyrosine inhibitor such as genistein in the treatment of diabetic retinopathy or ocular inflammation
EP1083896A4 (en) 1998-05-11 2002-09-11 Endowment For Res In Human Bio USE OF NEOMYCIN FOR TREATING ANGIOGENESIS-RELATED DISEASES
US6399629B1 (en) * 1998-06-01 2002-06-04 Microcide Pharmaceuticals, Inc. Efflux pump inhibitors
WO2000006121A1 (de) 1998-07-24 2000-02-10 Jago Research Ag Medizinische aerosolformulierungen
US6378526B1 (en) * 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US6384056B1 (en) 1998-08-14 2002-05-07 Gpi Nil Holdings, Inc. Heterocyclic thioesters or ketones for vision and memory disorders
US7338976B1 (en) 1998-08-14 2008-03-04 Gpi Nil Holdings, Inc. Heterocyclic esters or amides for vision and memory disorders
US6632836B1 (en) 1998-10-30 2003-10-14 Merck & Co., Inc. Carbocyclic potassium channel inhibitors
US6303637B1 (en) 1998-10-30 2001-10-16 Merck & Co., Inc. Heterocyclic potassium channel inhibitors
BR9915434A (pt) 1998-11-17 2001-12-04 Ortho Mcneil Pharm Inc Derivados anticonvulsivos úteis no tratamento dedistúrbio de estresse pós-traumático
GB9826882D0 (en) 1998-12-07 1999-01-27 Novartis Ag Organic compounds
EP1135150B1 (en) * 1998-12-11 2012-10-17 Tris Pharma, Inc. Self-emulsifying compositions for drugs poorly soluble in water
US6399655B1 (en) 1998-12-22 2002-06-04 Johns Hopkins University, School Of Medicine Method for the prophylactic treatment of cataracts
NZ513111A (en) 1998-12-24 2003-10-31 R Tech Ueno Ltd Agent for treating visual cell function disorder
US6864232B1 (en) * 1998-12-24 2005-03-08 Sucampo Ag Agent for treating visual cell function disorder
CA2358296A1 (en) 1999-01-05 2000-07-13 Anthony P. Adamis Targeted transscleral controlled release drug delivery to the retina and choroid
US6706283B1 (en) 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6267985B1 (en) 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6217895B1 (en) * 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6239113B1 (en) * 1999-03-31 2001-05-29 Insite Vision, Incorporated Topical treatment or prevention of ocular infections
US6254860B1 (en) 1999-04-13 2001-07-03 Allergan Sales, Inc. Ocular treatment using cyclosporin-A derivatives
US7063857B1 (en) 1999-04-30 2006-06-20 Sucampo Ag Use of macrolide compounds for the treatment of dry eye
ATE281167T1 (de) 1999-04-30 2004-11-15 Sucampo Ag Verwendung von makroliden zur behandlung von trockenen augen
KR20070058028A (ko) * 1999-05-24 2007-06-07 소너스파머슈티칼즈인코포레이티드 난용성 약물용 에멀젼 부형제
US6576224B1 (en) * 1999-07-06 2003-06-10 Sinuspharma, Inc. Aerosolized anti-infectives, anti-inflammatories, and decongestants for the treatment of sinusitis
JP2001064198A (ja) 1999-08-24 2001-03-13 Teika Seiyaku Kk 角膜疾患治療剤
BR0015053A (pt) 1999-10-18 2002-07-02 Fujisawa Pharmaceutical Co Método para produzir uma preparação de lipossoma e preparação de lipossoma
ES2315598T3 (es) 1999-10-21 2009-04-01 Alcon, Inc. Dispositivo para la administracion de farmacos.
DE60018777T2 (de) 1999-10-21 2006-02-02 Alcon Inc. Medikamentenversorgung der sub-tenon
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
JP2003512439A (ja) 1999-10-22 2003-04-02 バイオジェン インコーポレイテッド 眼の免疫学的合併症を処置するためのcd40:cd154結合遮断剤の使用
WO2001030337A2 (en) * 1999-10-22 2001-05-03 Orbon Corporation Ophthalmic formulation of dopamine antagonists
ES2283344T3 (es) 1999-10-29 2007-11-01 Kosan Biosciences, Inc. Analogos de la rapamicina.
RU2149615C1 (ru) 1999-11-10 2000-05-27 Нестеров Аркадий Павлович Способ введения лекарственных препаратов при заболеваниях заднего отрезка глаза
US6531464B1 (en) 1999-12-07 2003-03-11 Inotek Pharmaceutical Corporation Methods for the treatment of neurodegenerative disorders using substituted phenanthridinone derivatives
GEP20053427B (en) 1999-12-23 2005-01-25 Pfizer Prod Inc Pharmaceutical Compositions Providing Enhanced Drug Concentrations
US6489335B2 (en) 2000-02-18 2002-12-03 Gholam A. Peyman Treatment of ocular disease
US20030018044A1 (en) * 2000-02-18 2003-01-23 Peyman Gholam A. Treatment of ocular disease
GB0003932D0 (en) 2000-02-18 2000-04-12 Novartis Ag Pharmaceutical compositions
ATE250924T1 (de) 2000-04-07 2003-10-15 Medidom Lab Cyklosporin, hyaluronsäure und polysorbate enthaltenes augenarzneimittel
US6375972B1 (en) * 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
DE10026698A1 (de) * 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
FR2809619B1 (fr) 2000-06-06 2004-09-24 Pharmatop Nouvelles formulations aqueuses de principes actifs sensibles a l'oxydation et leur procede d'obtention
CN1127955C (zh) 2000-07-07 2003-11-19 中山医科大学中山眼科中心 一种眼前段及眼表免疫相关性疾病治疗药物
ATE547080T1 (de) * 2000-08-30 2012-03-15 Univ Johns Hopkins Vorrichtungen zur intraokularen arzneimittelabgabe
CN1204919C (zh) 2000-08-30 2005-06-08 中国科学院化学研究所 长效环孢素眼内释药体系
AU2001296558A1 (en) 2000-10-03 2002-04-15 Oncopharmaceutical, Inc. Inhibitors of angiogenesis and tumor growth for local and systemic administration
US20050084514A1 (en) * 2000-11-06 2005-04-21 Afmedica, Inc. Combination drug therapy for reducing scar tissue formation
US6534693B2 (en) * 2000-11-06 2003-03-18 Afmedica, Inc. Surgically implanted devices having reduced scar tissue formation
US20040018228A1 (en) * 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
DE60114229T2 (de) * 2000-11-29 2006-07-06 Allergan, Inc., Irvine Verhinderung von transplantatabstossung im auge
DE60130928T2 (de) 2001-01-03 2008-07-17 Bausch & Lomb Inc. Vorrichtung zur verzögerten wirkstofffreisetzung mit beschichteten medikamentenkernen
ES2621652T3 (es) 2001-01-16 2017-07-04 Vascular Therapies, Inc. Dispositivo implantable que contiene material de matriz reabsorbible y rapamicina para evitar o tratar enfermedades vasculoproliferativas
US7181287B2 (en) * 2001-02-13 2007-02-20 Second Sight Medical Products, Inc. Implantable drug delivery device
DK3143995T3 (en) 2001-02-19 2019-01-28 Novartis Pharma Ag Rapamycin derivative for the treatment of lung cancer
AR033151A1 (es) 2001-04-12 2003-12-03 Sucampo Pharmaceuticals Inc Agente para el tratamiento oftalmico topico de las enfermedades inflamatorias oculares
US7563255B2 (en) * 2001-05-03 2009-07-21 Massachusetts Eye And Ear Infirmary Implantable drug delivery device and use thereof
JP2002332225A (ja) 2001-05-09 2002-11-22 Lion Corp 眼科用組成物
WO2002100318A2 (en) 2001-06-12 2002-12-19 Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US7034037B2 (en) * 2001-06-29 2006-04-25 Ethicon, Inc. Compositions and medical devices utilizing bioabsorbable polymeric waxes and rapamycin
US6787179B2 (en) 2001-06-29 2004-09-07 Ethicon, Inc. Sterilization of bioactive coatings
US7033604B2 (en) * 2001-07-06 2006-04-25 Sucampo Ag Composition for topical administration
US6599891B2 (en) 2001-07-20 2003-07-29 Qlt Inc. Treatment of macular edema
TWI324925B (en) 2001-08-23 2010-05-21 Novartis Ag Ophthalmic composition
US6812220B2 (en) 2001-08-29 2004-11-02 University Of British Columbia Pharmaceutical compositions and methods relating to fucans
GB0122318D0 (en) 2001-09-14 2001-11-07 Novartis Ag Organic compounds
US6656460B2 (en) 2001-11-01 2003-12-02 Yissum Research Development Method and composition for dry eye treatment
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6663880B1 (en) * 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
JP4251988B2 (ja) 2001-12-14 2009-04-08 ヤーゴテック アクチェンゲゼルシャフト シクロスポリンを含む医薬製剤およびその使用
GB0200429D0 (en) * 2002-01-09 2002-02-27 Novartis Ag Organic compounds
US20050232952A1 (en) 2002-03-01 2005-10-20 Gregory Lambert Self emulsifying drug delivery systems for poorly soluble drugs
AU2003209475A1 (en) 2002-03-07 2003-09-16 Vectura Limited Fast melt multiparticulate formulations for oral delivery
JP2005528352A (ja) 2002-03-12 2005-09-22 エチファルム 生体活性物質の持続的放出に用いるためのゲル化特性を有する組成物
WO2003092671A1 (en) 2002-05-03 2003-11-13 The Queen Elizabeth Hospital Research Foundation Inc. Method of inhibiting angiogenesis
CN1456350A (zh) 2002-05-10 2003-11-19 刘继东 环孢素眼用凝胶
NZ518997A (en) 2002-05-16 2004-12-24 Interag Injection formulation for parenteral administration of biodegradable implant for sustained release of active agent
US20040057958A1 (en) * 2002-05-17 2004-03-25 Waggoner David W. Immunogenicity-enhancing carriers and compositions thereof and methods of using the same
WO2004007709A2 (en) 2002-07-16 2004-01-22 Biotica Technology Limited Production of polyketides
AU2003254168A1 (en) 2002-07-30 2004-02-16 Wyeth Parenteral formulations containing a rapamycin hydroxyester
US7429619B2 (en) 2002-08-02 2008-09-30 Mcneil Consumer Healthcare Polyacrylic film forming compositions
BR0313425A (pt) 2002-08-09 2005-07-05 Sucampo Pharmaceuticals Inc Composição oftálmica para tratamento de alergia ocular, uso do composto de macrolìdeo e pacote comercial
US20050031650A1 (en) 2002-08-26 2005-02-10 Ethypharm Composition with gelling properties for the sustained delivery of bioactive substances
CA2689424A1 (en) * 2002-09-29 2004-04-08 Surmodics, Inc. Methods for treatment and/or prevention of retinal disease
US7704518B2 (en) 2003-08-04 2010-04-27 Foamix, Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20040091455A1 (en) 2002-10-31 2004-05-13 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration
US7354574B2 (en) * 2002-11-07 2008-04-08 Advanced Ocular Systems Limited Treatment of ocular disease
CN100453066C (zh) 2002-12-04 2009-01-21 参天制药株式会社 利用结膜下储存库的药物释放系统
WO2004060283A2 (en) 2002-12-16 2004-07-22 Nitromed, Inc. Nitrosated and nitrosylated rapamycin compounds, compositions and methods of use
WO2004062669A1 (en) 2003-01-16 2004-07-29 Sucampo Ag Use of a macrolide compound for treating dry eye
EP1599573B1 (en) 2003-02-17 2013-06-19 Cold Spring Harbor Laboratory Model for studying the role of genes in tumor resistance to chemotherapy
US20050074497A1 (en) * 2003-04-09 2005-04-07 Schultz Clyde L. Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US20050255144A1 (en) 2003-04-09 2005-11-17 Directcontact Llc Methods and articles for the delivery of medicaments to the eye for the treatment of posterior segment diseases
AU2003228126A1 (en) 2003-05-02 2004-11-23 Arturo Jimenez Bayardo Method of preparing an aqueous solution of cyclosporin-a and resulting aqueous solution
US7160867B2 (en) * 2003-05-16 2007-01-09 Isotechnika, Inc. Rapamycin carbohydrate derivatives
DE602004016995D1 (de) * 2003-06-26 2008-11-20 Control Delivery Sys Inc In-situ gelierendes arzneimittelabgabesystem
EP1510206A1 (en) 2003-08-29 2005-03-02 Novagali Pharma SA Self-nanoemulsifying oily formulation for the administration of poorly water-soluble drugs
US20050181018A1 (en) 2003-09-19 2005-08-18 Peyman Gholam A. Ocular drug delivery
US7083803B2 (en) 2003-09-19 2006-08-01 Advanced Ocular Systems Limited Ocular solutions
US7087237B2 (en) 2003-09-19 2006-08-08 Advanced Ocular Systems Limited Ocular solutions
US7402399B2 (en) 2003-10-14 2008-07-22 Monogram Biosciences, Inc. Receptor tyrosine kinase signaling pathway analysis for diagnosis and therapy
US20060141049A1 (en) 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
WO2005051316A2 (en) 2003-11-20 2005-06-09 Angiotech International Ag Polymer compositions and methods for their use
US7186518B2 (en) * 2003-11-21 2007-03-06 Dade Behring Inc. Method and composition useful for determining FK 506
EP1691746B1 (en) 2003-12-08 2015-05-27 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
US20050256081A1 (en) 2004-02-26 2005-11-17 Peyman Gholam A Tetracycline derivatives for the treatment of ocular pathologies
WO2005094279A2 (en) 2004-03-25 2005-10-13 The Rothberg Institute For Childhood Diseases Immortalized human tuberous sclerosis null angiomyolipoma cell and method of use thereof
US7846940B2 (en) 2004-03-31 2010-12-07 Cordis Corporation Solution formulations of sirolimus and its analogs for CAD treatment
ES2435398T3 (es) 2004-04-08 2013-12-19 Eye Co Pty Ltd. Tratamiento de retinopatía exudativa con mineralocorticoides
US20050232965A1 (en) 2004-04-15 2005-10-20 Robert Falotico Local administration of a combination of rapamycin and 17 beta-estradiol for the treatment of vulnerable plaque
US20050244472A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Intraocular drug delivery systems containing excipients with reduced toxicity and related methods
US20050250804A1 (en) 2004-05-06 2005-11-10 Glenmark Pharmaceuticals Limited Pharmaceutical gel formulations
US20060018948A1 (en) 2004-06-24 2006-01-26 Guire Patrick E Biodegradable implantable medical devices, methods and systems
US20060024350A1 (en) * 2004-06-24 2006-02-02 Varner Signe E Biodegradable ocular devices, methods and systems
WO2006002365A2 (en) 2004-06-24 2006-01-05 Angiotech International Ag Microparticles with high loadings of a bioactive agent
US7534449B2 (en) * 2004-07-01 2009-05-19 Yale University Targeted and high density drug loaded polymeric materials
US20060110428A1 (en) 2004-07-02 2006-05-25 Eugene Dejuan Methods and devices for the treatment of ocular conditions
WO2006020755A2 (en) 2004-08-10 2006-02-23 Beth Israel Deaconess Medical Center, Inc. Methods for identifying inhibitors of the mtor pathway as diabetes therapeutics
US20060034891A1 (en) * 2004-08-12 2006-02-16 Laurie Lawin Biodegradable controlled release bioactive agent delivery device
AR050374A1 (es) 2004-08-20 2006-10-18 Wyeth Corp Forma polimorfica de rafampicina
DE602005024012D1 (de) 2004-08-27 2010-11-18 Cordis Corp Lösungsmittelfreies amorphes rapamycin
MX344532B (es) 2004-10-01 2016-12-19 Ramscor Inc Composiciones de farmaco de liberacion sostenida convenientemente implantables.
MX2007003789A (es) 2004-10-04 2007-07-20 Qlt Usa Inc Suministro ocular de formulaciones polimericas para suministro.
US20070299409A1 (en) 2004-11-09 2007-12-27 Angiotech Biocoatings Corp. Antimicrobial Needle Coating For Extended Infusion
CN101137369A (zh) * 2005-02-09 2008-03-05 马库赛特公司 用于眼治疗的制剂
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
GB0504995D0 (en) * 2005-03-11 2005-04-20 Biotica Tech Ltd Use of a compound
EP1868661A1 (en) 2005-04-08 2007-12-26 SurModics, Inc. Sustained release implants for subretinal delivery
KR20080018874A (ko) 2005-04-27 2008-02-28 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. 인간 질병과 관련된 돌연변이 단백질의 분해 촉진을 위한물질 및 방법
US20060247265A1 (en) 2005-04-28 2006-11-02 Clackson Timothy P Therapies for treating disorders of the eye
ES2400916T3 (es) 2005-06-08 2013-04-15 Janssen Biotech, Inc. Una terapia celular para degeneración ocular
US20070014760A1 (en) * 2005-07-18 2007-01-18 Peyman Gholam A Enhanced recovery following ocular surgery
CA2615990A1 (en) 2005-07-18 2007-01-25 Minu, L.L.C. Enhanced ocular neuroprotection/neurostimulation
US20070134244A1 (en) 2005-10-14 2007-06-14 Alcon, Inc. Combination treatment for pathologic ocular angiogenesis
DE102006051512A1 (de) 2005-12-06 2007-06-14 Pari GmbH Spezialisten für effektive Inhalation Pharmazeutische Medikamentenzusammensetzungen mit Cyclosporin
US20070173538A1 (en) 2005-12-23 2007-07-26 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
AU2007206582B2 (en) 2006-01-23 2011-09-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Microspheres comprising nanocapsules containing a lipophilic drug
AU2007219981B2 (en) 2006-02-28 2013-11-07 Paloma Pharmaceuticals, Inc. Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100899A (en) * 1989-06-06 1992-03-31 Roy Calne Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof
US5023262A (en) * 1990-08-14 1991-06-11 American Home Products Corporation Hydrogenated rapamycin derivatives
US5120842A (en) * 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5120842B1 (zh) * 1991-04-01 1993-07-06 A Failli Amedeo
US5120725A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Bicyclic rapamycins
US5120727A (en) * 1991-05-29 1992-06-09 American Home Products Corporation Rapamycin dimers
US5387589A (en) * 1991-07-25 1995-02-07 University Of Louisville Research Foundation, Inc. Method of treating ocular inflammation
US5192802A (en) * 1991-09-25 1993-03-09 Mcneil-Ppc, Inc. Bioadhesive pharmaceutical carrier
US5177203A (en) * 1992-03-05 1993-01-05 American Home Products Corporation Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents
US5536729A (en) * 1993-09-30 1996-07-16 American Home Products Corporation Rapamycin formulations for oral administration
US5527907A (en) * 1993-11-19 1996-06-18 Abbott Laboratories Macrolide immunomodulators
US5773021A (en) * 1994-03-14 1998-06-30 Vetoquinol S.A. Bioadhesive ophthalmic insert
US6455518B2 (en) * 1996-07-30 2002-09-24 Novartis Ag Pharmaceutical compositions for the treatment of transplant rejection, autoimmune or inflammatory conditions comprising cyclosporin a and 40-O-(2-hydroxyethyl)-rapamycin
US6015815A (en) * 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6329386B1 (en) * 1997-09-26 2001-12-11 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6376517B1 (en) * 1998-08-14 2002-04-23 Gpi Nil Holdings, Inc. Pipecolic acid derivatives for vision and memory disorders
US6890546B2 (en) * 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20030203892A1 (en) * 1998-12-23 2003-10-30 G.D. Searle, Llc Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
US6416777B1 (en) * 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US6777000B2 (en) * 2001-02-28 2004-08-17 Carrington Laboratories, Inc. In-situ gel formation of pectin
US6713081B2 (en) * 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
US20030171320A1 (en) * 2001-11-09 2003-09-11 Guyer David R. Methods for treating ocular neovascular diseases
US7026374B2 (en) * 2002-06-25 2006-04-11 Aruna Nathan Injectable microdispersions for medical applications
US20050187241A1 (en) * 2002-09-18 2005-08-25 Rong Wen Method of inhibiting choroidal neovascularization
US7083802B2 (en) * 2003-07-31 2006-08-01 Advanced Ocular Systems Limited Treatment of ocular disease
US20050064010A1 (en) * 2003-09-18 2005-03-24 Cooper Eugene R. Transscleral delivery
US20050142162A1 (en) * 2003-11-20 2005-06-30 Angiotech International Ag Soft tissue implants and anti-scarring agents
US20060182783A1 (en) * 2004-04-30 2006-08-17 Allergan, Inc. Sustained release intraocular drug delivery systems
US20060182771A1 (en) * 2005-02-09 2006-08-17 Dor Philippe J Formulations for ocular treatment
US20060264453A1 (en) * 2005-02-09 2006-11-23 Macusight, Inc. Rapamycin formulations and methods of their use
US20060257450A1 (en) * 2005-03-21 2006-11-16 Sreenivasu Mudumba Drug delivery systems for treatment of diseases or conditions
US20060216288A1 (en) * 2005-03-22 2006-09-28 Amgen Inc Combinations for the treatment of cancer
US20070203173A1 (en) * 2006-02-09 2007-08-30 Sreenivasu Mudumba Stable formulations, and methods of their preparation and use
US20070265294A1 (en) * 2006-03-23 2007-11-15 Kleinman David M Formulations and methods for vascular permeability-related diseases or conditions

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042834A1 (en) * 2004-05-07 2009-02-12 S.K. Pharmaceuticals, Inc. Stabilized Glycosaminoglycan Preparations and Related Methods
US8697671B2 (en) 2004-05-07 2014-04-15 S.K. Pharmaceuticals, Inc. Stabilized glycosaminoglycan preparations and related methods
US8288362B2 (en) 2004-05-07 2012-10-16 S.K. Pharmaceuticals, Inc. Stabilized glycosaminoglycan preparations and related methods
US9511088B2 (en) 2004-05-07 2016-12-06 S.K. Pharmaceuticals, Inc. Stabalized glycosaminoglycan preparations and related methods
US8367097B2 (en) 2005-02-09 2013-02-05 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US9381153B2 (en) 2005-02-09 2016-07-05 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US8663639B2 (en) * 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
US9387165B2 (en) 2005-02-09 2016-07-12 Santen Pharmaceutical Co., Ltd. Rapamycin formulations and methods of their use
US20090074786A1 (en) * 2005-02-09 2009-03-19 Macusight, Inc. Formulations for treating ocular diseases and conditions
US8637070B2 (en) 2005-02-09 2014-01-28 Santen Pharmaceutical Co., Ltd. Rapamycin formulations and methods of their use
US8927005B2 (en) 2005-02-09 2015-01-06 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US20060257450A1 (en) * 2005-03-21 2006-11-16 Sreenivasu Mudumba Drug delivery systems for treatment of diseases or conditions
US11298444B2 (en) 2005-04-01 2022-04-12 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
US20070173538A1 (en) * 2005-12-23 2007-07-26 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
US8658667B2 (en) 2006-02-09 2014-02-25 Santen Pharmaceutical Co., Ltd. Stable formulations, and methods of their preparation and use
US8492400B2 (en) 2006-02-09 2013-07-23 Santen Pharmaceutical Co., Ltd. Stable formulations, and methods of their preparation and use
US20070203173A1 (en) * 2006-02-09 2007-08-30 Sreenivasu Mudumba Stable formulations, and methods of their preparation and use
US8486960B2 (en) 2006-03-23 2013-07-16 Santen Pharmaceutical Co., Ltd. Formulations and methods for vascular permeability-related diseases or conditions
US9452156B2 (en) 2006-03-23 2016-09-27 Santen Pharmaceutical Co., Ltd. Formulations and methods for vascular permeability-related diseases or conditions
US8222271B2 (en) 2006-03-23 2012-07-17 Santen Pharmaceutical Co., Ltd. Formulations and methods for vascular permeability-related diseases or conditions
US7872068B2 (en) 2006-05-30 2011-01-18 Incept Llc Materials formable in situ within a medical device
US8044137B2 (en) 2006-05-30 2011-10-25 Incept Llc Materials formable in situ within a medical device
US8148328B2 (en) 2006-08-08 2012-04-03 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
US20090163408A1 (en) * 2006-08-08 2009-06-25 The Regents Of The University Of California Salicylanilides enhance oral delivery of therapeutic peptides
US20080132475A1 (en) * 2006-12-05 2008-06-05 Charles Gerald Connor Treatment for dry eye
WO2008070726A3 (en) * 2006-12-05 2008-08-21 Southern College Of Optometry Treatment for dry eye
US11078262B2 (en) 2007-04-30 2021-08-03 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
EP2446890A1 (en) * 2007-04-30 2012-05-02 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
EP2606899A1 (en) * 2007-04-30 2013-06-26 Allergan, Inc. High viscosity macromolecluar compositions for treating ocular conditions
AU2017202760B2 (en) * 2007-04-30 2019-04-18 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
EP2606899B1 (en) 2007-04-30 2015-04-15 Allergan, Inc. High viscosity macromolecluar compositions for treating ocular conditions
WO2008134644A1 (en) * 2007-04-30 2008-11-06 Allergan, Inc. High viscosity macromolecular compositions for treating ocular conditions
US9775906B2 (en) 2007-07-09 2017-10-03 Incept Llc Hydrogel polymeric compositions and methods
US9370485B2 (en) 2007-07-09 2016-06-21 Incept, Llc Hydrogel polymeric compositions and methods
US9125807B2 (en) 2007-07-09 2015-09-08 Incept Llc Adhesive hydrogels for ophthalmic drug delivery
US10251954B2 (en) 2007-07-09 2019-04-09 Incept, Llc Hydrogel polymeric compositions and methods
US11324828B2 (en) 2007-07-09 2022-05-10 Incept, Llc Hydrogel polymeric compositions and methods
US20090017097A1 (en) * 2007-07-09 2009-01-15 Sawhney Amarpreet S Hydrogel polymeric compositions and methods
WO2009014510A1 (en) * 2007-07-20 2009-01-29 Alcon, Inc. Pharmaceutical formulation for delivery of receptor tyrosine kinase inhibiting (rtki) compounds to the eye
JP2010536797A (ja) * 2007-08-16 2010-12-02 マクサイト, インコーポレイテッド 眼の疾患または状態を治療するための製剤
WO2009023877A3 (en) * 2007-08-16 2009-04-09 Macusight Inc Formulations for treatment of ocular diseases or conditions
WO2009064617A1 (en) * 2007-11-14 2009-05-22 S.K. Pharmaceuticals, Inc. Stabilized glycosaminolglycan preparations and related methods
US20100016264A1 (en) * 2007-12-05 2010-01-21 Connor Charles G Treatment for dry eye using testosterone and progestagen
US20090275529A1 (en) * 2008-05-05 2009-11-05 Reiss Allison B Method for improving cardiovascular risk profile of cox inhibitors
WO2010065024A1 (en) * 2008-12-05 2010-06-10 Kador Peter F Topical treatment of cataracts in dogs
US8563027B2 (en) 2009-02-12 2013-10-22 Incept, Llc Drug delivery through hydrogel plugs
US8409606B2 (en) 2009-02-12 2013-04-02 Incept, Llc Drug delivery through hydrogel plugs
US9446093B2 (en) 2009-09-23 2016-09-20 Alcon Research, Ltd. Injectable aqueous ophthalmic composition and method of use therefor
TWI492769B (zh) * 2009-09-23 2015-07-21 Alcon Res Ltd 可注射的水性眼用組成物及其使用之方法
WO2011037908A1 (en) * 2009-09-23 2011-03-31 Alcon Research, Ltd. Injectable aqueous ophthalmic composition and method of use therefor
US20110071091A1 (en) * 2009-09-23 2011-03-24 Chowhan Masood A Injectable aqueous ophthalmic composition and method of use therefor
AU2010298480B2 (en) * 2009-09-23 2014-08-07 Alcon Research, Ltd. Injectable aqueous ophthalmic composition and method of use therefor
US20120071865A1 (en) * 2010-09-17 2012-03-22 Peter Jarrett Flowable hydrogels for control of cell in-migration
US8961501B2 (en) * 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
US20130245119A1 (en) * 2010-11-19 2013-09-19 Keio University Therapeutic or prophylactic agent for corneal epithelium disorders and/or conjunctival epithelium disorders
US8962567B2 (en) 2011-02-15 2015-02-24 Industry Academic Cooperation Foundation, Hallym University Eye drop composition for prevention and treatment of ophthalmic diseases containing fusion protein of FK506 binding protein
WO2012111877A1 (ko) * 2011-02-15 2012-08-23 한림대학교 산학협력단 Fk506 결합 단백질 융합 단백질을 함유하는 안과 질환 예방 및 치료용 점안제 조성물
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
US9498558B2 (en) 2011-09-28 2016-11-22 Globus Medical, Inc. Biodegradeable putty compositions and implant devices, methods, and kits relating to the same
US10143775B2 (en) 2011-09-28 2018-12-04 Globus Medical, Inc. Biodegradeable putty compositions and implant devices, methods, and kits relating to the same
WO2013049496A1 (en) * 2011-09-28 2013-04-04 Globus Medical, Inc. Biodegradable putty compositions and implant devices, methods, and kits relating to the same
US8703786B2 (en) * 2011-12-07 2014-04-22 Texas Southern University Etravirine formulations and uses thereof
US20130150389A1 (en) * 2011-12-07 2013-06-13 Dong Liang Etravirine Formulations and Uses Thereof
US9844597B2 (en) * 2013-04-18 2017-12-19 The Hong Kong University Of Science And Technology Biocompatible in situ hydrogel
US20160038599A1 (en) * 2013-04-18 2016-02-11 Hong Kong University Of Science And Technology Biocompatible in situ Hydrogel
US20170304260A1 (en) * 2014-10-08 2017-10-26 Maamar Achacha Altrenogest formulation and uses thereof for estrus synchronisation in animals
US11400080B2 (en) 2016-05-25 2022-08-02 Santen Pharmaceutical Co., Ltd. Use of sirolimus to treat exudative age-related macular degeneration with persistent edema
US11065217B2 (en) 2017-01-27 2021-07-20 Temple University—Of the Commonwealth System of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
US11759442B2 (en) 2017-01-27 2023-09-19 Temple University-Of The Commonwealth System Of Higher Education Use of short chain fatty acids for the treatment and prevention of diseases and disorders
WO2021051003A1 (en) * 2019-09-13 2021-03-18 Aldeyra Therapeutics, Inc. Ophthalmic formulations of methotrexate
US11911385B1 (en) 2022-12-14 2024-02-27 Aldeyra Therapeutics, Inc. Methotrexate treatment methods

Also Published As

Publication number Publication date
US9381153B2 (en) 2016-07-05
US8367097B2 (en) 2013-02-05
EP1853259A1 (en) 2007-11-14
CN104147005A (zh) 2014-11-19
EP1848431B1 (en) 2016-02-03
US20170020809A1 (en) 2017-01-26
CA2597590A1 (en) 2006-08-17
HUE027352T2 (en) 2016-09-28
US20140194461A1 (en) 2014-07-10
US8927005B2 (en) 2015-01-06
CN104147005B (zh) 2018-07-03
GB2438544A (en) 2007-11-28
KR20070115943A (ko) 2007-12-06
US20170266109A1 (en) 2017-09-21
BRPI0607606B1 (pt) 2021-06-22
KR101492584B1 (ko) 2015-02-11
US20060264453A1 (en) 2006-11-23
EP1848431A1 (en) 2007-10-31
KR20070104931A (ko) 2007-10-29
KR20140020369A (ko) 2014-02-18
US20180311152A1 (en) 2018-11-01
AU2006213588B2 (en) 2011-11-17
US20060182771A1 (en) 2006-08-17
EP1848431A4 (en) 2012-12-26
AU2006213673A1 (en) 2006-08-17
HK1110215A1 (zh) 2008-07-11
JP2008530128A (ja) 2008-08-07
GB0715745D0 (en) 2007-09-19
CA2597596A1 (en) 2006-08-17
US20150150794A1 (en) 2015-06-04
BRPI0607606A2 (pt) 2009-09-15
US20130197024A1 (en) 2013-08-01
WO2006086744A1 (en) 2006-08-17
US20160303093A1 (en) 2016-10-20
CY1117357T1 (el) 2017-04-26
US20100227879A1 (en) 2010-09-09
DK1848431T3 (en) 2016-04-18
US8637070B2 (en) 2014-01-28
JP4974903B2 (ja) 2012-07-11
KR101387456B1 (ko) 2014-04-21
SI1848431T1 (sl) 2016-05-31
AU2006213588A1 (en) 2006-08-17
EP3025713A1 (en) 2016-06-01
WO2006086750A1 (en) 2006-08-17
BRPI0608152A2 (pt) 2009-11-10
HK1200365A1 (zh) 2015-08-07
US9387165B2 (en) 2016-07-12
HK1222537A1 (zh) 2017-07-07
CA2597596C (en) 2014-09-09
ES2564194T3 (es) 2016-03-18
PL1848431T3 (pl) 2016-08-31
JP2008530127A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
US9381153B2 (en) Liquid formulations for treatment of diseases or conditions
US8663639B2 (en) Formulations for treating ocular diseases and conditions
EP2187743B1 (en) Rapamycin formulations for treatment of age related macular degeneration
US8658667B2 (en) Stable formulations, and methods of their preparation and use
US20170049786A1 (en) Mtor pathway inhibitors for treating ocular disorders
US20060257450A1 (en) Drug delivery systems for treatment of diseases or conditions
AU2012200274B2 (en) Liquid formulations for treatment of diseases or conditions
AU2013200089B2 (en) Stable formulations, and methods of their preparation and use

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACUSIGHT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUDUMBA, SREENIVASU;JM DOR, PHILIPPE;NIVAGGIOLI, THIERRY;AND OTHERS;REEL/FRAME:017949/0488;SIGNING DATES FROM 20060626 TO 20060627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SANTEN PHARMACEUTICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MACUSIGHT, INC.;REEL/FRAME:024997/0954

Effective date: 20100617