US20060238702A1 - Ophthalmic lens combinations - Google Patents

Ophthalmic lens combinations Download PDF

Info

Publication number
US20060238702A1
US20060238702A1 US11456521 US45652106A US2006238702A1 US 20060238702 A1 US20060238702 A1 US 20060238702A1 US 11456521 US11456521 US 11456521 US 45652106 A US45652106 A US 45652106A US 2006238702 A1 US2006238702 A1 US 2006238702A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
optic
eye
optical power
supplemental
configured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11456521
Inventor
Robert Glick
Daniel Brady
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbot Medical Optics Inc
Original Assignee
Abbot Medical Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1648Multipart lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1602Corrective lenses for use in addition to the natural lenses of the eyes or for pseudo-phakic eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1629Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing longitudinal position, i.e. along the visual axis when implanted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1635Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/009Special surfaces of prostheses, e.g. for improving ingrowth for hindering or preventing attachment of biological tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0053Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in optical properties

Abstract

An ophthalmic device is provided for a patient that has a basic prescription for distant vision, the ophthalmic device including a primary optic and a supplemental optic. The primary optic is configured for placement in the eye and has a base optical power configured to substantially provide the basic prescription. The supplemental optic has an optical power that is less than the optical power of the primary optic and is configured to provide, in combination with the primary optic, a combined optical power that provides the basic prescription of the patient. In addition, at least one surface of the primary optic is configured to deform in response to an ocular force so as to modify the combined optical power by at least 1 Diopter. The ophthalmic device may further include a movement assembly operably coupled to the primary optic that is structured to cooperate with the eye to effect accommodating deformation of the primary optic in response to an ocular force produced by the eye. The movement assembly may also be configured to provide accommodating axial movement of the primary optic.

Description

    RELATED APPLICATION
  • This application is a Continuation-in-Part Application of U.S. patent application Ser. No. 10/234,801, filed Sep. 4, 2002, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 09/390,380, filed Sep. 3, 1999, which claims the benefit of U.S. Provisional Application No. 60/132,085 filed Apr. 30, 1999. The disclosures of both the provisional application and the non-provisional application are incorporated in their entirety by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to devices and methods for correcting vision and more particularly to ophthalmic device combinations for providing accommodative vision.
  • 2. Description of the Related Art
  • The human eye includes an anterior chamber between the cornea and iris, a posterior chamber including a capsular bag containing a crystalline lens, a ciliary muscle, a vitreous chamber behind the lens containing the vitreous humor, and a retina at the rear of this chamber. The human eye has a natural accommodation ability. The contraction and relaxation of the ciliary muscle provides the eye with near, intermediate and distant vision. This ciliary muscle action shapes the natural crystalline lens to the appropriate optical configuration for focusing light rays entering the eye on the retina.
  • After the natural crystalline lens is removed, for example, because of cataract or other condition, a conventional, monofocal IOL can be placed in the postelior chamber. Such a conventional IOL has very limited, if any, accommodating ability. However, the wearer of such an IOL continues to require the ability to view both near and far (distant) objects. Corrective spectacles may be employed as a useful solution. Multifocal IOLs without accommodating movement have also been used to provide near/far vision correction.
  • Attempts have been made to provide IOLs with accommodating movement along the optical axis of the eye as an alternative to shape changing. Examples of such attempts are set forth in Levy U.S. Pat. No. 4,409,691, U.S. Pat. Nos. 5,674,282 and 5,496,366 to Cumming, U.S. Pat. No. 6,176,878 to Gwon et al, U.S. Pat. No. 6,231,603 to Lang et al, and U.S. Pat. No. 6,406,494 to Laguette et al. The disclosure of each of these patents is incorporated herein by reference.
  • One problem that exists with such IOLs is that they often cannot move sufficiently to obtain the desired accommodation. The degree of accommodation has been closely related to the lens prescription of the individual patient. In addition, the presence of such lenses can result in cell growth from the capsular bag onto the optics of such lenses. Such cell growth, often referred to as posterior capsule opacification (PCO), can interfere with the clarity of the optic to the detriment of the lens wearer's vision.
  • Another problem that can occur is that of providing an intraocular lens that provides a predetermined amount of accommodative power for a wide variety of eyes and with a relatively low amount of aberrations for both near and distant vision. This problem may arise because mechanical stresses used to change the focal length of a lens generally give rise to optical aberrations that reduce visual acuity of the eye. A related problem is that of determining a precise prescription for the aphakic eye prior to the surgical procedure for replacing the natural lens with an accommodative intraocular lens. This may result in implantation of an intraocular lens that is either too strong or too weak for the patient, or that does not produce enough accommodation to provide both near and distant vision. A similar problem may occur when the correct prescription is initially provided, but the patient's prescription changes over time.
  • It would be advantageous to provide IOLs adapted for accommodating movement and/or deformation, which can preferably achieve an acceptable amount of accommodation and/or a reduced risk of PCO. It would also be advantageous to provide accommodating intraocular lenses or systems of ophthalmic devices that accurately provide a patient's prescription for distant and/or near vision in a way that produces little or no optical aberrations.
  • SUMMARY OF THE INVENTION
  • New combinations of ophthalmic devices such as intraocular lens combinations (ILCs) have been disclosed. Embodiments of the present invention provide distance, near and/or intermediate vision by axially moving and/or deforming one or more optical elements, for example, by deforming at least one optical surface (e.g., changing a radius of curvature or conic constant of the surface) and/or changing the thickness of the optic. The present combinations may be used to enhance the degree of accommodation achieved in spite of the movement and space limitations within the eye and to produce near and/or distant vision that is relatively low in optical aberrations. One advantage of the present combinations is the ability to standardize the prescription or optical power of the accommodating lens or optic of the combination. Thus, the required amount of movement and/or deformation in the eye to achieve accommodation can be substantially the same for all patients or for a particular class or category of patients. This greatly facilitates the design of the moving or deforming of the accommodating lens or optic. Further, with at least certain of the present combinations, improved inhibition of PCO is obtained. The present combinations may be designed to be relatively straightforward in construction, implanted or inserted into the eye using systems and procedures which are well known in the art, and be made to function effectively with little or no additional treatments or medications being required. In addition to changing the optical power of the eye, combinations of ophthalmic devices according to the present invention may also include a corrector lens or optic that is used in combination with an accommodating lens, wherein the corrector lens or optic is configured to correct monochromatic and/or a chromatic aberrations of a primary intraocular lens and/or of at least a portion of the ocular imaging system.
  • In one broad aspect of the present invention, intraocular lens combinations (ILCs) comprise a first optic body, second optic body and a movement assembly. The first optic body has a negative or plano optical power and is adapted to be placed in a substantially fixed position in a mammalian eye. In those cases where the first optic body has a negative optical power, it is also called the compensating optic body. The second optic body, also called the primary optic body, has a higher optical power than the first optic body. The movement assembly is coupled to the second optic body and is adapted to cooperate with the eye, for example, the zonules, ciliary muscle and capsular bag of the eye, to effect accommodating movement and/or accommodating deformation of the second optic body in the eye, for example, in response to one or more ocular forces or naturally occurring actions of the eye.
  • Advantageously, the second optic body has a high plus optical power to reduce the amount of movement, for example, axial movement, in the eye needed to provide accommodation for intermediate and near vision. The negative or minus optical power of the first optic body compensates for the excess plus or positive optical power in the first optic body. The use of such a compensating lens, that is the first optic body having a negative optical power, can allow for standardization of the optical power correction in the second optic body. In other words, the optical power of the second optic body, that is the primary or movable optic body, can be approximately equal from optic body to optic body, while the optical power of the first optic body, that is the compensating or fixed optic body, is adjusted from optic body to optic body to meet the specific vision correction needs (prescription) of each individual patient. Consequently, the required amount of movement of the second optic body in the eye can be approximately the same for all patients.
  • The present ILCs provide accommodation, preferably an acceptable degree of accommodation, in spite of movement and space limitations in the eye. For example, the maximum theoretical amount of axial movement for a simple disc lens having an overall diameter of 11 millimeters (mm) and an optic diameter of 5 mm that undergoes 1 mm of compression in its diameter is about 1.65 mm. The amount of axial movement required for a plus 15 diopter optic to provide 2.5 diopters of additional power in the spectacle plane is about 2.6 mm. However, a plus 30 diopter optic requires only 1.2 mm of axial movement to provide 2.5 diopters of additional power in the spectacle plane. Thus, by increasing the plus power of the second optic, which is adapted for accommodating movement, a reduced amount of movement is needed to achieve higher or enhanced degrees of accommodation. The first or fixed optic may have a minus power to compensate for the excess plus power in the second optic.
  • The present ILCs may include first and second optics with optical powers which provide a net plus optical power. To illustrate, assume that the patient requires a plus 15 diopter correction. The first optic body is provided with a minus 15 diopter optical power and the second optic body with a plus 30 diopter optical power. The net optical power of this ILC is approximately the sum of minus 15 diopters and plus 30 diopters or plus 15 diopters, the desired prescription for the patient in question. The powers of the first and second optics are only approximately additive since the net power of the combination also depends on other factors including, but not limited to, the separation of the two optics, the magnitude of the power of each individual optic body and its location in the eye and the like factors. Also, by adjusting the optical power of the first optic body, the net optical power of the ILC can be adjusted or controlled even though the optical power of the second optic body is standardized or remains the same, for example, at a plus 30 diopter optical power. By standardizing the optical power of the second optic body, the amount of movement in the eye required to obtain a given level of accommodation is substantially the same, and preferably well within the space limitations in the eye, from patient to patient.
  • In one very useful embodiment, the movement assembly comprises a member including a proximal end region coupled to the second optic body and a distal end region extending away from the second optic body and adapted to contact a capsular bag of the eye. Such movement assembly may completely circumscribe the second optic body or may be such as to only partially circumscribe the second optic body.
  • The second optic body preferably is adapted to be positioned in the capsular bag of the eye.
  • The first optic body may be coupled to a fixation member, or a plurality of fixation members, adapted to assist in fixating the first optic body in the eye. Each fixation member may have a distal end portion extending away from the first optic body. In one embodiment, the distal end portion of the fixation member is adapted to be located in the capsular bag of the eye. Alternately, the distal end portion of the fixation member may be located in contact with a sulcus of the eye. As a further alternate, the distal end portion of the fixation member may be adapted to be located in an anterior chamber of the eye.
  • The first optic body may be located posterior in the eye relative to the second optic body or anterior in the eye relative to the second optic body. In a useful embodiment, the first optic body is adapted to be positioned in contact with the posterior wall of the capsular bag of the eye. This positioning of the first optic body provides for effective compensation of the plus or positive vision correction power of the second optic body. In addition, by having the first optic body in contact with the posterior wall of the capsular bag, cell growth from the capsular bag onto the ILC, and in particular onto the first and second optics of the ILC, is reduced. This, in turn, reduces the risk of or inhibits posterior capsule opacification (PCO).
  • In one embodiment, the fixation member or members and the movement assembly are secured together, preferably permanently secured together. Thus, when inserting the ILC into the eye, a single combined structure can be inserted. This reduces the need to position the first and second optics relative to each other. Put another way, this feature allows the surgeon to very effectively and conveniently position the ILC in the eye with reduced surgical trauma to the patient.
  • The fixation member and movement assembly may be secured, for example, fused, together at the distal end portion of the fixation member and the distal end region of the movement assembly.
  • In an alternate embodiment, there is no connection between the fixation member or members of the compensating lens and the movement assembly of the primary lens. That is, the compensating lens and primary lens are completely separate from and independent of one another, enabling them to be implanted consecutively, rather than simultaneously. This allows the lenses to be inserted through a smaller incision than would be possible with a combined structure. In the case of separate lenses, however, special care must be taken to axially align the two lenses in order to avoid decentration issues.
  • In another broad aspect of the present invention, ILCs are provided which comprise a first optic body having a posterior surface adapted to be positioned in contact with a posterior wall of the capsular bag of the eye; a second optic body adapted to focus light toward a retina of the eye; and a movement assembly coupled to the second optic body and adapted to cooperate with the eye to effect accommodating movement of the second optic body in the eye. The first optic body has a substantially piano optical power or a negative optical power. These ILCs are particularly adapted to inhibit PCO.
  • The first optic body of these combinations preferably is adapted to be placed in a substantially fixed position in the eye. The posterior surface of the first optic body advantageously is configured to substantially conform to a major portion, that is, at least about 50%, of the posterior wall of the capsular bag of the eye in which the combination is placed. More preferably, the posterior surface of the first optic body is configured to substantially conform to substantially the entire posterior wall of the capsular bag. Such configuration of the first optic body is very useful in inhibiting cell growth from the eye onto the first and second optics and in inhibiting PCO.
  • In one embodiment, the first optic body, which contacts the posterior wall of the capsular, has a substantially plano optical power and the second optic body has a far vision correction power. In an alternate embodiment, the first optic body has a negative optical power and the second optic body has a positive optical power, so that the optical powers of the first and second optics provide a net plus optical power in the eye in which the combination is placed. In this latter embodiment, the second, or primary, optic body is preferably placed in the capsular bag, while the first, or compensating, optic body, may be placed in the bag, the sulcus or the anterior chamber, or attached to the iris.
  • In a very useful embodiment, the first optic body includes an anterior surface and at least one projection extending anteriorly from this anterior surface, The at least one projection is positioned to limit the posterior movement of the second optic body in the eye. Thus, the movement of the second optic body is effectively controlled to substantially maintain the configuration of the combination and/or to substantially maintain an advantageous spacing between the first and second optics.
  • The movement assembly may be structured and functions similarly to movement assembly of the previously described ILCS.
  • The first optic body may have a fixation member or members coupled thereto. The fixation member or members are adapted to assist in fixating the first optic body in the eye, that is in contact with the posterior wall of the capsular bag of the eye. In one embodiment, the first optic body itself is configured and/or structured so that no fixation member or members are needed to maintain the first optic body in contact with the posterior wall of the capsular bag of the eye. The first optic body and the movement assembly of these ILCs may be secured together.
  • In general, the first and second optics of the present ILCs may be made of any suitable materials. The first and second optics may be made of polymeric materials and, along with the movement assembly and any fixation member(s), are deformable for insertion through a small incision in the eye.
  • The present movement assemblies are sufficiently flexible to facilitate movement of the second optic body in the eye upon being acted upon by the eye. In one very useful embodiment, the movement assembly includes a hinge assembly that may be adapted and positioned to facilitate the accommodating movement of the second optic body.
  • In those embodiments in which the first optic body has a substantially piano optic body power, the second optic body preferably has a far vision correction power, more preferably such a power for infinity, in the unaccommodated state.
  • In a further broad aspect of the present invention, methods for inserting an ILC in an eye are provided. Such methods comprise providing an ILC in accordance with the present invention, as described herein. The ILC is placed into the eye, for example, in the capsular bag of the eye or partly in the capsular bag of the eye, using equipment and techniques which are conventional and well known in the art. The ILC is placed in a rest position in the eye, for example, a position so that the eye, and in particular the ciliary muscle and zonules of the eye, effectively cooperate with the movement assembly to move the second optic body of the ILC anteriorly in the eye from the rest position to provide for positive accommodation. No treatments or medications, for example, to paralyze the ciliary muscle, to facilitate fibrosis or otherwise influence the position of the ILC in the eye, are required.
  • In one embodiment, the primary and compensating lenses are connected by the fixation member or members and the movement assembly, and are thus simultaneously implanted in the eye. In another embodiment, the primary lens is implanted first and centered about the optical axis. The compensating lens is then inserted anteriorly of the primary lens and optically aligned with the primary lens. This latter embodiment may require a smaller incision than that required for the unitary combination of the former embodiment. In addition, this embodiment allows for refractive measurements to be made after the primary lens has been implanted, so that any new refractive errors that may have been introduced as a result of the surgery itself can be taken into account, and a more accurate prescription for the compensating lens can be obtained.
  • Preferably, the first and second optics and the movement assembly are deformed prior to being placed into the eye. Once the ILC is placed in the eye, and after a normal period of recovery from the surgical procedure, the ILC, in combination with the eye, provides the mammal or human wearing the ILC with effective accommodation, preferably with reduced risk of PCO. In the unaccommodated state, the ILC preferably provides the mammal or human wearing the ILC with far vision correction.
  • In certain embodiments, an accommodating ophthalmic device comprises a primary optic and supplemental optic. The primary optic is configured for placement in an eye of a subject or patient having a basic prescription (e.g., a basic prescription for distant vision or near vision) and has a base optical power that is selected to at least partially provide the basic prescription. In some embodiments, the base optical power is selected to be within 8 Diopters of the basic prescription, preferably within 4 Diopter of the basic prescription, and even more preferably within 2 Diopters of the basic prescription. The supplemental optic has an optical power that is selected to adjust or compensate for the base optical power and may be selected to have an optical power that is within a range of about −4 Diopters to +4 Diopters. The supplemental optic and the primary optic preferably have a combined optical power that is capable of providing the basic prescription of the patient to within 2 Diopters of the basic prescription, even more preferably within 1 Diopter of the basic prescription. In addition, at least one surface of the primary optic is configured to deform in response to an ocular force (e.g., contraction or relaxation of the ciliary muscle) so as to modify the combined optical power of the ophthalmic device or eye by at least I Diopter. The ophthalmic device may further comprise a movement assembly operably coupled to the primary optic that is structured to cooperate with the eye to effect accommodating deformation of the primary optic in response to an ocular force produced by the eye. The movement assembly may additionally or alternatively be configured to provide accommodating axial movement of the primary optic.
  • The primary optic of the accommodating ophthalmic device may be selected in accordance to the structure of the eye into which the primary optic is to be placed. In some embodiments, the supplemental optic is selected to change or adjust the optical power provided by the primary optic. In other embodiments, the supplemental optic is a corrector optic that is selected to correct the primary optic or a portion of the eye and that has either no optical power or an optical power that is within a range of about −4 Diopters to +4 Diopters. The corrector optic may be configured to correct a monochromatic aberration and/or a chromatic aberration of the primary optic and/or at least a portion of the eye (e.g., the cornea of the eye). For example, the corrector optic may be used to correct or compensate for an astigmatic aberration, a spherical aberration, and/or a comatic aberration.
  • The supplemental optic may be implanted together with the primary optic or separately from the primary optic (e.g., during a subsequent surgery from that in which the primary optic is implanted). The primary optic is preferably implanted within the capsular bag of the eye, but alternatively may be implanted outside the capsular bag, for example in the vicinity of the sulcus. The supplemental optic may also be implanted in the capsular bag in front of the primary optic; however, may alternatively be implanted anywhere in the anterior or posterior chambers of the eye. The primary and supplemental optic may be configured to maintain a separation between one another upon implantation within the eye or may be configured to contact one another in the eye. In some embodiments, the supplemental optic may be a corneal implant configured to be disposed within the cornea or a surface profile disposed on or within the cornea, the profile being formed by a laser (e.g., using a LASIK, LASEK, or PRK procedure).
  • In another aspect of the current invention, the supplemental optic is designed to provide a predetermined refractive outcome in terms of optical performance or image quality. In such embodiments, the supplemental optic may have an overall optical power that may be combined with the optical power of the primary optic to provide near vision, distant vision, or intermediate vision. Alternatively, the supplemental optic may have no or substantially no optical power. In either case, the supplemental optic is a corrector optic that is selected to correct an optical aberration, for example a spherical aberration of the eye and/or at least one surface of an optic of the ophthalmic device. In some embodiments, the supplemental optic is configured to favorably modify the aberrations when the primary optic is in an accommodative and/or disaccommodative state. In other embodiments, the supplemental optic is configured increase the depth of focus of the eye, for example, by changing the optical power or focal length of the supplemental optic as a function of distance from the optical axis thereof. In still other embodiments, the supplemental optic is configured to produce two or more simultaneous foci (e.g., a bifocal or multifocal lens).
  • In certain embodiment, the primary optic, the supplemental optic, and/or the corrector optic are part of a system or set of intraocular lenses for insertion into an eye. For example, the set of intraocular lenses may comprise a plurality of supplemental optics, each supplemental optic having a value of an optical characteristic that is different from the other supplemental optics of the plurality, at least one of the supplemental optics configured to provide, in combination with the primary optic, the basic prescription of the patient. The different optical characteristic may be a different optical power and/or a different amount of an optical aberration or some other optical characteristic (e.g., a different first order diffraction efficiency of a multifocal phase plate).
  • Any and all features described herein and combinations of such features are included within the scope of the present invention provided that the features of any such combination are not mutually inconsistent.
  • Further aspects and advantages of the present invention are set forth in the following detailed description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention may be better understood from the following detailed description when read in conjunction with the accompanying drawings. Such embodiments, which are for illustrative purposes only, depict the novel and non-obvious aspects of the invention. The drawings include the following figures, with like numerals indicating like parts:
  • FIG. 1 is a front plan view of an ILC in accordance with the present invention.
  • FIG. 2 is a cross-sectional view taken generally along line 2-2 of FIG. 1.
  • FIG. 3 is a cross-sectional view of an additional ILC in accordance with the present invention.
  • FIG. 4 is a fragmentary sectional view of an eye in which an alternate ILC in accordance with the present invention has been implanted.
  • FIG. 5 is a fragmentary sectional view, similar to FIG. 4, in which the compensating optic body of the ILC is implanted in the anterior chamber of the eye.
  • FIG. 6 is a front plan view of an intraocular lens useful in an ILC in accordance with the present invention.
  • FIG. 7 is a fragmentary sectional view, similar to FIGS. 4 and 5, in which the compensating optic body of the ILC is implanted in the capsular bag of the eye.
  • FIG. 8 is a front view of a primary lens according to another embodiment of invention having accommodative ability to provide both distant and near vision.
  • FIG. 9 is a cross-sectional view taken generally along line 9-9 of FIG. 8.
  • FIG. 10 is a cross-sectional view of an ophthalmic device according to an embodiment of the invention in an disaccommodative state, the device including the primary lens of FIG. 9 and a supplemental or corrector optic disposed within the anterior chamber of the eye.
  • FIG. 11 is a cross-sectional view of the ophthalmic device shown in FIG. 10 in an accommodative state.
  • FIG. 12 is block diagram of a method of providing accommodative vision according to an embodiment of the invention.
  • FIG. 13 is a cross-sectional view of an ophthalmic device according to an embodiment of the invention including a primary lens of FIG. 9 and a corrector optic support by the sulcus of the eye.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring now to FIGS. 1 and 2, an ILC according to the present invention, shown generally at 10, includes a first optic or optic body 12, a second optic or optic body 14, a disc type fixation member 16 and a disc type movement assembly 18. As used herein, the term “optic” or “optic body” means an optical element that may be used alone or as part of an optical system to produce an image on the retina the eye of a subject. The terms “optic” and “optic body” are used somewhat interchangeable, with the term “optic” emphasizing more the optical characteristics of an optical element and “optic body” referring more to the use an optical element as part of an intraocular lens that may also include, for example, a base element, a movement assembly, or one or more haptics, fixation members, and/or movement members. An optic or optic body may have an optic power to converge or diverge incident light using the principles of refraction, diffraction, and/or reflection of light. Alternatively, the optic or optic body may have substantially no optical power and/or be used to at least partially correct or compensate for an optical aberration, for example, by varying the optical characteristics of the optical element over the surface (e.g., as a function of radius from the center of the optical element). In addition, the optic or optic body may combine both optical power and aberration correction characteristics into a single optical element. Examples of aberration correction are found in U.S. Pat. Nos. 6,338,559 and 6,948,818, which are herein incorporated by reference.
  • The first optic body 12 has substantially piano optical power and is adapted to be held in a fixed position, for example, at least partially by the fixation member 16. When the ILC 10 is positioned in a human eye, the posterior surface 20 of first optic body 12 is in contact with the inner posterior wall of the capsular bag of the eye. This positioning of optic body 12 is very effective in reducing or inhibiting endothelial cell growth from the capsular bag onto the first optic body 12. In effect, the positioning of the first optic body 12 against the posterior surface of the capsular bag inhibits or reduce the risk of PCO.
  • The second optic body 14 includes a distance vision correction power. The movement assembly 18 extends radially outwardly from second optic body 14 and fully circumscribes the second optic body 14. Movement assembly 18 has a proximal end region 22 which is coupled to the second optic body 14 at first optic body periphery 24. Movement assembly 18 extends radially outwardly to a distal end region 26 including a peripheral zone 28, Fixation member 16 includes a distal end portion 30 including a peripheral area 32. The movement assembly 18 and fixation member 16 are fused together at the peripheral zone 28 and peripheral area 32. Thus, the entire ILC 10 is a single unitary structure. The first optic body 12 and fixation member 16 can be manufactured separately from second optic body 14 and movement assembly 18 and, after such separate manufacture, the fixation member and movement assembly can be fused together. Alternately, the entire ILC 10 can be manufactured together. Also, if desired, the first optic body 12 and fixation member 16 can be inserted into the eye separately from the second optic body 14 and movement assembly 18. Thus, ILC 10 can comprise a plurality of separate components.
  • Movement assembly 18 extends outwardly from second optic body 14 sufficiently so that the distal end region 26, and in particular the peripheral zone 28 of the distal end region 28, is in contact with the inner peripheral wall of the posterior capsular bag when the ILC 10 is implanted in the eye.
  • As best seen in FIG. 2, when ILC 10 is at rest, the second optic body 14 is positioned vaulted anteriorly relative to the distal end region 26 of movement assembly 18. In other words, the anterior surface 34 of second optic body 14 is anterior of the anterior surface 36 of movement assembly 18 at distal end region 26 and/or the posterior surface 38 of the second optic body 14 is anterior of a posterior surface 39 of the movement assembly at the distal end region 26.
  • The first and second optics 12 and 14 may be constructed of rigid biocompatible materials, such as polymethyl methacrylate (PMMA), or flexible, deformable materials, such as silicone polymeric materials, acrylic polymeric materials, hydrogel polymeric materials, and the like, which enable the optics 12 and 14 to be rolled or folded for insertion through a small incision into the eye. Although the first and second optics 12 and 14 as shown are refractive lens bodies, the present ILCs can include at least one diffractive lens body, and such embodiment is included within the scope of the present invention.
  • As noted previously, first optic body 12 has a substantially piano or zero optical power. Second optic body 14 is prescribed for the wearer of ILC 10 with a baseline or far (distance) diopter power for infinity. Thus, the wearer of ILC 10 is provided with the vision correction power of second optic body 14 with little or no contribution from the first optic body 12.
  • The fixation member 16 and movement assembly 18, as shown, are integral (unitary) with and circumscribe the first and second optics 12 and 14, respectively. Alternately, fixation member 16 and/or movement assembly 18 can be mechanically or otherwise physically coupled to first optic body 12 and second optic body 14, respectively. Also, the fixation member 16 and/or movement assembly 18 may only partially circumscribe first and second optics 12 and 14, respectively, and such embodiments are included within the scope of the present invention. The fixation member 16 and movement assembly 18 may be constructed from the same or different biocompatible materials as first and second optics 12 and 14, and preferably are made of polymeric materials, such as polypropylene silicone polymeric materials, acrylic polymeric materials, and the like. Movement assembly 18 has sufficient strength and rigidity to be effective to transfer the force from the ciliary muscle of the eye so that the second optic body 14 is movable axially in the eye to effect accommodation.
  • Movement member 18 includes a region of reduced thickness 41 located at the proximal end region 22. This area of reduced thickness, which completely circumscribes the second optic body 14, acts as a hinge to provide additional flexibility to the movement member 18 to extenuate or amplify the accommodating movement of second optic body 14 in response to the action of the ciliary muscle and zonules.
  • The fixation member 16 and movement assembly 18 preferably are deformable, in much the same manner as first and second optics 12 and 14 are deformable, to facilitate passing ILC 10 through a small incision into the eye. The material or materials of construction from which fixation member 16 and movement assembly 18 are made are chosen to provide such members with the desired mechanical properties, e.g., strength and/or deformability, to meet the needs of the particular application involved.
  • The ILC 10 can be inserted into the capsular bag of a mammalian eye using conventional equipment and techniques, for example, after the natural crystalline lens of the eye is removed, such as by using a phacoemulsification technique. The ILC 10 may be rolled or folded prior to insertion into the eye, and is inserted through a small incision into the eye and is located in the capsular bag of the eye.
  • The ILC 10 in the eye is located in a position in the capsular bag so that the posterior surface 20 of first optic body 12 is maintained in contact with the inner posterior wall of the capsular bag. As noted previously, positioning the first optic body 12 in contact with the posterior wall of the capsular bag reduces the risk of or inhibits cell growth from the capsular bag onto the first optic body 12 which, in turn, reduces or inhibits PCO. The ciliary muscle and zonules of the eye provide force sufficient to move axially second optic body 14 sufficiently to provide accommodation to the wearer of ILC 10.
  • The ILC 10 should be sized to facilitate the movement of the second optic body 14 in response to the action of the ciliary muscle and zonules of the eye in which the ILC is placed.
  • If the ILC 10 is too large, the ciliary muscle and zonules will be inhibited from effectively contracting/relaxing so that the amount of accommodating movement will be unduly restricted. Of course, if the ILC 10 is too small, the second optic body 14 will be ineffective to focus light on the retina of the eye, may cause glare and/or the movement member may not cooperate with the eye to effect the desired amount of accommodating movement. If the ILC 10 is to be included in an adult human eye, the first and second optics 12 and 14 preferably have diameters in the range of about 3.5 mm to about 7 mm, more preferably in the range of about 5 mm to about 6 mm. The ILC 10 preferably has an overall maximum diameter, with the movement assembly 18 in the unflexed or rest state, in the range of about 8 mm to about 11 mm or about 12 mm.
  • The present ILC 10 has the ability, in cooperation with the eye, to move the second optic body 14 both posteriorly and anteriorly in the eye, to provide for both distance focus and near focus, respectively. This movement of ILC 10 advantageously occurs in response to action of the ciliary muscle and zonules, which action is substantially similar to that which effects accommodation in an eye having a natural crystalline lens. Thus, the ciliary muscle and zonules require little, if any, retraining to function in accordance with the present invention. The movement member 18, as described herein, preferably is effective to facilitate or even enhance or extenuate the axial movement of the second optic body 14 caused by the action of the ciliary muscle and zonules to provide increased degree of accommodation.
  • FIG. 3 illustrates an additional ILC, shown generally at 110, in accordance with the present invention. Except as expressly described herein, ILC 110 is structured and functions similar to ILC 10. Components of ILC 110 which correspond to components of ILC 10 are indicated by the same reference numeral increased by 100.
  • One primary difference between ILC 110 and ILC 10 relates to the substitution of a posterior lens structure 40 for the first optic body 12 and fixation member 16. Lens structure 40 includes a posterior face 42 which is configured to come in contact with and substantially conform to the inner posterior surface of the capsular bag of the eye in which the ILC 110 is to be placed. Thus, the surface 42 which extends around the peripheral area 44 and across the center region 46 of the lens structure 40 is adapted to come in contact with and substantially conform to the inner posterior wall of the capsular bag. Moreover, the lens structure 40 is adapted to remain in contact with this inner posterior wall of the capsular bag and to be fixed in the eye. This configuration has been found to be very effective in inhibiting cell growth from the eye onto the ILC 110. The anterior surface 48 of lens structure 40 is configured to provide the lens structure with a substantially plano or zero optical power. Second optic body 114 is prescribed for the wearer of ILC 110 with a baseline or distance or far (distance) dioptic power for infinity. Thus, the wearer of ILC 110 is provided with a vision correction power of second optic body 114 with little or no contribution from the lens structure 40.
  • Alternately, second optic body 114 has a high plus power, for example, plus 30 diopters. The lens structure 40, and in particular the region of the lens structure, defined by the anterior surface 48, which extends substantially across the entire field of vision of the wearer of ILC 110, has a minus vision correction power which is controlled to provide the correction prescription for use in the eye in which the ILC 110 is placed. For example, if this eye requires a plus 15 diopter power, the lens structure 40 has a vision correction power of approximately minus 15 diopters so that the net vision correction power of the combination of lens structure 40 and second optic body 114, is plus 15 diopters.
  • The lens structure can be made from materials described previously with regard to first optic body 12 and fixation member 16.
  • One additional feature of lens structure 40 relates to the anteriorly extending projections 50 which extend from the base element 52 of lens structure 40. The number of these projections 50 can range from 2 to about 6 or more. Alternately, a continuous annulus projecting anteriorly can be provided. The purpose of the projections 50 or the continuous annulus is to limit the posterior movement of the second optic body 114 and movement assembly 118. This limitation in the movement provides an additional degree of control of the ILC 110, and prevent a collapse of the ILC 110 and maintains an advantageous degree of separation between second optic body 114 and anterior surface 48 of lens structure 40.
  • FIG. 4 illustrates the use of an alternate ILC in accordance with the present invention. This ILC, shown generally at 60 includes a compensating IOL 61 comprising a first, or compensating, optic body 62, and a primary IOL 63 comprising a second, or primary, optic body 64 and a movement assembly 66. The compensating optic body 62 is coupled to a fixation member 68 which includes a distal end portion 70 in contact with the periphery 72 of the sulcus 73 of eye 74. Fixation member 68 is a disk fixation member which completely circumscribes the compensating optic body 62. However, it should be noted that the disc fixation member 68 can be replaced by two or more filament fixation members or plate fixation members or other types of fixation members, many of which are conventional and well known in the art. Movement assembly 66 is coupled to the primary optic body 64 and completely circumscribes the primary optic body. The primary optic body 64 is located in the capsular bag 76 of eye 74 and is vaulted anteriorly to some extent to enhance accommodating movement of the primary optic body.
  • The primary optic body 64 has a plus power higher than the power required by the basic prescription of a presbyopic patient. For instance for a patient requiring plus 15 diopters of far vision correction, primary optic body 64 might have a corrective power of plus 30 diopters. The compensating optic body 62 is a negative or minus lens having a minus vision correction power which is controlled to provide the correct prescription for use in eye 74. For the patient described above, the compensating optic body 62 has a vision correction power of approximately minus 15 diopters so that the net vision correction power of the combination of compensating optic body 62 and primary optic body 64 equals the patient's basic prescription of plus 15 diopters. The compensating optic body 62, fixation member 68, primary optic body 64 and movement assembly 66 can be made from materials described previously with regard to the first optic body 12, fixation member 16, second optic body 14 and movement assembly 18, respectively.
  • The compensating optic body 62 is shown here as a meniscus style optic body; that is, the anterior surface of the optic body is convex and the posterior surface is concave. However, other negative diopter configurations could also be used, such as plano/concave or biconcave. In addition, one or both of the surfaces of the compensating optic body 62 could be multifocal or aspheric to allow for additional accommodation.
  • In the configuration shown in FIG. 4, the fixation member 68 is in contact with the periphery 72 of the sulcus 73 of the eye 74. This is a relatively durable component of the eye and is effective to support the fixation member 68 in maintaining the compensating optic body 62 in a fixed position.
  • The movement assembly 66 cooperates with the ciliary muscle 78 and zonules 80 of eye 74 to move the second optic body 64 axially along optical axis 82 of the eye. The amount of axial movement achieved will vary from patient to patient depending on such parameters as capsular bag dimensions. The movement is preferably at least about 0.5 mm, and more preferably at least about 0.75 mm. In a very useful embodiment, the accommodation assembly should allow about 1 mm to about 1.2 mm of movement. For example, with a primary optic body 64 having a corrective power of plus 30 diopters, this amount of movement will be amplified to create an additional add power, or diopter shift, of about 1.75 to about 2.5, or possibly as high as 3.5 diopters. A diopter shift in this range is consistent with the near vision, or add, prescription of a “typical” presbyopic patient. The movement assembly 66 may be configured to provide accommodative movement by producing relative motion between the optic body 64 and at least portion of the movement assembly 66. Alternatively, the movement assembly 66 may be configured to maintain a fixed or substantially fixed relationship between the optic body 64 and the movement assembly 66. In such embodiments, accommodation may be provided when both the movement assembly 66 and the optic body 64 move together relative to the retina of the eye as the capsular bag moves and/or changes shape during accommodation.
  • FIG. 5 illustrates another ILC, shown generally at 360, in accordance with the present invention. Except as expressly described herein, ILC 360 is structured and functions similarly to ILC 60. Components of ILC 360 which correspond to components of ILC 60 are identified by the same reference numeral increased by 300.
  • One primary difference between ILC 360 and ILC 60 relates to the positioning of compensating optic body 362. Specifically, compensating IOL 361 is located in anterior chamber 90 of eye 374. Fixation member 368 is coupled to the compensating optic body 362 and extends outwardly and comes in contact with the angle 92 of eye 374. The arrangement of compensating optic body 362 and fixation member 368 is such that the compensating optic body is maintained in a substantially stationary position in the anterior chamber 90 of eye 374. The primary optic body 364 is adapted to be moved axially along optical axis 382 of eye 374 by the ciliary muscle 378 and zonules 380 acting on the movement assembly 366.
  • Still another embodiment of an ILC according to the present invention is shown in FIG. 7, indicated generally at 560. Except as expressly described herein, ILC 560 is structured and functions similarly to ILC 60. Components of ILC 560 which correspond to components of ILC 60 are identified by the same reference numeral increased by 500.
  • Again, ILC 560 differs from ILC 60 primarily in the location of the compensating IOL 561, which is located in the capsular bag 76 with the primary optic body 564, rather than in the sulcus or anterior chamber. In this configuration, the compensating optic body 562 would not be truly stationary since the capsular bag 76 itself typically moves about 0.4 mm during accommodation. However, axial movement of the compensating optic body 562 relative the capsular bag 76 can be limited by appropriate design of the fixation member or members 568. Controlling other factors such as material selection, length, width and angulation of the fixation member or members 58 relative the compensating optic body 562 can limit the overall axial movement of the compensating optic body 562 to less than 0.5 mm which, for the purposes of this invention, can be regarded as “substantially fixed.”
  • A preferred method of implanting an ILC will now be discussed. The method is equally effective for the embodiments of FIGS. 5, 6, and 7, but for purposes of illustration will be discussed specifically with reference to FIG. 7.
  • Initially, the primary IOL 563 is inserted through an incision in the patient's cornea and positioned in the capsular bag 76 using conventional techniques. Preferably, the incision is less than 4 mm in length. If the primary optic body 564 and movement assembly 566 are unitary as illustrated, they are inserted simultaneously. However, it is also possible to implant an independent movement assembly 566 first, and then insert the primary optic body in the movement assembly 566.
  • After the primary IOL 563 is placed in the capsular bag 76, a measurement is taken to determine the location of the primary optic body 564 relative to the optical axis 82. If desired, refractive measurements may also be made at this time to accurately determine an appropriate prescription for the compensating IOL 561.
  • If the original incision is still open, the compensating IOL 561 is inserted through the same incision using conventional techniques. If the incision has closed, a new one, preferably also measuring less than 4 mm, is made before insertion. A keratoscope or similar instrument is then used to guide the surgeon in positioning the fixation member or members 568 such that compensating optic body 562 and the primary optic body 564 are axially aligned with the optical axis 82 and one another. If necessary, the primary optic body 564 may also be repositioned at this time.
  • Alignment of the two optic bodies 562 and 564 is a crucial aspect of this invention, since any decentration of images will be amplified by the high diopter power of the primary optic body 564. Visual confirmation of alignment can be facilitated by providing the compensating optic body 562 with a diameter DCB equal to the diameter DPB of the primary optic body 564.
  • In addition, the ILC 560 can be made less sensitive to decentration by increasing the diameter of the optic zone, that is the portion of the optic body which has corrective power, in one or both of the IOLs 561 and 563. For instance, while the optic zones of prior art IOLs typically have a diameter in the range of about 3.5 mm to about 7 mm, the diameters of the optic zones DPZ and DCZ in IOLS 561 and 563, respectively, should be in the high end of that range or even higher, i.e. preferably from 5 mm to 8 mm. Even more preferably, at least one of the optic zone diameters DPZ or DCZ should be in the range of about 6.5 mm to about 8 mm. Although, as mentioned previously, the diameters DPB and DCB of the optic bodies 562 and 564 are preferably equal, the diameters DPZ and DCZ of the optic zones need not be.
  • Another factor influencing centration is the flexibility of fixation member or members 568, Preferably the member or members 568 are sufficiently flexible to allow the surgeon to reposition them as needed during the implantation process, but stiff enough to remain in a substantially fixed axial and radial position once implanted.
  • FIG. 6 illustrates a still further embodiment of an intraocular lens in accordance with the present invention. This intraocular lens, shown generally at 400 includes an optic body 401 and four (4) equally spaced apart movement members 403. Each of the movement members 403 includes a distal region 405 and a proximal region 407 which is coupled to the optic body 401. A hinge, for example, a linear hinge, such as a reduced thickness area 409, is located near the proximal end 407 of each of the movement members 403, A linear hinge is particularly advantageous to achieve enhanced, or even substantially maximum theoretical, axial movement.
  • The IOL 400 can be used in place of the various second optic/movement assembly subcombinations noted above. One distinction between IOL 400 and these other subcombinations is the use of four (4) individual movement members 403 which do not totally circumscribe the optic body 401 relative to the movement assemblies noted previously which fully circumscribe the second optics. It should be noted that the movement assemblies of the present ILCs can have other configurations, for example, which are effective to facilitate or even enhance the movement of the second optics.
  • FIGS. 8-11 illustrate another embodiment of the present invention in which an ophthalmic device 600 comprises a primary optic 602 and a supplemental optic 604. The optics 602, 604 are configured for placement in an eye 607 of a patient or subject having a basic prescription (e.g., a basic prescription for distant or near vision) and are generally disposed about an optical axis 608. The primary optic 602 has a base optical power Pbase that may be selected to provide or approximately provide the basic prescription of the subject. For example, the base optical power may be selected to be within ±4 Diopters of the basic prescription, preferably within ±2 Diopters of the basic prescription, even more preferably within ±1 Diopter of the basic prescription.
  • The supplemental optic 604 comprises an anterior surface 605 and a posterior surface 606 that are configured to provide a supplemental optical power Psupplemental. In addition, the supplemental optic 604 may be configured to provide, in combination with the primary optic 602, a combined optical power Pcombined (e.g., Pbase+Psupplemental) that is capable of providing the basic prescription of the patient. In certain embodiments, the supplemental optical power is selected or configured to modify the vision correction provided by the primary optic 602 by an amount that allows the combination to provide or substantially provide the basic prescription for at least one configuration of the primary optic 602. For example, the supplemental optical power may be selected such that the combined optical power is within 1 Diopter of the basic prescription. Generally, the primary optic 602 is configured to provide vision correction that is nearly equal to the patient's basic prescription for distant vision and the supplemental optic 604 is used to modify the vision correction provided by the primary optic 602 so as to more precisely provide the patient's basic prescription. In such cases, the supplemental optical power of the supplemental optic 604 is less than the primary optical power of the primary optic 602. For example, the primary optic 602 may have an optical power that is greater than 20 Diopters and the base optical power is greater than the supplemental optical power by at least 10 Diopters.
  • The ophthalmic device 600 is configured to produce ocular accommodation, for example, by configuring at least one surface of the primary optic 602 to be a deformable surface 610 that is able to deform in response to an ocular force. The resulting deformation may produce a change in the radius of curvature or of a conic constant of at least one surface of the primary optic 602. In addition, the thickness of the optic 602 is generally changed as it deforms. Deformation of the optic 602 generally results in a change in the optic properties of the optic 602, for example, a change in the optical power or aberrations produced by the optic 602.
  • The primary optic 602 is generally configured to produce an add power that modifies the primary optical power and/or the combined optical power by at least about 1 Diopter, preferably by at least 2 Diopters, and more preferably by at least 3 Diopters. The add power is a change in optical power that allows the eye to focus on objects that are at distances from about 30 cm to about 2 meters in addition to distant objects located at distances that are greater than 2 meters. The accommodative capability or add power provided by deformation of the surface 610 may be supplemented by axial motion or travel of the primary optic 602 along the optical axis 608 in response to the ocular force, as discussed in greater detail above.
  • As used herein, the term “ocular force” means any force produced by the eye of a subject that stresses, moves, or changes the shape of the natural lens of the eye or of at least a portion of an optic or intraocular lens that is placed in the eye of a subject. The ocular force acting on a lens (either a natural lens or an intraocular lens) may be produced, for example, by the state or configuration of the ciliary body (e.g., contracted or retracted), changes in the shape of the capsular bag of the eye, stretching or contraction of one or more zonules, vitreous pressure changes, and/or movement of some part of the eye such as the ciliary body, zonules, or capsular bag, either alone or in combination.
  • As used herein the terms “prescription” or “basic prescription” means an amount of optical power of a lens or an optic that is able to provide normal or functional vision to a subject when viewing objects located at a specified distances from the subject. For example, a “basic prescription for distant vision” is an amount of optical power for a lens or an optic that will allow a subject to resolve distant objects with a predetermined amount of visual acuity (e.g., to resolve the letters on a Snellen eye chart disposed at a distance of 20 feet from the subject with a visual acuity of at least 20/20, 20/30, or 20/40, based on the standard Snellen test for visual acuity).
  • As used herein the phrase “provide a basic prescription” (e.g., for distant, intermediate, or near vision) means to provide a lens or an optic that allows a subject to resolve objects at a specified distance with a predetermined degree of visual acuity (e.g., to resolve objects 20 feet from a subject with a visual acuity of at least about 20/40, more preferably of at least 20/30, and even more preferably of at least 20/20). As used herein, the phrase “substantially provide a basic prescription” (e.g., for distant vision or for near vision) means to provide an ophthalmic device, intraocular lens, or other internal optic that may be combined with an external lens, such as a spectacle lens or a contact lens, to allow a subject to resolve objects with a predetermined amount of visual acuity. The external lens typically has an optical power that is within a range of ±4 Diopters, preferably within a range of ±3 Diopters, and more preferably within a range of ±1 Diopter.
  • In certain embodiments, the primary optic 602 may be deformed by using a rigid optic 611 that is configured to deform the primary optic 602 in a predetermined manner, so as to produce accommodation or some other desired effect (e.g., changing the aberrations of the primary optic 602 and/or the wavefront that is directed to the retina of the eye 607). The optics 602, 611 are configured so that the deformable surface 610 is deformed when the optics 602, 611 are pressed together, as illustrated by comparing FIG. 10 with FIG. 11. Thus, the movement assembly 620 is structured to cooperate with the eye to effect accommodating axial movement of the primary optic 602 and accommodating deformation of the primary optic 602 in response to an ocular force produced by the eye 607.
  • The rigid optic 611 may be configured as a meniscus lens having no or substantially no optical power. Alternatively, the rigid optic 611 may be a meniscus or some other type of lens having either a positive or negative optical power and/or may have other optical properties such as the ability to compensate for optical aberrations and/or form a multifocal image on the retina when the eye 607 in an accommodative or disaccommodative state. In some embodiments, the rigid optic 611 has an optical power (and/or some other optical characteristic) and either replaces or supplements the supplemental optic 604. The structure and function of the movement assemblies similar to that movement assembly 620 in the illustrated embodiment are described in greater detail in U.S. Pat. No. 6,443,985, and U.S. Patent Application Publication Numbers 2004/082994 and 2004/0111153, which are all herein incorporated by reference.
  • One advantage of embodiments of the current invention is an increased ability to achieve a predetermined optical power or refractive outcome (e.g., the ability to resolve both distant objects and object at a reading distance of about 30 cm with a resolution of 20/30 or better). It will be appreciated that prior to implantation of an intraocular lens, the basic prescription for an aphakic eye and/or amount of accommodative capability of the eye may not be precisely known, since the precise contribution of the natural lens alone may not be precisely determinate. In certain embodiments of the present invention, the deformable primary optic 602 is implanted into the eye 607 to substantially provide the basic prescription for both distant and near vision (for example within ±2 Diopter). The patient may then be refracted in the usual manner to obtain a more accurately determination of the basic prescription for both distant and near vision. The optical power of the supplemental optic 604 may then be selected to provide the predetermined optical power or refractive outcome.
  • Another advantage of embodiments of the current invention is that a predetermined performance of an accommodating intraocular lens may be achieved when used in a variety of different eyes requiring intraocular lenses with different amounts of optical power. The inventors have observed that the image quality or amount of aberrations produced by a deformable optic change as the optic is deformed from one shape to another. The inventors have further observed that the amount of change in the image quality and/or aberrations can be controlled by proper selection of design parameters such as the thickness of the optic, the base optical power in an unstressed state, the material, etc. A primary optic 602 may be produced with a particular geometry and/or base optical power that has an optimized or predetermined optical performance over a range of add powers as compared to other geometries and/or base optical powers. This optimized primary optic 602 may be used in a variety of patients having different basic prescriptions to provide the same quality of accommodative performance for each. In order to provide each patient with their particular basic prescription, a different supplemental optic 604 with a different supplemental power for each, the supplemental optic 604 being selected in each case to provide the correct total power when used in combination with the primary optic 602.
  • Yet another advantage of embodiments of the current invention is that the supplemental optic 604 is a corrector optic that is selected to provide a predetermined refractive outcome in terms of optical performance or image quality of the eye and/or the ophthalmic device 600. In such embodiments, the supplemental optic 604 may have no or substantially no optical power or may have an optical power that is combined with the optical power of the primary optic 602 to provide near vision, distant vision, or intermediate vision. In some embodiments, the supplemental optic 604 enhances optical performance or image quality by correcting or reducing an aberration such as a chromatic aberration or a monochromatic aberration of the eye and/or ophthalmic device 600. For example, one or both of the surfaces 605, 606 of the supplemental 604 may be aspheric in form in order to reduce or compensate for a spherical aberration of the eye or ophthalmic device 600. Alternatively or additionally, at least one the surfaces 605, 606 be a monofocal or multifocal diffractive phase plate in order to reduce or compensate for a chormatic aberration of the eye or ophthalmic device 600. The supplemental optic 604 may be configured to favorably modify the aberrations when the primary optic 602 is in an accommodative and/or disaccommodative state.
  • In certain embodiments, the supplemental optic 604 is a corrector optic that is configured increase the depth of focus of the eye, for example, by changing the optical power or focal length of the supplemental optic 604 as a function of distance from the optical axis thereof. In other embodiments, the supplemental optic 604 is configured to produce two or more simultaneous foci (e.g., a bifocal or multifocal lens). In such embodiments, at least one of the surfaces 605, 606 of the supplemental optic 604 may comprise a diffractive phase plate that produces two or more diffraction orders. Alternatively, at least one of the surfaces 605, 606 may be configured to have an aspheric surface in which the radius of curvature varies with distance from the optical axis 608.
  • The primary optic 602 may be placed within a capsular bag 612, as illustrated in FIGS. 10 and 11, so that the ophthalmic device 600 is responsive to ocular forces produced by ciliary muscle 614 and/or zonules 618. Alternatively, the primary optic 602 may be implanted elsewhere within the eye 607. For example, the anterior and posterior capsules of the capsular bag 612 may be allowed to attach to one another and the ophthalmic device 600 implanted within the sulcus of the eye 607 so that the primary optic 602 is disposed in front of the capsular bag 612. In certain embodiments, the primary optic 602 has an optical power of at least about 10 Diopters, at least 20 Diopters, or at least 30 Diopters. In other embodiments, the primary optic 602 has a negative optical power, for example less than −5 Diopters, less than −10 Diopters, or less than −20 Diopters. In yet other embodiments, the primary optic 602 has an optical power within the range of −30 to +40 Diopters, −20 to +30 Diopters, or −10 to +20 Diopters.
  • In certain embodiments, a patient has a basic prescription for distant vision that is expressed in terms of an optical power Pdistant. The difference between the optical power Pdistant and the base optical power Pbase of the primary optic 602 may be calculated and based on the ability of a surgeon or other practitioner to estimate the required basic prescription for distant vision, the primary optic 602 alone may be sufficient to restore both the distant and/or near vision of a patient to a degree that allows normal vision to be provided at least by the use of an external lens. In certain embodiments, the surgeon or practitioner is able to select the base optical power Pbase to be within ±4 Diopters of the basic prescription (e.g., abs (Pdistant−Pbase)≦4 Diopters), preferably within ±2 Diopter of the basic prescription, more preferably within +1 Diopter of the basic prescription. In other embodiments, the base optical power Pbase is within a range of zero to −4 Diopters of the basic prescription for distant vision, preferably within a range of zero to −2 Diopters, more preferably within a range of zero to −1 Diopters.
  • By selecting the optical power Pbase of the primary optic 602 to be within at least one of these ranges, the primary optic 602 is able to provide normal vision over at least some distances. For example, if (Pdistant−Pbase) is equal to −3 Diopters after implantation of the primary optic 602, the patient would have blurred distant vision, but a high degree of visual acuity at normal reading distances without the need for additional internal lenses (e.g. the supplemental optic 604) and/or external lenses (e.g., spectacles or contact lenses). In certain embodiments, the optical power Psupplemental of the supplemental optic 604 is selected so that the combined optical power Pcombined is equal to or approximately equal to the basic prescription for distant vision (e.g., so that (Pdistant−Pcombined) is approximately equal to zero).
  • The supplemental optic 604 may be configured to be implanted together with the primary optic 602 or separately therefrom. In some embodiments, the supplemental optic 604 is only optionally implanted into the eye 607 when the actual vision provided by the primary optic 602 differs by a predetermined amount from an expected refractive outcome and/or the prescription of the patient changes by predetermined amount over time after initial implantation of the primary optic 602 and/or supplemental optic 604. The supplemental optic 604 may be disposed in front of the iris or in the anterior chamber of the eye 607, as illustrated for example in FIGS. 10 and 11. Alternatively, the supplemental optic 604 may be disposed within the vicinity of the sulcus of the eye 607, together with the primary optic 602 within capsular bag 612, or slightly protruding from the capsular bag 612. In other embodiments, the supplemental optic 604 may be disposed within a cornea 619 of the eye as a corneal implant. In yet other embodiments, the supplemental optic 604 may be a corneal implant disposed configured to be disposed within the cornea 619 or a surface profile disposed on or within the cornea 619, the profile being formed by a laser (e.g., using a LASIK, LASEK, or PRK procedure).
  • The primary and supplemental optics 602, 604 may be configured and disposed within the eye 607 so as to maintain a separation therebetween that is greater than a predetermined minimum, for example 200 micrometer, 500 micrometers, or about 1 millimeter. Alternatively, the primary and supplemental optics 602, 604 may be configured and disposed within the eye 607 so as to press against one another while the eye 607 is in an accommodative and/or disaccommodative state and/or between an accommodative and a disaccommodative state.
  • At least one surface of the primary optic 602, for example the deformable surface 610, is configured to deform in response to an ocular force so as to modify the optical power of at least one of (1) the primary optic 602, (2) the combined optical power of the optics 602, 604, and/or (3) the total or effective optical power of the entire eye 607. The deformation may be the result of change in the radius of curvature as the primary optic 602 changes from an accommodative state and disaccommodative state, which results in a change in the optical power or focal length of the primary optic 602. Alternatively or additionally, at least one surface of the primary optic 602 may change from a spherical profile to an aspheric profile or from a more spherical profile to a less spherical profile as the primary optic 602 changes from an accommodative state and disaccommodative state, or visa versa, wherein the profile change produces a change in optical power or in some other optical characteristic of the primary optic 602. In other embodiments, the primary optic 602 may change from a monofocal lens to a multifocal lens (either refractive or diffractive) as the primary optic 602 changes from an accommodative state and disaccommodative state, or visa versa. Alternatively, the primary optic 602 may be a multifocal lens, wherein the optical power or some other optical characteristic of the zones changes as the primary optic 602 changes between accommodative state and disaccommodative states.
  • In certain embodiments, the primary optic 602 has a center thickness ti along the optical axis 608 when in a substantially unstressed state and a center thickness tf in the response to or in the absence of an ocular force. In such embodiments, the primary optic 602 may be adapted to change the center thickness by a factor of at least 1.1 (e.g., the quotient tf/ti is at least 1.1), typically when the ocular force is in the range of about 1 to 10 grams, preferably in the range of about 5 to 10 grams. In other embodiments, the primary optic 602 is adapted to change the center thickness by a factor of at least 1.05 or at least 1.2 or more. In yet other embodiments, the primary optic 602 is adapted to change the center thickness by a factor of at least 1.05, 1.1, or 1.2 when the ocular force is in the range of about 1 to 5 gram or about 1 to 3 grams. In still other embodiments, the primary optic 602 has a center thickness along the optical axis 608 when the primary optic 602 is in a substantially unstressed state, the deformable optic adapted to change the center thickness by at least about 50 micrometers, preferably at least 100 micrometers, when the ocular force is in the range of about 1 to 9 grams, in the range of about 6 to 9 grams, or in the range of about 1 to 3 grams. Within the art, an understanding of the physiology of the eye is still developing. Thus, other ranges of ocular forces able to provide the above ranges of relative and/or absolute thickness change are anticipated as the physiology of the eye is better understood. Such ranges of ocular forces are also consistent with embodiments of the present invention as disclosed herein.
  • The modification in optical power as the primary optic 602 deforms is preferably at least 1 Diopter, more preferably at least 2 Diopters or 3 Diopters, and even more preferably at least 2 to 4 Diopters or 3 to 5 Diopters. The amount of change in optical power of primary optic 602 is generally an effective Diopter change in the optical power, for example, from a principal plane of the primary optic 602 (e.g., somewhere between the anterior and posterior surfaces of primary optic 602). In general, and as illustrated in FIGS. 10 and 11, the Diopter change may be a positive change as the ciliary muscle 614 contracts and the zonules 618 relax; however, other directions and/or types of Diopter change are allowable (e.g., multifocal and/or aberration changes).
  • In the illustrated embodiment, the ophthalmic device 600 comprises a movement assembly 620 that is operably coupled to the primary optic 602 and a fixation member 622 that is operably coupled to the supplemental optic 604. Alternatively, the supplemental optic 604 may be coupled to the movement assembly 620 or comprise its own, separate movement assembly. The movement assembly 620 comprises an anterior portion 624 that engages the anterior capsule of the capsular bag 612 and a posterior portion 628 that engages the posterior capsule of the capsular bag 612. The anterior and posterior portions 624, 628 together form an enclosure that fills or substantially fills the capsular bag 612. The movement assembly 620 may further comprise a plurality of arms 630 that are configured to pivot, rotate, bend and/or otherwise deform in response to deformation of the movement assembly 620, whereby the primary optic 602 may be moved and/or deformed to provide accommodation. The anterior and posterior portions 624, 628 are generally made of a resilient material (e.g., a silicone or acrylic material) that deforms in response to an ocular force in such a way that the movement assembly 620 conforms and remains in contact with the capsular bag 612 during accommodative movement thereof.
  • The embodiment illustrated in FIGS. 8-11 of the primary optic 602, the supplemental optic 604, and structures connected to the optics 602, 604 is exemplary only and is not meant to limit the scope of the invention. For example, the primary optic 602 may be configured to have a posterior vault rather than the anterior vault illustrated in FIGS. 10 and 11, in which case the deformable surface 610 is pressed against the posterior capsule of the capsular bag 612 when the ciliary muscle 614 contracts and the shape of the capsular bag 612 changes. In certain embodiments, the ILC illustrated in FIG. 7 is used to provide such a configuration, wherein the posteriorly vaulted primary IOL 563 is made of a material that is sufficiently soft to deform in response to ocular forces and the compensating IOL 561 is configured as a supplemental optic. Other examples of devices and means for producing a predetermined amount of accommodation in response to an ocular force may be found, for example, in U.S. patent application Ser. No. 11/241,586, which is herein incorporated by reference.
  • The ophthalmic device 600 may be used in a surgical procedure to restore both distant vision and accommodative ability for providing near vision. Referring to FIG. 12, in some embodiments, a method 700 of providing accommodative vision comprises an operational block 702, making a first estimate of a basic prescription of a subject. The method 700 also comprises an operational block 704, inserting the primary optic 602 into the eye 607 of the subject. The method 700 further comprises an operational block 706, which includes making a second estimate of the basic prescription of the subject based on the presence of the primary optic 602. The method additionally comprises an operational block 708, implanting the supplemental optic 604 into the eye 607.
  • In the operational block 702, the surgeon make a first estimate of the basic prescription of the patient by, for example, measuring physical characteristic of the eye such as the axial length (AL) and the anterior chamber depth (ACD). Other dimensional parameters may also be measured including, but are not limited to, the corneal radius (CR), the corneal power (K), and crystalline lens thickness (LT). The first estimate may also include other parameters of the eye such as the refractive indices and/or estimated refractive indices of the various portions of the eye. The estimate may additionally or alternatively include performing one or more interactive vision tests with the subject, for example using the standard Snellen test for visual acuity. Generally, the first estimate is determined while the natural lens or a previously implanted intraocular lens is still in the eye. In some embodiments, the first estimate may be made after removal of the natural lens and/or explanting a previously implanted intraocular lens.
  • In some embodiments, the estimates of the basic prescription are made using ophthalmic instruments designed to measure physical properties of the eye or wavefront aberrations produced by the eye, for example using biometry or keratometry. Corneal surface measurements according to well-known topographical measurement methods may be used that express surface irregularities of the cornea. Corneal measurements for this purpose can be performed by the ORBSCAN.RTM. videokeratograph available from Orbtech or by corneal topography methods, such as EyeSys.RTM available from Premier Laser Systems. The corneal measurements may also include the measurement of the corneal refractive power. In addition, wavefront sensors such as the Hartmann-Shack sensor (J. Opt. Soc. Am., 1994, Vol. 11(7), pp. 1949-57) may also be used to determine aberrations of the eye. The wavefront sensor may be used in combination with topographic sensors to determine other physical characteristics of the eye such as its length.
  • In the operational block 704, the surgeon implants the primary optic 602 into the eye 607. In certain embodiments, the primary optic 602 is selected to have a base optical power Pbase that substantially provides the basic prescription and is within at least ±4 Diopters of the basic prescription. Since the primary optic 602 substantially provides a basic prescription and in addition has the ability to provide accommodation, the primary optic 602 advantageously allows a surgeon to use a single implanted optic to provide a patient both distant and near vision. In some cases, satisfactory distant vision and near vision may be restored using only the primary optic 602, without the need of implanting the supplemental optic 604 or using other external lenses. In other cases, the basic prescription is provided only for certain distances or the vision provided is within an acceptable range to allow a more accurate estimate of a patient's prescription for both near and distant vision. In such cases, both distant and near vision may be restored using a single prescription spectacle or contact lens, since the primary optic 602 provides accommodative ability. Alternatively, the supplemental optic 604 may be implanted to restore full vision of both distant and near objects. In addition, because the primary optic 602 is able to substantially provides the basic prescription, a more accurate estimate of the aberrations of eye 607 may be made and subsequently corrected or compensated for using either an external optic and/or the supplemental optic 604.
  • In operational block 706, the surgeon may make the second estimate of the basic prescription either at the time of the surgery or at a time shortly after the implantation of the primary ophthalmic device 600. Alternatively, the second estimate may be made at a later time by the surgeon or by another practitioner, such as an optometrist, after the subject has more fully recovered from the surgical procedure. In some instances, the time between the implantation of the primary optic 602 and the second estimate is an extended period of time in order to allow the eye to recover from the surgical procedure. The period of time may be one week, one month, or even several months (from at least about three months to at least about 6 months). Also, in some cases, the basic prescription may change some time after implantation of the primary optic 602 (perhaps for causes unrelated to the surgical procedure), thereby necessitating a second estimate and correction of the subject's vision. In cases where an implanted supplemental optic 604 must be explanted in order to restore proper vision, the difficulty of explanting is advantageously reduced using the ophthalmic device 600, since the supplemental optic 604 may be made relatively thin and is disposed in front of the primary optic 602 and nearer to the front of the eye 607 (e.g., in the anterior chamber in the illustrated embodiment).
  • In certain embodiments, the primary optic 602 and/or the supplemental optic 604 belong to a system or set of intraocular lenses. In some embodiments, the set of optics comprises a single primary optic 602 and a set or plurality S1 of supplemental optics 604. The single primary optic 602 may configured to provide an approximate correction for predetermined population, for example a population of patients with eyes having a particular range of axial lengths or type or shape of cornea, while the supplemental optic 604 is selected from the set S1 of supplemental optics 604 to provide a more precise correction for a particular individual within the population. The primary optic 602 may have a base optical power selected to be at or near the average basic prescription for a particular population. Alternatively or additionally, the primary optic 602 may be configured to provide a predetermined optical quality over a range of expected amounts of a particular optical aberration for a particular population.
  • Each of the supplemental optics 604 from the set S1 of supplemental optics 604 may be configured to vary from one another in optical power by a predetermined amount. For example, the supplemental optics 604 may be configured to vary by ½ Diopter, ¼ Diopter, or less than ¼ Diopters from one another. In this manner, the primary optic 602 is implanted to provide and approximate correction of vision for the patient and a predetermined optical performance over range of accommodation add powers.
  • In other embodiments, the primary optic 602 is selected from plurality or set P2 of primary optics 602 and the supplemental optic 604 is selected from a set or plurality S2 of supplemental optics 604. Since there is more one primary optic 602 for providing an approximate correction of the eyes in a given population, the number of optics in the set S2 of supplemental optics 604 may be relatively small, for example as compared to the number of optics in the set S1 previously discussed. Alternatively, the optics in the sets P2 of primary optics 602 and in the set S2 of supplemental optics 604 may be configured to provide visual correction for populations having variations in basic prescription that are too large to be covered using only a single primary optic 602, as in the previous embodiment.
  • Referring to FIG. 13, in certain embodiments, the ophthalmic device 600 comprises a corrector optic 604 c configured to correct the optical power of the primary optic 602, wherein the primary optic 602 may be configured to have a base optical power that is selected to provide a patient's basic prescription for at least one of distant vision, intermediate vision, or near vision. The corrector optic 604 c may be configured to correct a monochromatic aberration and/or a chromatic aberration of, for example, the primary optic 602, the cornea 619, and/or an overall aberration of the eye 607. The corrector optic 604 c may have an overall positive or negative optical power, for example, within a range of about −4 Diopters to +4 Diopters or in a range of −2 Diopters to +2 Diopters. Also, the corrector optic 604 c may be a multifocal lens and/or provide cylinder correction. Alternatively, the corrector optic 604 c may have no or substantially no overall optical power and be used primary to correct an aberration of primary optic 602 or the eye 607. When the corrector optic 604 c has no or substantially no optical power, the primary optic 602 generally has a base optical power that provides the patient's basic prescription. In some embodiments, the basic prescription will be the basic prescription for distant vision; however, the basic prescription may alternatively the basic prescription for intermediate or near vision.
  • The corrector optic 604 c may be disposed in the sulcus, as illustrated in FIG. 11. Alternatively, the corrector optic 604 c may be disposed in the anterior chamber, similar to the location of the supplemental optic 604 in FIGS. 9 and 10. In other embodiments, the corrector optic 604 c may be a corneal implant configured to be disposed within the cornea 619 or a surface profile disposed on or within the cornea 619, the profile being formed by a laser (e.g., using a LASIK, LASEK, or PRK procedure). In yet other embodiments, the corrector optic 604 c is the rigid optic 611 configured to deform the primary optic 602 in a predetermined manner. In such embodiments, the optics 602, 604 c are configured such that the deformable surface 610 of the primary optic 602 is deformed when the optics 602, 604 c are pressed together.
  • The corrector optic 604 c may be used to correct monochromatic and/or chromatic aberrations of the ophthalmic device 600, the eye 607 of an individual, or a population of eyes. The corrector optic 604 c may be a purely refractive optical element or may additionally or alternatively comprise a diffractive element, for example, as discussed in U.S. Pat. Nos. 4,642,112, 4,881,805, and 5,144,483, which are herein incorporated by reference. Diffractive elements may be especially useful for correcting chromatic aberrations and may be configured to provide either monofocal or multifocal lens. When the corrector optic 604 c is purely refractive, it may be configured to correct a chromatic aberration by combining a plurality of optical elements that are each made of a different material having different optical characteristics (e.g., different refractive indices and/or Abbe numbers). Monochromatic aberrations that may be corrected by the corrector optic 604 c include, but are not limited to, astigmatic, spherical, and/or comatic. Correction of such aberrations is discussed in greater detail, for example, in U.S. Pat. Nos. 5,777,719, 6,609,793, and 6,830,332, which are herein incorporated by reference.
  • In some embodiments, the primary optic 602 is a corrector optic that may be used to correct or compensate for an optical aberration of the eye 607 and/or the supplemental optic 604. In other embodiments, the primary optic 602 and the supplemental optic 604 together correct or compensate for an optical aberration of at least a portion of the eye 607. For example, the primary optic 602 may be configured to correct astigmatism produced by the cornea 619, while the supplemental optic 604 is selected to correct a spherical aberration of the cornea 619. Alternatively or additionally, the primary optic 602 may be configured to correct a spherical aberration of the cornea 619 based on a preliminary estimate before the primary optic 602 is implanted into the eye 607. The supplemental optic 604 may then be select to have a spherical aberration that compensates for any remaining spherical aberrations resulting from implantation of the primary optic 602.
  • In certain embodiments, the corrector optic 604 c is selected from a plurality or set S3 of corrector optics 604c, wherein each of the corrector optics 604 c from the set S3 has a predetermined value of an optical characteristic that is different from the value of that optical characteristic for the other corrector optics 604 c within the set S3. At least one of the corrector optics 604 c in the set S3 is configured to provide, in combination with the primary optic 602, the basic prescription of the patient for at least one of distant vision, near vision, or intermediate vision.
  • While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.

Claims (32)

  1. 1. An ophthalmic device, comprising:
    a primary optic having a base optical power and configured for placement in an eye of a patient with a basic prescription for distant vision, at least one surface of the primary optic being configured to deform in response to an ocular force so as to modify the base optical power by at least 1 Diopter; and
    a supplemental optic having an supplemental optical power and configured to provide, in combination with the primary optic, a combined optical power capable of providing the basic prescription when disposed in the eye, the supplemental optic power being less than the primary optic power.
  2. 2. The ophthalmic device of claim 1, wherein to deform comprises at least one of to change the radius of curvature of at least one surface of the primary optic, to change a conic constant of at least one surface of the primary optic, and to change a thickness of the primary optic.
  3. 3. The ophthalmic device of claim 1, wherein the primary optic is configured to modify the combined optical power by at least 2 Diopter in response to an ocular force.
  4. 4. The ophthalmic device of claim 1, wherein the base optical power is within 4 Diopters of the basic prescription.
  5. 5. The ophthalmic device of claim 1, wherein the base optical power is within 2 Diopters of the basic prescription.
  6. 6. The ophthalmic device of claim 1, wherein the base optical power is greater than 20 Diopters.
  7. 7. The ophthalmic device of claim 1, wherein the base optical power is greater than the supplemental optical power by at least 10 Diopters.
  8. 8. The ophthalmic device of claim 1, wherein the supplemental optical power is within the range of about −4 Diopters to about +4 Diopters.
  9. 9. The ophthalmic device of claim 1, wherein the supplemental optic is a diffractive optic.
  10. 10. The ophthalmic device of claim 1, wherein the primary optic is configured to be disposed within a capsular bag of the eye.
  11. 11. The ophthalmic device of claim 1, wherein the supplemental optic is configured to be disposed within an anterior chamber of the eye.
  12. 12. The ophthalmic device of claim 1, wherein the supplemental optic is configured to be implanted separately from the primary optic.
  13. 13. The ophthalmic device of claim 1, wherein the supplemental optic is a corneal implant configured to be disposed within a cornea of the eye.
  14. 14. The ophthalmic device of claim 1, wherein the supplemental optic is a surface profile disposed on or within the cornea and is formed by a laser.
  15. 15. The ophthalmic device of claim 1, wherein the primary optic and the supplemental optic are configured to maintain separation between one another within the eye that is greater than a predetermined amount.
  16. 16. The ophthalmic device of claim 15, wherein the predetermined amount is at least 500 micrometers.
  17. 17. The ophthalmic device of claim 1, further comprising a movement assembly operably coupled to the primary optic and a fixation member operably coupled to the supplemental optic.
  18. 18. The ophthalmic device of claim 17, wherein the movement assembly is structured to cooperate with the eye to effect accommodating axial movement of the primary optic and accommodating deformation of the primary optic in response to an ocular force produced by the eye.
  19. 19. An ophthalmic device, comprising;
    a primary optic having a base optical power and configured for placement in an eye of a patient with a basic prescription for distant vision, the base optical power selected to provide vision correction that is within 4 Diopters of the basic prescription; and
    a supplemental optic having a supplemental optical power and configured to modify the vision correction provided by the primary optic so as to provide the basic prescription;
    at least one surface of the primary optic being configured to deform in response to an ocular force so as to provide an add power at least 1 Diopter.
  20. 20. The ophthalmic device of claim 19, wherein the supplemental optical power that is within a range of −4 Diopters to +4 Diopters
  21. 21. The ophthalmic device of claim 19, wherein at least one surface of the primary optic is configured to deform in response to an ocular force so as to provide an add power of at least 3 Diopters.
  22. 22. An ophthalmic device, comprising:
    a primary optic having a base optical power and configured for placement in an eye of a patient with a basic prescription for distant vision, the base optical power selected to provide the basic prescription when disposed in the eye for at least one of distant vision, intermediate vision, or near vision when disposed within the eye, at least one surface of the primary optic being configured to deform in response to an ocular force so as to modify the base optical power by at least 1 Diopter; and
    an optical corrector configured to correct at least one of a monochromatic aberration and a chromatic aberration of the primary optic and/or the eye.
  23. 23. The ophthalmic device of claim 22, wherein the optical corrector is an intraocular lens comprising one or more optical elements.
  24. 24. The ophthalmic device of claim 22, wherein the optical corrector is at least one surface of the primary optic.
  25. 25. The ophthalmic device of claim 22, wherein the optical corrector is a surface profile disposed on or within the cornea and is formed by a laser.
  26. 26. The ophthalmic device of claim 22, wherein the optical corrector is a corneal implant configured to be disposed within a cornea of the eye.
  27. 27. The ophthalmic device of claim 22, wherein the monochromatic aberration is at least one of an astigmatic aberration, a spherical aberration, and a comatic aberration.
  28. 28. A system of intraocular lenses, comprising:
    a primary optic having a base optical power and configured for placement in an eye of a patient with a basic prescription for distant vision, at least one surface of the primary optic being configured to deform in response to an ocular force so as to modify the base optical power by at least 1 Diopter; and
    a plurality of supplemental optics each having a supplemental optical power that is less than the primary optical power, each supplemental optic being configured for placement within the eye and having a value of an optical characteristic that is different from that of the other supplemental optics of the plurality, at least one of the supplemental optics configured to provide, when disposed in the eye and in combination with the primary optic, at least one of the basic prescription and a reduced optical aberration.
  29. 29. The system of intraocular lenses of claim 28, wherein the supplemental optical power is substantially zero.
  30. 30. The system of intraocular lenses of claim 28, wherein the different optical characteristic is a different optical power.
  31. 31. The system of intraocular lenses of claim 28, wherein the different optical characteristic is a different amount of an optical aberration correction.
  32. 32. The system of intraocular lenses of claim 31, wherein the optical aberration correction is a spherical aberration correction.
US11456521 1999-04-30 2006-07-10 Ophthalmic lens combinations Abandoned US20060238702A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13208599 true 1999-04-30 1999-04-30
US09390380 US6616692B1 (en) 1999-04-30 1999-09-03 Intraocular lens combinations
US10234801 US20030060881A1 (en) 1999-04-30 2002-09-04 Intraocular lens combinations
US11456521 US20060238702A1 (en) 1999-04-30 2006-07-10 Ophthalmic lens combinations

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11456521 US20060238702A1 (en) 1999-04-30 2006-07-10 Ophthalmic lens combinations
EP20070840301 EP2043558A2 (en) 2006-07-10 2007-06-27 Ophthalmic lens combinations
PCT/US2007/072275 WO2008008627A3 (en) 2006-07-10 2007-06-27 Ophthalmic lens combinations
CA 2661704 CA2661704A1 (en) 2006-07-10 2007-06-27 Ophthalmic lens combinations
US14160321 US9814570B2 (en) 1999-04-30 2014-01-21 Ophthalmic lens combinations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10234801 Continuation-In-Part US20030060881A1 (en) 1999-04-30 2002-09-04 Intraocular lens combinations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14160321 Division US9814570B2 (en) 1999-04-30 2014-01-21 Ophthalmic lens combinations

Publications (1)

Publication Number Publication Date
US20060238702A1 true true US20060238702A1 (en) 2006-10-26

Family

ID=38924009

Family Applications (2)

Application Number Title Priority Date Filing Date
US11456521 Abandoned US20060238702A1 (en) 1999-04-30 2006-07-10 Ophthalmic lens combinations
US14160321 Active US9814570B2 (en) 1999-04-30 2014-01-21 Ophthalmic lens combinations

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14160321 Active US9814570B2 (en) 1999-04-30 2014-01-21 Ophthalmic lens combinations

Country Status (4)

Country Link
US (2) US20060238702A1 (en)
EP (1) EP2043558A2 (en)
CA (1) CA2661704A1 (en)
WO (1) WO2008008627A3 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040088050A1 (en) * 2000-05-23 2004-05-06 Sverker Norrby Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US20070260157A1 (en) * 2004-11-12 2007-11-08 Sverker Norrby Devices and methods of selecting intraocular lenses
US20070282438A1 (en) * 2006-05-31 2007-12-06 Xin Hong Intraocular lenses with enhanced off-axis visual performance
US20080097598A1 (en) * 2006-10-20 2008-04-24 Emin Engin Method of preparing a multielement intraocular lens for insertion
US20080281414A1 (en) * 2007-04-19 2008-11-13 Takayuki Akahoshi Supplementary Intraocular Lens
US20090012609A1 (en) * 2006-12-29 2009-01-08 Advanced Medical Optics, Inc. Multifocal accommodating intraocular lens
US20090062911A1 (en) * 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
US20090187242A1 (en) * 2007-08-27 2009-07-23 Advanced Medical Optics, Inc. Intraocular lens having extended depth of focus
US20090210054A1 (en) * 2008-02-15 2009-08-20 Amo Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US20090234448A1 (en) * 2007-08-27 2009-09-17 Advanced Medical Optics, Inc. Intraocular lens having extended depth of focus
US20090251664A1 (en) * 2008-04-04 2009-10-08 Amo Regional Holdings Systems and methods for determining intraocular lens power
WO2009123700A2 (en) * 2008-04-02 2009-10-08 Junzhong Liang Methods and devices for refractive corrections of presbyopia
US20090268155A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive lens exhibiting enhanced optical performance
US20100094415A1 (en) * 2008-10-14 2010-04-15 Advanced Medical Optics, Inc. Intraocular lens and capsular ring
US20100097569A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
EP2194924A1 (en) * 2007-11-14 2010-06-16 Alcon, Inc. Accommodative intraocular lens system
US20100198349A1 (en) * 2006-12-29 2010-08-05 Abbott Medical Optics Inc. Accommodating intraocular lens
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US20100274234A1 (en) * 2007-10-29 2010-10-28 Junzhong Liang Methods and Devices for Refractive Treatments of Presbyopia
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US20110040379A1 (en) * 2009-08-03 2011-02-17 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110054600A1 (en) * 2009-06-26 2011-03-03 Abbott Medical Optics Inc. Accommodating intraocular lenses
US20110054601A1 (en) * 2009-08-27 2011-03-03 Abbott Medical Optics Inc. Fixation of opthalmic implants
US20110082542A1 (en) * 2001-05-23 2011-04-07 Amo Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US20110109875A1 (en) * 2008-04-24 2011-05-12 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US20110149236A1 (en) * 2009-12-18 2011-06-23 Amo Groningen B.V. Single microstructure lens, systems and methods
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8187325B2 (en) 2001-01-25 2012-05-29 Visiogen, Inc. Materials for use in accommodating intraocular lens system
RU2457812C1 (en) * 2011-03-23 2012-08-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Artificial intraocular lens
RU2457811C1 (en) * 2011-03-23 2012-08-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Artificial intraocular lens
US8241355B2 (en) 2005-10-28 2012-08-14 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US8343216B2 (en) 2002-01-14 2013-01-01 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8579970B1 (en) 2005-06-27 2013-11-12 Visiogen, Inc. Magnifying intraocular lens
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US8894204B2 (en) 2010-12-17 2014-11-25 Abbott Medical Optics Inc. Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure
US8945215B2 (en) 2012-05-10 2015-02-03 Abbott Medical Optics Inc. Accommodating intraocular lens with a compressible inner structure
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US9084674B2 (en) 2012-05-02 2015-07-21 Abbott Medical Optics Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
US9456894B2 (en) 2008-02-21 2016-10-04 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US20160334643A1 (en) * 2015-05-15 2016-11-17 Elwha Llc Chromatic aberration correction lens systems and methods
JP2016203011A (en) * 2011-02-04 2016-12-08 フォーサイト・ビジョン6・インコーポレイテッドForsight Vision6, Inc. Intraocular accommodating lens
US9561098B2 (en) 2013-03-11 2017-02-07 Abbott Medical Optics Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9579192B2 (en) 2014-03-10 2017-02-28 Amo Groningen B.V. Dual-optic intraocular lens that improves overall vision where there is a local loss of retinal function
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US9861469B2 (en) 2013-05-07 2018-01-09 Akkolens International B.V. Accommodating intraocular lens with haptics for sulcus fixation
US9931200B2 (en) 2010-12-17 2018-04-03 Amo Groningen B.V. Ophthalmic devices, systems, and methods for optimizing peripheral vision
US10010407B2 (en) 2014-04-21 2018-07-03 Amo Groningen B.V. Ophthalmic devices that improve peripheral vision

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150070135A (en) 2012-10-17 2015-06-24 브리엔 홀덴 비전 인스티튜트 Lenses, devices, methods and systems for refractive error
KR20150054709A (en) 2012-04-05 2015-05-20 브리엔 홀덴 비전 인스티튜트 Lenses, devices, methods and systems for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
WO2014033543A3 (en) 2012-08-31 2014-06-26 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34988A (en) * 1862-04-15 Improvement in sewing-machines
US1483509A (en) * 1921-05-05 1924-02-12 Franklin Optical Company Process of making fused bifocal lenses
US2274142A (en) * 1940-01-15 1942-02-24 Revalens Co Multifocal ophthalmic lens
US3227507A (en) * 1961-08-16 1966-01-04 Feinbloom William Corneal contact lens having inner ellipsoidal surface
US3420006A (en) * 1964-01-27 1969-01-07 Howard J Barnett Apparatus for grinding multifocal lens
US3431327A (en) * 1964-08-31 1969-03-04 George F Tsuetaki Method of making a bifocal contact lens with an embedded metal weight
US3711870A (en) * 1971-12-07 1973-01-23 R Deitrick Artificial lens implant
US3718870A (en) * 1971-08-12 1973-02-27 Itt Driving circuit for electro-mechanical oscillators
US3794414A (en) * 1972-05-12 1974-02-26 Jessen Inc Wesley Multiple focal contact lens
US3866249A (en) * 1974-03-07 1975-02-18 Leonard Flom Posterior chamber artificial intraocular lens
US3932148A (en) * 1975-01-21 1976-01-13 Criterion Manufacturing Company, Inc. Method and apparatus for making complex aspheric optical surfaces
US4010496A (en) * 1975-10-01 1977-03-08 Neefe Charles W Bifocal lens which positions within the anterior chamber
US4014049A (en) * 1976-04-07 1977-03-29 American Optical Corporation Artificial intraocular lens and supporting system therefor
US4073579A (en) * 1976-06-09 1978-02-14 American Optical Corporation Ophthalmic lens with locally variable index of refraction and method of making same
US4074368A (en) * 1976-09-08 1978-02-21 Said Chauncey F. Levy, Jr., By Said Richard J. Pegis Intraocular lens with high magnification
US4195919A (en) * 1977-10-31 1980-04-01 Shelton William A Contact lens with reduced spherical aberration for aphakic eyes
US4199231A (en) * 1978-08-21 1980-04-22 Evans Carl H Hydrogel contact lens
US4244597A (en) * 1979-05-29 1981-01-13 Dandl John E Side mounting assembly for tractor implement
US4244060A (en) * 1978-12-01 1981-01-13 Hoffer Kenneth J Intraocular lens
US4251887A (en) * 1979-04-02 1981-02-24 Anis Aziz Y Posterior chamber capsular lens implant and method for implantation of the lens
US4253199A (en) * 1978-09-25 1981-03-03 Surgical Design Corporation Surgical method and apparatus for implants for the eye
US4254509A (en) * 1979-04-09 1981-03-10 Tennant Jerald L Accommodating intraocular implant
US4261065A (en) * 1979-07-27 1981-04-14 Tennant Jerald L Artificial intraocular lens with forward-positioned optics
US4315336A (en) * 1980-01-21 1982-02-16 Stanley Poler Intraocular lens
US4315673A (en) * 1978-04-06 1982-02-16 Optische Werke G. Rodenstock Progressive power ophthalmic lens
US4316293A (en) * 1979-08-27 1982-02-23 Bayers Jon Herbert Flexible intraocular lens
US4370760A (en) * 1981-03-25 1983-02-01 Kelman Charles D Anterior chamber intraocular lens
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4377329A (en) * 1980-02-26 1983-03-22 Stanley Poler Contact lens or the like
US4377873A (en) * 1980-10-30 1983-03-29 Reichert Jr Henry L Intraocular lens
US4424597A (en) * 1981-05-13 1984-01-10 Inprohold Establishment Posterior chamber implant lens
US4442553A (en) * 1981-09-17 1984-04-17 Hessburg Philip C Intraocular lens
US4503953A (en) * 1982-06-01 1985-03-12 Rockwell International Corporation Roller retainer for brake assembly
US4504982A (en) * 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
US4504981A (en) * 1981-09-28 1985-03-19 Walman Gerald B Intraocular lens
US4562600A (en) * 1983-10-18 1986-01-07 Stephen P. Ginsberg Intraocular lens
US4573998A (en) * 1982-02-05 1986-03-04 Staar Surgical Co. Methods for implantation of deformable intraocular lenses
US4573775A (en) * 1982-08-19 1986-03-04 Vistakon, Inc. Bifocal contact lens
US4575878A (en) * 1981-01-30 1986-03-18 Seymour Dubroff Intraocular lenses
US4636211A (en) * 1984-03-13 1987-01-13 Nielsen J Mchenry Bifocal intra-ocular lens
US4636049A (en) * 1983-09-20 1987-01-13 University Optical Products Co. Concentric bifocal contact lens
US4637697A (en) * 1982-10-27 1987-01-20 Pilkington P.E. Limited Multifocal contact lenses utilizing diffraction and refraction
US4641934A (en) * 1982-09-29 1987-02-10 Pilkington P.E. Limited Ophthalmic lens with diffractive power
US4720286A (en) * 1984-07-20 1988-01-19 Bailey Kelvin E Multifocus intraocular lens
US4725278A (en) * 1985-01-22 1988-02-16 Shearing Steven P Intraocular lens
US4731078A (en) * 1985-08-21 1988-03-15 Kingston Technologies Limited Partnership Intraocular lens
US4813955A (en) * 1983-09-07 1989-03-21 Manfred Achatz Multifocal, especially bifocal, intraocular, artificial ophthalmic lens
US4816032A (en) * 1987-02-11 1989-03-28 Hetland Jens G Arrangement in an intraocular anterior chamber lens
US4816031A (en) * 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US4890913A (en) * 1982-10-13 1990-01-02 Carle John T De Zoned multi-focal contact lens
US4890912A (en) * 1986-01-24 1990-01-02 Rients Visser Trifocal eye-contact lens
US4892543A (en) * 1989-02-02 1990-01-09 Turley Dana F Intraocular lens providing accomodation
US4898461A (en) * 1987-06-01 1990-02-06 Valdemar Portney Multifocal ophthalmic lens
US4906246A (en) * 1987-08-24 1990-03-06 Grendahl Dennis T Cylindrically segmented zone of focus artificial hydrogel lens
US4990159A (en) * 1988-12-02 1991-02-05 Kraff Manus C Intraocular lens apparatus with haptics of varying cross-sectional areas
US4994083A (en) * 1986-07-22 1991-02-19 Ceskoslovenska Akademie Ved Soft intracameral lens
US4994082A (en) * 1988-09-09 1991-02-19 Ophthalmic Ventures Limited Partnership Accommodating intraocular lens
US5000559A (en) * 1988-02-29 1991-03-19 Nikon Corporation Ophthalmic lenses having progressively variable refracting power
US5002382A (en) * 1989-12-07 1991-03-26 Leonard Seidner Multifocal corneal contact lenses
US5089024A (en) * 1988-04-19 1992-02-18 Storz Instrument Company Multi-focal intraocular lens
US5096285A (en) * 1990-05-14 1992-03-17 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
US5192318A (en) * 1986-06-05 1993-03-09 Schneider Richard T One-piece bifocal intraocular lens construction
US5192317A (en) * 1988-07-26 1993-03-09 Irvin Kalb Multi focal intra-ocular lens
US5275623A (en) * 1991-11-18 1994-01-04 Faezeh Sarfarazi Elliptical accommodative intraocular lens for small incision surgery
US5480428A (en) * 1993-04-22 1996-01-02 Mezhotraslevoi Nauchno-Tekhnichesky Komplex "Mikrokhirurgia Glaza" Corrective intraocular lens
US5489302A (en) * 1994-05-24 1996-02-06 Skottun; Bernt C. Accommodating intraocular lens
US5496366A (en) * 1990-04-27 1996-03-05 Cumming; J. Stuart Accommodating intraocular lens
US5593436A (en) * 1993-05-12 1997-01-14 Langerman; David W. Capsular bag implants with dual 360 ring structures for inhibiting posterior capsular opacification
US5607472A (en) * 1995-05-09 1997-03-04 Emory University Intraocular lens for restoring accommodation and allows adjustment of optical power
US5876442A (en) * 1998-01-15 1999-03-02 Visioncare Ltd. Intraocular lens implant with telescope support
US6013101A (en) * 1994-11-21 2000-01-11 Acuity (Israel) Limited Accommodating intraocular lens implant
US6176878B1 (en) * 1998-12-17 2001-01-23 Allergan Sales, Inc. Accommodating intraocular lens
US6197059B1 (en) * 1990-04-27 2001-03-06 Medevec Licensing, B.V. Accomodating intraocular lens
US6197058B1 (en) * 1999-03-22 2001-03-06 Valdemar Portney Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US6200342B1 (en) * 1999-05-11 2001-03-13 Marie-Jose B. Tassignon Intraocular lens with accommodative properties
US20030004569A1 (en) * 2000-02-03 2003-01-02 Haefliger Eduard Anton Lens implant
US6503276B2 (en) * 1998-11-10 2003-01-07 Advanced Medical Optics Accommodating multifocal intraocular lens
US6524340B2 (en) * 2001-05-23 2003-02-25 Henry M. Israel Accommodating intraocular lens assembly
US6533813B1 (en) * 2001-09-07 2003-03-18 Chwen Yih Lin Intraocular lens that may accommodate automatically
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US20030060881A1 (en) * 1999-04-30 2003-03-27 Advanced Medical Optics, Inc. Intraocular lens combinations
US20040015236A1 (en) * 1991-11-18 2004-01-22 Sarfarazi Faezeh M. Sarfarazi elliptical accommodative intraocular lens for small incision surgery
US6695881B2 (en) * 2002-04-29 2004-02-24 Alcon, Inc. Accommodative intraocular lens
US20040039446A1 (en) * 2002-08-26 2004-02-26 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with multi-functional capsular bag ring
US6846326B2 (en) * 2001-01-25 2005-01-25 Visiogen, Inc. Connection geometry for intraocular lens system
US20050018504A1 (en) * 2003-07-23 2005-01-27 Filippo Marinelli Array of non volatile split-gate memory cells for avoiding parasitic programming and programming method thereof
US20050027354A1 (en) * 2003-07-28 2005-02-03 Advanced Medical Optics, Inc. Primary and supplemental intraocular lens
US6855164B2 (en) * 2001-06-11 2005-02-15 Vision Solutions Technologies, Llc Multi-focal intraocular lens, and methods for making and using same
US20050060032A1 (en) * 2001-06-22 2005-03-17 Peter Magnante Accommodating intraocular lens
US7018409B2 (en) * 2002-09-13 2006-03-28 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with aspheric optic design
US20070010882A1 (en) * 2003-02-21 2007-01-11 Barrett Graham D Intraocular lens
US20070021831A1 (en) * 2005-07-19 2007-01-25 Clarke Gerald P Accommodating intraocular lens and methods of use
US7179292B2 (en) * 2002-03-15 2007-02-20 Ophtec B.V. Intraocular lens for implantation in an eye and instrument and methods for insertion of such a lens
US7503938B2 (en) * 2002-03-05 2009-03-17 Phillips Andrew F Method of implanting an accommodating intraocular lens
US7645300B2 (en) * 2004-02-02 2010-01-12 Visiogen, Inc. Injector for intraocular lens system
US7662180B2 (en) * 2002-12-05 2010-02-16 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof

Family Cites Families (556)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25286E (en) 1962-11-13 Bifocal corneal contact lens
FR488835A (en) 1915-03-31 1918-11-19 Vickers Ltd Improvements to warships and other vessels
US2129305A (en) 1936-08-21 1938-09-06 Feinbloom William Contact lens
US2405989A (en) 1941-08-12 1946-08-20 Beach Lens Corp Lens
US2511517A (en) 1947-01-31 1950-06-13 Bell & Howell Co Method of producing optical glass of varied refractive index
US3004470A (en) 1956-07-28 1961-10-17 Zeiss Ikon A G Stuttgart Multiple focal length lens
US2834023A (en) 1957-02-06 1958-05-13 Titmus Optical Company Inc Anterior chamber lenses for refractive correction of aphakia, high ametropia, and anisometropia
US3031927A (en) 1958-03-03 1962-05-01 Plastic Contact Lens Company Bifocal corneal contact lens
US3222432A (en) 1958-06-12 1965-12-07 Lentilles Ophtalmiques Rationn Methods of producing optical and ophthalmic lenses from thermosetting resin materials
US3034403A (en) 1959-04-03 1962-05-15 Neefe Hamilton Res Company Contact lens of apparent variable light absorption
DE1158281B (en) 1961-08-03 1963-11-28 Wilhelm Peter Soehnges Cornealkontaktlinse
US3339997A (en) 1962-07-30 1967-09-05 Plastic Contact Lens Company Bifocal ophthalmic lens having different color distance and near vision zones
US3210894A (en) 1962-08-13 1965-10-12 Kollmorgen Corp Method of producing aspheric surfaces on mirrors or lenses
US3415597A (en) 1962-11-20 1968-12-10 Willard J. Harman Corneal contact lens with offset concave surface portions
US3305294A (en) 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3482906A (en) 1965-10-04 1969-12-09 David Volk Aspheric corneal contact lens series
US3507565A (en) 1967-02-21 1970-04-21 Optical Res & Dev Corp Variable-power lens and system
US3542461A (en) 1967-11-20 1970-11-24 Du Pont Contact lens having an index of refraction approximating that of human tears
US3760045A (en) 1967-12-12 1973-09-18 H Thiele Process of preparing shaped optical bodies useful as aids to vision
US3583790A (en) 1968-11-07 1971-06-08 Polaroid Corp Variable power, analytic function, optical component in the form of a pair of laterally adjustable plates having shaped surfaces, and optical systems including such components
US3617116A (en) 1969-01-29 1971-11-02 American Optical Corp Method for producing a unitary composite ophthalmic lens
US3632696A (en) 1969-03-28 1972-01-04 American Optical Corp Method for making integral ophthalmic lens
US3673616A (en) 1970-01-16 1972-07-04 Svyatoslav Nikolaevich Fedorov Artificial anterior chamber lens
FR2097216A5 (en) 1970-05-27 1972-03-03 Anvar
US3673816A (en) 1971-03-05 1972-07-04 Jones & Laughlin Steel Corp Coupling arrangement
US3827798A (en) 1971-04-05 1974-08-06 Optical Res & Dev Corp Optical element of reduced thickness
US4055378A (en) 1971-12-31 1977-10-25 Agfa-Gevaert Aktiengesellschaft Silicone contact lens with hydrophilic surface treatment
US3751138A (en) 1972-03-16 1973-08-07 Humphrey Res Ass Variable anamorphic lens and method for constructing lens
CA1012392A (en) 1973-08-16 1977-06-21 American Optical Corporation Progressive power ophthalmic lens
US3906551A (en) 1974-02-08 1975-09-23 Klaas Otter Artificial intra-ocular lens system
US3922728A (en) 1974-08-15 1975-12-02 Krasnov Mikhail M Artificial crystalline lens
US3913148A (en) 1974-12-26 1975-10-21 Ernst W Potthast Intraocular lens apparatus
US3925825A (en) 1975-01-24 1975-12-16 American Optical Corp Supporting system for artificial intraocular lens
US4053953A (en) 1976-01-14 1977-10-18 Leonard Flom Posterior chamber artificial intraocular lens with retaining means and instruments for use therewith adapted to provide extraocular confirmation of operative engagement
US4038088A (en) 1975-03-10 1977-07-26 The Goodyear Tire & Rubber Company Mold release agent
US3996626A (en) 1975-08-20 1976-12-14 American Optical Corporation Artificial intraocular lens
DE2610203C3 (en) 1976-03-11 1988-07-28 Optische Werke G. Rodenstock, 8000 Muenchen, De
US4056855A (en) 1976-04-07 1977-11-08 Charles Kelman Intraocular lens and method of implanting same
US4073014A (en) 1976-05-28 1978-02-14 Stanley Poler Intra-ocular lens
US4041552A (en) 1976-09-01 1977-08-16 Fotios Ganias Artificial lens
US4102567A (en) 1976-09-13 1978-07-25 American Optical Corporation Material for fabrication of artificial intraocular lenses and hard contact lenses
DE2702117A1 (en) 1977-01-20 1978-07-27 Soehnges Optik Loose-seat contact lens - has surface structures on securing surface against corneal surface formed by moulding
US4087866A (en) 1977-04-26 1978-05-09 Coburn Optical Industries, Inc. Intraocular lens
US4110848A (en) 1977-05-06 1978-09-05 Ronald P. Jensen Intraocular lens for implantation into the posterior chamber of a human eye
US4159546A (en) 1977-06-15 1979-07-03 Shearing Steven P Intraocular lens
US4210391A (en) 1977-09-14 1980-07-01 Cohen Allen L Multifocal zone plate
US4162122A (en) 1977-09-14 1979-07-24 Cohen Allen L Zonal bifocal contact lens
US4338005A (en) 1978-12-18 1982-07-06 Cohen Allen L Multifocal phase place
US4340283A (en) 1978-12-18 1982-07-20 Cohen Allen L Phase shift multifocal zone plate
US4240163A (en) 1979-01-31 1980-12-23 Galin Miles A Medicament coated intraocular lens
US4285072A (en) 1979-05-14 1981-08-25 Harry H. Leveen Anterior-posterior intraocular lens
US4274717A (en) 1979-05-18 1981-06-23 Younger Manufacturing Company Ophthalmic progressive power lens and method of making same
JPS5942286B2 (en) 1979-08-24 1984-10-13 Suwa Seikosha Kk
US4418991A (en) 1979-09-24 1983-12-06 Breger Joseph L Presbyopic contact lens
US4304012A (en) 1979-10-05 1981-12-08 Iolab Corporation Intraocular lens assembly with improved mounting to the iris
US4298994B1 (en) 1979-10-26 1991-08-06 M Clayman Henry
US4307945A (en) 1980-02-14 1981-12-29 Itek Corporation Progressively varying focal power opthalmic lens
USRE32525F1 (en) 1980-04-01 1989-05-09 Universal intraocular lens and a method of measuring an eye chamber size
US4366582A (en) 1980-12-01 1983-01-04 Faulkner Gerald D Posterior chamber intraocular lens
US4340979A (en) 1981-03-18 1982-07-27 Kelman Charles D Intraocular lens
US4361913A (en) 1981-04-03 1982-12-07 Streck Donald A Intraocular lens
EP0064812B1 (en) 1981-04-29 1985-08-14 Pilkington P.E. Limited Artificial eye lenses
US4402579A (en) 1981-07-29 1983-09-06 Lynell Medical Technology Inc. Contact-lens construction
US4363143A (en) 1981-09-09 1982-12-14 Callahan Wayne B Intraocular lens
US4409691A (en) 1981-11-02 1983-10-18 Levy Chauncey F Focussable intraocular lens
US4457592A (en) 1981-12-03 1984-07-03 Polaroid Corporation Optical system utilizing a transversely movable plate for focusing
US5776191A (en) 1982-02-05 1998-07-07 Staar Surgical Company Fixation system for intraocular lens structures
US4702244A (en) 1982-02-05 1987-10-27 Staar Surgical Company Surgical device for implantation of a deformable intraocular lens
US4404694A (en) 1982-03-18 1983-09-20 Kelman Charles D Intraocular lens
US4426741A (en) 1982-04-08 1984-01-24 Ioptex Inc. Intraocular lens with rotatable appendage
US4435856A (en) 1982-04-14 1984-03-13 Esperance Francis A L Bifocal intraocular lens structure and spectacle actuation frame
US4512040A (en) 1982-06-09 1985-04-23 Mcclure Hubert L Bifocal intraocular lens
DE3222099C2 (en) 1982-06-11 1984-06-20 Titmus Eurocon Kontaktlinsen Gmbh & Co Kg, 8750 Aschaffenburg, De
GB2124500B (en) 1982-07-22 1986-04-30 Mazzocco Thomas R Improved fixation system for intraocularers structures
US4888015A (en) 1982-08-20 1989-12-19 Domino Rudolph S Method of replacing an eye lens
US4476591A (en) 1982-10-07 1984-10-16 Arnott Eric J Lens implants for insertion in the human eye
DE3381691D1 (en) 1982-10-13 1990-08-02 Ng Trustees & Nominees Ltd Bifocal contact lenses.
US4463458A (en) 1982-11-08 1984-08-07 Vision Laboratories Inc. Intraocular lens and implantation method
DE3246306A1 (en) 1982-12-14 1984-06-14 Titmus Eurocon Kontaktlinsen Bifocal lens of bivisual type
US4676793A (en) 1984-05-17 1987-06-30 Bechert Ii Charles H Intraocular lens
US4580882A (en) 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4617023A (en) 1983-05-02 1986-10-14 Peyman Gholam A Intraocular lenses with openable haptic loops
EP0150174A4 (en) 1983-05-13 1986-12-08 Chauncey F Levy Focussable intraocular lens.
FR2546057A1 (en) 1983-05-16 1984-11-23 Aron Rosa Daniele An ocular implant
US4474753A (en) 1983-05-16 1984-10-02 Merck & Co., Inc. Topical drug delivery system utilizing thermosetting gels
US4474752A (en) 1983-05-16 1984-10-02 Merck & Co., Inc. Drug delivery system utilizing thermosetting gels
US4474751A (en) 1983-05-16 1984-10-02 Merck & Co., Inc. Ophthalmic drug delivery system utilizing thermosetting gels
US4478822A (en) 1983-05-16 1984-10-23 Merck & Co., Inc. Drug delivery system utilizing thermosetting gels
US4608050A (en) 1983-07-21 1986-08-26 Innovative Surgical Products, Inc. Correction of defects in the eye and compositions therefor
US4542542A (en) 1983-07-21 1985-09-24 Innovative Surgical Products, Inc. Correction of defects in the eye and compositions therefor
US4618229A (en) 1983-07-22 1986-10-21 Bausch & Lomb Incorporated Bifocal contact lens
US4575877A (en) 1983-08-04 1986-03-18 Herrick Robert S Intraocular lens having loops defining a posterior capsule barrier
US4551864A (en) 1983-08-18 1985-11-12 Iolab Corporation Anterior chamber lens
US4664666A (en) 1983-08-30 1987-05-12 Ezekiel Nominees Pty. Ltd. Intraocular lens implants
GB2146791B (en) 1983-09-16 1987-01-28 Suwa Seikosha Kk Progressive multifocal ophthalmic lens
US4560383A (en) 1983-10-27 1985-12-24 Leiske Larry G Anterior chamber intraocular lens
US4687484A (en) 1983-12-12 1987-08-18 Kaplan Linda J Anterior chamber intraocular lens
US4650292A (en) 1983-12-28 1987-03-17 Polaroid Corporation Analytic function optical component
US4615701A (en) 1984-01-03 1986-10-07 Woods Randall L Intraocular lens and method of implantation thereof
US4596578A (en) 1984-01-30 1986-06-24 Kelman Charles D Intraocular lens with miniature optic
EP0162573A3 (en) 1984-04-17 1986-10-15 Sanford D. Hecht Eye implant
US4601545A (en) 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4878911A (en) 1984-06-25 1989-11-07 Anis Aziz Y Flexible one-piece posterior chamber lens
NL8500527A (en) 1984-06-25 1986-01-16 Aziz Yehia Anis Flexible lens for the posterior chamber.
US4629460A (en) 1984-06-25 1986-12-16 Dyer Robert L Intraocular lens
US4576607A (en) 1984-07-13 1986-03-18 Kelman Charles D Intraocular lenses
US4693716A (en) 1984-08-21 1987-09-15 Mackool Richard J Multipartite intraocular lens
EP0176272B1 (en) 1984-09-07 1989-10-25 Nippon Steel Corporation Shape memory alloy and method for producing the same
US4976732A (en) 1984-09-12 1990-12-11 International Financial Associates Holdings, Inc. Optical lens for the human eye
US4624669A (en) 1984-09-26 1986-11-25 Surgidev Corporation Corneal inlay with holes
FI79619C (en) 1984-12-31 1990-01-10 Antti Vannas Intraokulaer lins.
US4581033A (en) 1985-01-08 1986-04-08 Callahan Wayne B Unitary intraocular lens providing four-point support
US4759762A (en) 1985-03-08 1988-07-26 Grendahl Dennis T Accommodating lens
US4646720A (en) 1985-03-12 1987-03-03 Peyman Gholam A Optical assembly permanently attached to the cornea
US4693572A (en) 1985-06-03 1987-09-15 Fused Kontacts Of Chicago, Inc. Monocentric bifocal corneal contact lens
US4655770A (en) 1985-06-06 1987-04-07 Ioptex, Inc. Surface passivated intraocular lens
WO1987000299A1 (en) 1985-06-24 1987-01-15 Leonard Bronstein Contact lens
US4661108A (en) 1985-07-03 1987-04-28 Surgidev Corporation Intraocular lens
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US4961746A (en) 1985-08-23 1990-10-09 American Cyanamid Company Intraocular lens with colored legs and method of making
US4666444A (en) 1985-09-13 1987-05-19 Pannu Jaswant S Easily insertable intraocular lens
US4737322A (en) 1985-09-27 1988-04-12 Staar Surgical Company Intraocular lens structure with polyimide haptic portion and methods for fabrication
US4666445A (en) 1985-10-01 1987-05-19 Tillay Michael J Intraocular lens with shape memory alloy haptic/optic and method of use
US4752123A (en) 1985-11-19 1988-06-21 University Optical Products Co. Concentric bifocal contact lens with two distance power regions
US4662882A (en) 1985-11-21 1987-05-05 Hoffer Kenneth J Intraocular lens
US4636210A (en) 1985-12-09 1987-01-13 Hoffer Kenneth J Multi-part intraocular lens and method of implanting it in an eye
US4808170A (en) 1985-12-16 1989-02-28 Alcon Laboratories, Inc. Hypotraumatic injection needle useful in ophthalmic surgery
US4648878A (en) 1985-12-23 1987-03-10 Kelman Charles D Posterior chamber lens implant
GB2192291B (en) 1986-03-04 1990-08-22 Gupta Anil K Progressive power contact lens.
GB8606821D0 (en) * 1986-03-19 1986-04-23 Pa Consulting Services Corneal reprofiling
US4840627A (en) 1986-04-08 1989-06-20 Michael Blumenthal Artificial eye lens and method of transplanting same
US4711638A (en) 1986-05-12 1987-12-08 Lindstrom Richard L Intraocular lens
US4725277A (en) 1986-05-14 1988-02-16 Precision-Cosmet Co., Inc. Intraocular lens with tapered haptics
EP0248489A3 (en) 1986-06-02 1989-09-06 Gregory N. Miller Contact lens and method of making same
WO1987007496A1 (en) 1986-06-05 1987-12-17 Precision-Cosmet Co., Inc. One-piece bifocal intraocular lens construction
US4710193A (en) 1986-08-18 1987-12-01 David Volk Accommodating intraocular lens and lens series and method of lens selection
US4676792A (en) 1986-08-26 1987-06-30 Donald Praeger Method and artificial intraocular lens device for the phakic treatment of myopia
US4710194A (en) 1986-10-20 1987-12-01 Kelman Charles D Intraocular lens with optic of expandable hydrophilic material
GB2197663B (en) 1986-11-21 1990-07-11 Manganese Bronze Ltd High density sintered ferrous alloys
US5236970A (en) 1987-02-05 1993-08-17 Allergan, Inc. Optically clear reinforced silicone elastomers of high optical refractive index and improved mechanical properties for use in intraocular lenses
US4885105A (en) 1987-05-14 1989-12-05 The Clorox Company Films from PVA modified with nonhydrolyzable anionic comonomers
US4883485A (en) 1987-05-15 1989-11-28 Patel Jayant K Expandable lens replacement
US4842601A (en) 1987-05-18 1989-06-27 Smith S Gregory Accommodating intraocular lens and method of implanting and using same
US5201762A (en) 1987-05-20 1993-04-13 Hauber Frederick A Intraocular archromatic lens
US4790847A (en) 1987-05-26 1988-12-13 Woods Randall L Intraocular lens implant having eye focusing capabilities
US5270744A (en) 1987-06-01 1993-12-14 Valdemar Portney Multifocal ophthalmic lens
US5225858A (en) 1987-06-01 1993-07-06 Valdemar Portney Multifocal ophthalmic lens
US5166712A (en) 1987-06-01 1992-11-24 Valdemar Portney Multifocal ophthalmic lens
US5166711A (en) 1987-06-01 1992-11-24 Valdemar Portney Multifocal ophthalmic lens
US4769035A (en) 1987-06-02 1988-09-06 Kelman Charles D Artificial lens and the method for implanting such lens
US5074877A (en) 1987-07-02 1991-12-24 Nordan Lee T Intraocular multifocal lens
US4769033A (en) 1987-07-02 1988-09-06 Nordan Lee T Intraocular multifocal lens
US5019099A (en) 1987-07-02 1991-05-28 Nordan Lee T Intraocular multifocal lens method for correcting the aphakic eye
US4917681A (en) 1987-08-24 1990-04-17 Nordan Lee T Intraocular multifocal lens
US5236452A (en) 1987-07-02 1993-08-17 Nordan Lee T Intraocular multifocal lens
US4932968A (en) 1987-07-07 1990-06-12 Caldwell Delmar R Intraocular prostheses
US4865601A (en) 1987-07-07 1989-09-12 Caldwell Delmar R Intraocular prostheses
US4816030A (en) 1987-07-13 1989-03-28 Robinson Paul J Intraocular lens
US4828558A (en) 1987-07-28 1989-05-09 Kelman Charles D Laminate optic with interior Fresnel lens
US4919663A (en) 1987-08-24 1990-04-24 Grendahl Dennis T Laminated zone of focus artificial hydrogel lens
US4921496A (en) 1987-08-24 1990-05-01 Grendahl Dennis T Radially segemented zone of focus artificial hydrogel lens
US5158572A (en) 1987-09-10 1992-10-27 Nielsen James Mchenry Multifocal intraocular lens
EP0308077A3 (en) 1987-09-14 1990-05-30 Nestle S.A. Synthetic intracorneal lens
US4834750A (en) 1987-09-17 1989-05-30 Ioptex Research, Inc. Deformable-elastic intraocular lens
US5047052A (en) 1987-11-06 1991-09-10 Seymour Dubroff Anterior chamber intraocular lens with four point fixation
US5054905A (en) 1987-11-12 1991-10-08 Cohen Allen L Progressive intensity phase bifocal
US4881804A (en) 1987-11-12 1989-11-21 Cohen Allen L Multifocal phase plate with a pure refractive portion
US5056908A (en) 1987-11-12 1991-10-15 Cohen Allen L Optic zone phase channels
US4834749A (en) 1987-12-24 1989-05-30 Texceed Corporation Haptic attachment method and assembly
US4888012A (en) 1988-01-14 1989-12-19 Gerald Horn Intraocular lens assemblies
GB8802220D0 (en) 1988-02-02 1988-03-02 Grendahl D T Intraocular lens
DE68910161T2 (en) 1988-02-08 1994-03-10 Wesley K Herman The intraocular lens.
US4888016A (en) 1988-02-10 1989-12-19 Langerman David W "Spare parts" for use in ophthalmic surgical procedures
EP0329981A1 (en) 1988-02-11 1989-08-30 ADVANCE MEDICAL S.r.l. Intraocular lens with chromatic and absorption-diagram correction
DE68920167D1 (en) 1988-02-12 1995-02-09 Menicon Co Ltd A method of manufacturing a balloon for an intraocular lens.
JPH027954A (en) 1988-03-04 1990-01-11 Alcon Surgical Inc Production of lens with colored peripheral part
US4822360A (en) 1988-03-16 1989-04-18 University Of Utah Inflatable, intraocular lens and method of implanting the lens in the capsule of an eye
US5044742A (en) 1988-03-24 1991-09-03 Amir Cohen Contact lens
CA1316728C (en) 1988-04-01 1993-04-27 Michael J. Simpson Multi-focal diffractive ophthalmic lenses
US4929289A (en) 1988-04-05 1990-05-29 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property and corrosion resistance
US4963148A (en) 1988-04-11 1990-10-16 Ceskoslvnska Akademie Ved Intraocular optical system
FR2631228B1 (en) 1988-05-11 1990-08-10 Domilens Laboratoires Intraocular implant anterior chamber
US4932970A (en) 1988-05-17 1990-06-12 Allergan, Inc. Ophthalmic lens
DE68916541D1 (en) 1988-05-24 1994-08-04 Mario Giovanzana Multifocal contact lens with progressive eccentricity.
WO1989011872A1 (en) 1988-06-09 1989-12-14 Alza Corporation Permeation enhancer comprising ethanol and glycerol monooleate
US4878910A (en) 1988-06-13 1989-11-07 Koziol Jeffrey E Intraocular lens assembly
US4898416A (en) 1988-07-05 1990-02-06 Hughes Aircraft Company Pickup device
US4923296A (en) 1988-07-14 1990-05-08 Erickson Paul M Oriented simultaneous vision bifocal contact lenses or the like utilizing introaocular suppression of blur
EP0681198A1 (en) 1988-07-20 1995-11-08 Allen L. Dr. Cohen Multifocal ophthalmic lens
US5139519A (en) 1988-07-26 1992-08-18 Kalb Irvin M Multi-focal intra-ocular lens
US4830481A (en) 1988-08-12 1989-05-16 Minnesota Mining And Manufacturing Company Multifocal diffractive lens
US4932966A (en) 1988-08-15 1990-06-12 Storz Instrument Company Accommodating intraocular lens
US4888014A (en) 1988-09-13 1989-12-19 Allergan, Inc. Endocapsular intraocular lens
JP2718961B2 (en) 1988-11-04 1998-02-25 株式会社メニコン Intraocular lens
FR2642854B1 (en) 1989-02-03 1991-05-03 Essilor Int optical lens simultaneous vision for the correction of presbyopia
US5002571A (en) 1989-02-06 1991-03-26 Donnell Jr Francis E O Intraocular lens implant and method of locating and adhering within the posterior chamber
US4902293A (en) 1989-04-13 1990-02-20 Feaster Fred T Intraocular lens with inflatable haptic
US4946469A (en) 1989-04-20 1990-08-07 Faezeh Sarfarazi Intraocular lens
US5358520A (en) 1989-04-28 1994-10-25 Nestle S.A. Supplementary intraocular lens system
US4997442A (en) 1989-05-04 1991-03-05 Alcon Laboratories, Inc. Bicomposite intraocular lenses
FR2647227B1 (en) 1989-05-19 1991-08-23 Essilor Int optical component such intraocular implant or contact lens, a clean correction of the vision of an individual
US4932971A (en) 1989-06-05 1990-06-12 Kelman Charles D Clip-on optic assembly
US4923468A (en) 1989-06-13 1990-05-08 Wild Victor F Intraocular lens with fluorescing support loops
US5171267A (en) 1989-08-31 1992-12-15 The Board Of Regents Of The University Of Washington Surface-modified self-passivating intraocular lenses
WO1991003361A1 (en) 1989-08-31 1991-03-21 American Industrial Machine Co., Inc. Method and apparatus for cleaning used bricks
CA2026028A1 (en) 1989-09-25 1991-03-26 George P. Stoy Corneal lens implant
US4995880A (en) 1989-09-26 1991-02-26 Galib Samuel H Intraocular lens and method of surgically implanting same in an eye
US4955902A (en) 1989-11-13 1990-09-11 Kelman Charles D Decentered intraocular lens
WO1991009336A1 (en) 1989-12-07 1991-06-27 Leonard Seidner Corneal contact lenses
US5152788A (en) 1989-12-27 1992-10-06 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lens and method of manufacture
WO1995003783A1 (en) 1990-03-06 1995-02-09 Houston Biotechnology Incorporated Polymeric device for the delivery of immunotoxins for the prevention of secondary cataract
US5133748A (en) 1990-03-16 1992-07-28 Feaster Fred T Intraocular lens fixated to the capsular membrane or iris with adhesive
US5078740A (en) 1990-04-02 1992-01-07 Walman Gerald B Intraocular lens
GB9008582D0 (en) 1990-04-17 1990-06-13 Pilkington Diffractive Lenses Method and contact lenses for treating presbyobia
GB9008577D0 (en) 1990-04-17 1990-06-13 Pilkington Diffractive Lenses Rigid gas permeable lenses
US5047051A (en) 1990-04-27 1991-09-10 Cumming J Stuart Intraocular lens with haptic anchor plate
US5026396A (en) 1990-05-07 1991-06-25 Darin John J Two-piece intraocular lens
US5074942A (en) 1990-05-15 1991-12-24 Texceed Corporation Method for making intraocular lens with integral colored haptics
JPH0431836A (en) 1990-05-28 1992-02-04 Sony Corp Ocular cap for camera
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5147397A (en) 1990-07-03 1992-09-15 Allergan, Inc. Intraocular lens and method for making same
US5117306A (en) 1990-07-17 1992-05-26 Cohen Allen L Diffraction bifocal with adjusted chromaticity
US5229797A (en) 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5171266A (en) 1990-09-04 1992-12-15 Wiley Robert G Variable power intraocular lens with astigmatism correction
FR2666504B1 (en) 1990-09-11 1997-11-28 Daniel Guerin Intraocular artificial lens.
FR2666735A1 (en) 1990-09-13 1992-03-20 Klw Intraocular implant with internal cavity
DE4030899A1 (en) 1990-09-29 1992-04-09 Ipp Intellectual Property Prot A device for positioning an intraocular lens
US5173723A (en) 1990-10-02 1992-12-22 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
US5066301A (en) 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5112351A (en) 1990-10-12 1992-05-12 Ioptex Research Inc. Multifocal intraocular lenses
US5260727A (en) 1990-10-22 1993-11-09 Oksman Henry C Wide depth of focus intraocular and contact lenses
FR2668362B1 (en) 1990-10-31 1997-12-05 Corneal Ind Multifocal lens including intraocular implant has bifocal vision correction zones alternated and Preferred.
US5258025A (en) 1990-11-21 1993-11-02 Fedorov Svjatoslav N Corrective intraocular lens
DE4038088C2 (en) 1990-11-29 1994-05-19 Klaas Dieter Artificial lens implant
JP2540879Y2 (en) 1990-11-30 1997-07-09 株式会社メニコン Intraocular lens
RU2014039C1 (en) 1990-12-13 1994-06-15 Виктор Викторович Курилов Method of varying focal power of artificial lens and artificial lens
RU2014038C1 (en) 1990-12-13 1994-06-15 Виктор Викторович Курилов Method of varying refraction of eye optic system with implanted artificial lens and artificial lens
JP3086263B2 (en) 1990-12-25 2000-09-11 株式会社メニコン Intraocular lens formed body
US5217491A (en) 1990-12-27 1993-06-08 American Cyanamid Company Composite intraocular lens
US5108429A (en) 1991-03-11 1992-04-28 Wiley Robert G Micromotor actuated adjustable focus lens
US5203788A (en) 1991-03-14 1993-04-20 Wiley Robert G Micromotor actuated adjustable focus lens
EP0507292B1 (en) 1991-04-04 1997-07-02 Menicon Co., Ltd. Device for inhibiting aftercataract
US5133749A (en) 1991-05-13 1992-07-28 Nordan Lee T Centrating haptics
US5152789A (en) 1991-05-14 1992-10-06 Allergan, Inc. Fixation member for an intraocular lens
US5766244A (en) 1991-05-23 1998-06-16 Binder; Helmut Intraocular artificial lens and method for fabricating same
US5180390A (en) 1991-07-30 1993-01-19 Drews Robert C Intraocular lens with reinforcing element
WO1993002639A1 (en) 1991-08-06 1993-02-18 Autogenesis Technologies, Inc. Injectable collagen-based compositions for making intraocular lens
US5326347A (en) 1991-08-12 1994-07-05 Cumming J Stuart Intraocular implants
WO1993003776A1 (en) 1991-08-16 1993-03-04 Galin Miles A Medicament coated refractive anterior chamber ocular implant
US5196026A (en) 1991-09-16 1993-03-23 Chiron Ophthalmics, Inc. Method of implanting corneal inlay lenses smaller than the optic zone
FR2681524B1 (en) 1991-09-25 1997-04-04 Mnao Implant cristallinien.
US5578081A (en) 1991-11-12 1996-11-26 Henry H. McDonald Eye muscle responsive artificial lens unit
US5786883A (en) 1991-11-12 1998-07-28 Pilkington Barnes Hind, Inc. Annular mask contact lenses
US6423094B1 (en) 1991-11-18 2002-07-23 Faezeh M. Sarfarazi Accommodative lens formed from sheet material
US5141507A (en) 1991-12-06 1992-08-25 Iolab Corporation Soft intraocular lens
US5172723A (en) 1991-12-31 1992-12-22 Sturgis Malcolm B Quick-connect coupling
US5344448A (en) 1992-02-11 1994-09-06 Schneider Richard T Multi-focal intra-ocular implant
NL9200400A (en) 1992-03-04 1993-10-01 Jose Jorge Pavlotzky Handelend Bifocal contact lens, as well as method for manufacturing of such a contact lens.
US5197981A (en) 1992-04-23 1993-03-30 Alcon Surgical, Inc. Intraocular lens having haptic of specific curvature and proportion
US5354331A (en) 1992-07-15 1994-10-11 Schachar Ronald A Treatment of presbyopia and other eye disorders
US5443506A (en) 1992-11-18 1995-08-22 Garabet; Antoine L. Lens with variable optical properties
US5300115A (en) 1992-11-19 1994-04-05 Keratos, Inc. Intraocular prosthesis
CA2110847C (en) 1992-12-09 2006-03-21 Jeffrey H. Roffman Multifocal ophthalmic lens pair
US5448312A (en) 1992-12-09 1995-09-05 Johnson & Johnson Vision Products, Inc. Pupil-tuned multifocal ophthalmic lens
US5760871A (en) 1993-01-06 1998-06-02 Holo-Or Ltd. Diffractive multi-focal lens
US5375611A (en) 1993-01-26 1994-12-27 Pharmacia Ab Method for preventing secondary cataract
US5354335A (en) 1993-02-04 1994-10-11 Isaac Lipshitz Intraocular insert for implantation in the human eye
US6090141A (en) 1993-03-05 2000-07-18 Lindstrom; Richard L. Small intracorneal lens
US5408281A (en) 1993-04-26 1995-04-18 Ciba-Geigy Multifocal contact lens
US5895422A (en) 1993-06-17 1999-04-20 Hauber; Frederick A. Mixed optics intraocular achromatic lens
US5405386A (en) 1993-07-09 1995-04-11 Kabi Pharmacia Ophthalmics, Inc. Intraocular lens with improved cylindrical haptic
JP3379717B2 (en) 1993-07-15 2003-02-24 キヤノンスター株式会社 Deformable intraocular lens
CA2169083A1 (en) 1993-08-27 1995-03-09 J. Stuart Cumming Accommodating intraocular lens
US5489301A (en) 1993-09-03 1996-02-06 Barber; John C. Corneal prosthesis
US5423929A (en) 1993-10-27 1995-06-13 Allergan, Inc. Intraocular lenses and methods for producing same
DE4340205C1 (en) 1993-11-25 1995-04-20 Dieter W Klaas Intraocular lens with accommodation device
US5445637A (en) 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
DE4403326C1 (en) 1994-02-03 1995-06-22 Hans Reinhard Prof Dr Koch An intraocular lens assembly for astigmatism
JP3474627B2 (en) 1994-02-16 2003-12-08 Hoya株式会社 Intraocular lens
WO1995028897A3 (en) 1994-04-19 1995-11-30 Henry H Mcdonald Lens insertable between the iris and the natural lens
JP3745394B2 (en) 1994-07-04 2006-02-15 武敏 鈴木 Intraocular lens
FR2723691B1 (en) 1994-08-22 1997-01-24 Philippe Crozafon Intraocular implant
JP3816099B2 (en) 1994-10-06 2006-08-30 スター サージカル カンパニー Intraocular contact lens
DE69526962D1 (en) 1994-11-21 2002-07-11 Acuity Israel Ltd Akkomodierendes An artificial lens implant
US5549760A (en) 1994-12-01 1996-08-27 White Consolidated Industries, Inc. Mounting device for dishwasher insulation
US6358280B1 (en) 1994-12-08 2002-03-19 Herrick Family Limited Partnership A California Limited Partnership Artificial lens including a lens system having eccentric axes for use in an eye having an enlarged pupil
US5574518A (en) 1995-01-10 1996-11-12 Les Laboratoires Opti-Centre Inc. System incorporation two different sphero-non-spherical contact lenses for correcting presbytia
DE19501444A1 (en) * 1995-01-19 1996-07-25 Morcher Gmbh Intra ocular two lens system
EP1627613B8 (en) 1995-02-15 2008-09-03 The Nice Trust, a Trust of the Isle of Man Accommodating intraocular lens having T-shaped haptics
US5695509A (en) 1995-03-10 1997-12-09 El Hage; Sami G. Aspherical optical molds for continuous reshaping the cornea based on topographical analysis
US5628795A (en) 1995-03-15 1997-05-13 Langerman David W Spare parts for use in ophthalmic surgical procedures
CA2175654C (en) 1995-05-04 2007-03-20 Edgar V. Menezes Concentric annular ring lens designs for astigmatic presbyopes
US5684560A (en) 1995-05-04 1997-11-04 Johnson & Johnson Vision Products, Inc. Concentric ring single vision lens designs
US5929969A (en) 1995-05-04 1999-07-27 Johnson & Johnson Vision Products, Inc. Multifocal ophthalmic lens
US5650837A (en) 1995-05-04 1997-07-22 Johnson & Johnson Vision Products, Inc. Rotationally stable contact lens designs
US5682223A (en) 1995-05-04 1997-10-28 Johnson & Johnson Vision Products, Inc. Multifocal lens designs with intermediate optical powers
US5652638A (en) 1995-05-04 1997-07-29 Johnson & Johnson Vision Products, Inc. Concentric annular ring lens designs for astigmatism
US5693094A (en) 1995-05-09 1997-12-02 Allergan IOL for reducing secondary opacification
US5774274A (en) 1995-05-12 1998-06-30 Schachar; Ronald A. Variable focus lens by small changes of the equatorial lens diameter
US6721104B2 (en) 1995-05-12 2004-04-13 Pc Lens Corp System and method for focusing an elastically deformable lens
RU2074673C1 (en) 1995-06-01 1997-03-10 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Elastic artificial crystalline lens and method for manufacturing same
FR2735680B1 (en) 1995-06-22 1998-01-02 W K Et Associes An intraocular implant for correcting ocular anisotropy
US5608471A (en) 1995-07-03 1997-03-04 Westcon Contact Lens Co., Inc. Soft, bifocal contact lens
US5800530A (en) 1995-08-18 1998-09-01 Rizzo, Iii; Joseph Intra-ocular lens system including microelectric components
US5968094A (en) 1995-09-18 1999-10-19 Emmetropia, Inc. Compound intraocular lens
KR19990063901A (en) 1995-09-29 1999-07-26 스테펜에이.듄 Contact lens and process for fitting
WO1997012564A1 (en) 1995-10-06 1997-04-10 Cumming J Stuart Intraocular lenses with fixated haptics
US6322589B1 (en) 1995-10-06 2001-11-27 J. Stuart Cumming Intraocular lenses with fixated haptics
US5770125A (en) 1995-11-27 1998-06-23 Mentor Corporation Haptic attachment system for intraocular lenses using diode laser
US5716403A (en) 1995-12-06 1998-02-10 Alcon Laboratories, Inc. Single piece foldable intraocular lens
DE69526586T2 (en) 1995-12-15 2002-11-14 David W Langerman Lens capsule spreader
US5835192A (en) 1995-12-21 1998-11-10 Johnson & Johnson Vision Products, Inc. Contact lenses and method of fitting contact lenses
US5984962A (en) 1996-01-22 1999-11-16 Quantum Vision, Inc. Adjustable intraocular lens
US5728155A (en) 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
EP0877586A1 (en) 1996-01-26 1998-11-18 Vision Pharmaceuticals L.P. Primary and supplemental intraocular lens system
US5702440A (en) 1996-01-26 1997-12-30 Allergan Multifocal ophthalmic lens for dim-lighting conditions
DE69716779D1 (en) 1996-01-30 2002-12-05 Medtronic Inc Products and methods for production of dilators
WO1997027825A1 (en) 1996-02-02 1997-08-07 Soleko S.P.A. Intraocular lens
FR2744908B1 (en) 1996-02-20 1998-06-12 W K Et Associes Intraocular implant myopic
US5628797A (en) 1996-02-23 1997-05-13 Richer; Homer E. Cosmetic anterior chamber, intraocular lens and implantation method
FR2745711B1 (en) 1996-03-05 1998-05-07 Ioltechnologie Production forming flexible implant intraocular posterior chamber lens
US5800533A (en) 1996-03-18 1998-09-01 Harry C. Eggleston Adjustable intraocular lens implant with magnetic adjustment facilities
JP2991655B2 (en) 1996-03-19 1999-12-20 ホーヤ・ヘルスケア株式会社 Intraocular lens and manufacturing method thereof
WO1997043984A1 (en) 1996-05-17 1997-11-27 Helmut Payer An ocular implant
US5864378A (en) 1996-05-21 1999-01-26 Allergan Enhanced monofocal IOL or contact lens
JPH10211A (en) 1996-06-18 1998-01-06 Okifumi Nishi Intraocular lens
WO1998005273A1 (en) 1996-08-06 1998-02-12 Chiron Vision Corporation Foldable intraocular lens
FR2754444B1 (en) 1996-10-10 1999-07-02 W K Et Associes intraocular implant floptical and rigid circular single handle
US6015435A (en) 1996-10-24 2000-01-18 International Vision, Inc. Self-centering phakic intraocular lens
US6251312B1 (en) 1996-10-30 2001-06-26 Allergan Production methods for intraocular lenses with high pull strength fixation members
US5812236A (en) 1996-11-15 1998-09-22 Permeable Technologies, Inc. Multifocal corneal contact lens pair
FR2758282B1 (en) 1997-01-16 1999-04-09 Usinor Cylinder for a rolling mill or continuous casting of metals
US5769890B1 (en) * 1997-01-16 2000-09-05 Surgical Concepts Inc Placement of second artificial lens in eye to correct for optical defects of first artificial lens in eye
US5898473A (en) 1997-04-25 1999-04-27 Permeable Technologies, Inc. Multifocal corneal contact lens
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US5928282A (en) 1997-06-13 1999-07-27 Bausch & Lomb Surgical, Inc. Intraocular lens
US5928283A (en) 1997-06-26 1999-07-27 Visioncare Ltd Telescopic device for an intraocular lens
JPH1147168A (en) 1997-07-16 1999-02-23 Henry M Israel The intraocular lens assembly
JP3850538B2 (en) 1997-07-19 2006-11-29 敏之 永本 Lens 嚢癒 adhesion prevention ring
US6136026A (en) 1997-07-28 2000-10-24 Israel; Henry M. Intraocular ring
US20010018612A1 (en) 1997-08-07 2001-08-30 Carson Daniel R. Intracorneal lens
EP1001720B1 (en) 1997-08-07 2002-10-02 Alcon Laboratories, Inc. Intracorneal diffractive lens
US6800091B2 (en) 1997-08-20 2004-10-05 Thinoptx, Inc. Method of using a small incision lens
US5843188A (en) 1997-10-20 1998-12-01 Henry H. McDonald Accommodative lens implantation
JP2001520077A (en) 1997-10-22 2001-10-30 ソシエテ・メデイカル・ドウ・プレシジヨン・エス・エム・ペー・エス・アー Intraocular lens device
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
US6606286B1 (en) 1998-01-05 2003-08-12 Mitburri Electric Co., Ltd Tln signal generating apparatus used in optical disc drive and optical disc drive equipped with the apparatus, and optical disc drive equipped with amplitude adjusting apparatus for tracking error signal
US6428572B2 (en) 1998-01-12 2002-08-06 Menicon Co., Ltd. Intraocular ring
US20020011167A1 (en) 1998-01-15 2002-01-31 Murray Figov Plateless printing system
US5814103A (en) 1998-01-15 1998-09-29 Visioncare Ltd. Intraocular lens and telescope with mating fasteners
US6186148B1 (en) 1998-02-04 2001-02-13 Kiyoshi Okada Prevention of posterior capsular opacification
US6322213B1 (en) 1998-02-11 2001-11-27 Euro Lens Technology S.P.A. Progressive multifocal contact lens suitable for compensating presbyopia
EP1250162B1 (en) 1998-03-16 2004-09-15 Pharmacia Groningen B.V. Materials suitable for intraocular lens production
FR2778093B1 (en) 1998-05-04 2000-06-16 Khalil Hanna IOL
US6533814B1 (en) 1998-05-05 2003-03-18 Pharmacia Groningen, Bv Intraocular lens having a design for controlling its axial displacement after implantation
US6517577B1 (en) 1998-05-28 2003-02-11 Thinoptx, Inc. Crossed haptics for intraocular lenses
US6083261A (en) 1998-05-28 2000-07-04 Callahan; Wayne B. Crossed haptics for intraocular lenses
US6162249A (en) 1998-05-29 2000-12-19 Allergan IOI for inhibiting cell growth and reducing glare
US6884262B2 (en) 1998-05-29 2005-04-26 Advanced Medical Optics, Inc. Enhanced intraocular lens for reducing glare
US6468306B1 (en) 1998-05-29 2002-10-22 Advanced Medical Optics, Inc IOL for inhibiting cell growth and reducing glare
EP1103014A4 (en) 1998-08-06 2006-09-06 John B W Lett Multifocal aspheric lens
US6238433B1 (en) 1998-10-05 2001-05-29 Allergan Sales, Inc. Posterior/anterior chamber intraocular lenses and methods of implantation
CA2349566C (en) 1998-10-13 2011-01-25 Pharmacia Groningen B.V. Photocurable siloxane polymers
FR2784575B1 (en) 1998-10-15 2000-12-22 Megaoptic Gmbh Accommodative intraocular implant
US6228115B1 (en) 1998-11-05 2001-05-08 Bausch & Lomb Surgical, Inc. Intraocular lenses with improved axial stability
US6152958A (en) 1998-12-16 2000-11-28 Nordan; Lee T. Foldable thin intraocular membrane
US6102946A (en) 1998-12-23 2000-08-15 Anamed, Inc. Corneal implant and method of manufacture
US6117171A (en) 1998-12-23 2000-09-12 Skottun; Bernt Christian Encapsulated accommodating intraocular lens
US6450642B1 (en) 1999-01-12 2002-09-17 California Institute Of Technology Lenses capable of post-fabrication power modification
US6210005B1 (en) 1999-02-04 2001-04-03 Valdemar Portney Multifocal ophthalmic lens with reduced halo size
US6106554A (en) 1999-02-25 2000-08-22 Bausch & Lomb Surgical, Inc. Intraocular lens implants for the prevention of secondary cataracts
WO2000059407A9 (en) 1999-04-01 2001-11-15 Werner G Bernau Deformable intraocular lens with anchored haptics
US6942695B1 (en) 1999-04-05 2005-09-13 Wessley-Jessen Corporation Biomedical devices with polyimide coating
US7662179B2 (en) 1999-04-09 2010-02-16 Sarfarazi Faezeh M Haptics for accommodative intraocular lens system
US6488708B2 (en) 1999-04-09 2002-12-03 Faezeh Sarfarazi Open chamber, elliptical, accommodative intraocular lens system
US6224628B1 (en) 1999-04-23 2001-05-01 Thinoptx, Inc. Haptics for an intraocular lens
US6200344B1 (en) 1999-04-29 2001-03-13 Bausch & Lomb Surgical, Inc. Inraocular lenses
US20060238702A1 (en) 1999-04-30 2006-10-26 Advanced Medical Optics, Inc. Ophthalmic lens combinations
US6616692B1 (en) 1999-04-30 2003-09-09 Advanced Medical Optics, Inc. Intraocular lens combinations
DE60029102D1 (en) 1999-04-30 2006-08-10 Advanced Medical Optics Inc movable intraocular lens
US6790232B1 (en) 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US6406494B1 (en) 1999-04-30 2002-06-18 Allergan Sales, Inc. Moveable intraocular lens
US6536899B1 (en) 1999-07-14 2003-03-25 Bifocon Optics Gmbh Multifocal lens exhibiting diffractive and refractive powers
US6685741B2 (en) 1999-07-29 2004-02-03 Bausch & Lomb Incorporated Intraocular lenses
FR2796834B1 (en) 1999-07-30 2001-12-14 Ioltechnologie Production forming lens implant multifocal intraocular
US6451056B1 (en) 1999-08-09 2002-09-17 J. Stuart Cumming Lens for increased depth of focus
US6241777B1 (en) 1999-09-01 2001-06-05 Robert E. Kellan Phakic intraocular lenses
US20010044657A1 (en) 2000-11-30 2001-11-22 Kellan Robert E. Phakic or aphakic intraocular lens assembly
US6261321B1 (en) 1999-09-01 2001-07-17 Robert E. Kellan Phakic or aphakic intraocular lens assembly
WO2001018592A1 (en) 1999-09-03 2001-03-15 Carle John Trevor De Bifocal lenses
US6217612B1 (en) 1999-09-10 2001-04-17 Randall Woods Intraocular lens implant having eye accommodating capabilities
US6299641B1 (en) 1999-09-10 2001-10-09 Randall Woods Intraocular lens implant having eye accommodating capabilities
US6277146B1 (en) 1999-09-16 2001-08-21 Gholam A. Peyman Glare-free intraocular lens and method for using the same
US6280471B1 (en) 1999-09-16 2001-08-28 Gholam A. Peyman Glare-free intraocular lens and method for using the same
US6645246B1 (en) 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
US6599317B1 (en) 1999-09-17 2003-07-29 Advanced Medical Optics, Inc. Intraocular lens with a translational zone
DE19951148A1 (en) 1999-10-12 2001-04-19 Technomed Ges Fuer Med Und Med Eyeball clamping ring for use during cataract surgery has a curved and elastic element with the ends locked together to remain as an implant to support the fiber tissue
WO2001028144A1 (en) 1999-10-15 2001-04-19 Fujitsu Limited Synchronizing device and synchronizing system
FR2799952B1 (en) 1999-10-21 2001-12-14 Humanoptics Ag IOL
US6767363B1 (en) 1999-11-05 2004-07-27 Bausch & Lomb Surgical, Inc. Accommodating positive and negative intraocular lens system
FR2800596B1 (en) 1999-11-10 2002-03-22 Ioltechnologie Production Precrystalline intraocular implant
DE60035791D1 (en) 1999-11-11 2007-09-13 Angiomed Ag Introducer for an implant
DE50013494D1 (en) 1999-12-14 2006-11-02 Boehm Hans Georg Fokussierfähige intraocular lens
DE19961603A1 (en) 1999-12-21 2001-06-28 Bayer Ag Production of 2-chlorocyclopropyl-1-chlorophenyl-triazolonyl-propanol derivative, useful as microbicide, from 2-chlorocyclopropyl-2-chlorobenzyl-oxirane
US6342073B1 (en) 1999-12-30 2002-01-29 J. Stuart Cumming Intraocular lens for posterior vaulting
US6478821B1 (en) 2000-01-12 2002-11-12 Advanced Medical Optics, Inc. Iris fixated intraocular lens and method of implantation
US6475240B1 (en) * 2000-02-02 2002-11-05 Advanced Medical Optics, Inc. Anterior chamber intraocular lens and methods for reducing pupil ovalling
US6428573B2 (en) 2000-02-03 2002-08-06 Howard J. Barnett Intraocular multifocal lens construction
US20050085907A1 (en) 2000-02-16 2005-04-21 Humanoptics Ag Intraocular implant and an artificial lens device
FR2804860B1 (en) 2000-02-16 2002-04-12 Humanoptics Ag Implant cristallinien accomodatif
US6797004B1 (en) 2000-03-02 2004-09-28 Advanced Medical Optics, Inc. Holders for intraocular lenses
US6551354B1 (en) 2000-03-09 2003-04-22 Advanced Medical Optics, Inc. Accommodating intraocular lens
US6554859B1 (en) 2000-05-03 2003-04-29 Advanced Medical Optics, Inc. Accommodating, reduced ADD power multifocal intraocular lenses
US6547822B1 (en) 2000-05-03 2003-04-15 Advanced Medical Optics, Inc. Opthalmic lens systems
US6425917B1 (en) 2000-05-12 2002-07-30 Tekia Phakic iol film frame
US6679605B2 (en) 2000-05-22 2004-01-20 Medennium, Inc. Crystalline polymeric compositions for ophthalmic devices
US6598606B2 (en) 2000-05-24 2003-07-29 Pharmacia Groningen Bv Methods of implanting an intraocular lens
US6730123B1 (en) 2000-06-22 2004-05-04 Proteus Vision, Llc Adjustable intraocular lens
US6506212B2 (en) 2000-07-07 2003-01-14 Medennium, Inc. Anatomically compatible posterior chamber phakic refractive lenses
US6660035B1 (en) 2000-08-02 2003-12-09 Advanced Medical Optics, Inc. Accommodating intraocular lens with suspension structure
US20060116765A1 (en) 2000-08-04 2006-06-01 Blake Larry W Refractive corrective lens (RCL)
CA2418977C (en) 2000-08-10 2011-01-18 Crucell Holland B.V. Gene delivery vectors with cell type specificity for primary human chondrocytes
US6454802B1 (en) 2000-08-21 2002-09-24 Bausch & Lomb Incorporated Intraocular lens implant for the prevention of secondary cataracts
WO2002019949A3 (en) 2000-09-07 2003-01-16 Allergan Sales Inc Intraocular lens with a posterior lens portion
US6474814B1 (en) 2000-09-08 2002-11-05 Florida Optical Engineering, Inc Multifocal ophthalmic lens with induced aperture
US6666887B1 (en) 2000-10-20 2003-12-23 Thinoptx, Inc. Deformable intraocular multi-focus lens
US6592621B1 (en) 2000-11-10 2003-07-15 Rudolph S. Domino Flexible intra-ocular lens of variable focus
JP3992617B2 (en) 2000-11-29 2007-10-17 エイ・エム・オー・フローニンゲン・ベー・ベー Apparatus for use in ophthalmic surgery
DE10059482B4 (en) 2000-11-30 2008-12-24 *Acri.Tec AG Gesellschaft für ophthalmologische Produkte Capsular
US20020072796A1 (en) 2000-12-11 2002-06-13 Hoffmann Laurent G. Iris fixated intraocular lenses
US6558420B2 (en) 2000-12-12 2003-05-06 Bausch & Lomb Incorporated Durable flexible attachment components for accommodating intraocular lens
US6813643B2 (en) 2001-01-05 2004-11-02 Digeo, Inc. Multimedia system with selectable protocol module including MPEG logic and docsis logic sharing a single tuner
US6464725B2 (en) 2001-01-23 2002-10-15 Bernt Christian Skotton Two-lens adjustable intraocular lens system
US6884261B2 (en) 2001-01-25 2005-04-26 Visiogen, Inc. Method of preparing an intraocular lens for implantation
US20030078658A1 (en) 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Single-piece accomodating intraocular lens system
US20030078657A1 (en) 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US7198640B2 (en) 2001-01-25 2007-04-03 Visiogen, Inc. Accommodating intraocular lens system with separation member
US6818158B2 (en) 2001-01-25 2004-11-16 Visiogen, Inc. Accommodating intraocular lens system and method of making same
EP1723934B1 (en) 2001-01-25 2009-06-03 Visiogen, Inc. Accomodating intraocular lens system
US6827738B2 (en) 2001-01-30 2004-12-07 Timothy R. Willis Refractive intraocular implant lens and method
US7021760B2 (en) 2001-01-31 2006-04-04 Clearlab Pte Ltd. Soft contact lens capable of engagement with an eye either right way out or inside out
WO2002060346A8 (en) 2001-02-01 2004-06-10 Tekia Inc Two part 'l'- or 's'-shaped phakic iol
US6818017B1 (en) 2001-02-15 2004-11-16 Stephen Shu High gain wide range accommodating intraocular lens for implant into the capsular bag
US20040148023A1 (en) 2001-02-15 2004-07-29 Shu Stephen K. High gain wide range accommodating intraocular lens for implant into the capsular bag
US20020120329A1 (en) 2001-02-28 2002-08-29 Allergan Sales, Inc. Moveable intraocular lenses and combinations of intraocular lenses
US7107533B2 (en) 2001-04-09 2006-09-12 International Business Machines Corporation Electronic book with multimode I/O
US20020151973A1 (en) 2001-04-11 2002-10-17 Sakurai Seigi Co., Ltd. Intraocular lens
US20040158322A1 (en) 2002-04-17 2004-08-12 Shen Jin Hui Intraocular lens system
US6638305B2 (en) 2001-05-15 2003-10-28 Advanced Medical Optics, Inc. Monofocal intraocular lens convertible to multifocal intraocular lens
DE10125829A1 (en) 2001-05-26 2002-11-28 Gisbert Richard Artificial lens, for implanting into the eyeball, has a thin, transparent and biologically compatible synthetic envelope, filled with a transparent material, and fitted with radial hooks for anchoring and react to the ciliary muscles
DE20109306U1 (en) 2001-06-02 2001-08-16 Ruempler Lars Lens or lens system for implantation in a human eye
US20030105522A1 (en) 2001-06-11 2003-06-05 Glazier Alan N. Multi-focal intraocular lens
US7118597B2 (en) 2001-06-22 2006-10-10 David Miller Accommodating intraocular lens
US6884263B2 (en) 2001-07-17 2005-04-26 Medennium, Inc. Accommodative intraocular lens
US6847182B2 (en) 2001-07-26 2005-01-25 Stmicroelectronics S.R.L. Device for driving electric motors
US7135618B2 (en) 2001-08-10 2006-11-14 Basf Plant Science Gmbh Sugar and lipid metabolism regulators in plants III
DE10139027A1 (en) 2001-08-15 2003-02-27 Humanoptics Ag The intraocular implant
US6537283B2 (en) 2001-08-17 2003-03-25 Alcon, Inc. Intraocular lens shipping case and injection cartridge
EP1420722B1 (en) 2001-08-21 2010-12-01 Nulens Ltd Accommodating lens assembly
US6443985B1 (en) 2001-08-27 2002-09-03 Randall Woods Intraocular lens implant having eye accommodating capabilities
GB0126234D0 (en) 2001-11-01 2002-01-02 Khoury Elie Intraocular lens implant having accommodative capabilities
US6598971B2 (en) 2001-11-08 2003-07-29 Lc Technologies, Inc. Method and system for accommodating pupil non-concentricity in eyetracker systems
US7097660B2 (en) * 2001-12-10 2006-08-29 Valdemar Portney Accommodating intraocular lens
US7037338B2 (en) 2001-12-14 2006-05-02 Toshiyuki Nagamoto Intraocular ring assembly and artificial lens kit
US20030135271A1 (en) 2001-12-21 2003-07-17 Bandhauer Mark H. In-vivo adjustable intraocular lens
JP2003190193A (en) 2001-12-26 2003-07-08 Canon Star Kk Intraocular lens
US20050099597A1 (en) 2002-12-24 2005-05-12 Calhoun Vision Light adjustable multifocal lenses
US7326246B2 (en) 2002-01-14 2008-02-05 Advanced Medical Optics, Inc. Accommodating intraocular lens with elongated suspension structure
WO2003059208A3 (en) 2002-01-14 2004-05-13 Advanced Medical Optics Inc Accommodating intraocular lens with integral capsular bag ring
US7150759B2 (en) 2002-01-14 2006-12-19 Advanced Medical Optics, Inc. Multi-mechanistic accommodating intraocular lenses
FR2835424B1 (en) 2002-02-01 2004-11-26 Khalil Hanna Intracapsular implant accomodatif
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US20070100445A1 (en) 2003-02-03 2007-05-03 Shadduck John H Intraocular lenses and business methods
US20050021139A1 (en) 2003-02-03 2005-01-27 Shadduck John H. Ophthalmic devices, methods of use and methods of fabrication
US20030187505A1 (en) 2002-03-29 2003-10-02 Xiugao Liao Accommodating intraocular lens with textured haptics
US20030187504A1 (en) 2002-04-01 2003-10-02 Weinschenk Joseph I. Adjustable intraocular lens
US20050137703A1 (en) 2003-12-05 2005-06-23 Vanderbilt University Accommodative intraocular lens
WO2003104990A1 (en) 2002-06-05 2003-12-18 Sap Aktiengesellschaft Apparatus and method for integrating variable subsidiary information with main office information in an enterprise system
US20040002757A1 (en) 2002-06-27 2004-01-01 Bausch & Lomb Incorporated Intraocular lens
US20040014049A1 (en) 2002-07-19 2004-01-22 Isis Pharmaceuticals Inc. Antisense modulation of protein kinase C-iota expression
EP2261301A1 (en) 2002-08-27 2010-12-15 Fujifilm Corporation Organometallic complexes, organic electroluminescent devices and organic electroluminescent displays
US20040082995A1 (en) 2002-10-25 2004-04-29 Randall Woods Telescopic intraocular lens implant for treating age-related macular degeneration
US20040082993A1 (en) 2002-10-25 2004-04-29 Randall Woods Capsular intraocular lens implant having a refractive liquid therein
US7125422B2 (en) 2002-10-25 2006-10-24 Quest Vision Technology, Inc. Accommodating intraocular lens implant
US7381221B2 (en) 2002-11-08 2008-06-03 Advanced Medical Optics, Inc. Multi-zonal monofocal intraocular lens for correcting optical aberrations
US7896916B2 (en) 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
EP2363097B1 (en) 2002-11-29 2012-09-26 AMO Groningen B.V. Bifocal intraocular lens
US20040117013A1 (en) 2002-12-12 2004-06-17 Ira Schachar Device and method for treating macular degeneration
US7217288B2 (en) 2002-12-12 2007-05-15 Powervision, Inc. Accommodating intraocular lens having peripherally actuated deflectable surface and method
US7261737B2 (en) 2002-12-12 2007-08-28 Powervision, Inc. Accommodating intraocular lens system and method
US7247168B2 (en) 2002-12-12 2007-07-24 Powervision, Inc. Accommodating intraocular lens system and method
JP4480585B2 (en) 2002-12-12 2010-06-16 パワービジョン, インコーポレイテッド Regulation and methods of the intraocular lens
US7637947B2 (en) 2002-12-12 2009-12-29 Powervision, Inc. Accommodating intraocular lens system having spherical aberration compensation and method
US6616691B1 (en) 2003-01-10 2003-09-09 Alcon, Inc. Accommodative intraocular lens
US7238201B2 (en) 2003-02-13 2007-07-03 Visiogen, Inc. Accommodating intraocular lens system with enhanced range of motion
US7615056B2 (en) 2003-02-14 2009-11-10 Visiogen, Inc. Method and device for compacting an intraocular lens
US7186266B2 (en) 2003-06-06 2007-03-06 Teledioptic Lens System, Llc Bifocal intraocular telescope for low vision correction
US20040167621A1 (en) * 2003-02-26 2004-08-26 Peyman Gholam A. Teledioptic lens system and method for using the same
CA2517576A1 (en) 2003-03-06 2004-09-23 John H. Shadduck Adaptive optic lens and method of making
US7905917B2 (en) 2003-03-31 2011-03-15 Bausch & Lomb Incorporated Aspheric lenses and lens family
US7056409B2 (en) 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7803574B2 (en) 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
US6923539B2 (en) 2003-05-12 2005-08-02 Alcon, Inc. Aspheric lenses
US7029497B2 (en) 2003-05-21 2006-04-18 Alcon, Inc. Accommodative intraocular lens
US7223288B2 (en) 2003-05-21 2007-05-29 Alcon, Inc. Accommodative intraocular lens
US20050038510A1 (en) 2003-08-13 2005-02-17 Valdemar Portney Multi-piece intraocular lens assembly and method of manufacturing same
GB0319408D0 (en) * 2003-08-19 2003-09-17 Chawdhary Satish Intraocular device
US20050125058A1 (en) 2003-12-03 2005-06-09 Eyeonics, Inc. Accommodating hybrid intraocular lens
US7553327B2 (en) 2003-12-04 2009-06-30 The Nice Trust, A Trust Of The Isle Of Man Accommodating 360 degree sharp edge optic plate haptic lens
CA2549191C (en) 2003-12-05 2012-10-23 Innfocus, Llc Improved ocular lens
WO2005055875A3 (en) 2003-12-09 2005-09-09 Advanced Medical Optics Inc Foldable intraocular lens and method of making
US20050131535A1 (en) 2003-12-15 2005-06-16 Randall Woods Intraocular lens implant having posterior bendable optic
NL1025622C2 (en) 2004-03-03 2005-09-07 Accolens Internat B V Two together form a lens-forming optical elements with variable optical power for use as an intraocular lens.
US7632864B2 (en) 2004-03-17 2009-12-15 Hikal Ltd. Gabapentin analogues and process thereof
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
CN101642392A (en) 2004-04-29 2010-02-10 纽镜有限公司 Accommodating intraocular lens assemblies and accommodation measurement implant
DE102004025305A1 (en) 2004-05-19 2005-12-08 Humanoptics Ag Akkommodierbare intraocular lens
WO2006025726A1 (en) 2004-09-02 2006-03-09 Vu Medisch Centrum Artificial intraocular lens
US20060064162A1 (en) 2004-09-17 2006-03-23 Klima William L 333Intraocular lens device
US20070135915A1 (en) 2004-09-17 2007-06-14 Klima William L Implantable lens device
CA2580142A1 (en) 2004-10-13 2006-04-20 Nulens Ltd Accommodating intraocular lens (aiol), and aiol assemblies including same
US7188949B2 (en) 2004-10-25 2007-03-13 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates
US7922326B2 (en) 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
CA2585237C (en) 2004-10-25 2015-01-06 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates
US7455691B2 (en) 2004-11-03 2008-11-25 Biovision, Ag Intraocular and intracorneal refractive lenses
US8377123B2 (en) 2004-11-10 2013-02-19 Visiogen, Inc. Method of implanting an intraocular lens
US20060116764A1 (en) 2004-12-01 2006-06-01 Simpson Michael J Apodized aspheric diffractive lenses
US20060184244A1 (en) 2005-02-14 2006-08-17 Nguyen Tuan A Biasing system for intraocular lens
NL1029041C1 (en) 2005-03-09 2006-09-12 Akkolens Int Bv Improved structure of an intra-ocular artificial lens.
US7338159B2 (en) 2005-03-21 2008-03-04 Brett Spivey Adjustable focus lenses
US7372646B2 (en) 2005-03-21 2008-05-13 Brett Spivey Adjustable focus lens system
CN101203192B (en) 2005-03-30 2010-09-15 纽镜有限公司 Adjustable intraocular lens assembly and separation element
US7073906B1 (en) 2005-05-12 2006-07-11 Valdemar Portney Aspherical diffractive ophthalmic lens
WO2007019389A1 (en) 2005-08-05 2007-02-15 Visiogen, Inc. Accommodating diffractive intraocular lens
US8034107B2 (en) 2005-09-01 2011-10-11 Stenger Donald C Accommodating intraocular lens
US9636213B2 (en) * 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US20070088433A1 (en) 2005-10-17 2007-04-19 Powervision Accommodating intraocular lens system utilizing direct force transfer from zonules and method of use
US8241355B2 (en) 2005-10-28 2012-08-14 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
DE102005053078A1 (en) 2005-11-04 2007-05-10 Dr. Schmidt Intraocularlinsen Gmbh intraocular lens
US20070129803A1 (en) 2005-12-06 2007-06-07 C&C Vision International Limited Accommodative Intraocular Lens
US20070260309A1 (en) 2006-05-08 2007-11-08 Richardson Gary A Accommodating intraocular lens having a recessed anterior optic
US20070258143A1 (en) 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
US8080593B2 (en) 2006-11-29 2011-12-20 University Of Southern California Reversible thermoresponsive adhesives for implants
US8403984B2 (en) 2006-11-29 2013-03-26 Visiogen, Inc. Apparatus and methods for compacting an intraocular lens
CA2673388C (en) 2006-12-22 2015-11-24 Amo Groningen B.V. Accommodating intraocular lens, lens system and frame therefor
WO2008079671A1 (en) 2006-12-22 2008-07-03 Bausch & Lomb Incorporated Multi-element accommodative intraocular lens
US20080161914A1 (en) 2006-12-29 2008-07-03 Advanced Medical Optics, Inc. Pre-stressed haptic for accommodating intraocular lens
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
CA2674018C (en) 2006-12-29 2015-05-26 Advanced Medical Optics, Inc. Multifocal accommodating intraocular lens
US8608799B2 (en) 2007-01-24 2013-12-17 Tekia, Inc. Umbrella-shaped accommodating artificial ocular lens (AAOL) device
KR100807940B1 (en) 2007-03-08 2008-02-28 박경진 Intraocular lens
US8579971B2 (en) 2007-08-13 2013-11-12 Garth T. Webb Inflatable intra ocular lens/lens retainer
US8740978B2 (en) 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US8222360B2 (en) 2009-02-13 2012-07-17 Visiogen, Inc. Copolymers for intraocular lens systems

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34988A (en) * 1862-04-15 Improvement in sewing-machines
US1483509A (en) * 1921-05-05 1924-02-12 Franklin Optical Company Process of making fused bifocal lenses
US2274142A (en) * 1940-01-15 1942-02-24 Revalens Co Multifocal ophthalmic lens
US3227507A (en) * 1961-08-16 1966-01-04 Feinbloom William Corneal contact lens having inner ellipsoidal surface
US3420006A (en) * 1964-01-27 1969-01-07 Howard J Barnett Apparatus for grinding multifocal lens
US3431327A (en) * 1964-08-31 1969-03-04 George F Tsuetaki Method of making a bifocal contact lens with an embedded metal weight
US3718870A (en) * 1971-08-12 1973-02-27 Itt Driving circuit for electro-mechanical oscillators
US3711870A (en) * 1971-12-07 1973-01-23 R Deitrick Artificial lens implant
US3794414A (en) * 1972-05-12 1974-02-26 Jessen Inc Wesley Multiple focal contact lens
US3866249A (en) * 1974-03-07 1975-02-18 Leonard Flom Posterior chamber artificial intraocular lens
US3932148A (en) * 1975-01-21 1976-01-13 Criterion Manufacturing Company, Inc. Method and apparatus for making complex aspheric optical surfaces
US4010496A (en) * 1975-10-01 1977-03-08 Neefe Charles W Bifocal lens which positions within the anterior chamber
US4014049A (en) * 1976-04-07 1977-03-29 American Optical Corporation Artificial intraocular lens and supporting system therefor
US4073579A (en) * 1976-06-09 1978-02-14 American Optical Corporation Ophthalmic lens with locally variable index of refraction and method of making same
US4074368A (en) * 1976-09-08 1978-02-21 Said Chauncey F. Levy, Jr., By Said Richard J. Pegis Intraocular lens with high magnification
US4195919A (en) * 1977-10-31 1980-04-01 Shelton William A Contact lens with reduced spherical aberration for aphakic eyes
US4315673A (en) * 1978-04-06 1982-02-16 Optische Werke G. Rodenstock Progressive power ophthalmic lens
US4199231A (en) * 1978-08-21 1980-04-22 Evans Carl H Hydrogel contact lens
US4253199A (en) * 1978-09-25 1981-03-03 Surgical Design Corporation Surgical method and apparatus for implants for the eye
US4244060A (en) * 1978-12-01 1981-01-13 Hoffer Kenneth J Intraocular lens
US4251887A (en) * 1979-04-02 1981-02-24 Anis Aziz Y Posterior chamber capsular lens implant and method for implantation of the lens
US4254509A (en) * 1979-04-09 1981-03-10 Tennant Jerald L Accommodating intraocular implant
US4244597A (en) * 1979-05-29 1981-01-13 Dandl John E Side mounting assembly for tractor implement
US4261065A (en) * 1979-07-27 1981-04-14 Tennant Jerald L Artificial intraocular lens with forward-positioned optics
US4316293A (en) * 1979-08-27 1982-02-23 Bayers Jon Herbert Flexible intraocular lens
US4315336A (en) * 1980-01-21 1982-02-16 Stanley Poler Intraocular lens
US4377329A (en) * 1980-02-26 1983-03-22 Stanley Poler Contact lens or the like
US4377873A (en) * 1980-10-30 1983-03-29 Reichert Jr Henry L Intraocular lens
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4575878A (en) * 1981-01-30 1986-03-18 Seymour Dubroff Intraocular lenses
US4370760A (en) * 1981-03-25 1983-02-01 Kelman Charles D Anterior chamber intraocular lens
US4424597A (en) * 1981-05-13 1984-01-10 Inprohold Establishment Posterior chamber implant lens
US4442553A (en) * 1981-09-17 1984-04-17 Hessburg Philip C Intraocular lens
US4504981A (en) * 1981-09-28 1985-03-19 Walman Gerald B Intraocular lens
US4573998A (en) * 1982-02-05 1986-03-04 Staar Surgical Co. Methods for implantation of deformable intraocular lenses
US4503953A (en) * 1982-06-01 1985-03-12 Rockwell International Corporation Roller retainer for brake assembly
US4504982A (en) * 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
US4573775A (en) * 1982-08-19 1986-03-04 Vistakon, Inc. Bifocal contact lens
US4641934A (en) * 1982-09-29 1987-02-10 Pilkington P.E. Limited Ophthalmic lens with diffractive power
US4890913A (en) * 1982-10-13 1990-01-02 Carle John T De Zoned multi-focal contact lens
US4637697A (en) * 1982-10-27 1987-01-20 Pilkington P.E. Limited Multifocal contact lenses utilizing diffraction and refraction
US4813955A (en) * 1983-09-07 1989-03-21 Manfred Achatz Multifocal, especially bifocal, intraocular, artificial ophthalmic lens
US4636049A (en) * 1983-09-20 1987-01-13 University Optical Products Co. Concentric bifocal contact lens
US4562600A (en) * 1983-10-18 1986-01-07 Stephen P. Ginsberg Intraocular lens
US4636211A (en) * 1984-03-13 1987-01-13 Nielsen J Mchenry Bifocal intra-ocular lens
US4720286A (en) * 1984-07-20 1988-01-19 Bailey Kelvin E Multifocus intraocular lens
US4725278A (en) * 1985-01-22 1988-02-16 Shearing Steven P Intraocular lens
US4731078A (en) * 1985-08-21 1988-03-15 Kingston Technologies Limited Partnership Intraocular lens
US4890912A (en) * 1986-01-24 1990-01-02 Rients Visser Trifocal eye-contact lens
US5192318A (en) * 1986-06-05 1993-03-09 Schneider Richard T One-piece bifocal intraocular lens construction
US4994083A (en) * 1986-07-22 1991-02-19 Ceskoslovenska Akademie Ved Soft intracameral lens
US4816032A (en) * 1987-02-11 1989-03-28 Hetland Jens G Arrangement in an intraocular anterior chamber lens
US4898461A (en) * 1987-06-01 1990-02-06 Valdemar Portney Multifocal ophthalmic lens
US4906246A (en) * 1987-08-24 1990-03-06 Grendahl Dennis T Cylindrically segmented zone of focus artificial hydrogel lens
US4816031A (en) * 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US5000559A (en) * 1988-02-29 1991-03-19 Nikon Corporation Ophthalmic lenses having progressively variable refracting power
US5089024A (en) * 1988-04-19 1992-02-18 Storz Instrument Company Multi-focal intraocular lens
US5192317A (en) * 1988-07-26 1993-03-09 Irvin Kalb Multi focal intra-ocular lens
US4994082A (en) * 1988-09-09 1991-02-19 Ophthalmic Ventures Limited Partnership Accommodating intraocular lens
US4990159A (en) * 1988-12-02 1991-02-05 Kraff Manus C Intraocular lens apparatus with haptics of varying cross-sectional areas
US4892543A (en) * 1989-02-02 1990-01-09 Turley Dana F Intraocular lens providing accomodation
US5002382A (en) * 1989-12-07 1991-03-26 Leonard Seidner Multifocal corneal contact lenses
US5496366A (en) * 1990-04-27 1996-03-05 Cumming; J. Stuart Accommodating intraocular lens
US6197059B1 (en) * 1990-04-27 2001-03-06 Medevec Licensing, B.V. Accomodating intraocular lens
US5096285A (en) * 1990-05-14 1992-03-17 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
US20040015236A1 (en) * 1991-11-18 2004-01-22 Sarfarazi Faezeh M. Sarfarazi elliptical accommodative intraocular lens for small incision surgery
US5275623A (en) * 1991-11-18 1994-01-04 Faezeh Sarfarazi Elliptical accommodative intraocular lens for small incision surgery
US5480428A (en) * 1993-04-22 1996-01-02 Mezhotraslevoi Nauchno-Tekhnichesky Komplex "Mikrokhirurgia Glaza" Corrective intraocular lens
US5593436A (en) * 1993-05-12 1997-01-14 Langerman; David W. Capsular bag implants with dual 360 ring structures for inhibiting posterior capsular opacification
US5489302A (en) * 1994-05-24 1996-02-06 Skottun; Bernt C. Accommodating intraocular lens
US6013101A (en) * 1994-11-21 2000-01-11 Acuity (Israel) Limited Accommodating intraocular lens implant
US5607472A (en) * 1995-05-09 1997-03-04 Emory University Intraocular lens for restoring accommodation and allows adjustment of optical power
US5876442A (en) * 1998-01-15 1999-03-02 Visioncare Ltd. Intraocular lens implant with telescope support
US6503276B2 (en) * 1998-11-10 2003-01-07 Advanced Medical Optics Accommodating multifocal intraocular lens
US6176878B1 (en) * 1998-12-17 2001-01-23 Allergan Sales, Inc. Accommodating intraocular lens
US6197058B1 (en) * 1999-03-22 2001-03-06 Valdemar Portney Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US20030060881A1 (en) * 1999-04-30 2003-03-27 Advanced Medical Optics, Inc. Intraocular lens combinations
US20100057203A1 (en) * 1999-04-30 2010-03-04 Abbott Medical Optics Inc. Accommodating intraocular lenses
US6200342B1 (en) * 1999-05-11 2001-03-13 Marie-Jose B. Tassignon Intraocular lens with accommodative properties
US20030004569A1 (en) * 2000-02-03 2003-01-02 Haefliger Eduard Anton Lens implant
US6858040B2 (en) * 2001-01-25 2005-02-22 Visiogen, Inc. Hydraulic configuration for intraocular lens system
US20070050025A1 (en) * 2001-01-25 2007-03-01 Nguyen Tuan A Hydraulic configuration for intraocular lens system
US6846326B2 (en) * 2001-01-25 2005-01-25 Visiogen, Inc. Connection geometry for intraocular lens system
US6524340B2 (en) * 2001-05-23 2003-02-25 Henry M. Israel Accommodating intraocular lens assembly
US6855164B2 (en) * 2001-06-11 2005-02-15 Vision Solutions Technologies, Llc Multi-focal intraocular lens, and methods for making and using same
US20050060032A1 (en) * 2001-06-22 2005-03-17 Peter Magnante Accommodating intraocular lens
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US6533813B1 (en) * 2001-09-07 2003-03-18 Chwen Yih Lin Intraocular lens that may accommodate automatically
US7503938B2 (en) * 2002-03-05 2009-03-17 Phillips Andrew F Method of implanting an accommodating intraocular lens
US7179292B2 (en) * 2002-03-15 2007-02-20 Ophtec B.V. Intraocular lens for implantation in an eye and instrument and methods for insertion of such a lens
US6695881B2 (en) * 2002-04-29 2004-02-24 Alcon, Inc. Accommodative intraocular lens
US20040039446A1 (en) * 2002-08-26 2004-02-26 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with multi-functional capsular bag ring
US7018409B2 (en) * 2002-09-13 2006-03-28 Advanced Medical Optics, Inc. Accommodating intraocular lens assembly with aspheric optic design
US7662180B2 (en) * 2002-12-05 2010-02-16 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US20070010882A1 (en) * 2003-02-21 2007-01-11 Barrett Graham D Intraocular lens
US20050018504A1 (en) * 2003-07-23 2005-01-27 Filippo Marinelli Array of non volatile split-gate memory cells for avoiding parasitic programming and programming method thereof
US20050027354A1 (en) * 2003-07-28 2005-02-03 Advanced Medical Optics, Inc. Primary and supplemental intraocular lens
US7645300B2 (en) * 2004-02-02 2010-01-12 Visiogen, Inc. Injector for intraocular lens system
US20070021831A1 (en) * 2005-07-19 2007-01-25 Clarke Gerald P Accommodating intraocular lens and methods of use

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US20040088050A1 (en) * 2000-05-23 2004-05-06 Sverker Norrby Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US7841720B2 (en) 2000-05-23 2010-11-30 Amo Groningen B.V. Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US7241311B2 (en) * 2000-05-23 2007-07-10 Amo Groningen Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US8556426B2 (en) 2000-05-26 2013-10-15 Amo Groningen B.V. Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8187325B2 (en) 2001-01-25 2012-05-29 Visiogen, Inc. Materials for use in accommodating intraocular lens system
US8998415B2 (en) 2001-05-23 2015-04-07 Amo Groningen B.V. Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US8020995B2 (en) 2001-05-23 2011-09-20 Amo Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US20110082542A1 (en) * 2001-05-23 2011-04-07 Amo Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US9504377B2 (en) 2001-05-23 2016-11-29 Amo Groningen B.V. Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US9504560B2 (en) 2002-01-14 2016-11-29 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US8343216B2 (en) 2002-01-14 2013-01-01 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US8585758B2 (en) 2002-10-25 2013-11-19 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8545556B2 (en) 2002-10-25 2013-10-01 Abbott Medical Optics Inc. Capsular intraocular lens implant
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US8246679B2 (en) 2004-04-16 2012-08-21 Visiogen, Inc. Intraocular lens
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US9005283B2 (en) 2004-04-16 2015-04-14 Visiogen Inc. Intraocular lens
US20070260157A1 (en) * 2004-11-12 2007-11-08 Sverker Norrby Devices and methods of selecting intraocular lenses
US8087782B2 (en) * 2004-11-12 2012-01-03 Amo Groningen B.V. Devices and methods of selecting intraocular lenses
US8540370B2 (en) 2004-11-12 2013-09-24 Amo Groningen Bv Devices and methods for selecting intraocular lenses
US8579970B1 (en) 2005-06-27 2013-11-12 Visiogen, Inc. Magnifying intraocular lens
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9554893B2 (en) 2005-10-28 2017-01-31 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US8241355B2 (en) 2005-10-28 2012-08-14 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US20070282438A1 (en) * 2006-05-31 2007-12-06 Xin Hong Intraocular lenses with enhanced off-axis visual performance
US20080097598A1 (en) * 2006-10-20 2008-04-24 Emin Engin Method of preparing a multielement intraocular lens for insertion
US8182531B2 (en) 2006-12-22 2012-05-22 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8496701B2 (en) 2006-12-22 2013-07-30 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8465544B2 (en) 2006-12-29 2013-06-18 Abbott Medical Optics Inc. Accommodating intraocular lens
US20100198349A1 (en) * 2006-12-29 2010-08-05 Abbott Medical Optics Inc. Accommodating intraocular lens
US8048156B2 (en) 2006-12-29 2011-11-01 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US8062362B2 (en) 2006-12-29 2011-11-22 Abbott Medical Optics Inc. Accommodating intraocular lens
US20090012609A1 (en) * 2006-12-29 2009-01-08 Advanced Medical Optics, Inc. Multifocal accommodating intraocular lens
US8814934B2 (en) 2006-12-29 2014-08-26 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US20080281414A1 (en) * 2007-04-19 2008-11-13 Takayuki Akahoshi Supplementary Intraocular Lens
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
US20090062911A1 (en) * 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
US20090187242A1 (en) * 2007-08-27 2009-07-23 Advanced Medical Optics, Inc. Intraocular lens having extended depth of focus
US8747466B2 (en) 2007-08-27 2014-06-10 Amo Groningen, B.V. Intraocular lens having extended depth of focus
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8740978B2 (en) 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US20090234448A1 (en) * 2007-08-27 2009-09-17 Advanced Medical Optics, Inc. Intraocular lens having extended depth of focus
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US9987127B2 (en) 2007-08-27 2018-06-05 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8858541B2 (en) 2007-10-29 2014-10-14 Junzhong Liang Methods and devices for refractive treatments of presbyopia
US8529559B2 (en) 2007-10-29 2013-09-10 Junzhong Liang Methods and devices for refractive treatments of presbyopia
US20100274234A1 (en) * 2007-10-29 2010-10-28 Junzhong Liang Methods and Devices for Refractive Treatments of Presbyopia
EP2194924B1 (en) * 2007-11-14 2014-08-27 Novartis AG Accommodative intraocular lens system
EP2194924A1 (en) * 2007-11-14 2010-06-16 Alcon, Inc. Accommodative intraocular lens system
US9454018B2 (en) 2008-02-15 2016-09-27 Amo Groningen B.V. System, ophthalmic lens, and method for extending depth of focus
US20090210054A1 (en) * 2008-02-15 2009-08-20 Amo Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US10034745B2 (en) 2008-02-15 2018-07-31 Amo Groningen B.V. System, ophthalmic lens, and method for extending depth of focus
US9456894B2 (en) 2008-02-21 2016-10-04 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US9968441B2 (en) 2008-03-28 2018-05-15 Johnson & Johnson Surgical Vision, Inc. Intraocular lens having a haptic that includes a cap
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
WO2009123700A2 (en) * 2008-04-02 2009-10-08 Junzhong Liang Methods and devices for refractive corrections of presbyopia
US20110029073A1 (en) * 2008-04-02 2011-02-03 Junzhong Liang Methods and Devices for Refractive Corrections of Presbyopia
WO2009123700A3 (en) * 2008-04-02 2009-12-23 Junzhong Liang Methods and devices for refractive corrections of presbyopia
US20110128502A1 (en) * 2008-04-04 2011-06-02 Amo Regional Holdings Systems and methods for determining intraocular lens power
US8182088B2 (en) 2008-04-04 2012-05-22 Abbott Medical Optics Inc. Systems and methods for determining intraocular lens power
US20090251664A1 (en) * 2008-04-04 2009-10-08 Amo Regional Holdings Systems and methods for determining intraocular lens power
US7883208B2 (en) 2008-04-04 2011-02-08 AMO Groingen B.V. Systems and methods for determining intraocular lens power
US20110109875A1 (en) * 2008-04-24 2011-05-12 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US20090268155A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive lens exhibiting enhanced optical performance
US8382281B2 (en) 2008-04-24 2013-02-26 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US8573775B2 (en) 2008-04-24 2013-11-05 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
US8231219B2 (en) 2008-04-24 2012-07-31 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
WO2009140080A3 (en) * 2008-05-13 2009-12-30 Amo Regional Holdings Intraocular lens having extended depth of focus
US9581834B2 (en) 2008-05-13 2017-02-28 Amo Groningen B.V. Single microstructure lens, systems and methods
US9557580B2 (en) 2008-05-13 2017-01-31 Amo Groningen B.V. Limited echelette lens, systems and methods
US20100094415A1 (en) * 2008-10-14 2010-04-15 Advanced Medical Optics, Inc. Intraocular lens and capsular ring
US8585759B2 (en) 2008-10-14 2013-11-19 Abbott Medical Optics Inc. Intraocular lens and capsular ring
US8043372B2 (en) 2008-10-14 2011-10-25 Abbott Medical Optics Inc. Intraocular lens and capsular ring
US8292953B2 (en) * 2008-10-20 2012-10-23 Amo Groningen B.V. Multifocal intraocular lens
US20100097569A1 (en) * 2008-10-20 2010-04-22 Advanced Medical Optics, Inc. Multifocal Intraocular Lens
US9622856B2 (en) 2008-10-20 2017-04-18 Abbott Medical Optics Inc. Multifocal intraocular lens
US20110054600A1 (en) * 2009-06-26 2011-03-03 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8486142B2 (en) 2009-06-26 2013-07-16 Abbott Medical Optics Inc. Accommodating intraocular lenses
US10052194B2 (en) 2009-06-26 2018-08-21 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lenses
US8343217B2 (en) 2009-08-03 2013-01-01 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110040379A1 (en) * 2009-08-03 2011-02-17 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110054601A1 (en) * 2009-08-27 2011-03-03 Abbott Medical Optics Inc. Fixation of opthalmic implants
US9072599B2 (en) 2009-08-27 2015-07-07 Abbott Medical Optics Inc. Fixation of ophthalmic implants
US8926092B2 (en) 2009-12-18 2015-01-06 Amo Groningen B.V. Single microstructure lens, systems and methods
US8430508B2 (en) 2009-12-18 2013-04-30 Amo Groningen B.V. Single microstructure lens, systems and methods
US8820927B2 (en) 2009-12-18 2014-09-02 Amo Groningen, B.V. Limited echelette lens, systems and methods
US20110149236A1 (en) * 2009-12-18 2011-06-23 Amo Groningen B.V. Single microstructure lens, systems and methods
US8444267B2 (en) 2009-12-18 2013-05-21 Amo Groningen B.V. Ophthalmic lens, systems and methods with angular varying phase delay
US8480228B2 (en) 2009-12-18 2013-07-09 Amo Groningen B.V. Limited echelette lens, systems and methods
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US8894204B2 (en) 2010-12-17 2014-11-25 Abbott Medical Optics Inc. Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure
US9931200B2 (en) 2010-12-17 2018-04-03 Amo Groningen B.V. Ophthalmic devices, systems, and methods for optimizing peripheral vision
JP2016203011A (en) * 2011-02-04 2016-12-08 フォーサイト・ビジョン6・インコーポレイテッドForsight Vision6, Inc. Intraocular accommodating lens
RU2457812C1 (en) * 2011-03-23 2012-08-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Artificial intraocular lens
RU2457811C1 (en) * 2011-03-23 2012-08-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Artificial intraocular lens
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US9084674B2 (en) 2012-05-02 2015-07-21 Abbott Medical Optics Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US8945215B2 (en) 2012-05-10 2015-02-03 Abbott Medical Optics Inc. Accommodating intraocular lens with a compressible inner structure
US9561098B2 (en) 2013-03-11 2017-02-07 Abbott Medical Optics Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9861469B2 (en) 2013-05-07 2018-01-09 Akkolens International B.V. Accommodating intraocular lens with haptics for sulcus fixation
US9867693B2 (en) 2014-03-10 2018-01-16 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
US9636215B2 (en) 2014-03-10 2017-05-02 Amo Groningen B.V. Enhanced toric lens that improves overall vision where there is a local loss of retinal function
US10016270B2 (en) 2014-03-10 2018-07-10 Amo Groningen B.V. Dual-optic intraocular lens that improves overall vision where there is a local loss of retinal function
US9579192B2 (en) 2014-03-10 2017-02-28 Amo Groningen B.V. Dual-optic intraocular lens that improves overall vision where there is a local loss of retinal function
US10010407B2 (en) 2014-04-21 2018-07-03 Amo Groningen B.V. Ophthalmic devices that improve peripheral vision
US20160334643A1 (en) * 2015-05-15 2016-11-17 Elwha Llc Chromatic aberration correction lens systems and methods

Also Published As

Publication number Publication date Type
EP2043558A2 (en) 2009-04-08 application
WO2008008627A2 (en) 2008-01-17 application
WO2008008627A3 (en) 2008-12-04 application
US20140135921A1 (en) 2014-05-15 application
CA2661704A1 (en) 2008-01-17 application
US9814570B2 (en) 2017-11-14 grant

Similar Documents

Publication Publication Date Title
US6767363B1 (en) Accommodating positive and negative intraocular lens system
US6969403B2 (en) Accommodative intraocular lens
US4504982A (en) Aspheric intraocular lens
US5092880A (en) Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens
US5026396A (en) Two-piece intraocular lens
US6461384B1 (en) Intraocular lenses
US7223288B2 (en) Accommodative intraocular lens
US6616691B1 (en) Accommodative intraocular lens
US4932970A (en) Ophthalmic lens
US6200342B1 (en) Intraocular lens with accommodative properties
US5108429A (en) Micromotor actuated adjustable focus lens
US20050131535A1 (en) Intraocular lens implant having posterior bendable optic
US6960231B2 (en) Intraocular lens system
US20090062911A1 (en) Multizonal lens with extended depth of focus
US7137702B2 (en) Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US20060116763A1 (en) Contrast-enhancing aspheric intraocular lens
US20030018384A1 (en) Accommodative intraocular lens
US6685741B2 (en) Intraocular lenses
US5354334A (en) Intraocular prosthetic lens and a method for surgical correction of diseases of the central section of the retina
US20030187505A1 (en) Accommodating intraocular lens with textured haptics
US7300464B2 (en) Intraocular lens
US20040249456A1 (en) Accommodating lens with haptics and toric surface
US6790232B1 (en) Multifocal phakic intraocular lens
US7097660B2 (en) Accommodating intraocular lens
US7150760B2 (en) Accommodative intraocular lens system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLICK, ROBERT E.;BRADY, DANIEL G.;REEL/FRAME:017981/0487

Effective date: 20060710

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069

Effective date: 20070402

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,NOR

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069

Effective date: 20070402

AS Assignment

Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427

Effective date: 20090225

Owner name: ADVANCED MEDICAL OPTICS, INC.,CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427

Effective date: 20090225

AS Assignment

Owner name: ABBOTT MEDICAL OPTICS INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:023234/0277

Effective date: 20090226

Owner name: ABBOTT MEDICAL OPTICS INC.,CALIFORNIA

Free format text: MERGER;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:023234/0277

Effective date: 20090226