US20060213779A1 - Silicon nanoparticle formation by electrodeposition from silicate - Google Patents

Silicon nanoparticle formation by electrodeposition from silicate Download PDF

Info

Publication number
US20060213779A1
US20060213779A1 US11/088,269 US8826905A US2006213779A1 US 20060213779 A1 US20060213779 A1 US 20060213779A1 US 8826905 A US8826905 A US 8826905A US 2006213779 A1 US2006213779 A1 US 2006213779A1
Authority
US
United States
Prior art keywords
platinum
substrate
silicon
electrodeposition
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/088,269
Inventor
Munir Nayfeh
Laila Abuhassan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JORDAN University OF
University of Illinois
Original Assignee
University of Illinois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Illinois filed Critical University of Illinois
Priority to US11/088,269 priority Critical patent/US20060213779A1/en
Assigned to BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, THE reassignment BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAYFEH, MUNIR H.
Assigned to JORDAN, THE UNIVERSTIY OF reassignment JORDAN, THE UNIVERSTIY OF ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABUHASSAN, LAILA
Priority to PCT/US2006/005068 priority patent/WO2007100314A2/en
Publication of US20060213779A1 publication Critical patent/US20060213779A1/en
Assigned to NATIONAL SCIENCE FOUNDATION reassignment NATIONAL SCIENCE FOUNDATION CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERISTY OF ILLINOIS URBANA-CHAMPAIGN
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/33Silicon

Definitions

  • the present invention generally concerns the formation of elemental silicon nanoparticles.
  • Silicon nanoparticles have properties unlike bulk silicon. Among many interesting applications and developing applications are those applications that leverage the fluorescent nature of silicon nanoparticles.
  • the silicon nanoparticle material forms the basis, for example, for emitters, sensors, or filters that are efficient and compatible with the existing silicon based integrated circuit technology.
  • Prior methods for the production of silicon nanoparticles include a variety of physical, electrochemical and chemical techniques. The methods generally produce distributions of nanoparticles. Many techniques have practical limitations, such as the quantities of silicon nanoparticle material that may be produced in a reasonable amount of time. Many techniques are difficult to implement, and would scale poorly if used for a manufacturing scale synthesis of silicon nanoparticles. Some techniques produce silicon nanoparticles in a form that is difficult to disperse or collect.
  • Example prior methods include the following. Silicon nanoparticle clusters (Si-nc) have been formed, for example, in the matrices of glass and SiO 2 by implanting high energy Si ions into quartz, followed by annealing at elevated temperatures. Silicon wafers have also been dispersed by ablation using a variety of agents, such as lasers, to produce isolated Si particles. Collection or dispersion in the latter example requires that nanoparticles be transported downstream from the spot of ablation by an inert gas jet, to be collected by filters.
  • Si-nc Silicon nanoparticle clusters
  • One type of formation method obtains fluorescent silicon material from silanes via slow combustion, thermal decomposition, microwave plasma, gas evaporation or chemical vapor deposition (CVD). This class of methods may involve particle formation in a discharge of gas mixtures that include the highly toxic silane (SiH 4 ), followed by collection in filters, and recovery from filters.
  • SiH 4 highly toxic silane
  • SiH 2 Ph 2 diphenyl silane
  • the invention provides a method for the formation of silicon nanoparticles, in sizes that fluoresce, by electrodeposition of silicon material onto a non-reactive (with HF) metal (e.g., platinum) surface from a solution of silicate and HF or HF/H 2 O 2 .
  • a positively biased substrate with a platinum surface is immersed in a solution of sodium metasilicate in HF/H 2 O 2 , a current is drawn and a coating of silicon nanoparticles is formed on the platinum surface.
  • silicon nanoparticles are formed on a non-reactive (with HF) metal (e.g., platinum) surface from a solution of silicate and HF or HF/H 2 O 2 by electrodeposition.
  • HF non-reactive
  • a positive bias is applied to the platinum surface while a counter electrode is negatively biased to draw a current and the nanoparticles deposit from the silicate onto the platinum surface.
  • the deposited nanoparticle material is fluorescent, and includes a distribution of nanoparticle sizes.
  • a standard electrodeposition cell may be used to conduct the method of the invention.
  • a platinum surface in embodiments of the invention is preferably a thin platinum layer formed on a substrate, such as a semiconductor or insulator substrate.
  • a platinum substrate may also be used, but silicon nanoparticle formation proceeds more efficiently when a thin platinum layer is used.
  • Various silicate sources may be used.
  • a preferred example is sodium metasilicate, known also as water glass or soluble glass.
  • Electrodeposition solutions of either HF or HF/H 2 O 2 may be used, while the HF/H 2 O 2 solution is preferred as silicon nanoparticles deposit with more efficiency, as evidenced by stronger fluorescence responses from example silicon nanoparticle depositions produced by electrodeposition from HF/H 2 O 2 as compared to weaker responses from example silicon nanoparticle depositions in HF solutions.
  • Silicon nanoparticle formation has been verified experimentally.
  • the example experimental results will now be discussed, and artisans will appreciate various additional inventive features from the discussion while appreciating broader aspects of the invention as well.
  • a 1 mg/liter commercial metasilicate water solution Na 2 SiO 3 .5H 2 O 2
  • HF:H 2 O 2 mixture was used as an electrodeposition solution.
  • the silicate had 0.02 percent of pentachlorophenol (C 6 Cl 5 OH) as a preservative.
  • the substrate in experiments was either a platinum coated material or a platinum plate.
  • a standard electrodeposition cell configuration was used to conduct the experiment.
  • the cell itself must be a material that is resistant to HF/H 2 0 2
  • the electrodeposition cell in the experiments was Teflon beaker.
  • the substrate including a non-reactive (with HF) metal (e.g., platinum) surface on which deposition is to be conducted is immersed vertically in the etchant, to contact the etchant with the non reactive metal surface.
  • the substrate can be left stationary, or can be moved downward into the bath as the process proceeds. Countering this substrate is an electrode, e.g., a pure platinum wire, mesh, or foil.
  • the platinum electrode is negatively biased, while the substrate is positively biased.
  • Sodium silicate also called water glass or soluble glass, is any one of several compounds containing sodium oxide, Na 2 O, and silica, Si 2 O, or a mixture of sodium silicates with varying ratios of SiO 2 to Na 2 O, solid contents, and viscosity. These include Na 4 SiO 4 ; Na 2 SiO 3 ; Na 2 Si 2 O 5 ; Na 2 Si 4 O 9 . All these compounds are colorless, transparent, glasslike substance available commercially as a powder or as a transparent, viscous solution in water. They are produced chiefly by fusing sand and sodium carbonate in various proportions.
  • Sodium metasilicate is widely available as it is used in many applications. For example, it is used as a raw material for making silica gel, as a basic material for the detergent industry and as cement for glass, pottery, and stoneware. Granular sand ingredients may also be used to form silicate solutions.
  • Preferred embodiments use a semiconductor or insulator substrate with a thin platinum layer.
  • a silicon substrate may be used, for example.
  • a platinum layer was formed on a silicon substrate, particularly a Si wafer of 10 ⁇ -cm resistivity. Any technique that permits formation of a platinum layer on a substrate may be used.
  • the example experimental technique used a seed layer formation technique known in the art.
  • the silicon substrate was first coated with a thin platinum layer using a two-step process. The first coating is an electrode less seed process and the second is using an electrode configuration. In this first treatment, the silicon substrate was sonicated in methanol, dipped in diluted HF and rinsed in deionized water.
  • the sample shows extremely weak spotty fluorescence.
  • a second platinum coating is placed over the first platinum coating by electrodeposition.
  • a five minute platinum electrodepositing process in chloroplatinic acid with the substrate as the cathode was used. This produces a thicker platinum film that covers all sides of the treated section of the wafer.
  • the electroplated sample is then rinsed with deionized water and flushed with an inert gas. This completed the formation of a silicon wafer substrate with a platinum surface layer. The substrate is then rinsed in acetone.
  • Electrodeposition of silicon nanoparticles onto the platinum coated silicon substrate was then conducted.
  • the substrate was dipped into the silicate/acid solution (to nearly the level of the platinum coating—this is unnecessary—remove it)
  • the wafer substrate was not moved during the electrodeposition process.
  • the substrate was positively biased with respect to an immersed counter platinum wire electrode.
  • An electrodepositing current flow in the current range 1-100 mA works. It is established by applying a positive bias (relative to the counter electrode) to the substrate. The process is not sensitive to the biasing voltage. Once established, deposition of silicon nanoparticles occurs on the platinum surface. The process is self-limiting. The current decreases with time as more and more nanomaterial forms on the immersed part of the platinum coated substrate.
  • the luminescence spectrum of the silicon nanoparticle electroplated wafer consists of a red band rising at 550 nm and extending to 850 nm.
  • a fiber optic spectrometer that utilizes a UV-VIS holographic grating with groove density of 600/mm and a blaze wavelength of 0.4 ⁇ m for dispersion.
  • the spectrometer uses optical fibers to transport the excitation and to extract the luminescence.
  • Patterning was demonstrated with the platinum substrate. Essentially, by masking the substrate, the electrodepositing of silicon nanoparticles from the silicon solution may be limited to non masked areas of the substrate. In the experiment, a platinum substrate was masked with a paraffin wax layer of 300 nm. Patterns were scraped to provide current paths that define the area of silicon nanoparticle formation. Imaging with a fluorescent microscope showed that the material selectively deposits in the pattern area. In addition to enabling deposition in a pattern, the definition of current paths also eases the sharp edges of particle deposition areas.
  • FTIR transmission spectroscopy in the range 500 cm ⁇ 1 -4000 cm ⁇ 1 was conducted on the silicon nanoparticle coated Si wafer. It showed strong Si—H signals at 615 cm ⁇ 1 to 670 cm ⁇ 1 , at 903 cm- ⁇ 1 to 910 cm ⁇ 1 and at 2070 cm ⁇ 1 to 2090 cm ⁇ , and a strong Si—OH peak at 3500 cm ⁇ 1 . A Si—O contribution is observed at 1100 cm ⁇ 1 . The spectrum showed C—H vibration near ⁇ 2950. Bands in the region 1250 ⁇ 1175 cm ⁇ 1 are due to SiCH n or Si—C vibration.
  • Sharp peaks at 1416, and 1378 cm ⁇ 1 may be associated with an Si—C bond, which may be due to residual carbonates or pentachlorophenol (C 6 Cl 5 OH). Sodium carbonate is fused with sand to produce sodium silicates.
  • FTIR spectra of the Si control wafer sample showed weaker Si—H and Si—OH peaks. Residual Si—H signals are due to the HF treatment during the electroless platinum coating process used in preparing the substrate which stains etch the surface. It also shows the absence of vibrations near 1416, 1378 cm ⁇ 1 , and 1250 ⁇ 1175 cm ⁇ 1 .
  • XPS spectra taken of a processed luminescent sample show a Si state, confirming the presence of silicon material.
  • the electrodeposition process of the invention involves deposition of Si atoms from silicates followed by nucleation into nanostructures.
  • positive 2Na + ions proceed to the negatively biased platinum wire
  • the negative selicic ions [(H 2 SiO 4 ):4H 2 O 2 ] 2 ⁇ proceed to the platinum coated substrate surface.
  • the negative ion neutralizes resulting in the deposition of Si atoms.
  • nucleation produces clusters.
  • the wire counter electrode on the other hand, showed little fluorescent material. Also, reversing the polarity of the substrate inhibited formation of fluorescent material.
  • Si increases from 30% at top surface of the nanomaterial coating front to a steady level of ⁇ 48% at a depth of 150 nm, before starting to drop at a depth of 220 nm from the top surface of the nanomaterial.
  • the oxygen percentage stays nearly flat at a level of 22%.
  • the carbon contribution is larger on the surface and deep in the first platinum coating ( ⁇ 15%) than in the second platinum coating ( ⁇ 7%).
  • the luminescence wavelength correlates with the size of the structure.
  • a fiber optic sensor which provides 1-2 mm spatial resolution.
  • Optical spectra from a platinum coated substrate after electrodeposition from a region near the meniscus shows a band near 610 nm. This band has been correlated to the luminescence of dispersions of 2.85 nm silicon nanoparticles.
  • Photoluminescence from near the bottom of the sample i.e., the deepest point in the liquid shows a band near 750 nm.
  • the region looks dark as 750 nm is outside the sensitivity range of the naked eye.
  • the likely source for this band is clusters of ⁇ 3.6 nm across.

Abstract

The invention provides a method for the formation of silicon nanoparticles, in sizes that fluoresce, by electrodeposition of silicon material onto a non-reactive (with HF) metal (e.g., platinum) surface from a solution of silicate and HF or HF/H2O2. In an embodiment of the invention, a positively biased substrate with a platinum surface is immersed in a solution of sodium metasilicate in HF/H2O2, a current is drawn and a coating of silicon nanoparticles is formed on the platinum surface.

Description

    FIELD OF THE INVENTION
  • The present invention generally concerns the formation of elemental silicon nanoparticles.
  • BACKGROUND
  • Silicon nanoparticles have properties unlike bulk silicon. Among many interesting applications and developing applications are those applications that leverage the fluorescent nature of silicon nanoparticles. The silicon nanoparticle material forms the basis, for example, for emitters, sensors, or filters that are efficient and compatible with the existing silicon based integrated circuit technology.
  • A number of methods have been developed for the production of silicon nanoparticles that fluoresce. Prior methods for the production of silicon nanoparticles include a variety of physical, electrochemical and chemical techniques. The methods generally produce distributions of nanoparticles. Many techniques have practical limitations, such as the quantities of silicon nanoparticle material that may be produced in a reasonable amount of time. Many techniques are difficult to implement, and would scale poorly if used for a manufacturing scale synthesis of silicon nanoparticles. Some techniques produce silicon nanoparticles in a form that is difficult to disperse or collect.
  • Example prior methods include the following. Silicon nanoparticle clusters (Si-nc) have been formed, for example, in the matrices of glass and SiO2 by implanting high energy Si ions into quartz, followed by annealing at elevated temperatures. Silicon wafers have also been dispersed by ablation using a variety of agents, such as lasers, to produce isolated Si particles. Collection or dispersion in the latter example requires that nanoparticles be transported downstream from the spot of ablation by an inert gas jet, to be collected by filters.
  • There are also gas-phase formation techniques. One type of formation method obtains fluorescent silicon material from silanes via slow combustion, thermal decomposition, microwave plasma, gas evaporation or chemical vapor deposition (CVD). This class of methods may involve particle formation in a discharge of gas mixtures that include the highly toxic silane (SiH4), followed by collection in filters, and recovery from filters.
  • There are also liquid phase formation techniques. An example is chemical synthesis via a reduction of anhydrous silicon halogen ionic salts (SiCl4 or SiBr4) dispersed in water-free reverse-micelles solutions, with LiAlH4. Silicon nanoparticle clusters may also be produced by reduction of SiCl4 and RSiCl3 (R=H, C8H17) in the presence of sodium (Na) metal according to: SiCl4+RSiCl3+Na→Si-nc (diamond lattice)+NaCl. Transformation of the alkali silicon salts ASi (A=Na, K), via interaction with SiCl4 results in formation of Cl-capped Si nanoparticle clusters, which may be followed by replacing the Cl by methyl groups. Tetrahedral shaped silicon nanoparticle clusters may also be obtained by a reduction of SiCl4 with Na naphtalenide followed by termination with butyl lithium. In another liquid phase formation technique octyloxi-terminated Si nanocrystals were produced in supercritical fluid. By thermally degrading the Si precursor, diphenyl silane (SiH2Ph2) in the presence of octanol, relatively size-monodisperse sterically stabilized Si nanocrystals ranging from 1.5 to 4.0 nm in diameter were obtained in significant quantities. [See, J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, B. A. Korgel, J. Am. Chem. Soc. 123, 3743 (2001)].
  • Work by one of the present inventors, Dr. Munir Nayfeh, and others has resulted in silicon nanoparticle formation methods that are capable of producing quantities of silicon nanoparticles, including quantities of highly uniform 1 nm silicon nanoparticles and also particles from a family of discrete sizes. See, Nayfeh et al U.S. Pat. No. 6,585,947 entitled Method for Producing Silicon Nanoparticles (Jul. 1, 2003), and Nayfeh et al U.S. Pat. No. 6,743,406 entitled Family of Discretely Sized Silicon Nanoparticles and Method for Producing the Same. (Jun. 1, 2004). Those techniques involve the electrochemical etch of a silicon anode as it is gradually advanced into an etchant solution.
  • SUMMARY OF THE INVENTION
  • The invention provides a method for the formation of silicon nanoparticles, in sizes that fluoresce, by electrodeposition of silicon material onto a non-reactive (with HF) metal (e.g., platinum) surface from a solution of silicate and HF or HF/H2O2. In an embodiment of the invention, a positively biased substrate with a platinum surface is immersed in a solution of sodium metasilicate in HF/H2O2, a current is drawn and a coating of silicon nanoparticles is formed on the platinum surface.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In the invention, silicon nanoparticles are formed on a non-reactive (with HF) metal (e.g., platinum) surface from a solution of silicate and HF or HF/H2O2 by electrodeposition. A positive bias is applied to the platinum surface while a counter electrode is negatively biased to draw a current and the nanoparticles deposit from the silicate onto the platinum surface. The deposited nanoparticle material is fluorescent, and includes a distribution of nanoparticle sizes. A standard electrodeposition cell may be used to conduct the method of the invention.
  • Metals that are non-reactive with HF may be used to provide a metal surface for the deposition. A platinum surface in embodiments of the invention is preferably a thin platinum layer formed on a substrate, such as a semiconductor or insulator substrate. A platinum substrate may also be used, but silicon nanoparticle formation proceeds more efficiently when a thin platinum layer is used. Various silicate sources may be used. A preferred example is sodium metasilicate, known also as water glass or soluble glass.
  • Electrodeposition solutions of either HF or HF/H2O2 may be used, while the HF/H2O2 solution is preferred as silicon nanoparticles deposit with more efficiency, as evidenced by stronger fluorescence responses from example silicon nanoparticle depositions produced by electrodeposition from HF/H2O2 as compared to weaker responses from example silicon nanoparticle depositions in HF solutions.
  • Silicon nanoparticle formation has been verified experimentally. The example experimental results will now be discussed, and artisans will appreciate various additional inventive features from the discussion while appreciating broader aspects of the invention as well. In example experiments, a 1 mg/liter commercial metasilicate water solution (Na2SiO3.5H2O2) in an HF:H2O2 mixture was used as an electrodeposition solution. The silicate had 0.02 percent of pentachlorophenol (C6Cl5OH) as a preservative. The substrate in experiments was either a platinum coated material or a platinum plate.
  • A standard electrodeposition cell configuration was used to conduct the experiment. The cell itself must be a material that is resistant to HF/H202 The electrodeposition cell in the experiments was Teflon beaker. The substrate including a non-reactive (with HF) metal (e.g., platinum) surface on which deposition is to be conducted is immersed vertically in the etchant, to contact the etchant with the non reactive metal surface. The substrate can be left stationary, or can be moved downward into the bath as the process proceeds. Countering this substrate is an electrode, e.g., a pure platinum wire, mesh, or foil. The platinum electrode is negatively biased, while the substrate is positively biased.
  • Many other silicate solutions may be used. Sodium silicate, also called water glass or soluble glass, is any one of several compounds containing sodium oxide, Na2O, and silica, Si2O, or a mixture of sodium silicates with varying ratios of SiO2 to Na2O, solid contents, and viscosity. These include Na4SiO4; Na2SiO3; Na2Si2O5; Na2Si4O9. All these compounds are colorless, transparent, glasslike substance available commercially as a powder or as a transparent, viscous solution in water. They are produced chiefly by fusing sand and sodium carbonate in various proportions. Sodium metasilicate is widely available as it is used in many applications. For example, it is used as a raw material for making silica gel, as a basic material for the detergent industry and as cement for glass, pottery, and stoneware. Granular sand ingredients may also be used to form silicate solutions.
  • Preferred embodiments use a semiconductor or insulator substrate with a thin platinum layer. A silicon substrate may be used, for example. In experiments, a platinum layer was formed on a silicon substrate, particularly a Si wafer of 10 Ω-cm resistivity. Any technique that permits formation of a platinum layer on a substrate may be used. The example experimental technique used a seed layer formation technique known in the art. The silicon substrate was first coated with a thin platinum layer using a two-step process. The first coating is an electrode less seed process and the second is using an electrode configuration. In this first treatment, the silicon substrate was sonicated in methanol, dipped in diluted HF and rinsed in deionized water. A section of it was then dipped in chloroplatinic acid/hydrogen fluoride (H2PtCl6/HF) solution for fifteen minutes to form a thin platinum seed layer according to PtCl6 2−(aq)+Si0(s)+6F(aq)→Pt0(s)+SiF6 2−(aq)+6Cl.(aq). This process may also lead to direct chemical reaction between Pt and Si to form platinum silicide. FTIR measurement of the substrate at this stage (after the seed step) shows Si—H with some residual Si—OH passivation, typical of an HF treatment. The sample is not fluorescent to the naked eye under UV irradiation. However, under a fluorescence microscope, the sample shows extremely weak spotty fluorescence. Once the first seed layer/coating is formed, a second platinum coating is placed over the first platinum coating by electrodeposition. In the example experimental technique, a five minute platinum electrodepositing process in chloroplatinic acid with the substrate as the cathode was used. This produces a thicker platinum film that covers all sides of the treated section of the wafer. The electroplated sample is then rinsed with deionized water and flushed with an inert gas. This completed the formation of a silicon wafer substrate with a platinum surface layer. The substrate is then rinsed in acetone.
  • Testing was conducted to see if the platinum film would maintain its integrity in an etching system. A sample was immersed into an HF/H2O2 solution to nearly the level of the platinum film, and biased positively with respect to an immersed counter platinum wire electrode. A current flow of˜10 mA was established. After processing for a period of one hour, the substrate was removed from the bath. The substrate was found to not to be fluorescent to the naked eye under UV irradiation. Also, under a fluorescence microscope, the substrate shows no fluorescence. This demonstrated that the platinum film has protected the underlying silicon wafer from HF attack and etching. If a substrate is immersed in the etching solution to a level above the platinum coating, fluorescence is established in the unprotected silicon wafer part, as nanoparticles are created on the unprotected part by the electrochemical etching process when the substrate is gradually advanced into the etching solution. See, i.e., Nayfeh et al U.S. Pat. No. 6,585,947.
  • Electrodeposition of silicon nanoparticles onto the platinum coated silicon substrate was then conducted. The substrate was dipped into the silicate/acid solution (to nearly the level of the platinum coating—this is unnecessary—remove it) The wafer substrate was not moved during the electrodeposition process. The substrate was positively biased with respect to an immersed counter platinum wire electrode. An electrodepositing current flow in the current range 1-100 mA works. It is established by applying a positive bias (relative to the counter electrode) to the substrate. The process is not sensitive to the biasing voltage. Once established, deposition of silicon nanoparticles occurs on the platinum surface. The process is self-limiting. The current decreases with time as more and more nanomaterial forms on the immersed part of the platinum coated substrate.
  • Under irradiation from a 365 nm incoherent mercury lamp, red luminescence was observed from an electroplated wafer. Under similar irradiation from a 365 nm incoherent mercury lamp, no red luminescence was observed from substrate wafer that had been treated without the inclusion of the silicate in the process.
  • The luminescence spectrum of the silicon nanoparticle electroplated wafer consists of a red band rising at 550 nm and extending to 850 nm. In the measurement we used a fiber optic spectrometer that utilizes a UV-VIS holographic grating with groove density of 600/mm and a blaze wavelength of 0.4 μm for dispersion. The spectrometer uses optical fibers to transport the excitation and to extract the luminescence.
  • We next deposited silicon nanoparticles on a platinum substrate using the same electrodepositing technique described above. This deposition showed that the material concentrates at the sharp edges due to concentration of current. Moderately conducting substrates, such as a semiconductor or an insulator coated with a metal film (platinum) produce more uniform films. Other metals that are non-reactive with HF may also be used.
  • Patterning was demonstrated with the platinum substrate. Essentially, by masking the substrate, the electrodepositing of silicon nanoparticles from the silicon solution may be limited to non masked areas of the substrate. In the experiment, a platinum substrate was masked with a paraffin wax layer of 300 nm. Patterns were scraped to provide current paths that define the area of silicon nanoparticle formation. Imaging with a fluorescent microscope showed that the material selectively deposits in the pattern area. In addition to enabling deposition in a pattern, the definition of current paths also eases the sharp edges of particle deposition areas.
  • FTIR transmission spectroscopy in the range 500 cm−1-4000 cm−1 was conducted on the silicon nanoparticle coated Si wafer. It showed strong Si—H signals at 615 cm−1 to 670 cm−1, at 903 cm-−1 to 910 cm−1 and at 2070 cm−1 to 2090 cm, and a strong Si—OH peak at 3500 cm−1. A Si—O contribution is observed at 1100 cm−1. The spectrum showed C—H vibration near˜2950. Bands in the region 1250−1175 cm−1 are due to SiCHn or Si—C vibration. Sharp peaks at 1416, and 1378 cm−1 may be associated with an Si—C bond, which may be due to residual carbonates or pentachlorophenol (C6Cl5OH). Sodium carbonate is fused with sand to produce sodium silicates.
  • FTIR spectra of the Si control wafer sample showed weaker Si—H and Si—OH peaks. Residual Si—H signals are due to the HF treatment during the electroless platinum coating process used in preparing the substrate which stains etch the surface. It also shows the absence of vibrations near 1416, 1378 cm−1, and 1250−1175 cm−1. XPS spectra taken of a processed luminescent sample show a Si state, confirming the presence of silicon material.
  • We believe the electrodeposition process of the invention involves deposition of Si atoms from silicates followed by nucleation into nanostructures. In the process, positive 2Na+ ions proceed to the negatively biased platinum wire, whereas the negative selicic ions [(H2SiO4):4H2O2]2− proceed to the platinum coated substrate surface. On the platinum surface, the negative ion neutralizes resulting in the deposition of Si atoms. With Si on the substrate, nucleation produces clusters. The wire counter electrode, on the other hand, showed little fluorescent material. Also, reversing the polarity of the substrate inhibited formation of fluorescent material. When we used HF/silicate solutions, namely without adding H2O2, the deposition proceeds but the resulting coating is not as bright. Finally the process does not proceed without HF or HF/H2O2, i.e., when a pure silicate solution is used.
  • We performed material depth profiling of atomic percentages to test the formation and deposition of silicon nanomaterial on the platinum coated silicon wafer substrate. In these measurements we used Auger electron spectroscopy. In some cases we find some platinum from the platinum coating appearing to begin at the top surface of the nanomaterial coating (zero depth), indicating that the Si coating is inhomogeneous and has gaps, and effectively creating nanomaterial mixed with platinum. With depth from the top surface of the nanomaterial, the platinum signal stays nearly flat at 35% but then suffers a sharp drop to 17% level at a depth of 130 nm. The thickness of the Si deposit is˜220 nm. Si increases from 30% at top surface of the nanomaterial coating front to a steady level of˜48% at a depth of 150 nm, before starting to drop at a depth of 220 nm from the top surface of the nanomaterial. The oxygen percentage stays nearly flat at a level of 22%. The carbon contribution is larger on the surface and deep in the first platinum coating (˜15%) than in the second platinum coating (˜7%).
  • In quantum confinement-induced radiative recombination of photoexcited electron-hole pairs in nanostructures, the luminescence wavelength correlates with the size of the structure. We used a fiber optic sensor, which provides 1-2 mm spatial resolution. We examined the platinum coated substrate, which was kept stationery in the bath. We find variation in the luminescence wavelength across the film, pointing to a non-homogeneous cluster size. Optical spectra from a platinum coated substrate after electrodeposition from a region near the meniscus shows a band near 610 nm. This band has been correlated to the luminescence of dispersions of 2.85 nm silicon nanoparticles. Photoluminescence from near the bottom of the sample, i.e., the deepest point in the liquid shows a band near 750 nm. The region looks dark as 750 nm is outside the sensitivity range of the naked eye. The likely source for this band is clusters of˜3.6 nm across. We can also identify regions near the mid section of the sample, i.e., halfway from the meniscus, which indicate that both kinds of silicon nanoparticle clusters are present
  • While specific embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention.

Claims (12)

1. A method for forming silicon nanoparticles, the method comprising steps of:
providing a substrate with a non reactive metal surface;
contacting at least a portion of the non reactive metal surface with an electrodeposition solution including a silicate solution and one of HF/H2O2 and HF; and
positively biasing the substrate with respect to a counter electrode to establish an electrodeposition current to deposit silicon nanoparticles onto the non reactive metal surface.
2. The method of claim 1, wherein the non reactive metal surface comprises a platinum surface.
3. The method of claim 2, wherein the substrate with the platinum surface comprises a semiconductor substrate with a platinum film.
4. The method of claim 3, wherein the semiconductor substrate comprises a silicon wafer.
5. The method of claim 4, further comprising a step of masking the platinum surface to define current paths for selective deposition of the silicon nanoparticles.
6. The method of claim 1, further comprising a step of masking the non reactive metal surface to define current paths for selective deposition of the silicon nanoparticles.
7. The method of claim 1, wherein the substrate comprises a platinum substrate and the non reactive metal surface comprises a surface of the platinum substrate.
8. The method of claim 1, wherein the silicon solution comprises a metasilicate water solution.
9. The method of claim 8, wherein the metasilicate water solution comprises Na2SiO3.5H2O2.
10. The method of claim 1, wherein the silicon solution comprises a sodium silicate water solution.
11. The method of claim 10, wherein the sodium silicate water solution comprises sodium oxide and silica.
12. The method of claim 10, wherein the sodium silicate water solution comprises one of Na4SiO4; Na2SiO3; Na2Si2O5; Na2Si4O9 in water.
US11/088,269 2005-03-23 2005-03-23 Silicon nanoparticle formation by electrodeposition from silicate Abandoned US20060213779A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/088,269 US20060213779A1 (en) 2005-03-23 2005-03-23 Silicon nanoparticle formation by electrodeposition from silicate
PCT/US2006/005068 WO2007100314A2 (en) 2005-03-23 2006-02-14 Silicon nanoparticle formation by electrodeposition from silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/088,269 US20060213779A1 (en) 2005-03-23 2005-03-23 Silicon nanoparticle formation by electrodeposition from silicate

Publications (1)

Publication Number Publication Date
US20060213779A1 true US20060213779A1 (en) 2006-09-28

Family

ID=37034101

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/088,269 Abandoned US20060213779A1 (en) 2005-03-23 2005-03-23 Silicon nanoparticle formation by electrodeposition from silicate

Country Status (2)

Country Link
US (1) US20060213779A1 (en)
WO (1) WO2007100314A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173546A1 (en) * 2007-01-22 2008-07-24 Seung Kwon Seol Fabrication of freestanding micro hollow tubes by template-free localized electrochemical deposition
US20090090893A1 (en) * 2007-10-04 2009-04-09 Nayfeh Munir H Nanosilicon-based room temperature paints and adhesive coatings
US20090308441A1 (en) * 2005-11-10 2009-12-17 Nayfeh Munir H Silicon Nanoparticle Photovoltaic Devices
US20100044344A1 (en) * 2005-07-26 2010-02-25 Nayfeh Munir H Silicon Nanoparticle Formation From Silicon Powder and Hexacholorplatinic Acid
US11827993B1 (en) 2020-09-18 2023-11-28 GRU Energy Lab Inc. Methods of forming active materials for electrochemical cells using low-temperature electrochemical deposition

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597624A (en) * 1969-01-30 1971-08-03 Bell Telephone Labor Inc Optical raman oscillator employing colloidal suspension or emulsion
US3852175A (en) * 1972-06-08 1974-12-03 Ppg Industries Inc Electrodes having silicon base members
US3992235A (en) * 1975-05-21 1976-11-16 Bell Telephone Laboratories, Incorporated Etching of thin layers of reactive metals
US4108738A (en) * 1977-02-18 1978-08-22 Bell Telephone Laboratories, Incorporated Method for forming contacts to semiconductor devices
US4620904A (en) * 1985-10-25 1986-11-04 Otto Kozak Method of coating articles of magnesium and an electrolytic bath therefor
US4931692A (en) * 1987-10-14 1990-06-05 Canon Kabushiki Kaisha Luminescing member, process for preparation thereof, and electroluminescent device employing same
US5275713A (en) * 1990-07-31 1994-01-04 Rudolf Hradcovsky Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor
US5308804A (en) * 1992-12-15 1994-05-03 Lee Huai Chuan Moving disks made of semiconductor nanocrystallite embedded glass
US5430309A (en) * 1992-12-28 1995-07-04 Sony Corporation Data processing system formed of a collective element of quantum boxes and method of operation thereof
US5527386A (en) * 1993-10-28 1996-06-18 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5537000A (en) * 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5561679A (en) * 1995-04-10 1996-10-01 Ontario Hydro Radioluminescent semiconductor light source
US5690807A (en) * 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
US5695617A (en) * 1995-11-22 1997-12-09 Dow Corning Corporation Silicon nanoparticles
US5703896A (en) * 1995-06-07 1997-12-30 The Regents Of The University Of Colorado Silicon quantum dot laser
US5714766A (en) * 1995-09-29 1998-02-03 International Business Machines Corporation Nano-structure memory device
US5747180A (en) * 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5770022A (en) * 1997-06-05 1998-06-23 Dow Corning Corporation Method of making silica nanoparticles
US5832889A (en) * 1996-05-13 1998-11-10 Toyota Jidosha Kabushiki Kaisha Valve driving apparatus
US5881200A (en) * 1994-09-29 1999-03-09 British Telecommunications Public Limited Company Optical fibre with quantum dots
US5891548A (en) * 1996-10-03 1999-04-06 Dow Corning Corporation Encapsulated silica nanoparticles
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
US5942748A (en) * 1993-09-09 1999-08-24 The United States Of America As Represented By The Secretary Of The Navy Liquid level sensor and detector
US6060743A (en) * 1997-05-21 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same
US6326311B1 (en) * 1998-03-30 2001-12-04 Sharp Kabushiki Kaisha Microstructure producing method capable of controlling growth position of minute particle or thin and semiconductor device employing the microstructure
US6407424B2 (en) * 1997-01-29 2002-06-18 Micron Technology, Inc. Flash memory with nanocrystalline silicon film floating gate
US6410934B1 (en) * 2001-02-09 2002-06-25 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle electronic switches
US6441392B1 (en) * 1997-05-05 2002-08-27 Commissariat A L'energie Atomique Device based on quantic islands and method for making same
US6456423B1 (en) * 1999-10-22 2002-09-24 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle microcrystal nonlinear optical devices
US6473406B1 (en) * 1997-07-31 2002-10-29 Cisco Technology, Inc. Method and apparatus for transparently proxying a connection
US20020197709A1 (en) * 2001-06-22 2002-12-26 Van Der Weide Daniel W. Microfabricated microbial growth assay method and apparatus
US6585947B1 (en) * 1999-10-22 2003-07-01 The Board Of Trustess Of The University Of Illinois Method for producing silicon nanoparticles
US6597496B1 (en) * 1999-10-25 2003-07-22 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle stimulated emission devices
US20030178571A1 (en) * 2001-11-21 2003-09-25 The Board Of Trustees Of The University Of Illinois Coated spherical silicon nanoparticle thin film UV detector with UV response and method of making
US6660152B2 (en) * 2001-11-15 2003-12-09 The Board Of Trustees Of The University Of Illinois Elemental silicon nanoparticle plating and method for the same
US20040174520A1 (en) * 2001-07-17 2004-09-09 W Ranjith Premasiri Low resolution surface enhanced raman spectroscopy on sol-gel substrates

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597624A (en) * 1969-01-30 1971-08-03 Bell Telephone Labor Inc Optical raman oscillator employing colloidal suspension or emulsion
US3852175A (en) * 1972-06-08 1974-12-03 Ppg Industries Inc Electrodes having silicon base members
US3992235A (en) * 1975-05-21 1976-11-16 Bell Telephone Laboratories, Incorporated Etching of thin layers of reactive metals
US4108738A (en) * 1977-02-18 1978-08-22 Bell Telephone Laboratories, Incorporated Method for forming contacts to semiconductor devices
US4620904A (en) * 1985-10-25 1986-11-04 Otto Kozak Method of coating articles of magnesium and an electrolytic bath therefor
US4931692A (en) * 1987-10-14 1990-06-05 Canon Kabushiki Kaisha Luminescing member, process for preparation thereof, and electroluminescent device employing same
US5275713A (en) * 1990-07-31 1994-01-04 Rudolf Hradcovsky Method of coating aluminum with alkali metal molybdenate-alkali metal silicate or alkali metal tungstenate-alkali metal silicate and electroyltic solutions therefor
US5308804A (en) * 1992-12-15 1994-05-03 Lee Huai Chuan Moving disks made of semiconductor nanocrystallite embedded glass
US5430309A (en) * 1992-12-28 1995-07-04 Sony Corporation Data processing system formed of a collective element of quantum boxes and method of operation thereof
US5942748A (en) * 1993-09-09 1999-08-24 The United States Of America As Represented By The Secretary Of The Navy Liquid level sensor and detector
US5527386A (en) * 1993-10-28 1996-06-18 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
US5537000A (en) * 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5881200A (en) * 1994-09-29 1999-03-09 British Telecommunications Public Limited Company Optical fibre with quantum dots
US5561679A (en) * 1995-04-10 1996-10-01 Ontario Hydro Radioluminescent semiconductor light source
US5747180A (en) * 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5703896A (en) * 1995-06-07 1997-12-30 The Regents Of The University Of Colorado Silicon quantum dot laser
US5690807A (en) * 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
US5714766A (en) * 1995-09-29 1998-02-03 International Business Machines Corporation Nano-structure memory device
US5695617A (en) * 1995-11-22 1997-12-09 Dow Corning Corporation Silicon nanoparticles
US5832889A (en) * 1996-05-13 1998-11-10 Toyota Jidosha Kabushiki Kaisha Valve driving apparatus
US5891548A (en) * 1996-10-03 1999-04-06 Dow Corning Corporation Encapsulated silica nanoparticles
US6407424B2 (en) * 1997-01-29 2002-06-18 Micron Technology, Inc. Flash memory with nanocrystalline silicon film floating gate
US6441392B1 (en) * 1997-05-05 2002-08-27 Commissariat A L'energie Atomique Device based on quantic islands and method for making same
US6060743A (en) * 1997-05-21 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same
US5770022A (en) * 1997-06-05 1998-06-23 Dow Corning Corporation Method of making silica nanoparticles
US6473406B1 (en) * 1997-07-31 2002-10-29 Cisco Technology, Inc. Method and apparatus for transparently proxying a connection
US6326311B1 (en) * 1998-03-30 2001-12-04 Sharp Kabushiki Kaisha Microstructure producing method capable of controlling growth position of minute particle or thin and semiconductor device employing the microstructure
US6456423B1 (en) * 1999-10-22 2002-09-24 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle microcrystal nonlinear optical devices
US6585947B1 (en) * 1999-10-22 2003-07-01 The Board Of Trustess Of The University Of Illinois Method for producing silicon nanoparticles
US6846474B2 (en) * 1999-10-22 2005-01-25 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle and method for producing the same
US6597496B1 (en) * 1999-10-25 2003-07-22 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle stimulated emission devices
US6410934B1 (en) * 2001-02-09 2002-06-25 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle electronic switches
US20020197709A1 (en) * 2001-06-22 2002-12-26 Van Der Weide Daniel W. Microfabricated microbial growth assay method and apparatus
US20040174520A1 (en) * 2001-07-17 2004-09-09 W Ranjith Premasiri Low resolution surface enhanced raman spectroscopy on sol-gel substrates
US6660152B2 (en) * 2001-11-15 2003-12-09 The Board Of Trustees Of The University Of Illinois Elemental silicon nanoparticle plating and method for the same
US20030178571A1 (en) * 2001-11-21 2003-09-25 The Board Of Trustees Of The University Of Illinois Coated spherical silicon nanoparticle thin film UV detector with UV response and method of making

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044344A1 (en) * 2005-07-26 2010-02-25 Nayfeh Munir H Silicon Nanoparticle Formation From Silicon Powder and Hexacholorplatinic Acid
US20090308441A1 (en) * 2005-11-10 2009-12-17 Nayfeh Munir H Silicon Nanoparticle Photovoltaic Devices
US9263600B2 (en) 2005-11-10 2016-02-16 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle photovoltaic devices
US20080173546A1 (en) * 2007-01-22 2008-07-24 Seung Kwon Seol Fabrication of freestanding micro hollow tubes by template-free localized electrochemical deposition
US20090090893A1 (en) * 2007-10-04 2009-04-09 Nayfeh Munir H Nanosilicon-based room temperature paints and adhesive coatings
US9475985B2 (en) 2007-10-04 2016-10-25 Nanosi Advanced Technologies, Inc. Nanosilicon-based room temperature paints and adhesive coatings
US11827993B1 (en) 2020-09-18 2023-11-28 GRU Energy Lab Inc. Methods of forming active materials for electrochemical cells using low-temperature electrochemical deposition

Also Published As

Publication number Publication date
WO2007100314A3 (en) 2009-05-22
WO2007100314A2 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
Chang et al. Silicon nanoparticles: Preparation, properties, and applications
Ananthoju et al. Controlled Electrodeposition of Gold on Graphene: Maximization of the Defect‐Enhanced Raman Scattering Response
Alwan et al. The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study
US20060213779A1 (en) Silicon nanoparticle formation by electrodeposition from silicate
Qiu et al. Self-assembled growth and optical emission of silver-capped silicon nanowires
Gonchar et al. Structural and optical properties of silicon nanowire arrays fabricated by metal assisted chemical etching with ammonium fluoride
Hosny et al. Influence of gold nanoparticles deposition on porous silicon properties
Girard et al. SiGe derivatization by spontaneous reduction of aryl diazonium salts
RU2624839C1 (en) Method of forming silicon filaments by metal-stimulated etching with the use of silver
Oliva-Chatelain et al. Experiments towards size and dopant control of germanium quantum dots for solar applications.
Shapoval et al. The conditions effect of obtaining CdS and CdSe films on their structural and optical properties
Dukstiene et al. Characterization of electrochemically deposited thin Mo–O–C–Se film layers
Afrosimov et al. Mass transfer in thermo-electric-field modification of glass-metal nanocomposites
Gerstner An Examination of the Corrosion Suppression Mechanism on n‐Titanium Dioxide Photoanodes
Patzig et al. NOHSO4/HF–A novel etching system for crystalline silicon
Severiano et al. Importance of the electrolyte in obtaining porous silicon and how it modifies the optical and structural proprieties: optical and microstructural investigation
US20150325328A1 (en) Group iv nanocrystals having a surface substantially free of oxygen
US20100044344A1 (en) Silicon Nanoparticle Formation From Silicon Powder and Hexacholorplatinic Acid
Bundyukova et al. Modification of an SiO (Au)/Si Surface by Irradiation with Argon Ions
Lévy‐Clément et al. Applications of colloidal crystal patterning for synthesis of 1D and 3D nanostructured semiconductors
Lai et al. Study on corrosion of macroporous silicon in sodium hydroxide solution by electrochemical methods and scanning electron microscopy
Kuchumov et al. Low-temperature VUV-stimulated MO CVD process of palladium layer deposition
Yin et al. Reagent concentration dependent variations in the stability and photoluminescence of silica-coated ZnO nanorods
DE102018132244B4 (en) Process for the production of doped semiconductor layers
Li et al. Direct chemical vapor deposition of graphene on plasma-etched quartz glass combined with Pt nanoparticles as an independent transparent electrode for non-enzymatic sensing of hydrogen peroxide

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAYFEH, MUNIR H.;REEL/FRAME:016728/0787

Effective date: 20050523

AS Assignment

Owner name: JORDAN, THE UNIVERSTIY OF, JORDAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABUHASSAN, LAILA;REEL/FRAME:017530/0985

Effective date: 20050517

AS Assignment

Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERISTY OF ILLINOIS URBANA-CHAMPAIGN;REEL/FRAME:018550/0962

Effective date: 20050526

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION