US20060209551A1 - Light emissive plastic glazing - Google Patents

Light emissive plastic glazing Download PDF

Info

Publication number
US20060209551A1
US20060209551A1 US11/317,587 US31758705A US2006209551A1 US 20060209551 A1 US20060209551 A1 US 20060209551A1 US 31758705 A US31758705 A US 31758705A US 2006209551 A1 US2006209551 A1 US 2006209551A1
Authority
US
United States
Prior art keywords
layer
light
assembly
vehicle
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/317,587
Inventor
Robert Schwenke
Wilfried Hedderich
Chengtao Li
Christophe Lefaux
Ken Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXATEC LLC
Original Assignee
EXATEC LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US66323705P priority Critical
Application filed by EXATEC LLC filed Critical EXATEC LLC
Priority to US11/317,587 priority patent/US20060209551A1/en
Assigned to EXATEC, LLC reassignment EXATEC, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOSTER, KEN, LEFAUX, CHRISTOPHE, LI, CHENGTAO, SCHWENKE, ROBERT, HEDDERICH, WILFRIED
Publication of US20060209551A1 publication Critical patent/US20060209551A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/20Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors for lighting specific fittings of passenger or driving compartments; mounted on specific fittings of passenger or driving compartments
    • B60Q3/208Sun roofs; Windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/60Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
    • B60Q3/62Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides
    • B60Q3/64Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides for a single lighting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/70Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose
    • B60Q3/74Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for overall compartment lighting; for overall compartment lighting in combination with specific lighting, e.g. room lamps with reading lamps
    • B60Q3/745Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for overall compartment lighting; for overall compartment lighting in combination with specific lighting, e.g. room lamps with reading lamps using lighting panels or mats, e.g. electro-luminescent panels, LED mats
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0096Light guides specially adapted for lighting devices or systems the lights guides being of the hollow type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5203Electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5237Passivation; Containers; Encapsulation, e.g. against humidity
    • H01L51/524Sealing arrangements having a self-supporting structure, e.g. containers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5281Arrangements for contrast improvement, e.g. preventing reflection of ambient light
    • H01L51/5284Arrangements for contrast improvement, e.g. preventing reflection of ambient light comprising a light absorbing layer, e.g. black layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts made from plastic material, e.g. windows
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
    • H01L2251/50Organic light emitting devices
    • H01L2251/53Structure
    • H01L2251/5361OLED lamp
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0036Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0038Poly-phenylenevinylene and derivatives
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0039Polyeflurorene and derivatives
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5203Electrodes
    • H01L51/5206Anodes, i.e. with high work-function material
    • H01L51/5209Anodes, i.e. with high work-function material characterised by the shape
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5237Passivation; Containers; Encapsulation, e.g. against humidity
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5281Arrangements for contrast improvement, e.g. preventing reflection of ambient light

Abstract

A window assembly having a first transparent area and a light emissive area. The panel includes a first transparent layer with an ultraviolet blocking layer and an abrasion layer. The light emissive area includes a light emissive layer that may be an organic light emitting display, an electroluminescent display, a polymer light emitting display or a light pipe configured to receive light from a light source.

Description

    RELATED APPLICATION
  • This application claims the benefit of U.S. provisional application entitled “LIGHT EMISSIVE PLASTIC GLAZING”, application number, 60/663,237 filed on Mar. 18, 2005.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention generally relates to vehicle occupant compartment lighting systems
  • 2. Description of the known Technology
  • The occupant compartment of a vehicle, more particularly an automobile, typically uses one or more lighting system to provide general lighting to the occupant compartment of the vehicle. This lighting enhances the visibility of areas within the occupant compartment that are not provided with their own lighting, such as areas occupied by occupants and their belongings, the center console and vehicle controls. The lighting system that provides general visibility to the occupant compartment is usually placed within the compartment such that the light it produces illuminates as much of the occupant compartment as possible, while taking up the least amount of space. One such lighting system, also called a “dome light”, is located near the center of the roof of the occupant compartment.
  • Automobiles can be equipped with transparent rectangular panels located near the center of the roof, commonly referred to as a “sunroof” or “moon roof”. As stated earlier, the center location of the roof is the preferable position for the dome light. When a vehicle has a sunroof, the dome light must be moved to a less favorable location or eliminated, thus, reducing or eliminating effective general illumination of the occupant compartment.
  • Therefore, it is desired to provide a system which will provide adequate illumination of the occupant compartment of vehicles equipped with sunroofs.
  • BRIEF SUMMARY
  • In overcoming the drawbacks and limitations of the know technologies, a light emissive window assembly is disclosed. The assembly includes a first transparent layer and light emissive layer coupled to the first transparent layer. The first transparent layer is made from a suitable material such as polycarbonate, polymethyl methacrylate, polyester blends or glass fibers or combinations thereof. The first transparent layer may further include an ultraviolet (“UV”) blocking layer and/or an abrasion layer.
  • The light emissive layer may be a multistack of functionalities and can be applied directly using conventional printing technologies such as inkjet, screen printing, dispensing and sputtering or any other suitable method. A more preferable manufacturer would be a multilayer film. The multilayer film may be an electroluminescent display, organic light emitting display, a polymer light emitting display, or may be a light pipe having an entry point for receiving light generated by a light source, whereby light received at the entry point will travel within the light pipe via total internal reflection.
  • Additionally, a second transparent layer may be coupled to the emissive layer, thereby capsulating the emissive layer between the two transparent panels. The second transparent panel is constructed similarly to the first transparent panel and may have an abrasion layer and/or a UV blocking layer. The window assembly may be made by first forming a transparent panel having one side coated with an ultraviolet blocking layer and an abrasion layer. Next, a frame is formed around a potion of the perimeter of the plastic panel, thereby defining a cavity. A light source, such as the previously mentioned emissive layer, is placed within the cavity and bonded to the first transparent panel. A second transparent panel is thereafter attached to the frame and/or the first transparent panel, thereby encapsulating the light source.
  • These and other aspects and advantages of the present invention will become apparent upon reading the following detailed description of the invention in combination with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an automobile having a light emitting window assembly embodying the principles of the present invention;
  • FIG. 2 is a top view of the window assembly embodying the principles of the present invention;
  • FIG. 3 is a top view of another embodiment of the window assembly embodying the principles of the present invention;
  • FIG. 4A is cross sectional view of a portion of the window assembly generally taken along lines 4-4 in FIG. 2;
  • FIG. 4B is a cross sectional view similar to FIG. 4A of a window assembly using a polymer light emitting display;
  • FIG. 4C is a cross sectional view similar to FIG. 4A of the window assembly of the window assembly using a polymer light emitting display as the emissive layer and a conductive ink;
  • FIG. 4D is a cross sectional view of a window assembly using a PLED as the emissive layer;
  • FIG. 4E is a cross sectional view similar to FIG. 4A of a window assembly made using a two shot process and embodying the principles of the present invention;
  • FIG. 5 is a top view of another embodiment of the window assembly embodying the principles of present invention;
  • FIG. 5A is a cross sectional view of a portion of the window assembly generally taken and lines 5A-5A in FIG. 5;
  • FIG. 6 is a side view of the window assembly shown in FIG. 5; and
  • FIG. 6A is a cross sectional view of a portion of the light emissive layer generally taken along lines 6A-6A of FIG. 6.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, an automobile 10 incorporating the present invention is shown therein. The automobile 10 includes an occupant compartment 12 located within the interior of the automobile 10 and a window assembly 14 mounted via a frame 16 to the automobile 10. As will be fully described in the following, the window assembly 14 provides illumination to the occupant compartment 12 as indicated by the arrows referenced by the numeral 18.
  • Although this description describes using the panel 14 as a sunroof or moonroof to provide illumination to the occupant compartment 12 of the automobile 10, the invention is equally applicable to other areas of the automobile 10. For example, the panel 14 may be appropriately located and dimensioned to provide the lighting requirements for a headlight, taillight, turn signal, brake light, instrument panel light, reverse light or any other light commonly found on automobiles.
  • Referring to FIG. 2, a more detailed view of the window assembly 14 is shown. As shown therein, the window assembly 14 has a transparent viewing area 20 and an emissive area 22. The emissive area 22 is the portion of the window assembly 14 which emits light that illuminates the occupant compartment. The transparent area 20 is similar to a conventional window assembly in that the transparent area 20 does not emit light. Similar to the transparent area 20, the emissive area 22 may be transparent, but may alternatively be opaque. Also, various configurations for the layout of the emissive area 22 and transparent areas 20 can be envisioned, configurations other than a single central transparent area 20 encircled by an emissive area 22.
  • Another embodiment of the window assembly 14 is shown in FIG. 3. In this layout, the window assembly 14 has two transparent areas 24, 26 surrounded and separated by an emissive area 28. Similar to the previous embodiment, the transparent area 24 is similar to a conventional window assembly, while the emissive area 28 is capable of emitting light. Obviously, the emissive area 28 may be laid out as desired in any number of patterns.
  • Referring to FIG. 4A, a cross section, generally taken along lines 4-4 in FIG. 2 is shown therein. The emissive area 22 includes a first transparent panel 32 and second transparent panel 34 and between which is located the emissive element. The first transparent panel preferably includes an abrasion layer 36 and a UV blocking layer 38 provided over a base layer 40. The base layer 40 may be made of polycarbonate, polymethyl methacrylate, polyester blends, glass and glass fibers or any combination thereof. The UV blocking layer 38 may have dispersed UV absorbing additives.
  • The second transparent layer includes a UV blocking layer 42 and an abrasion layer 44. Similar to the first transparent panel 32, the UV blocking layer 42 of the second transparent panel 34 may have dispersed UV absorbing additives.
  • Coupled to the base layer 40 of the first transparent panel 32 may be a black out ink layer 46. The black out ink layer prevents any light entering the first transparent panel 32 from reaching the second transparent panel 34. Alternatively, the portion 30 may not have the black out ink layer 46.
  • Located between the first and second transparent panels 32, 34 is an emissive layer 52. The emissive layer 52 may be one of a variety of such light emitting structures, including, without limitation, a polymer light emitting display (“PLED”), an organic light emitting display (“OLED”), a light emitting diode (“LED”) used in conjunction with a light pipe to direct light emitted by the LED to the emissive area 22 of the panel 14 or, as shown in this embodiment, an electroluminescent display (“ELD”). The emissive layer 52 includes a dielectric layer 54 and a phosphor layer 56 connected to a high conductive material the low conductive material 50, respectively.
  • The light emissive layer 52 can be placed onto the surface of the base layer 40 or black-out ink 46, thereby, being protected from both abrasion and UV light as this is desirable for enhancing the functioning and lifetime of the device. The light emissive layer 52 may alternatively be applied directly to the abrasive layer 36, as well as in between any existing protective layers. The light emissive layer 52 can be printed or applied by such technologies as screen printing, ink jet printing and sputtering, among others. Such printing may be performed either before or after shape forming of the window 14 or the panels 32, 34. In addition, the light emissive layer 52 can be applied to a thin polymer films by any means known to those skilled in the art, with subsequent application to the base layer 40 via film insert molding (“FIM”) or lamination techniques. It may be desirable to have additional transparent layers to protect the light emissive layers during the FIM process.
  • A voltage source 58 is connected between the high conductive material 48 and the low conductive material 50, thereby providing a current through the dielectric 54 and the phosphor 56. When a sufficient current is provided through the dielectric 54 and the phosphor 56, light, as indicated by the arrows 60 is emitted by the emissive layer 52, between the overlying portions of the high conductive material 48 and the low conductive material 58, and is passed through the UV blocking layer 42 and the abrasion layer 44 of the second transparent panel 34.
  • Referring to the schematic representation of FIG. 4B, a PLED is used as the emissive layer 52. PLED's are typically used for backlighting and illumination, as well as the creation of displays. By definition, polymers are substances formed by a chemical reaction in which two or more molecules form into larger molecules. PLED's represent thin film displays that are created by sandwiching an undoped conjugated polymer between two proper electrodes at a very short distance.
  • The manufacturing of PLEDs comprises a unique deposition sequence. This sequence includes the following steps: 1) forming the structured transparent conductive oxide (e.g., indium tin oxide, etc.) anode; 2) inkjet printing the layer which will inject P-charge carriers; 3) inkjet printing of the PLED layer; 4) curing to evaporate the solvents necessary for the printing (e.g., about 98% solvents & 2% solid content); 5) deposition of the cathode by metal evaporation (Ba/Ca, then Al); and 6) encapsulation by depositing transparent layers (e. g. combination of SiNx and a scratch-resistant coating) For example, the above steps in this process cannot be performed out of sequence or in the reverse manner. Starting the steps with the cathode (Ba—Al) is not possible because barium is very sensitive to the solvents necessary for the inkjet printing of the PLED material.
  • The emissive layer 52 includes an emissive polymer 62 such as polyphenylene vynylene (“PPV”) or polyflourene, and a conductive polymer 64 such as polydioctyl-bithiophene or polyaniline. Sandwiching the emissive polymer 62 and the conductive polymer 64 are a cathode 66 and an anode 68. To provide support, a substrate 70 is located beneath the anode 68.
  • As a consequence of this deposition process, the emission of light from a PLED is always in the direction that goes through the transparent substrate. This means that in order to use a PLED to illuminate a vehicle by depositing or printing the PLED directly onto a transparent plastic substrate, the PLED will need to be on the outside of the vehicle where it will be difficult to protect from environmental degradation.
  • In order to have the illumination projected into the vehicle, the integration of the PLED into the window/roof assembly from the inside with an adhesive is preferred and is shown in FIG. 4C. One type of adhesive system available for this type of process includes hot melt bonding.
  • Referring to FIG. 4C, the PLED is shown integrated into the window assembly 14. Similar to FIG. 4A, the window assembly 14 has a first and second abrasion layer 36, 44 each coupled to a first and second UV blocking layer 38, 42. Beneath the other UV blocking layer is a base layer, such as a polycarbonate panel 40. Painted onto the polycarbonate panel 40 is a black-out ink layer 46. Coupled between the black-out ink layer 46 and the second UV blocking layer 42 are the cathode 66 and anode 68, respectively. Between the cathode 66 and anode 68 is the emissive layer 52 having the emissive polymer layer 62 and the conductive polymer layer 64. The voltage source 58 provides a current through the cathode and anode 68. When a sufficient current passes through the emissive layer 52, the emissive layer 52 will produce a light indicated by the arrows referenced by numeral 74.
  • In the embodiments of either FIGS. 4B or 4D, when a voltage source 58 provides a sufficient current through the emissive polymer layer 62 and the conductive polymer 64 layer via the cathode 66 and anode 68, the emissive polymer layer 62 will emit light, as denoted by the arrows designated at 74.
  • Referring to FIG. 4D, another embodiment of a PLED light emissive layer 52 is shown. In this embodiment, the anode 68 is constructive of a metallic paste or ink, such as a silver ink sold under the trademark Paramod by Paralec Incorporated. The ink 68 is arranged in a grid pattern defining holes 76. The holes 76 allow for various degrees of illumination in areas in which the conductor is not present. The metallic paste or ink may be also utilized when using OLED's, ELD's or LED's as the emissive layer.
  • Referring to FIG. 4E, another schematic representation of the emissive area 22 of the window assembly 14 is shown. The window assembly 14 includes a base layer 80 (a polycarbonate or other material layer) as the first shot in a two component molding process. A colored frame 82 is coupled to the polycarbonate layer 14 by a second molding shot in the two component molding process. The molding of the colored frame 82 can be done in such a way as to form a recess cavity 84 in the frame. An emissive lighting system 86 such as a PLED, OLED, ELD, or LED emissive layer is therefore located within the cavity 84. To enclose the cavity and protect the emissive lighting system 86 is a polycarbonate plug 88. The polycarbonate plug may be attached to the cavity by an adhesive 90, frictional engagement or other suitable fashion, and along with the base layer 80, may be coated with an UV protection layer and an abrasion layer.
  • An electrical contact 91, such as a conductive wire, having a first end 93 and a second end 95 is situated between the plug 88 and the frame 82 such that the first end 93 of electrical contact 91 is in electrical communication with the emissive lighting system 86. A power supply (not shown) is connected to the second end 95 of the electrical contact. When the power supply provides a sufficient current to the lighting system 86, the lighting system 86 will emit light through the plug 88 as indicated by arrows 97.
  • It is possible to eliminate the additional UV protection layer. For example, the exterior of the base layer 40 may be coated with the Exatec® 900 Glazing system sold by Exatec, LLC of Michigan, and on the inside with only a “glass-like” coating deposited by plasma enhanced chemical vapour deposition (“PECVD”) or other processes known to those skilled in the art. The PLED may be separately formed on a transparent polycarbonate film or substrate, which can be subsequently coated with the “glass-like” coating. The embodiment above offers the advantage that the coating process for the PLED is separate from the coating process for the window assembly 14. Moreover, the process of making the PLED can be technically and economically optimized independent of the window assembly 14 coating process.
  • Referring to FIG. 5, a more detailed view of another embodiment of the window assembly 14 is shown. As shown therein, the window assembly 14 has a transparent viewing area 20. Located within the transparent view area 20 are multiple light emissive areas 102, 104, 106. Surrounding the window assembly 14 is a frame 114. As will be explained later, the frame 114 contains one or more light sources for providing illumination to the emissive areas 102, 104, 106.
  • Referring to FIG. 5A, a cross section, generally taken along lines 5A-5A in FIG. 5 is shown therein. The window assembly 14 includes a polycarbonate layer 116 coupled to a polymethyl methcrylate (“PMMA”) layer 118. Preferably, a FIM technique is used to couple the polycarbonate layer 116 to the PMMA layer 118. Define between the PMMA layer 118 and the polycarbonate layer 116 are the emissive areas 102, 104, 106. These emissive areas are formed within the PMMA layer 118 and are enclosed by the polycarbonate layer 116 when the PMMA layer 118 is coupled to the polycarbonate layer 116. Similar to FIG. 4A, the window assembly 14 has a first and second abrasion layer 36, 44 each coupled to a first and second UV blocking layer 38, 42.
  • Referring to FIGS. 6 and 6A, a side view of the window assembly 14 and a cross sectional view of the window assembly 14 generally taken along lines 6A-6A of FIG. 6 are shown. As described previously, the window assembly 14 includes light emissive areas (light pipes) 102, 104, 106. The light emissive areas 102, 104, 106 are flanked by portions of the PMMA layer 118. In this embodiment, the PMMA layer 118 could be replaced with other suitable materials. Located at end of the window assembly 14 is the frame 114. Within the frame 114 are LEDs 120, 122, 124. When activated, the LEDs 120, 122, 124, will emit light that will travel within the light emissive areas 102, 104, 106, via total internal reflection, with the exception that light traveling within the light emissive areas 102, 104, 106 will emit light through the polycarbonate layer 116, the UV blocking layer 42 and the abrasion layer 44, as denoted by the arrows designated at 74. Alternatively, any light source, such as an electroluminescent display, an organic light emitting diode and a polymer light emitting diode, may be used as light source.
  • Inasmuch as the foregoing disclosure is intended to enable one skilled in the pertinent art to practice the instant invention, it should not be construed to be limited thereby but should be construed to include such aforementioned obvious variations and be limited only by the spirit and scope of the following claims.

Claims (50)

1. A window panel assembly comprising:
a first transparent layer having a light emissive area and a transparent area;
a light emissive layer located in the light emissive area and being supported by the first transparent layer; and
the light emissive layer being configured to produce and emit light therefrom.
2. The assembly of claim 1, wherein the first transparent layer is made from at least one of a polycarbonate, polymethyl methacrylate, polyester blends, glass fibers, glass and combinations thereof.
3. The assembly of claim 1, wherein the first transparent layer includes an ultraviolet blocking layer and an abrasion layer.
4. The assembly of claim 3, wherein the ultraviolet blocking layer has dispersed ultraviolet absorbing properties.
5. The assembly of claim 1, wherein the assembly further comprises a second transparent layer coupled to the light emissive layer.
6. The assembly of claim 5, wherein the second transparent layer is made from at least one of a polycarbonate, polymethyl methacrylate, polyester blends, glass fibers, glass and combinations thereof.
7. The assembly of claim 5, wherein the second transparent layer further comprises an ultraviolet blocking layer.
8. The assembly of claim 5 wherein the second layer further comprises an abrasion layer.
9. The assembly of claim 1, wherein the light emissive layer is a multi-layered film.
10. The assembly of claim 9, wherein the multi-layered film is an electroluminescent display.
11. The assembly of claim 9, wherein the multi-layered film is an organic light emitting display.
12. The assembly of claim 9, wherein the multi-layered film is a polymer light emitting display.
13. The assembly of claim 9, further comprising a conductive layer in electrical communication with the multi-layered film.
14. The assembly of claim 13 wherein the conductive layer is made of a conductive ink.
15. The assembly of claim 14, wherein the conductive ink is made of is a silver ink.
16. The assembly of claim 13, wherein the conductive layer is a conductive wire.
17. The assembly of claim 13 wherein the conductive layer is arranged in a grid pattern.
18. The assembly of claim 13, wherein the conductive layer further comprises an opaque conductive layer and a grid patterned conductive layer.
19. The assembly of claim 1, wherein the light emissive layer is a light pipe having an entry point for receiving light generated by a light source, whereby light received at the entry point will travel within the light pipe via total internal reflection.
20. The assembly of claim 19, wherein the light source is a light emitting diode.
21. The assembly of claim 20, wherein the light source is an electroluminescent display.
22. The assembly of claim 20, wherein the light source is an organic light emitting diode.
23. The assembly of claim 20, wherein the light source is a polymer light emitting diode.
24. The assembly of claim 1, further comprising a frame coupled to the perimeter of the first transparent panel.
25. An automotive vehicle comprising portions defining an occupant compartment having at least one window assembly;
the window assembly a first transparent panel having a transparent viewing area and a light emissive area;
a first transparent layer having ultraviolet blocking layer and an abrasion layer; and
the light emissive area including a light emissive layer coupled to the first transparent layer, the emissive layer being configured to emit light to the occupant compartment of the vehicle.
26. The vehicle of claim 25, wherein the first transparent layer is made from at least one of polycarbonate, polymethyl methacrylate, polyester blends, glass fibers, glass and combinations thereof.
27. The vehicle of claim 25, wherein the ultraviolet blocking layer has dispersed ultraviolet absorbing properties.
28. The vehicle of claim 25, wherein the assembly further comprises a second transparent layer coupled to the light emissive layer.
29. The vehicle of claim 28, wherein the second transparent layer is made from at least one of polycarbonate, polymethyl methacrylate, polyester blends and glass fibers, glass and combinations thereof.
30. The vehicle of claim 28, wherein the second transparent layer further comprises an ultraviolet blocking layer.
31. The vehicle of claim 28, wherein the second layer further comprises an abrasion layer.
32. The vehicle of claim 25, wherein the light emissive layer is a multi-layered film.
33. The vehicle of claim 32, wherein the multi-layered film is an electroluminescent display.
34. The vehicle of claim 32, wherein the multi-layered film is an organic light emitting diode.
35. The vehicle of claim 32, wherein the multi-layered film is a polymer light emitting diode.
36. The vehicle of claim 32, further comprising a conductive layer in electrical communication with the multi-layered film.
37. The vehicle of claim 36, wherein the conductive layer is made of a conductive ink.
38. The vehicle of claim 37, wherein the conductive ink is made of is a silver ink commonly sold under the trademark Parmod from Paralec Incorporated.
39. The vehicle of claim 36, wherein the conductive layer is a conductive wire.
40. The vehicle of claim 36, wherein the conductive layer is arranged in a grid pattern.
41. The vehicle of claim 37, wherein the conductive layer further comprises an opaque conductive layer and a grid patterned conductive layer.
42. The vehicle of claim 26, wherein the emissive layer is a light pipe having an entry point for receiving light generated by a light source, whereby light received at the entry point will travel within the light pipe via total internal reflection.
43. The vehicle of claim 42, wherein the light source is a light emitting diode.
44. The vehicle of claim 42, wherein the light source is an electroluminescent display.
45. The vehicle of claim 42, wherein the light source is an organic light emitting diode.
46. The vehicle of claim 42, wherein the light source is a polymer light emitting diode.
47. A method for making a window assembly comprising the steps of:
forming a transparent panel having a first side and a second side;
coating at least one of the first side and the second side with a UV blocking layer;
coating at least one of the first side and the second side with an abrasion layer;
forming a frame around a portion of the perimeter of the panel, the frame having portions defining a cavity therein; and
placing a light source within the cavity.
48. The method of claim 45, further comprising the step of attaching a cover over the cavity, thereby encapsulating the light source within the cavity.
49. The method of claim 48, further comprising the step of placing an adhesive between the frame and the cover to bond the cover to the frame.
50. The method of claim 47, further comprising the step of attaching an electrical contact to the light source.
US11/317,587 2005-03-18 2005-12-23 Light emissive plastic glazing Abandoned US20060209551A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US66323705P true 2005-03-18 2005-03-18
US11/317,587 US20060209551A1 (en) 2005-03-18 2005-12-23 Light emissive plastic glazing

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11/317,587 US20060209551A1 (en) 2005-03-18 2005-12-23 Light emissive plastic glazing
PCT/US2006/009585 WO2006102013A1 (en) 2005-03-18 2006-03-17 Light emissive plastic glazing
JP2008502060A JP2008532852A (en) 2005-03-18 2006-03-17 Window glass of the light-emitting plastic
EP10175183A EP2251226A1 (en) 2005-03-18 2006-03-17 Light Emissive Plastic Glazing
DE602006016920T DE602006016920D1 (en) 2005-03-18 2006-03-17 Light-emitting plastic glazing
EP06738623A EP1858728B1 (en) 2005-03-18 2006-03-17 Light emissive plastic glazing
KR1020077023455A KR20070114813A (en) 2005-03-18 2006-03-17 Light emissive plastic glazing
US14/482,180 US9315148B2 (en) 2005-03-18 2014-09-10 Light emissive plastic glazing
US15/066,466 US9871199B2 (en) 2005-03-18 2016-03-10 Light emissive plastic glazing having a multilayered configuration for illuminating passenger compartment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/482,180 Continuation US9315148B2 (en) 2005-03-18 2014-09-10 Light emissive plastic glazing

Publications (1)

Publication Number Publication Date
US20060209551A1 true US20060209551A1 (en) 2006-09-21

Family

ID=36617042

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/317,587 Abandoned US20060209551A1 (en) 2005-03-18 2005-12-23 Light emissive plastic glazing
US14/482,180 Active 2026-03-14 US9315148B2 (en) 2005-03-18 2014-09-10 Light emissive plastic glazing
US15/066,466 Active 2026-04-21 US9871199B2 (en) 2005-03-18 2016-03-10 Light emissive plastic glazing having a multilayered configuration for illuminating passenger compartment

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/482,180 Active 2026-03-14 US9315148B2 (en) 2005-03-18 2014-09-10 Light emissive plastic glazing
US15/066,466 Active 2026-04-21 US9871199B2 (en) 2005-03-18 2016-03-10 Light emissive plastic glazing having a multilayered configuration for illuminating passenger compartment

Country Status (6)

Country Link
US (3) US20060209551A1 (en)
EP (2) EP1858728B1 (en)
JP (1) JP2008532852A (en)
KR (1) KR20070114813A (en)
DE (1) DE602006016920D1 (en)
WO (1) WO2006102013A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160298A1 (en) * 2006-12-28 2008-07-03 Chengtao Li Polycarbonate glazing system and method for making the same
WO2008082834A1 (en) * 2006-12-28 2008-07-10 Exatec, Llc Functional layers for polycarbonate glazing
JP2008174132A (en) * 2007-01-19 2008-07-31 Ichikoh Ind Ltd Interior lighting system for vehicle
US20100072884A1 (en) * 2006-09-07 2010-03-25 Saint-Gobain Glass France Substrate for an organic light-emitting device, use and process for manufacturing this substrate, and organic light-emitting device
US20100117523A1 (en) * 2007-02-23 2010-05-13 Saint-Gobain Glass France Substrate bearing a discontinuous electrode, organic electroluminescent device including same and manufacture thereof
FR2941514A1 (en) * 2009-01-27 2010-07-30 Peugeot Citroen Automobiles Sa Electroluminescent lighting device for use in e.g. bumper, of motor vehicle, has electroluminescent film coated with protection layer, where layer comprises coating that guarantees protections e.g. fungicide/anti-UV radiation protections
US20100225227A1 (en) * 2006-11-17 2010-09-09 Svetoslav Tchakarov Electrode for an organic light-emitting device, acid etching thereof and also organic light-emitting device incorporating it
US20110037379A1 (en) * 2007-12-27 2011-02-17 Saint-Gobain Glass France Substrate for organic light-emitting device, and also organic light-emitting device incorporating it
FR2982196A1 (en) * 2011-11-07 2013-05-10 Saint Gobain light signal for vehicle glazing
FR2982197A1 (en) * 2011-11-07 2013-05-10 Saint Gobain motor vehicle with repeater glazing blinking
US8593055B2 (en) 2007-11-22 2013-11-26 Saint-Gobain Glass France Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture
US8753906B2 (en) 2009-04-02 2014-06-17 Saint-Gobain Glass France Method for manufacturing a structure with a textured surface for an organic light-emitting diode device, and structure with a textured surface
US8808790B2 (en) 2008-09-25 2014-08-19 Saint-Gobain Glass France Method for manufacturing a submillimetric electrically conductive grid coated with an overgrid
US20140267894A1 (en) * 2013-03-14 2014-09-18 Woodman Labs, Inc. Wireless Surface Illuminators
WO2014202526A1 (en) * 2013-06-19 2014-12-24 Webasto SE Arrangement for closing an opening in a vehicle with a pane and a light-guiding sheet
US20150160400A1 (en) * 2012-05-10 2015-06-11 Saint-Gobain Glass France Illuminating glazing with incorporated deflector
US9108881B2 (en) 2010-01-22 2015-08-18 Saint-Gobain Glass France Glass substrate coated with a high-index layer under an electrode coating, and organic light-emitting device comprising such a substrate
US9114425B2 (en) 2008-09-24 2015-08-25 Saint-Gobain Glass France Method for manufacturing a mask having submillimetric apertures for a submillimetric electrically conductive grid, mask having submillimetric apertures and submillimetric electrically conductive grid
US20150321456A1 (en) * 2013-01-02 2015-11-12 Sabic Global Technologies B.V. Polymers, articles comprising polymers, and methods of making and using the same
EP2955064A1 (en) * 2014-06-13 2015-12-16 Isoclima S.p.A. Window pane
US20160257839A1 (en) * 2015-03-05 2016-09-08 Flex-N-Gate Corporation Automotive plastic panel
US9492575B2 (en) 2013-11-21 2016-11-15 Ford Global Technologies, Llc Color changing and disinfecting surfaces
US20170117662A1 (en) * 2015-10-26 2017-04-27 Tyco Electronics Raychem Gmbh Protective Cover and Electrical Connector Having a Radiation Window Formed by a Plurality of Radiation Passages
WO2017089946A3 (en) * 2015-11-23 2017-09-28 Sabic Global Technologies B.V. Lighting systems for windows having plastic glazing
US9913318B2 (en) 2014-11-25 2018-03-06 Sabic Global Technologies B.V. Method and device for heating a surface
WO2018053061A1 (en) * 2016-09-15 2018-03-22 Jason Hartlove Architectural window with built-in qled lighting
US10107948B2 (en) 2014-11-25 2018-10-23 Sabic Global Technologies B.V. Method and article for emitting radiation from a surface
US10267507B2 (en) 2006-09-29 2019-04-23 Osram Oled Gmbh Organic lighting device and lighting equipment
US10319268B2 (en) 2016-06-24 2019-06-11 Nanosys, Inc. Ambient light color compensating device

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120508A (en) * 2005-02-23 2007-12-24 엑사테크 엘.엘.씨. Plastic panels with uniform weathering characteristics
DE102009029874A1 (en) * 2009-06-22 2010-12-23 Airbus Operations Gmbh Illumination apparatus having a plurality of light sources
US9931991B2 (en) 2013-11-21 2018-04-03 Ford Global Technologies, Llc Rotating garment hook
US9961745B2 (en) 2013-11-21 2018-05-01 Ford Global Technologies, Llc Printed LED rylene dye welcome/farewell lighting
US9810401B2 (en) 2013-11-21 2017-11-07 Ford Global Technologies, Llc Luminescent trim light assembly
US9989216B2 (en) 2013-11-21 2018-06-05 Ford Global Technologies, Llc Interior exterior moving designs
US10064256B2 (en) 2013-11-21 2018-08-28 Ford Global Technologies, Llc System and method for remote activation of vehicle lighting
US9539940B2 (en) 2013-11-21 2017-01-10 Ford Global Technologies, Llc Illuminated indicator
US10041650B2 (en) 2013-11-21 2018-08-07 Ford Global Technologies, Llc Illuminated instrument panel storage compartment
JP2015168407A (en) * 2014-03-11 2015-09-28 小島プレス工業株式会社 Display device for vehicle
US10168039B2 (en) 2015-08-10 2019-01-01 Ford Global Technologies, Llc Illuminated badge for a vehicle
US10023100B2 (en) 2015-12-14 2018-07-17 Ford Global Technologies, Llc Illuminated trim assembly
US10300843B2 (en) 2016-01-12 2019-05-28 Ford Global Technologies, Llc Vehicle illumination assembly
US10235911B2 (en) 2016-01-12 2019-03-19 Ford Global Technologies, Llc Illuminating badge for a vehicle
US10011219B2 (en) 2016-01-18 2018-07-03 Ford Global Technologies, Llc Illuminated badge
US9927114B2 (en) 2016-01-21 2018-03-27 Ford Global Technologies, Llc Illumination apparatus utilizing conductive polymers
US10118568B2 (en) 2016-03-09 2018-11-06 Ford Global Technologies, Llc Vehicle badge having discretely illuminated portions
US9963001B2 (en) 2016-03-24 2018-05-08 Ford Global Technologies, Llc Vehicle wheel illumination assembly using photoluminescent material
US10081296B2 (en) 2016-04-06 2018-09-25 Ford Global Technologies, Llc Illuminated exterior strip with photoluminescent structure and retroreflective layer
US10064259B2 (en) 2016-05-11 2018-08-28 Ford Global Technologies, Llc Illuminated vehicle badge
US9994144B2 (en) 2016-05-23 2018-06-12 Ford Global Technologies, Llc Illuminated automotive glazings
US9925917B2 (en) 2016-05-26 2018-03-27 Ford Global Technologies, Llc Concealed lighting for vehicles
US9937855B2 (en) 2016-06-02 2018-04-10 Ford Global Technologies, Llc Automotive window glazings
US10205338B2 (en) 2016-06-13 2019-02-12 Ford Global Technologies, Llc Illuminated vehicle charging assembly
US10131237B2 (en) 2016-06-22 2018-11-20 Ford Global Technologies, Llc Illuminated vehicle charging system
US9855888B1 (en) 2016-06-29 2018-01-02 Ford Global Technologies, Llc Photoluminescent vehicle appliques
US10173604B2 (en) 2016-08-24 2019-01-08 Ford Global Technologies, Llc Illuminated vehicle console
US10047659B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent engine indicium
US10047911B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent emission system
US10308175B2 (en) 2016-09-08 2019-06-04 Ford Global Technologies, Llc Illumination apparatus for vehicle accessory
US10075013B2 (en) 2016-09-08 2018-09-11 Ford Global Technologies, Llc Vehicle apparatus for charging photoluminescent utilities
US10046688B2 (en) 2016-10-06 2018-08-14 Ford Global Technologies, Llc Vehicle containing sales bins
US9914390B1 (en) 2016-10-19 2018-03-13 Ford Global Technologies, Llc Vehicle shade assembly
US10086700B2 (en) 2016-10-20 2018-10-02 Ford Global Technologies, Llc Illuminated switch
US10035473B2 (en) 2016-11-04 2018-07-31 Ford Global Technologies, Llc Vehicle trim components
US9902314B1 (en) 2016-11-17 2018-02-27 Ford Global Technologies, Llc Vehicle light system
US9994089B1 (en) 2016-11-29 2018-06-12 Ford Global Technologies, Llc Vehicle curtain
US10118538B2 (en) 2016-12-07 2018-11-06 Ford Global Technologies, Llc Illuminated rack
US10106074B2 (en) 2016-12-07 2018-10-23 Ford Global Technologies, Llc Vehicle lamp system
US10144365B2 (en) 2017-01-10 2018-12-04 Ford Global Technologies, Llc Vehicle badge
US10173582B2 (en) 2017-01-26 2019-01-08 Ford Global Technologies, Llc Light system
US10053006B1 (en) 2017-01-31 2018-08-21 Ford Global Technologies, Llc Illuminated assembly
US10240737B2 (en) 2017-03-06 2019-03-26 Ford Global Technologies, Llc Vehicle light assembly
US10150396B2 (en) 2017-03-08 2018-12-11 Ford Global Technologies, Llc Vehicle cup holder assembly with photoluminescent accessory for increasing the number of available cup holders
US10195985B2 (en) 2017-03-08 2019-02-05 Ford Global Technologies, Llc Vehicle light system
US10166913B2 (en) 2017-03-15 2019-01-01 Ford Global Technologies, Llc Side marker illumination
US10035463B1 (en) 2017-05-10 2018-07-31 Ford Global Technologies, Llc Door retention system
US10059238B1 (en) 2017-05-30 2018-08-28 Ford Global Technologies, Llc Vehicle seating assembly
US10144337B1 (en) 2017-06-02 2018-12-04 Ford Global Technologies, Llc Vehicle light assembly
US10137831B1 (en) 2017-07-19 2018-11-27 Ford Global Technologies, Llc Vehicle seal assembly
US10160405B1 (en) 2017-08-22 2018-12-25 Ford Global Technologies, Llc Vehicle decal assembly
US10186177B1 (en) 2017-09-13 2019-01-22 Ford Global Technologies, Llc Vehicle windshield lighting assembly
US10137825B1 (en) 2017-10-02 2018-11-27 Ford Global Technologies, Llc Vehicle lamp assembly
US10207636B1 (en) 2017-10-18 2019-02-19 Ford Global Technologies, Llc Seatbelt stowage assembly
US10189414B1 (en) 2017-10-26 2019-01-29 Ford Global Technologies, Llc Vehicle storage assembly
US10281113B1 (en) 2018-03-05 2019-05-07 Ford Global Technologies, Llc Vehicle grille

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012164A (en) * 1959-12-11 1961-12-05 Fawn Plastics Company Inc Plastic electroluminescent lighting articles and method of fabrication thereof
US4645970A (en) * 1984-11-05 1987-02-24 Donnelly Corporation Illuminated EL panel assembly
US4749261A (en) * 1986-01-17 1988-06-07 Taliq Corporation Shatter-proof liquid crystal panel with infrared filtering properties
US4934753A (en) * 1988-10-05 1990-06-19 Ford Motor Company Electrical connectors for use with a retractable sunroof containing elements that respond to an applied electrical signal
US5336965A (en) * 1990-12-21 1994-08-09 Ford Motor Company Solar load reduction glazing unit with electroluminescent element
US6309755B1 (en) * 1999-06-22 2001-10-30 Exatec, Llc. Process and panel for providing fixed glazing for an automotive vehicle
US6517226B1 (en) * 1999-05-21 2003-02-11 Reitter & Schefenacker Gmbh & Co. Kg Interior illumination system for vehicles, in particular, motor vehicles
US6666571B2 (en) * 2001-07-17 2003-12-23 Arvinmeritor Gmbh Sliding roof for a motor vehicle
US20050001456A1 (en) * 2003-07-01 2005-01-06 Webasto Ag Process for producing a cover with a glass pane and electrical function elements
US7048422B1 (en) * 2004-03-16 2006-05-23 Stephen Solomon Light emitting signaling apparatus
US7414357B2 (en) * 2001-06-01 2008-08-19 Saint-Gobain Glass France Glass pane with opaque coating
US7537361B2 (en) * 2002-04-09 2009-05-26 Airbus Deutschland Gmbh Aircraft window case that can be artificially illuminated in an indirect manner

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443832A (en) * 1981-09-29 1984-04-17 Nissan Motor Co., Ltd. Self-illuminating ornament for vehicles
JPH0159933B2 (en) * 1982-07-12 1989-12-20 Nissan Motor
DE3614547C2 (en) * 1985-05-01 1991-11-28 Toyoda Gosei Co., Ltd., Haruhi, Aichi, Jp
US4864473A (en) * 1988-03-21 1989-09-05 Asc Incorporated Electroluminescent dome light for a convertible automobile
US6143387A (en) * 1997-07-28 2000-11-07 Kubler; Virginia L. UV shield
GB2333829A (en) * 1998-01-31 1999-08-04 Rover Group Electroluminescent interior vehicle lighting
JPH11321304A (en) * 1998-05-12 1999-11-24 Nippon Sheet Glass Co Ltd Vehicle glass window structure and vehicle window glass plate
DE19852593B4 (en) * 1998-11-14 2006-03-30 Daimlerchrysler Ag An apparatus for lighting an interior space and their use
JP2000260572A (en) * 1999-03-04 2000-09-22 Harness Syst Tech Res Ltd Organic electroluminescence panel
US6426125B1 (en) * 1999-03-17 2002-07-30 General Electric Company Multilayer article and method of making by ARC plasma deposition
EP1136457A4 (en) * 1999-09-14 2002-10-23 Asahi Glass Co Ltd Laminated glass
DE10108302A1 (en) * 2001-02-21 2002-08-29 Webasto Vehicle Sys Int Gmbh Vehicle roof with planar lighting element
DE10204359B4 (en) * 2001-03-25 2005-05-04 Webasto Ag vehicle roof
JP4485713B2 (en) * 2001-07-06 2010-06-23 本田技研工業株式会社 Transmitting roof illumination device
JP4542727B2 (en) * 2001-08-13 2010-09-15 帝人化成株式会社 High design sheet-like laminate structure and use thereof
DE20202435U1 (en) * 2002-02-18 2002-06-06 Kostal Leopold Gmbh & Co Kg Flat end-surface lighting device with light radiation
US6743524B2 (en) * 2002-05-23 2004-06-01 General Electric Company Barrier layer for an article and method of making said barrier layer by expanding thermal plasma
DE10241820A1 (en) * 2002-09-06 2004-03-18 Webasto Vehicle Systems International Gmbh Roof surface module for motor vehicle has inner panel formed to conform to curvature of outer roof surface section and installed below outer roof section with constant gap, and inner panel may be made of transparent material
US7015640B2 (en) * 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
DE10320614B4 (en) * 2003-05-08 2006-01-12 Webasto Ag Cover for an opening in a vehicle roof and manufacturing method thereof
JP3840462B2 (en) * 2003-05-29 2006-11-01 八千代工業株式会社 Glass sunroof panel for a vehicle
DE10336283A1 (en) 2003-08-08 2005-03-10 Saint Gobain Sekurit D Gmbh Surface luminous element
JP4225872B2 (en) * 2003-10-01 2009-02-18 八千代工業株式会社 Sunroof panel with illumination function

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012164A (en) * 1959-12-11 1961-12-05 Fawn Plastics Company Inc Plastic electroluminescent lighting articles and method of fabrication thereof
US4645970A (en) * 1984-11-05 1987-02-24 Donnelly Corporation Illuminated EL panel assembly
US4749261A (en) * 1986-01-17 1988-06-07 Taliq Corporation Shatter-proof liquid crystal panel with infrared filtering properties
US4934753A (en) * 1988-10-05 1990-06-19 Ford Motor Company Electrical connectors for use with a retractable sunroof containing elements that respond to an applied electrical signal
US5336965A (en) * 1990-12-21 1994-08-09 Ford Motor Company Solar load reduction glazing unit with electroluminescent element
US6517226B1 (en) * 1999-05-21 2003-02-11 Reitter & Schefenacker Gmbh & Co. Kg Interior illumination system for vehicles, in particular, motor vehicles
US6309755B1 (en) * 1999-06-22 2001-10-30 Exatec, Llc. Process and panel for providing fixed glazing for an automotive vehicle
US7414357B2 (en) * 2001-06-01 2008-08-19 Saint-Gobain Glass France Glass pane with opaque coating
US6666571B2 (en) * 2001-07-17 2003-12-23 Arvinmeritor Gmbh Sliding roof for a motor vehicle
US7537361B2 (en) * 2002-04-09 2009-05-26 Airbus Deutschland Gmbh Aircraft window case that can be artificially illuminated in an indirect manner
US20050001456A1 (en) * 2003-07-01 2005-01-06 Webasto Ag Process for producing a cover with a glass pane and electrical function elements
US7048422B1 (en) * 2004-03-16 2006-05-23 Stephen Solomon Light emitting signaling apparatus

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339031B2 (en) * 2006-09-07 2012-12-25 Saint-Gobain Glass France Substrate for an organic light-emitting device, use and process for manufacturing this substrate, and organic light-emitting device
US20100072884A1 (en) * 2006-09-07 2010-03-25 Saint-Gobain Glass France Substrate for an organic light-emitting device, use and process for manufacturing this substrate, and organic light-emitting device
US10267507B2 (en) 2006-09-29 2019-04-23 Osram Oled Gmbh Organic lighting device and lighting equipment
US9099673B2 (en) 2006-11-17 2015-08-04 Saint-Gobain Glass France Electrode for an organic light-emitting device, acid etching thereof and also organic light-emitting device incorporating it
US20100225227A1 (en) * 2006-11-17 2010-09-09 Svetoslav Tchakarov Electrode for an organic light-emitting device, acid etching thereof and also organic light-emitting device incorporating it
US20080187725A1 (en) * 2006-12-28 2008-08-07 Exatec, Llc Functional layers for polycarbonate glazing
WO2008083186A1 (en) * 2006-12-28 2008-07-10 Exatec, Llc Polycarbonate glazing system and method for making the same
WO2008082834A1 (en) * 2006-12-28 2008-07-10 Exatec, Llc Functional layers for polycarbonate glazing
US20080160298A1 (en) * 2006-12-28 2008-07-03 Chengtao Li Polycarbonate glazing system and method for making the same
JP2008174132A (en) * 2007-01-19 2008-07-31 Ichikoh Ind Ltd Interior lighting system for vehicle
US20100117523A1 (en) * 2007-02-23 2010-05-13 Saint-Gobain Glass France Substrate bearing a discontinuous electrode, organic electroluminescent device including same and manufacture thereof
US8593055B2 (en) 2007-11-22 2013-11-26 Saint-Gobain Glass France Substrate bearing an electrode, organic light-emitting device incorporating it, and its manufacture
US20110037379A1 (en) * 2007-12-27 2011-02-17 Saint-Gobain Glass France Substrate for organic light-emitting device, and also organic light-emitting device incorporating it
US8786176B2 (en) 2007-12-27 2014-07-22 Saint-Gobain Glass France Substrate for organic light-emitting device, and also organic light-emitting device incorporating it
US9114425B2 (en) 2008-09-24 2015-08-25 Saint-Gobain Glass France Method for manufacturing a mask having submillimetric apertures for a submillimetric electrically conductive grid, mask having submillimetric apertures and submillimetric electrically conductive grid
US8808790B2 (en) 2008-09-25 2014-08-19 Saint-Gobain Glass France Method for manufacturing a submillimetric electrically conductive grid coated with an overgrid
FR2941514A1 (en) * 2009-01-27 2010-07-30 Peugeot Citroen Automobiles Sa Electroluminescent lighting device for use in e.g. bumper, of motor vehicle, has electroluminescent film coated with protection layer, where layer comprises coating that guarantees protections e.g. fungicide/anti-UV radiation protections
US8753906B2 (en) 2009-04-02 2014-06-17 Saint-Gobain Glass France Method for manufacturing a structure with a textured surface for an organic light-emitting diode device, and structure with a textured surface
US9108881B2 (en) 2010-01-22 2015-08-18 Saint-Gobain Glass France Glass substrate coated with a high-index layer under an electrode coating, and organic light-emitting device comprising such a substrate
US9335021B2 (en) * 2011-11-07 2016-05-10 Saint-Gobain Glass France Motor vehicle with turn signal repeater glazing
US20140254187A1 (en) * 2011-11-07 2014-09-11 Saint-Gobain Glass France Motor vehicle with turn signal repeater glazing
WO2013068679A1 (en) * 2011-11-07 2013-05-16 Saint-Gobain Glass France Motor vehicle with turn signal repeater glazing
EA024975B1 (en) * 2011-11-07 2016-11-30 Сэн-Гобэн Гласс Франс Light-signaling glazing for a vehicle
FR2982197A1 (en) * 2011-11-07 2013-05-10 Saint Gobain motor vehicle with repeater glazing blinking
EA025103B1 (en) * 2011-11-07 2016-11-30 Сэн-Гобэн Гласс Франс Automobile vehicle
FR2982196A1 (en) * 2011-11-07 2013-05-10 Saint Gobain light signal for vehicle glazing
WO2013068678A1 (en) * 2011-11-07 2013-05-16 Saint-Gobain Glass France Light-signaling glazing for a vehicle
US9109773B2 (en) * 2011-11-07 2015-08-18 Saint-Gobain Glass France Light-signaling glazing for a vehicle
CN103260872A (en) * 2011-11-07 2013-08-21 法国圣戈班玻璃厂 Motor vehicle with turn signal repeater glazing
US9746600B2 (en) * 2012-05-10 2017-08-29 Saint-Gobain Glass France Illuminating glazing with incorporated deflector
US20150160400A1 (en) * 2012-05-10 2015-06-11 Saint-Gobain Glass France Illuminating glazing with incorporated deflector
US20150321456A1 (en) * 2013-01-02 2015-11-12 Sabic Global Technologies B.V. Polymers, articles comprising polymers, and methods of making and using the same
US9030606B2 (en) * 2013-03-14 2015-05-12 Gopro, Inc. Wireless camera housing illuminators
US9547220B2 (en) 2013-03-14 2017-01-17 Gopro, Inc. Camera system and housing with wireless surface indicators
US20140267894A1 (en) * 2013-03-14 2014-09-18 Woodman Labs, Inc. Wireless Surface Illuminators
WO2014202526A1 (en) * 2013-06-19 2014-12-24 Webasto SE Arrangement for closing an opening in a vehicle with a pane and a light-guiding sheet
US9492575B2 (en) 2013-11-21 2016-11-15 Ford Global Technologies, Llc Color changing and disinfecting surfaces
EP2955064A1 (en) * 2014-06-13 2015-12-16 Isoclima S.p.A. Window pane
US10107948B2 (en) 2014-11-25 2018-10-23 Sabic Global Technologies B.V. Method and article for emitting radiation from a surface
US9913318B2 (en) 2014-11-25 2018-03-06 Sabic Global Technologies B.V. Method and device for heating a surface
US10000654B2 (en) * 2015-03-05 2018-06-19 Flex-N-Gate Corporation Automotive plastic panel
US20160257839A1 (en) * 2015-03-05 2016-09-08 Flex-N-Gate Corporation Automotive plastic panel
US9742105B2 (en) * 2015-10-26 2017-08-22 Tyco Electronics Raychem Gmbh Protective cover and electrical connector having a radiation window formed by a plurality of radiation passages
US20170117662A1 (en) * 2015-10-26 2017-04-27 Tyco Electronics Raychem Gmbh Protective Cover and Electrical Connector Having a Radiation Window Formed by a Plurality of Radiation Passages
WO2017089946A3 (en) * 2015-11-23 2017-09-28 Sabic Global Technologies B.V. Lighting systems for windows having plastic glazing
US10319268B2 (en) 2016-06-24 2019-06-11 Nanosys, Inc. Ambient light color compensating device
WO2018053061A1 (en) * 2016-09-15 2018-03-22 Jason Hartlove Architectural window with built-in qled lighting

Also Published As

Publication number Publication date
US20140376243A1 (en) 2014-12-25
EP1858728A1 (en) 2007-11-28
KR20070114813A (en) 2007-12-04
US20160185287A1 (en) 2016-06-30
WO2006102013A1 (en) 2006-09-28
US9871199B2 (en) 2018-01-16
EP2251226A1 (en) 2010-11-17
JP2008532852A (en) 2008-08-21
DE602006016920D1 (en) 2010-10-28
EP1858728B1 (en) 2010-09-15
US9315148B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
US9797567B2 (en) Organic-light-emitting diode and luminaire
JP4887377B2 (en) At least one light emitting structure including a light emitting diode, their production and use
JP4351914B2 (en) Electrochromic rearview mirror assembly for using the display / signal lights
US8454181B2 (en) Light bar proximity switch
US6411029B1 (en) Plastic shaped body with an integrated optoelectronic luminous element
CN100390948C (en) Mirror assembly with multi-color illumination
US7752791B2 (en) Display device
US20030231371A1 (en) Electrochromic rearview mirror element incorporating a third surface reflector
US20130107563A1 (en) Exterior rearview mirror assembly
JP3068349U (en) 3-dimensional electroluminescent display device
KR101155904B1 (en) Organic light emitting diode display
US20020043012A1 (en) Illumination apparatus
CN103718293B (en) Having an illumination device disposed on an edge of the sheet photoactive integrated light emitting diode disposed therein or the application of a small thickness
US20020195961A1 (en) Organic light emitting devices
US7048400B2 (en) Integrated illumination system
US20010053082A1 (en) Electroluminescent vehicle lamp
WO2008012460A2 (en) Encapsulated electroluminescent device
EP0964800A1 (en) Pixel-matrix display arrangement for transport systems
US9303829B2 (en) Illumination devices and methods for making the same
JPH11503869A (en) Organic light-emitting device
US7150550B2 (en) Automotive map pocket having an electroluminescent lamp and method of making the same
JP2009512977A (en) Emitting structure having at least one electroluminescent diode, its preparation and its applications
US8618727B2 (en) Transparent organic light emitting diode
US20050073851A1 (en) Sunroof panel apparatus for a vehicle
KR100198504B1 (en) Display panel with electroluminescent illumination

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXATEC, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWENKE, ROBERT;HEDDERICH, WILFRIED;LI, CHENGTAO;AND OTHERS;REEL/FRAME:017478/0268;SIGNING DATES FROM 20060407 TO 20060411

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033591/0673

Effective date: 20140402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION