US20060238168A1 - Method and device for monitoring deterioration of battery - Google Patents

Method and device for monitoring deterioration of battery Download PDF

Info

Publication number
US20060238168A1
US20060238168A1 US10569210 US56921006A US2006238168A1 US 20060238168 A1 US20060238168 A1 US 20060238168A1 US 10569210 US10569210 US 10569210 US 56921006 A US56921006 A US 56921006A US 2006238168 A1 US2006238168 A1 US 2006238168A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
battery
voltage
mass transfer
transfer control
overpotential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10569210
Other versions
US7675291B2 (en )
Inventor
Hidehito Matsuo
Tetsuro Kobayashi
Yuichi Itou
Yasuhito Kondo
Yoshio Ukto
Yoshiaki Kikuchi
Motoyoshi Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3679Various constructional arrangements for determining battery ageing or deterioration, e.g. state-of-health (SoH), state-of-life (SoL)

Abstract

A battery characteristic detecting method according to the invention includes a first step in which constant current discharge from a battery is performed at a predetermined current value, and a voltage during constant current discharge is measured; a second step in which overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery is calculated based on the voltage measured in the first step; and a third step in which a determination that a characteristic change has occurred in the battery is made, when the overpotential for the mass transfer control in the battery or the resistance for the mass transfer control in the battery calculated in the second step is larger than a predetermined threshold value.

Description

  • This is a 371 national phase application of PCT/IB2004/002687 filed 18 Aug. 2004, claiming priority to Japanese Patent Application No. JP 2003-300289 filed 25 Aug. 2003, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a battery characteristic detecting method and a battery characteristic detecting device.
  • 2. Description of the Related Art
  • If a characteristic change, e.g., a memory effect and degradation, occurs in a battery serving as an electric power source, the ability of the battery is limited. It is therefore important to detect a characteristic change in the battery. For example, Japanese Patent Laid-Open Publication No. 2002-42895 discloses a method for detecting internal resistance in a battery, and detecting whether a memory effect or degradation has occurred in the battery based on the internal resistance. In this method, linear regression of current/voltage characteristics, which are obtained when the battery is being charged/discharged, is performed, and the internal resistance is obtained based on the gradient of the line.
  • Another method for accurately and easily detecting a degraded condition and estimation of capacity of a sealed lead-acid battery is known from JP 8-222279 A. In this method, an internal resistance of a sealed lead-acid battery is detected and a voltage ΔV in a difference between the variation in the discharge voltage, the variation indicating a difference between the discharge voltage before discharging and the discharge voltage when a prescribed time has elapsed since the start of the discharge, and the product of internal resistance and the prescribed electric current are found. A present battery capacity is estimated from the correlative relationship between the internal resistance and battery capacity in the voltage variation ΔV.
  • From EP 0 887 654 A2, methods for detecting a working condition of non-aqueous electrolyte secondary batteries are known, which allow easy and accurate determination of the degree of the degradation and remaining capacity of a non-aqueous electrolyte secondary battery by a simple test irrespective of the past charging and discharging history of the battery. In these methods, the degree of degradation of battery is quantitatively determined on the basis of the voltage value in charging or discharging at a constant current, or from an equation with that voltage value as variable.
  • From JP 2000-121710, a battery control device for back up power supply and a method for diagnosing the deterioration of a secondary battery are known, wherein a battery pack is connected to an equipment body and drives the equipment body with the output of an assembly battery. A battery voltage detection means detects the output voltage of the assembly battery and a single battery for composing it.
  • Also, a temperature detection means detects the temperature of the assembly battery in the single battery for composing it by a thermistor. A control part operates a charge control means based on information that is detected by a voltage detection means and a temperature detection means and further sends a control signal to the equipment body via a communication means. The control part reports the obtained information to the user of equipment by a reporting means as needed. As the reporting means, for example, a liquid crystal display for displaying information and an LSD, a speaker for generating an alarm sound, and a vibrator for generating vibration are used.
  • Still another method for detecting a battery pack condition is known from JP 09-113588, wherein this method includes the steps of measuring impedance by a pack battery as a whole when electricity is conducted to the entire battery pack in which a plurality of single batteries are connected to one another in series, determining the life end of the pack battery when this impedance indicates prescribed impedance or higher set on the basis of a reference which is set by using the case that one single battery is in a deteriorated state and all the remaining single batteries are in brand new states in which the capacity of the pack battery is lowest against the identical impedance in a relationship between the previously obtained impedance of the pack battery and a capacity range and determining the normal condition of the pack battery when this impedance is within the prescribed impedance.
  • JP 5-281 309 A discloses another method and device for detecting deterioration of a lead battery. According to the device of JP 5-281 309 A, a resistor is connected to a sealed lead battery through a switch. When the battery is made to discharge by closing the switch by ≦1 msec. Then, by measuring the difference between the battery voltage before discharge and the battery voltage in a stable state after the discharge and utilizing a strong correlation between the voltage difference and the battery capacity, the capacity of the battery is found from the voltage difference and, when the capacity is lower than a prescribed value, it is determined that the battery is deteriorated. Since the testing time is set at 1 msec, no spark due to the completion of discharge is generated and the safety can be improved even when a tester is disconnected from the battery by mistake.
  • Under normal use of the battery, however, there are not many chances that a large current flows when the battery is being charged/discharged. Therefore, according to the above-mentioned method, when data is collected in a short time only a small amount of data concerning a region, where a large current flows when the battery is being charged/discharged, can be obtained. Accordingly, the obtainable data are likely to be concentrated around the origin point (the point at which a voltage is “0V” and a current value is “0A”). If linear regression is performed using the data concentrated around the origin point, an internal resistance value cannot be obtained with high accuracy. As a result, it is difficult to detect a memory effect accurately.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to solve the above-mentioned problems, and to provide a battery characteristic detecting method and a battery characteristic detecting device, capable of accurately detecting a characteristic change in a battery. The detecting method includes the following steps of: (i) performing constant current discharge from a battery at a predetermined current value, and measuring a voltage during the constant current discharge; (ii) calculating overpotential for mass transfer control in the battery or resistance for mass transfer control in the battery based on the measured voltage; and (iii) determining that a characteristic change has occurred in the battery, when the calculated overpotential for the mass transfer control in the battery or resistance for the mass transfer control in the battery is larger than a predetermined threshold value.
  • In the invention, “overpotential for mass transfer control” signifies overpotential due to an mass transfer speed in the battery from among the entire overpotential in the battery, and “resistance for mass transfer control” signifies resistance due to the mass transfer speed in the battery from among the entire internal resistance in the battery. The inventors have found out the following correlation between the mass transfer speed and the characteristic change. When a characteristic change, e.g., a memory effect and a voltage drop due to long-term disuse of the battery, has occurred in the battery, the mass transfer speed decreases. When the characteristic change disappears, the mass transfer speed returns to the original speed. If the mass transfer speed in the battery decreases, overpotential and resistance due to the mass transfer speed increases. Accordingly, based on the above-mentioned findings, a characteristic change in the battery can be detected by detecting overpotential and resistance for the mass transfer control in the battery.
  • According to the above-mentioned detecting method, from among the entire overpotential and the resistance in the battery, the overpotential and the resistance for the mass transfer control, which have a particularly high correlation with the characteristic change, are used as references for determining whether a characteristic change has occurred. It is therefore possible to detect a characteristic change accurately.
  • In the embodiment, the term “constant current discharge” includes not only discharge of electric power at a completely constant current value but also discharge of electric power at a substantially constant current value within a deviation of ±5%.
  • In the above-mentioned detecting method, in step (i), constant current discharge may be performed by connecting a predetermined load resistance to the battery. In this detecting method, by connecting the predetermined load resistance to the battery, constant current discharge from the battery can be performed using a circuit having a simple configuration.
  • In the above-mentioned detecting method, in step (i), a first voltage (E1) immediately after a start of the constant current discharge from the battery and a second voltage (E2) when a predetermined time has elapsed since the start of the constant current discharge may be measured. Then, in step (ii), overpotential (E) for the mass transfer control may be calculated based on the first voltage and the second voltage measured in step (i) according to an equation: E=E1−E2.
  • In the above-mentioned detecting method, in step (i), a first voltage (E1) and a first current (I1) immediately after a start of constant current discharge from the battery, and a second voltage (E2) and a second current (I2) after a predetermined time has elapsed since the start of constant current discharge may be measured. Then, in step (ii), resistance (R) for the mass transfer control may be calculated based on the first voltage and the second voltage, and the first current and the second current obtained in step (i) according to an equation: R=E1/I1−E2/I2.
  • Various methods for obtaining overpotential for the mass transfer control and resistance for the mass transfer control are known. According to these methods, however, the measurement needs a long time. The inventors have found out that the value of the overpotential E for the mass transfer control or the value of the resistance R for the mass transfer control, which is calculated in a simplified manner according to one of the above-mentioned equations, can be sufficiently used as a reference for determining whether a characteristic change has occurred in the battery. In addition, the inventors have found out that, according to one of the above-mentioned equations, the accuracy of the value E and the value R is sufficient as a reference for determining whether a characteristic change has occurred, even if the “predetermined time” is set to a smaller value. According to the above-mentioned detecting method, the time for measuring the necessary data can be set to a smaller value, and a characteristic change in the battery can be detected in a short time.
  • In the above-mentioned detecting method, in step (iii), it may be determined that a memory effect as a characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value. According to this detecting method, a memory effect can be detected using the overpotential for the mass transfer control or the resistance for the mass transfer control as a reference.
  • In the above-mentioned detecting method, the predetermined current value may be a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  • If the current value becomes lower than the lower limit of this range, a voltage value cannot be obtained with high accuracy. On the other hand, if the current value becomes higher than the upper limit of the range, a voltage value cannot be obtained with high accuracy when a battery, which has been used for a long time (a battery whose characteristics have been changed with time), is used.
  • According to the above-mentioned detecting method, by setting the current value during the constant current discharge to a value within the above-mentioned range, it is possible to perform detection of the overpotential for the mass transfer control and the resistance for the mass transfer control, which has good reproducibility It is also possible to accurately detect a characteristic change in the battery for a long time.
  • In the above-mentioned detecting method, the overpotential for mass transfer control may be calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  • A battery characteristic detecting device includes a measuring portion which discharges a battery at a predetermined constant current value and which measures a voltage during the constant current discharge; a calculating portion which calculates overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery based on the measured voltage; and a determining portion which determines that a characteristic change has occurred in the battery when the calculated overpotential for the mass transfer control or resistance for the mass transfer control is larger than a predetermined threshold value.
  • With the above-mentioned detecting device, a characteristic change can be detected accurately, since the overpotential and the resistance for the mass transfer control, which have a particularly high correlation with a characteristic change from among the entire overpotential and resistance in the battery, are used as a reference for determining whether a characteristic change has occurred.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above mentioned embodiment and other embodiments, objects, features, advantages, technical and industrial significance of this invention will be better understood by reading the following detailed description of the exemplary embodiments of the invention, when considered in connection with the accompanying drawings, in which:
  • FIG. 1 is a circuit diagram showing a circuit including a battery characteristic detecting device for performing a battery characteristic detecting method;
  • FIG. 2 is a graph showing a overpotential curve of a reference battery;
  • FIG. 3 is a flowchart showing a routine of the battery characteristic detecting method; and
  • FIG. 4 is a graph showing changes in current/voltage from when discharge from the battery is started.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following description, the present invention will be described in more detail in terms of exemplary embodiments.
  • Note that the same reference numerals are used for the same elements, and overlapping description is not made.
  • FIG. 1 shows a circuit 3 which is an example of a circuit including a battery characteristic detecting device 1 for performing a battery characteristic detecting method according to the embodiment. In the embodiment, the battery characteristic detecting device 1 is a device which is mounted in an automobile having a battery serving as a energy source, e.g., an electric vehicle and a hybrid vehicle, and which detects a memory effect that occurs in the battery. The battery characteristic detecting device 1 includes a battery 5; a load resistance 7 which applies a load to the battery 5; a voltage detecting portion 9 which measures a voltage in the battery 5; a current detecting portion 11 which measures a current in the battery 5; a changing-over switch 13; a changing-over switch 15; and a computing portion 17 which performs computation based on the measured current/voltage.
  • The battery 5 is a secondary battery, and can be charged/discharged. As the battery 5, a nickel hydride battery in which nickel hydroxide is used for the cathode, a nickel cadmium battery or the like can be used. Under normal use of the automobile (when the automobile is running), the change-over switch 15 is closed, and the change-over switch 13 is open. When the automobile accelerates, the battery 5 serves as an electric power supply source for a motor 19. A driving portion 21 e.g., a shaft and a tire, is driven by the motor 19 to which electric power is supplied from the battery 5. On the other hand, when the automobile decelerates, the motor 19 serves as a power generator. At this time, the motor 19 is driven by the driving portion 21, electric power is generated by the motor 19, and the generated electric power is stored in the battery 5. The voltage and the current in the battery are constantly measured by the voltage detecting portion 9 and the current detecting portion 11, respectively. The measured voltage and current are converted into electric signals by the voltage detecting portion 9 and the current detecting portion 11, respectively, and transmitted to the computing portion 17.
  • When characteristics of the battery 5 are detected, the change-over switch 15 is opened, and the change-over switch 13 is closed. At this time, electric power is discharged from the battery 5 to the load resistance 7 at a substantially constant current value (constant current discharge is performed). Also in this case, a voltage and a current in the battery are measured by the voltage detecting portion 9 and the current detecting portion 11, respectively, as in the case where the battery is used normally. The measured voltage and current are converted into electric signals by the voltage detecting portion 9 and the current detecting portion 11, respectively, and transmitted to the computing portion 17. The time at which characteristics of the battery 5 are detected is not particularly limited as long as electric power need not be supplied to the motor 19. For example, characteristics may be detected when the automobile is started. Also, characteristics may be detected while the hybrid vehicle is driven using only an internal combustion engine.
  • The computing portion 17 converts the received electric signals into a voltage value and a current value, stores a voltage and a current at each time, and recognizes changes with time in the current/voltage. The computing portion 17 calculates overpotential for the mass transfer control in the battery 5 based on the above-mentioned changes with time, and determines whether a memory effect has occurred in the battery 5 based on whether the calculated overpotential for the mass transfer control is larger than a threshold value stored in advance.
  • A resistance value of the load resistance 7 is set in the following manner, such that a current during the constant current discharge has a current density at which detection of the overpotential for the mass transfer control, that has good reproducibility, can be performed.
  • First, with regard to the same type of battery as the battery 5, a current-overpotential curve is prepared in a direction in which the cathode is reduced when a memory effect has not occurred. In this case, the overpotential curve is a curve showing a relationship between overpotential “η” and a logarithm “log i” of the current density, in the case where the overpotential is shown by “η”, and the current density is shown by “i”. The overpotential curve may be prepared in a known method. For example, a three-electrode-cell is prepared using the cathode of the battery (reference battery) in which a memory effect has not occurred. Then, the relationship between the overpotential “η” and the current density “i” can be obtained by polarizing a predetermined value “η” from an appropriate open circuit voltage, and measuring a response current at this time, using a potentiostat, a function generator, a-recorder, or the like. FIG. 2 shows an example of the overpotential curve prepared in this case. In the graph in FIG. 2, the horizontal axis shows the overpotential “η”, and the vertical axis shows the logarithm “log i” of the current density. The unit of the overpotential “η” is shown by, for example, “mV”, and the unit of the current density “i” is shown by, for example, “mA/cm2”.
  • As shown in FIG. 2, in the region where the value of “log i” is equal to or smaller than “log i0” (the region where “η” is equal to or larger than “η0”), the overpotential “η” and the logarithm “log i” of the current density is in the substantially linear relationship. However, in the region where “log i” is larger than “log i0” (the region where “η” is smaller than “η0”), the overpotential “η” and the logarithm “log i” deviates from the linear relationship. Namely, FIG. 2 shows that the current density at which the relationship between the overpotential “η” of the cathode of the reference battery and the logarithm “log i” of the current density changes between the linear relationship and a non-linear relationship is “i0”. Based on the obtained “i0”, the resistance value for making the current density “iS” during constant current discharge 5 to 90% of “i0”, preferably 50 to 70% of “i0” is set to a resistance value “r” of the load resistance 7. The unit of the resistance value “r” is shown by, for example, “mΩ”.
  • A battery characteristic detecting method for detecting a memory effect in the battery 5 will be described with reference to FIG. 1 and FIG. 3. FIG. 3 is a flowchart showing a routine of the battery characteristic detecting method.
  • First, the change-over switch 15 is opened in step S102. Approximately one second after this, the change-over switch 13 is closed, and a closed circuit is formed between the battery 5 and the load resistance 7 in step S104. Since the resistance value “r” of the load resistance 7 is set in the above-mentioned manner, the constant current discharge from the battery 5 is started at a current value at which the current density become “is”, and a current flows through the closed circuit. The current flowing through the closed circuit is detected by the current detecting portion 11, and transmitted to the computing portion 17 as an electric signal. Also, the voltage of the battery 5 is detected by the voltage detecting portion 9, and transmitted to the computing portion 17 as an electric signal.
  • The computing portion 17 receives electric signals corresponding to voltage/current at each time. FIG. 4 shows an example of changes with time in the voltage/current. FIG. 4 is a graph showing changes in the voltage/current at each time using the time when the discharge is started, that is, the time when the change-over switch 13 is closed as “0” (t=“0”). In the graph, the horizontal axis shows the elapsed time “t” (the unit is second), the right vertical axis shows the current at each time, and the left vertical axis show the voltage at each time. In FIG. 4, the thin curve shows the change in the voltage, and the heavy curve shows the change in the current. The scale of the graph is modified as required for the purpose of explanation. As shown in the graph in FIG. 4, from when the change-over switch 15 is opened until when the change-over switch 13 is closed, the voltage of the battery 5 is the open-circuit voltage E0 of the battery 5. Then, at the moment at which the change-over switch 13 is closed, a voltage drop and the like occurs due to connection of the load resistance 7 to the battery 5. Then, the voltage drops with time. Meanwhile, after the change-over switch 13 is closed, the current is substantially constant and is maintained at Is, and constant current discharge from the battery 5 is performed.
  • The computing portion 17 reads the voltage E1 immediately after discharge is started (t1 seconds after the change-over switch 13 is closed) in step S106. Next, in step S108, the computing portion 17 reads the voltage E2 t2 seconds after discharge is started. The overpotential E for the mass transfer control is calculated according to the following equation in step S110.
    E=E 1 −E 2   (1)
  • In the embodiment, t1 is set to 0.1 second, and t2 is set to 23 seconds.
  • The computing portion 17 compares the calculated overpotential E for the mass transfer control with the threshold value Et in step S112. When the overpotential E is larger than the threshold value Et, it is determined in step S114 that a memory effect has occurred in the battery 5. On the other hand, when the overpotential E is not larger than the threshold value Et, it is determined in step S116 that a memory effect has not occurred in the battery 5. The threshold value Et is set in advance, and stored in the computing portion 17. The routine of the battery characteristic detecting method thus ends.
  • Causes of a voltage drop in the battery can be classified into three, that are, resistance due to IR loss, reaction resistance, and resistance due to mass transfer. It is considered that a voltage drop caused by resistance due to IR loss or response resistance substantially ends approximately 0.1 second after resistance is applied to the battery. Accordingly, it can be considered that a voltage drop 0.1 second after the start of the discharge and thereafter is caused by the resistance due to the mass transfer. Therefore, by detecting a voltage drop 0.1 second after the start of the discharge and thereafter, overpotential for the mass transfer control can be obtained. In order to read the voltage after a voltage drop caused by the resistance due to IR loss or the reaction resistance substantially ends as the voltage E1, time t1 is set to 0.1 second in the embodiment. Namely, the voltage/current immediately after the start of the discharge signify the voltage/current time t1 (0.1 second, in the embodiment) after the start of the discharge.
  • In view of improving the accuracy of calculating overpotential for mass transfer control, the longer time t2 is, the better. However, in view of performing determination in a short time, the shorter time t2 is, the better. In order to perform determination in a short time while maintaining the accuracy at which whether a memory effect has occurred in the battery 5 can be determined, it is preferable that time t2 be set to a value in a range of 10 to 90 seconds. It is further preferable that time t2 be set to a value in a range of 20 to 40 seconds. In the embodiment, time t2 is set to 23 seconds.
  • In the above-mentioned battery characteristic detecting method, the overpotential E for the mass transfer control in the battery 5 is obtained, and compared with the threshold value. The fact that the overpotential E for the mass transfer control in the battery 5 becomes larger than the threshold value signifies that the mass transfer speed in the battery 5 becomes lower than the predetermined value. The inventors have confirmed the fact that there is a high correlation between a decrease in the mass transfer speed in the battery 5 and occurrence of a memory effect in the battery 5. Therefore, according to the above-mentioned battery characteristic detecting method, from among the entire overpotential in the battery, the overpotential E for the mass transfer control in the battery 5, which has a particularly high correlation with a memory effect, is obtained, and whether a memory effect has occurred is determined. It is therefore possible to detect a memory effect accurately.
  • Also, in the above-mentioned battery characteristic detecting method, the load resistance 7 is connected to the battery 5 in the first step. Therefore, constant current discharge from the battery 5 can be performed using a circuit having a simple configuration.
  • In the above-mentioned battery characteristic detecting method, the overpotential E for the mass transfer control in the battery 5 is calculated based on the relationship in the equation (1). The voltages E1 and E2 which are necessary data for the equation (1) are measurement values obtained in a short time (23 seconds, in the embodiment) after the constant current discharge is started. Therefore, according to the above-mentioned battery characteristic detecting method, it is possible to determine whether a memory effect has occurred in the battery 5 in a short time.
  • In the above-mentioned battery characteristic detecting method, by setting the current density during constant current discharge from the battery 5 to a value within the above-mentioned range, it is possible to perform detection of the overpotential for the mass transfer control, which has good reproducibility. It is therefore possible to accurately detect a characteristic change in the battery for a long time.
  • The invention is not limited to the above-mentioned embodiment, and the invention may be realized in various other embodiments within the scope of the invention.
  • For example, in the above-mentioned embodiment, the overpotential for the mass transfer control is obtained according to the equation (1). However, the resistance for the mass transfer control in the battery 5 may be calculated based on the relationship between the voltage obtained by the voltage detecting device 9 and the current obtained by the current detecting device 11. In this case, in the second step, the computing portion 17 reads the current I1/voltage E1 “t1” seconds after the start of discharge, and current I2/voltage E2 “t2” seconds after the start of discharge. Then, in the third step, resistance R for the mass transfer control is calculated based on the relationship in the following equation.
    R=E 1 /I 1 −E 2 /I 2   (2)
  • The computing portion 17 compares the resistance R for the mass transfer control with the threshold value Rt. When the resistance R is larger than the threshold value Rt, it is determined that a memory effect has occurred in the battery 5. On the other hand, when the resistance R is not larger than the threshold value Rt, it is determined that a memory effect has not occurred in the battery 5. The threshold value Rt is set in advance, and stored in the computing portion 17. Thus, it is possible to perform detection of a characteristic change, which has good reproducibility, even when the battery is used for a long time, and a current/voltage characteristics have changed.
  • In the above-mentioned embodiment, constant current discharge is performed by connecting the load resistance 7 to the battery 5. However, constant current discharge may be performed by connecting a constant current circuit or the like to the battery 5.
  • In the above-mentioned embodiment, a memory effect in the battery 5 is detected. However, the invention can be applied to the case where another characteristic change having correlation with the mass transfer speed in the battery 5 is detected. An example of the other characteristic change is a voltage drop due to long-term disuse of the battery.
  • While the invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. To the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the exemplary embodiments are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a battery characteristic detecting method and a battery characteristic detecting device.
  • 2. Description of the Related Art
  • If a characteristic change, e.g., a memory effect and degradation, occurs in a battery serving as an electric power source, the ability of the battery is limited. It is therefore important to detect a characteristic change in the battery. For example, Japanese Patent Laid-Open Publication No. 2002-42895 discloses a method for detecting internal resistance in a battery, and detecting whether a memory effect or degradation has occurred in the battery based on the internal resistance. In this method, linear regression of current/voltage characteristics, which are obtained when the battery is being charged/discharged, is performed, and the internal resistance is obtained based on the gradient of the line.
  • Under normal use of the battery, however, there are not many chances that a large current flows when the battery is being charged/discharged. Therefore, according to the above-mentioned method, when data is collected in a short time only a small amount of data concerning a region, where a large current flows when the battery is being charged/discharged, can be obtained. Accordingly, the obtainable data are likely to be concentrated around the origin point (the point at which a voltage is “0V” and a current value is “0A”). If linear regression is performed using the data concentrated around the origin point, an internal resistance value cannot be obtained with high accuracy. As a result, it is difficult to detect a memory effect accurately.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to solve the above-mentioned problems, and to provide a battery characteristic detecting method and a battery characteristic detecting device, capable of accurately detecting a characteristic change in a battery. The detecting method includes the following steps of: (i) performing constant current discharge from a battery at a predetermined current value, and measuring a voltage during the constant current discharge; (ii) calculating overpotential for mass transfer control in the battery or resistance for mass transfer control in the battery based on the measured voltage; and (iii) determining that a characteristic change has occurred in the battery, when the calculated overpotential for the mass transfer control in the battery or resistance for the mass transfer control in the battery is larger than a predetermined threshold value.
  • In the invention, “overpotential for mass transfer control” signifies overpotential due to an mass transfer speed in the battery from among the entire overpotential in the battery, and “resistance for mass transfer control” signifies resistance due to the mass transfer speed in the battery from among the entire internal resistance in the battery. The inventors have found out the following correlation between the mass transfer speed and the characteristic change. When a characteristic change, e.g., a memory effect and a voltage drop due to long-term disuse of the battery, has occurred in the battery, the mass transfer speed decreases. When the characteristic change disappears, the mass transfer speed returns to the original speed. If the mass transfer speed in the battery decreases, overpotential and resistance due to the mass transfer speed increases. Accordingly, based on the above-mentioned findings, a characteristic change in the battery can be detected by detecting overpotential and resistance for the mass transfer control in the battery.
  • According to the above-mentioned detecting method, from among the entire overpotential and the resistance in the battery, the overpotential and the resistance for the mass transfer control, which have a particularly high correlation with the characteristic change, are used as references for determining whether a characteristic change has occurred. It is therefore possible to detect a characteristic change accurately.
  • In the embodiment, the term “constant current discharge” includes not only discharge of electric power at a completely constant current value but also discharge of electric power at a substantially constant current value within a deviation of ±5%.
  • In the above-mentioned detecting method, in step (i), constant current discharge may be performed by connecting a predetermined load resistance to the battery. In this detecting method, by connecting the predetermined load resistance to the battery, constant current discharge from the battery can be performed using a circuit having a simple configuration.
  • In the above-mentioned detecting method, in step (i), a first voltage (E1) immediately after a start of the constant current discharge from the battery and a second voltage (E2) when a predetermined time has elapsed since the start of the constant current discharge may be measured. Then, in step (ii), overpotential (E) for the mass transfer control may be calculated based on the first voltage and the second voltage measured in step (i) according to an equation: E=E1−E2.
  • In the above-mentioned detecting method, in step (i), a first voltage (E1) and a first current (I1) immediately after a start of constant current discharge from the battery, and a second voltage (E2) and a second current (I2) after a predetermined time has elapsed since the start of constant current discharge may be measured. Then, in step (ii), resistance (R) for the mass transfer control may be calculated based on the first voltage and the second voltage, and the first current and the second current obtained in step (i) according to an equation: R=E1/I1−E2/I2.
  • Various methods for obtaining overpotential for the mass transfer control and resistance for the mass transfer control are known. According to these methods, however, the measurement needs a long time. The inventors have found out that the value of the overpotential E for the mass transfer control or the value of the resistance R for the mass transfer control, which is calculated in a simplified manner according to one of the above-mentioned equations, can be sufficiently used as a reference for determining whether a characteristic change has occurred in the battery. In addition, the inventors have found out that, according to one of the above-mentioned equations, the accuracy of the value E and the value R is sufficient as a reference for determining whether a characteristic change has occurred, even if the “predetermined time” is set to a smaller value. According to the above-mentioned detecting method, the time for measuring the necessary data can be set to a smaller value, and a characteristic change in the battery can be detected in a short time.
  • In the above-mentioned detecting method, in step (iii), it may be determined that a memory effect as a characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value. According to this detecting method, a memory effect can be detected using the overpotential for the mass transfer control or the resistance for the mass transfer control as a reference.
  • In the above-mentioned detecting method, the predetermined current value may be a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  • If the current value becomes lower than the lower limit of this range, a voltage value cannot be obtained with high accuracy. On the other hand, if the current value becomes higher than the upper limit of the range, a voltage value cannot be obtained with high accuracy when a battery, which has been used for a long time (a battery whose characteristics have been changed with time), is used.
  • According to the above-mentioned detecting method, by setting the current value during the constant current discharge to a value within the above-mentioned range, it is possible to perform detection of the overpotential for the mass transfer control and the resistance for the mass transfer control, which has good reproducibility. It is also possible to accurately detect a characteristic change in the battery for a long time.
  • In the above-mentioned detecting method, the overpotential for mass transfer control may be calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  • A battery characteristic detecting device includes a measuring portion which discharges a battery at a predetermined constant current value and which measures a voltage during the constant current discharge; a calculating portion which calculates overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery based on the measured voltage; and a determining portion which determines that a characteristic change has occurred in the battery when the calculated overpotential for the mass transfer control or resistance for the mass transfer control is larger than a predetermined threshold value.
  • With the above-mentioned detecting device, a characteristic change can be detected accurately, since the overpotential and the resistance for the mass transfer control, which have a particularly high correlation with a characteristic change from among the entire overpotential and resistance in the battery, are used as a reference for determining whether a characteristic change has occurred.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above mentioned embodiment and other embodiments, objects, features, advantages, technical and industrial significance of this invention will be better understood by reading the following detailed description of the exemplary embodiments of the invention, when considered in connection with the accompanying drawings, in which:
  • FIG. 1 is a circuit diagram showing a circuit including a battery characteristic detecting device for performing a battery characteristic detecting method;
  • FIG. 2 is a graph showing a overpotential curve of a reference battery;
  • FIG. 3 is a flowchart showing a routine of the battery characteristic detecting method; and
  • FIG. 4 is a graph showing changes in current/voltage from when discharge from the battery is started.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following description, the present invention will be described in more detail in terms of exemplary embodiments.
  • Note that the same reference numerals are used for the same elements, and overlapping description is not made.
  • FIG. 1 shows a circuit 3 which is an example of a circuit including a battery characteristic detecting device 1 for performing a battery characteristic detecting method according to the embodiment. In the embodiment, the battery characteristic detecting device 1 is a device which is mounted in an automobile having a battery serving as a energy source, e.g., an electric vehicle and a hybrid vehicle, and which detects a memory effect that occurs in the battery. The battery characteristic detecting device 1 includes a battery 5; a load resistance 7 which applies a load to the battery 5; a voltage detecting portion 9 which measures a voltage in the battery 5; a current detecting portion 11 which measures a current in the battery 5; a changing-over switch 13; a changing-over switch 15; and a computing portion 17 which performs computation based on the measured current/voltage.
  • The battery 5 is a secondary battery, and can be charged/discharged. As the battery 5, a nickel hydride battery in which nickel hydroxide is used for the cathode, a nickel cadmium battery or the like can be used. Under normal use of the automobile (when the automobile is running), the change-over switch 15 is closed, and the change-over switch 13 is open. When the automobile accelerates, the battery 5 serves as an electric power supply source for a motor 19. A driving portion 21 e.g., a shaft and a tire, is driven by the motor 19 to which electric power is supplied from the battery 5. On the other hand, when the automobile decelerates, the motor 19 serves as a power generator. At this time, the motor 19 is driven by the driving portion 21, electric power is generated by the motor 19, and the generated electric power is stored in the battery 5. The voltage and the current in the battery are constantly measured by the voltage detecting portion 9 and the current detecting portion 11, respectively. The measured voltage and current are converted into electric signals by the voltage detecting portion 9 and the current detecting portion 11, respectively, and transmitted to the computing portion 17.
  • When characteristics of the battery 5 are detected, the change-over switch 15 is opened, and the change-over switch 13 is closed. At this time, electric power is discharged from the battery 5 to the load resistance 7 at a substantially constant current value (constant current discharge is performed). Also in this case, a voltage and a current in the battery are measured by the voltage detecting portion 9 and the current detecting portion 11, respectively, as in the case where the battery is used normally. The measured voltage and current are converted into electric signals by the voltage detecting portion 9 and the current detecting portion 1 1, respectively, and transmitted to the computing portion 17. The time at which characteristics of the battery 5 are detected is not particularly limited as long as electric power need not be supplied to the motor 19. For example, characteristics may be detected when the automobile is started. Also, characteristics may be detected while the hybrid vehicle is driven using only an internal combustion engine.
  • The computing portion 17 converts the received electric signals into a voltage value and a current value, stores a voltage and a current at each time, and recognizes changes with time in the current/voltage. The computing portion 17 calculates overpotential for the mass transfer control in the battery 5 based on the above-mentioned changes with time, and determines whether a memory effect has occurred in the battery 5 based on whether the calculated overpotential for the mass transfer control is larger than a threshold value stored in advance.
  • A resistance value of the load resistance 7 is set in the following manner, such that a current during the constant current discharge has a current density at which detection of the overpotential for the mass transfer control, that has good reproducibility, can be performed.
  • First, with regard to the same type of battery as the battery 5, a current-overpotential curve is prepared in a direction in which the cathode is reduced when a memory effect has not occurred. In this case, the overpotential curve is a curve showing a relationship between overpotential “η” and a logarithm “log i” of the current density, in the case where the overpotential is shown by “η”, and the current density is shown by “i”. The overpotential curve may be prepared in a known method. For example, a three-electrode-cell is prepared using the cathode of the battery (reference battery) in which a memory effect has not occurred. Then, the relationship between the overpotential “η” and the current density “i” can be obtained by polarizing a predetermined value “η” from an appropriate open circuit voltage, and measuring a response current at this time, using a potentiostat, a function generator, a recorder, or the like. FIG. 2 shows an example of the overpotential curve prepared in this case. In the graph in FIG. 2, the horizontal axis shows the overpotential “η”, and the vertical axis shows the logarithm “log i” of the current density. The unit of the overpotential “η” is shown by, for example, “mV”, and the unit of the current density “i” is shown by, for example, “mA/cm2”.
  • As shown in FIG. 2, in the region where the value of “log i” is equal to or smaller than “log i0” (the region where “η” is equal to or larger than “η0”), the overpotential “η” and the logarithm “log i” of the current density is in the substantially linear relationship. However, in the region where “log i” is larger than “log i0” (the region where “η” is smaller than “η0”), the overpotential “η” and the logarithm “log i” deviates from the linear relationship. Namely, FIG. 2 shows that the current density at which the relationship between the overpotential “η” of the cathode of the reference battery and the logarithm “log i” of the current density changes between the linear relationship and a non-linear relationship is “i0”. Based on the obtained “i0”, the resistance value for making the current density “iS” during constant current discharge 5 to 90% of “i0”, preferably 50 to 70% of “i0” is set to a resistance value “r” of the load resistance 7. The unit of the resistance value “r” is shown by, for example, “mΩ”.
  • A battery characteristic detecting method for detecting a memory effect in the battery 5 will be described with reference to FIG. 1 and FIG. 3. FIG. 3 is a flowchart showing a routine of the battery characteristic detecting method.
  • First, the change-over switch 15 is opened in step S102. Approximately one second after this, the change-over switch 13 is closed, and a closed circuit is formed between the battery 5 and the load resistance 7 in step S104. Since the resistance value “r” of the load resistance 7 is set in the above-mentioned manner, the constant current discharge from the battery 5 is started at a current value at which the current density become “is”, and a current flows through the closed circuit. The current flowing through the closed circuit is detected by the current detecting portion 11, and transmitted to the computing portion 17 as an electric signal. Also, the voltage of the battery 5 is detected by the voltage detecting portion 9, and transmitted to the computing portion 17 as an electric signal.
  • The computing portion 17 receives electric signals corresponding to voltage/current at each time. FIG. 4 shows an example of changes with time in the voltage/current. FIG. 4 is a graph showing changes in the voltage/current at each time using the time when the discharge is started, that is, the time when the change-over switch 13 is closed as “0” (t=“0”). In the graph, the horizontal axis shows the elapsed time “t” (the unit is second), the right vertical axis shows the current at each time, and the left vertical axis show the voltage at each time. In FIG. 4, the thin curve shows the change in the voltage, and the heavy curve shows the change in the current. The scale of the graph is modified as required for the purpose of explanation. As shown in the graph in FIG. 4, from when the change-over switch 15 is opened until when the change-over switch 13 is closed, the voltage of the battery 5 is the open-circuit voltage E0 of the battery 5. Then, at the moment at which the change-over switch 13 is closed, a voltage drop and the like occurs due to connection of the load resistance 7 to the battery 5. Then, the voltage drops with time. Meanwhile, after the change-over switch 13 is closed, the current is substantially constant and is maintained at Is, and constant current discharge from the battery 5 is performed.
  • The computing portion 17 reads the voltage E1 immediately after discharge is started (t1 seconds after the change-over switch 13 is closed) in step S106. Next, in step S108, the computing portion 17 reads the voltage E2 t2 seconds after discharge is started. The overpotential E for the mass transfer control is calculated according to the following equation in step S110.
    E=E 1 −E 2   (1)
  • In the embodiment, t1 is set to 0.1 second, and t2 is set to 23 seconds.
  • The computing portion 17 compares the calculated overpotential E for the mass transfer control with the threshold value Et in step S112. When the overpotential E is larger than the threshold value Et, it is determined in step S114 that a memory effect has occurred in the battery 5. On the other hand, when the overpotential E is not larger than the threshold value Et, it is determined in step S116 that a memory effect has not occurred in the battery 5. The threshold value Et is set in advance, and stored in the computing portion 17. The routine of the battery characteristic detecting method thus ends.
  • Causes of a voltage drop in the battery can be classified into three, that are, resistance due to IR loss, reaction resistance, and resistance due to mass transfer. It is considered that a voltage drop caused by resistance due to IR loss or response resistance substantially ends approximately 0.1 second after resistance is applied to the battery. Accordingly, it can be considered that a voltage drop 0.1 second after the start of the discharge and thereafter is caused by the resistance due to the mass transfer. Therefore, by detecting a voltage drop 0.1 second after the start of the discharge and thereafter, overpotential for the mass transfer control can be obtained. In order to read the voltage after a voltage drop caused by the resistance due to IR loss or the reaction resistance substantially ends as the voltage E1, time t, is set to 0.1 second in the embodiment. Namely, the voltage/current immediately after the start of the discharge signify the voltage/current time t1 (0.1 second, in the embodiment) after the start of the discharge.
  • In view of improving the accuracy of calculating overpotential for mass transfer control, the longer time t2 is, the better. However, in view of performing determination in a short time, the shorter time t2 is, the better. In order to perform determination in a short time while maintaining the accuracy at which whether a memory effect has occurred in the battery 5 can be determined, it is preferable that time t2 be set to a value in a range of 10 to 90 seconds. It is further preferable that time t2 be set to a value in a range of 20 to 40 seconds. In the embodiment, time t2 is set to 23 seconds.
  • In the above-mentioned battery characteristic detecting method, the overpotential E for the mass transfer control in the battery 5 is obtained, and compared with the threshold value. The fact that the overpotential E for the mass transfer control in the battery 5 becomes larger than the threshold value signifies that the mass transfer speed in the battery 5 becomes lower than the predetermined value. The inventors have confirmed the fact that there is a high correlation between a decrease in the mass transfer speed in the battery 5 and occurrence of a memory effect in the battery 5. Therefore, according to the above-mentioned battery characteristic detecting method, from among the entire overpotential in the battery, the overpotential E for the mass transfer control in the battery 5, which has a particularly high correlation with a memory effect, is obtained, and whether a memory effect has occurred is determined. It is therefore possible to detect a memory effect accurately.
  • Also, in the above-mentioned battery characteristic detecting method, the load resistance 7 is connected to the battery 5 in the first step. Therefore, constant current discharge from the battery 5 can be performed using a circuit having a simple configuration.
  • In the above-mentioned battery characteristic detecting method, the overpotential E for the mass transfer control in the battery 5 is calculated based on the relationship in the equation (1). The voltages E1 and E2 which are necessary data for the equation (1) are measurement values obtained in a short time (23 seconds, in the embodiment) after the constant current discharge is started. Therefore, according to the above-mentioned battery characteristic detecting method, it is possible to determine whether a memory effect has occurred in the battery 5 in a short time.
  • In the above-mentioned battery characteristic detecting method, by setting the current density during constant current discharge from the battery 5 to a value within the above-mentioned range, it is possible to perform detection of the overpotential for the mass transfer control, which has good reproducibility. It is therefore possible to accurately detect a characteristic change in the battery for a long time.
  • The invention is not limited to the above-mentioned embodiment, and the invention may be realized in various other embodiments within the scope of the invention.
  • For example, in the above-mentioned embodiment, the overpotential for the mass transfer control is obtained according to the equation (1). However, the resistance for the mass transfer control in the battery 5 may be calculated based on the relationship between the voltage obtained by the voltage detecting device 9 and the current obtained by the current detecting device 11. In this case, in the second step, the computing portion 17 reads the current I1/voltage E1 “t1” seconds after the start of discharge, and current I2/voltage E2 “t2” seconds after the start of discharge. Then, in the third step, resistance R for the mass transfer control is calculated based on the relationship in the following equation.
    R=E 1 /I 1 −E 2 /I 2   (2)
  • The computing portion 17 compares the resistance R for the mass transfer control with the threshold value Rt. When the resistance R is larger than the threshold value Rt, it is determined that a memory effect has occurred in the battery 5. On the other hand, when the resistance R is not larger than the threshold value Rt, it is determined that a memory effect has not occurred in the battery 5. The threshold value Rt is set in advance, and stored in the computing portion 17. Thus, it is possible to perform detection of a characteristic change, which has good reproducibility, even when the battery is used for a long time, and a current/voltage characteristics have changed.
  • In the above-mentioned embodiment, constant current discharge is performed by connecting the load resistance 7 to the battery 5. However, constant current discharge may be performed by connecting a constant current circuit or the like to the battery 5.
  • In the above-mentioned embodiment, a memory effect in the battery 5 is detected. However, the invention can be applied to the case where another characteristic change having correlation with the mass transfer speed in the battery 5 is detected. An example of the other characteristic change is a voltage drop due to long-term disuse of the battery.
  • While the invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. To the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the exemplary embodiments are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the invention.

Claims (20)

  1. 1-8. (canceled)
  2. 9. A battery characteristic detecting method, comprising:
    (i) performing constant current discharge from a battery at a predetermined current value, and measuring a voltage in the battery during the constant current discharge;
    (ii) calculating overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery based on the measured voltage; and
    (iii) determining that a characteristic change has occurred in the battery, when the calculated overpotential for the mass transfer control in the battery or resistance for the mass transfer control in the battery is larger than a predetermined threshold value.
  3. 10. The battery characteristic detecting method according to claim 9, wherein the constant current discharge is performed by connecting a predetermined load resistance to the battery in step (i).
  4. 11. The battery characteristic detecting method according to claim 9, wherein, in step (i), a first voltage, E1, in the battery immediately after a start of the constant current discharge from the battery, and a second voltage, E2 , in the battery when a predetermined time has elapsed since the start of the constant current discharge are measured, and, in step (ii), overpotential, E, for the mass transfer control is calculated based on the first voltage and the second voltage measured in step (i) according to a following equation: E=E1−E2.
  5. 12. The battery characteristic detecting method according to claim 10, wherein, in step (i), a first voltage, E1, in the battery immediately after a start of the constant current discharge from the battery, and a second voltage, E2, in the battery when a predetermined time has elapsed since the start of the constant current discharge are measured, and, in step (ii), overpotential, E, for the mass transfer control is calculated based on the first voltage and the second voltage measured in step (i) according to a following equation: E=E1−E2.
  6. 13. The battery characteristic detecting method according to claim 9, wherein, in step (i), a first voltage, E1, and a first current, I1, in the battery immediately after a start of the constant current discharge from the battery, and a second voltage, E2, and a second current, I2, in the battery after a predetermined time has elapsed since the start of the constant current discharge are measured, and, in step (ii), resistance, R, for the mass transfer control is calculated based on the first voltage, E1, and the second voltage, E2, and the first current, I1, and the second current, I2, measured in step (i) according to a following equation: R=E1/I1−E2/I2.
  7. 14. The battery characteristic detecting method according to claim 10, wherein, in step (i), a first voltage, E1, and a first current, I1, in the battery immediately after a start of the constant current discharge from the battery, and a second voltage, E2, and a second current, I2, in the battery after a predetermined time has elapsed since the start of the constant current discharge are measured, and, in step (ii), resistance, R, for the mass transfer control is calculated based on the first voltage, E1, and the second voltage, E2, and the first current, I1, and the second current, I2, measured in step (i) according to a following equation: R=E1/I1−E2/I2.
  8. 15. The battery characteristic detecting method according to claim 9, wherein, in step (iii), it is determined that a memory effect as the characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value.
  9. 16. The battery characteristic detecting method according to claim 10, wherein, in step (iii), it is determined that a memory effect as the characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value.
  10. 17. The battery characteristic detecting method according to claim 11, wherein, in step (iii), it is determined that a memory effect as the characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value.
  11. 18. The battery characteristic detecting method according to claim 13, wherein, in step (iii), it is determined that a memory effect as the characteristic change has occurred in the battery, when the overpotential for the mass transfer control or the resistance for the mass transfer control, which is calculated in step (ii), is larger than the predetermined threshold value.
  12. 19. The battery characteristic detecting method according to claim 9, wherein, the predetermined current value is a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  13. 20. The battery characteristic detecting method according to claim 10, wherein, the predetermined current value is a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  14. 21. The battery characteristic detecting method according to claim 11, wherein, the predetermined current value is a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  15. 22. The battery characteristic detecting method according to claim 13, wherein, the predetermined current value is a current value at which a current density in the battery is 5 to 90% of a current density at which a relationship between overpotential of a cathode and a logarithm of the current density in the battery where a characteristic change has not occurred changes between a linear relationship and a non-linear relationship.
  16. 23. The battery characteristic detecting method according to claim 9, wherein the overpotential for mass transfer control is calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  17. 24. The battery characteristic detecting method according to claim 10, wherein the overpotential for mass transfer control is calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  18. 25. The battery characteristic detecting method according to claim 1 wherein the overpotential for mass transfer control is calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  19. 26. The battery characteristic detecting method according to claim 13 wherein the overpotential for mass transfer control is calculated by using a voltage in the battery, which is obtained 10 to 90 seconds after the start of constant current discharge to determine whether the characteristic change has occurred in the battery.
  20. 27. A battery characteristic detecting device, comprising:
    a measuring portion which discharges a battery at a predetermined constant current value and which measures a voltage during the constant current discharge;
    a calculating portion which calculates overpotential for mass transfer control in the battery or resistance for the mass transfer control in the battery based on the measured voltage; and
    a determining portion which determines that a characteristic change has occurred in the battery when the calculated overpotential for the mass transfer control or resistance for the mass transfer control is larger than a predetermined threshold value.
US10569210 2003-08-25 2004-08-18 Method and device for monitoring deterioration of battery Expired - Fee Related US7675291B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003300289A JP4038456B2 (en) 2003-08-25 2003-08-25 Battery characteristic detection method
JP2003-300289 2003-08-25
PCT/IB2004/002687 WO2005019850A1 (en) 2003-08-25 2004-08-18 Method and device for monitoring deterioration of battery

Publications (2)

Publication Number Publication Date
US20060238168A1 true true US20060238168A1 (en) 2006-10-26
US7675291B2 US7675291B2 (en) 2010-03-09

Family

ID=34213818

Family Applications (1)

Application Number Title Priority Date Filing Date
US10569210 Expired - Fee Related US7675291B2 (en) 2003-08-25 2004-08-18 Method and device for monitoring deterioration of battery

Country Status (6)

Country Link
US (1) US7675291B2 (en)
EP (1) EP1668377B1 (en)
JP (1) JP4038456B2 (en)
CN (1) CN100478700C (en)
DE (1) DE602004031440D1 (en)
WO (1) WO2005019850A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069735A1 (en) * 2004-07-13 2007-03-29 Siemen Aktiengesellschaft Battery sensor and method for the operation of a battery sensor
US20090295337A1 (en) * 2008-05-29 2009-12-03 Yosuke Ishikawa Method of Controlling Battery Charging
US20100036628A1 (en) * 2008-08-07 2010-02-11 Research In Motion Limited Systems and Methods for Monitoring Deterioration of a Rechargeable Battery
US20100072955A1 (en) * 2008-09-23 2010-03-25 Yosuke Ishikawa Method of Estimating Surface Ion Density
US20100277132A1 (en) * 2008-01-28 2010-11-04 Murata Manufacturing Co., Ltd. Dc-dc converter
US20120046893A1 (en) * 2009-05-20 2012-02-23 Nissan Motor Co., Ltd. Battery voltage monitoring device
US8368357B2 (en) 2010-06-24 2013-02-05 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8638070B2 (en) 2010-05-21 2014-01-28 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8970178B2 (en) 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9063018B1 (en) 2012-10-22 2015-06-23 Qnovo Inc. Method and circuitry to determine temperature and/or state of health of a battery/cell
US9071081B2 (en) 2010-03-31 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Power source device for vehicle
US9142994B2 (en) 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
US9461492B1 (en) 2013-04-19 2016-10-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
US10033201B2 (en) * 2009-05-20 2018-07-24 Nissan Motor Co., Ltd. Battery voltage monitoring device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100535680C (en) 2005-08-19 2009-09-02 株式会社Ntt设施 Deterioration judging device and method, computer program
US8872518B2 (en) * 2010-06-25 2014-10-28 Atieva, Inc. Determining the state of-charge of batteries via selective sampling of extrapolated open circuit voltage
JP5278508B2 (en) * 2011-07-25 2013-09-04 横河電機株式会社 Battery deterioration determining apparatus and method
JP5772965B2 (en) * 2011-09-28 2015-09-02 トヨタ自動車株式会社 A control device and a control method of a non-aqueous secondary battery
CN103176135B (en) 2011-12-26 2015-04-22 财团法人工业技术研究院 Method for estimating battery degradation
US20150135517A1 (en) * 2012-06-01 2015-05-21 Toyota Jidosha Kabushiki Kaisha Degradation diagnosis device for cell, degradation diagnosis method, and method for manufacturing cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698962A (en) * 1995-05-19 1997-12-16 Nippon Soken, Inc. Memory effect sensitive battery monitoring apparatus for electric vehicles
US5994877A (en) * 1997-06-24 1999-11-30 Matsushita Electric Industrial Co., Ltd. Method for detecting working condition of non-aqueous electrolyte secondary batteries

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313588A (en) * 1989-06-12 1991-01-22 Seiko Instr Inc Production of thin metal parts
JP3192794B2 (en) * 1992-02-03 2001-07-30 日本電信電話株式会社 Deterioration determination method and the degradation judgment unit of the lead storage battery
FR2702885B1 (en) * 1993-03-15 1995-04-21 Alcatel Converters aging control system of a battery and method set Óoeuvre in such a system.
JP3350153B2 (en) * 1993-06-24 2002-11-25 松下電送システム株式会社 Memory effect detecting method and apparatus, charging method, apparatus, and portable facsimile apparatus
JPH08222279A (en) 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd Degraded condition detecting method of sealed lead-acid battery
JP3540437B2 (en) 1995-06-05 2004-07-07 本田技研工業株式会社 Battery state detecting apparatus
JPH09113588A (en) 1995-10-17 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Method for detecting pack battery condition
JP3288257B2 (en) 1997-05-15 2002-06-04 トヨタ自動車株式会社 Battery charging state detection device
KR100425352B1 (en) 1998-05-28 2004-03-31 도요다 지도샤 가부시끼가이샤 Apparatus for estimating charged state of battery and method for estimating degraded state of battery
US6094051A (en) 1998-09-15 2000-07-25 Alliedsignal Inc. Apparatus and method for detecting memory effect in nickel cadmium batteries
JP2000121710A (en) 1998-10-15 2000-04-28 Matsushita Electric Ind Co Ltd Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP4138204B2 (en) 2000-04-28 2008-08-27 トヨタ自動車株式会社 Charge and discharge control apparatus and method
JP2002042895A (en) 2000-07-19 2002-02-08 Honda Motor Co Ltd Battery state detector
JP3964635B2 (en) 2001-06-20 2007-08-22 トヨタ自動車株式会社 Detection method and resolution method memory effect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698962A (en) * 1995-05-19 1997-12-16 Nippon Soken, Inc. Memory effect sensitive battery monitoring apparatus for electric vehicles
US5994877A (en) * 1997-06-24 1999-11-30 Matsushita Electric Industrial Co., Ltd. Method for detecting working condition of non-aqueous electrolyte secondary batteries

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069735A1 (en) * 2004-07-13 2007-03-29 Siemen Aktiengesellschaft Battery sensor and method for the operation of a battery sensor
US20100277132A1 (en) * 2008-01-28 2010-11-04 Murata Manufacturing Co., Ltd. Dc-dc converter
US7868584B2 (en) 2008-01-28 2011-01-11 Murata Manufacturing Co., Ltd. DC-DC converter
US20090295337A1 (en) * 2008-05-29 2009-12-03 Yosuke Ishikawa Method of Controlling Battery Charging
US8040106B2 (en) * 2008-05-29 2011-10-18 Honda Motor Co., Ltd. Method of controlling battery charging
US8473231B2 (en) 2008-08-07 2013-06-25 Research In Motion Limited Systems and methods for monitoring deterioration of a rechargeable battery
US20100036628A1 (en) * 2008-08-07 2010-02-11 Research In Motion Limited Systems and Methods for Monitoring Deterioration of a Rechargeable Battery
US8255176B2 (en) 2008-08-07 2012-08-28 Research In Motion Limited Systems and methods for monitoring deterioration of a rechargeable battery
US9267994B2 (en) 2008-08-07 2016-02-23 Blackberry Limited Systems and methods for monitoring deterioration of a rechargeable battery
US7919966B2 (en) 2008-09-23 2011-04-05 Honda Motor Co., Ltd. Method of estimating surface ion density
US20100072955A1 (en) * 2008-09-23 2010-03-25 Yosuke Ishikawa Method of Estimating Surface Ion Density
US20120046893A1 (en) * 2009-05-20 2012-02-23 Nissan Motor Co., Ltd. Battery voltage monitoring device
US10033201B2 (en) * 2009-05-20 2018-07-24 Nissan Motor Co., Ltd. Battery voltage monitoring device
US9071081B2 (en) 2010-03-31 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Power source device for vehicle
US9385555B2 (en) 2010-05-21 2016-07-05 Qnovo Inc. Method and circuitry to determine the relaxation time of a battery/cell
US8975874B2 (en) 2010-05-21 2015-03-10 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9373972B2 (en) 2010-05-21 2016-06-21 Qnovo Inc. Method and circuitry to determine the relaxation time of a battery/cell
US8638070B2 (en) 2010-05-21 2014-01-28 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8791669B2 (en) 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US8427112B2 (en) 2010-06-24 2013-04-23 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9791513B2 (en) 2010-06-24 2017-10-17 Qnovo Inc. Method and circuitry to adjust, correct and/or compensate an SOC of a battery based on relaxation time thereof
US9121910B2 (en) 2010-06-24 2015-09-01 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using the state of health thereof
US8513921B2 (en) 2010-06-24 2013-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US8368357B2 (en) 2010-06-24 2013-02-05 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9035621B2 (en) 2010-06-24 2015-05-19 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US8970178B2 (en) 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9702940B2 (en) 2011-02-04 2017-07-11 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9787122B2 (en) 2012-09-25 2017-10-10 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9142994B2 (en) 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
US9726554B1 (en) 2012-10-22 2017-08-08 Qnovo Inc. Method and circuitry to determine temperature and/or state of health of a battery/cell
US9063018B1 (en) 2012-10-22 2015-06-23 Qnovo Inc. Method and circuitry to determine temperature and/or state of health of a battery/cell
US9461492B1 (en) 2013-04-19 2016-10-04 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter

Also Published As

Publication number Publication date Type
CN100478700C (en) 2009-04-15 grant
EP1668377B1 (en) 2011-02-16 grant
DE602004031440D1 (en) 2011-03-31 grant
CN1842719A (en) 2006-10-04 application
JP2005069889A (en) 2005-03-17 application
US7675291B2 (en) 2010-03-09 grant
WO2005019850A1 (en) 2005-03-03 application
EP1668377A1 (en) 2006-06-14 application
JP4038456B2 (en) 2008-01-23 grant

Similar Documents

Publication Publication Date Title
US5945829A (en) Midpoint battery monitoring
US6696819B2 (en) Battery charge control device
US4725784A (en) Method and apparatus for determining the state-of-charge of batteries particularly lithium batteries
US7408358B2 (en) Electronic battery tester having a user interface to configure a printer
US7199557B2 (en) Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models
US7012434B2 (en) Method for determining the amount of charge which can be drawn from a storage battery and monitoring device
US7656162B2 (en) Electronic battery tester with vehicle type input
US7598699B2 (en) Replaceable clamp for electronic battery tester
US5281919A (en) Automotive battery status monitor
US6683440B2 (en) Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting apparatus, and storage medium in which a software program of said detecting method is stored
US20100138178A1 (en) Battery capacity estimating method and apparatus
US6275008B1 (en) Battery capacity detection system with temperature correction
US7928735B2 (en) Battery performance monitor
US7197487B2 (en) Apparatus and method for estimating battery state of charge
US20060186890A1 (en) Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system
US6534954B1 (en) Method and apparatus for a battery state of charge estimator
US7154276B2 (en) Method and apparatus for measuring a parameter of a vehicle electrical system
US20060087291A1 (en) Method of controlling rechargeable battery power and a power source apparatus
US4937528A (en) Method for monitoring automotive battery status
US4968942A (en) Method for monitoring aircraft battery status
US7593821B2 (en) Method and system for joint battery state and parameter estimation
US5831435A (en) Battery tester for JIS Standard
US6469512B2 (en) System and method for determining battery state-of-health
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
US20070001679A1 (en) Method and apparatus of estimating state of health of battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUO, HIDEHITO;ITOU, YUICHI;UKYO, YOSHIO;AND OTHERS;REEL/FRAME:017614/0909

Effective date: 20060116

Owner name: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUO, HIDEHITO;ITOU, YUICHI;UKYO, YOSHIO;AND OTHERS;REEL/FRAME:017614/0909

Effective date: 20060116

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUO, HIDEHITO;ITOU, YUICHI;UKYO, YOSHIO;AND OTHERS;REEL/FRAME:017614/0909

Effective date: 20060116

Owner name: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUO, HIDEHITO;ITOU, YUICHI;UKYO, YOSHIO;AND OTHERS;REEL/FRAME:017614/0909

Effective date: 20060116

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20140309