US20060198710A1 - Orbital machining apparatus with drive element with drive pins - Google Patents

Orbital machining apparatus with drive element with drive pins Download PDF

Info

Publication number
US20060198710A1
US20060198710A1 US10/562,614 US56261404A US2006198710A1 US 20060198710 A1 US20060198710 A1 US 20060198710A1 US 56261404 A US56261404 A US 56261404A US 2006198710 A1 US2006198710 A1 US 2006198710A1
Authority
US
United States
Prior art keywords
cylindrical body
cutting tool
center axis
actuator
longitudinal center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/562,614
Other versions
US7189038B2 (en
Inventor
Mats Stuxberg
Bjorn Pettersson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novator AB
Original Assignee
Novator AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novator AB filed Critical Novator AB
Priority to US10/562,614 priority Critical patent/US7189038B2/en
Publication of US20060198710A1 publication Critical patent/US20060198710A1/en
Assigned to NOVATOR AB reassignment NOVATOR AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETTERSSON, BJORN, STUXBERG, MATS
Application granted granted Critical
Publication of US7189038B2 publication Critical patent/US7189038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/5468Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only a single rotating pair followed parallelly by a single rotating pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4876Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed parallelly by a single rotating pair
    • B23Q1/4885Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed parallelly by a single rotating pair followed parallelly by a single rotating pair
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/300056Thread or helix generating
    • Y10T409/30056Thread or helix generating with planetary cutter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/304424Means for internal milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/306776Axially
    • Y10T409/307056Axially and laterally
    • Y10T409/307112Simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/30756Machining arcuate surface
    • Y10T409/307616Machining arcuate surface with means to move cutter eccentrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309352Cutter spindle or spindle support
    • Y10T409/309408Cutter spindle or spindle support with cutter holder

Definitions

  • the invention generally relates to an orbital machining apparatus for producing a hole in a workpiece by means of a cutting tool rotating about its own tool axis as well as eccentrically (orbiting) about a principal axis corresponding to the longitudinal center axis of the hole to be machined. More particularly, the invention relates to an improved mechanism of said apparatus for transferring a rotational movement to an inner eccentric cylindrical body of a mechanism for adjusting the radial offset (orbit radius) of the cutting tool axis relative to the principal axis.
  • WO 03/008136 A1 discloses an orbital machining apparatus for producing a hole in a workpiece by means of a cutting tool, said apparatus comprising:
  • a first actuator configured for rotating the cutting tool about its longitudinal center axis during the machining of the hole
  • a second actuator configured for moving the cutting tool in an axial feed direction substantially parallel to said tool axis, said second actuator being simultaneously operable with said first actuator
  • a third actuator configured for rotating the cutting tool about a principal axis, said principal axis being substantially parallel to said center axis of the tool and coaxial with a longitudinal center axis of the hole to be machined, said third actuator being simultaneously operable with said first and second actuators;
  • a radial offset mechanism configured for controlling the radial distance of the center axis of the cutting tool from said principal axis, said radial offset mechanism comprising:
  • an inner cylindrical body having an eccentric cylindrical hole, said eccentric hole having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said inner body, said eccentric hole being configured to radially and rotatably support a spindle unit for operating said cutting tool;
  • the first and second motors are also configured to rotate the outer and inner cylindrical bodies in different angular speeds so as to vary the radial offset position of the cutting tool.
  • the transmission or mechanism for transferring a rotational movement from the second motor to the inner cylindrical body includes a coupling, which is configured for allowing the inner cylindrical body to perform an orbital movement about the principal axis while not rotating about its own center axis relative to the outer cylindrical body.
  • the coupling also permits the inner cylindrical body to be rotated about its center axis relative to the outer cylindrical body by the second motor so as to vary the radial offset either during a working operation or during a non-working phase to adjust the radial offset to another desired radial offset value.
  • This coupling comprises a fork-and-cam roller mechanism.
  • a problem related to the fork-and-cam roller mechanism is that the contact surface of the cam roller wears with time and creates a play, which affects the degree of precision of the coupling mechanism and thus of the working process of the orbital machining apparatus.
  • An object of the present invention is to provide an orbital machining apparatus having a coupling arrangement, which eliminates the above mentioned drawbacks of the previous machines.
  • the apparatus comprises:
  • a first actuator configured for rotating the cutting tool about its longitudinal center axis during the machining of the hole
  • a second actuator configured for moving the cutting tool in an axial feed direction substantially parallel to said tool axis, said second actuator being simultaneously operable with said first actuator
  • a third actuator configured for rotating the cutting tool about a principal axis, said principal axis being substantially parallel to said center axis of the tool and coaxial with a longitudinal center axis of the hole to be machined, said third actuator being simultaneously operable with said first and second actuators;
  • a radial offset mechanism configured for controlling the radial distance of the center axis of the cutting tool from said principal axis, said radial offset mechanism comprising:
  • an inner cylindrical body having an eccentric cylindrical hole, said eccentric hole having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said inner body, said eccentric hole being configured to radially and rotatably support a spindle unit for operating said cutting tool;
  • said third actuator including a first motor drivingly connected to the outer cylindrical body for individually rotating the latter about the longitudinal center axis thereof, and a second motor drivingly connected to the inner cylindrical body for individually rotating the latter about the longitudinal center axis thereof, said first and second motors being configured to rotate the outer and inner cylindrical bodies in synchronism to maintain a mutual rotary position thereof so as to keep the radial offset position of the cutting tool unchanged during a working operation, and the first and second motors being further configured to rotate the cylindrical bodies relative to each other so as to vary the radial offset position of the cutting tool, the third actuator further including a first rotating drive element coaxial to the outer cylindrical body and driven by the first motor, and a second rotating drive element coaxial to the outer cylindrical body and rotated by the second motor.
  • the second drive element is rotatably connected to a carrier ring by means of two diametrically opposed, radial drive pins such that the carrier ring may perform a radial sliding movement along the longitudinal axis of the drive pins relative to the second drive element while being rotated thereby, the carrier ring being connected to the inner cylindrical body by means of two diametrically opposed, radial carrier guide shafts, which are circumferentially spaced 90° from the drive pins, such that the inner cylindrical body may perform a radial sliding movement relative to the carrier ring while being rotated thereby.
  • FIG. 1 is a schematic side sectional view of a previously known orbital machining apparatus having many components in common with the apparatus of the invention
  • FIG. 2 is a side view of an orbital machining apparatus of the present invention
  • FIG. 3 is a perspective view of the orbital machining apparatus of the invention.
  • FIG. 4 is an enlarged perspective view of a coupling arrangement for rotating an inner cylindrical eccentric body of the apparatus
  • FIG. 5 is an end view of the coupling arrangement in FIG. 4 ;
  • FIG. 6 is a perspective view from behind of the apparatus of the invention.
  • a conventional orbital machining apparatus 10 generally includes a spindle motor unit 12 that rotates a cutting tool 14 about its own axis 16 , a radial offset mechanism 18 , an eccentric rotation mechanism 20 and an axial feed mechanism 21 .
  • the apparatus 10 may be slideably mounted to a stationary stand 22 or mounted to a movable member, such as a robot arm (not shown).
  • the axial feed mechanism 21 includes a stationary motor M which drives a ball screw 23 a engaging a ball nut 23 b fixedly secured to a machine housing H.
  • the radial offset mechanism 18 basically comprises an inner hollow cylindrical body 24 rotatably supporting the spindle motor unit 12 therein.
  • the spindle motor unit 12 is rotatably supported in an eccentric cylindrical hole 26 of the inner cylindrical body 24 via a fixation sleeve 28 and bearings 29 .
  • the eccentric hole 26 has a longitudinal center axis that is parallel to but radially offset a distance from the longitudinal center axis of the inner cylindrical body 24 .
  • the eccentric inner cylindrical body 24 is, in its turn, rotatably supported within an axially extending eccentric hole 34 of a second, outer hollow cylindrical body 36 .
  • the eccentric hole 34 has a longitudinal center axis that is parallel to but radially offset a distance from the center axis of the outer cylindrical body 36 (the principal axis).
  • the holes 26 and 34 of the cylindrical bodies 24 and 36 have the same eccentricity, i.e. the hole center axes are radially offset the same distance from the respective center axis of the bodies 24 and 36 .
  • the outer cylindrical body 36 is rotatably supported in the housing H of the apparatus 10 and is rotatable by a motor (not shown) via a belt 46 , which engages a belt wheel 48 connected to the outer body 36 .
  • the inner cylindrical body 24 is rotatable by a further motor via a belt 52 , which engages a belt wheel 54 connected to the inner body 24 via a coupling 55 comprising a fork-and-cam roller mechanism.
  • the belt wheel 54 is arranged to rotate in a concentric position relative to the belt wheel 48 .
  • the coupling 55 is configured for allowing the inner cylindrical body 24 to perform an orbital movement about the principal axis while not rotating about its own center axis relative to the outer cylindrical body 36 .
  • This coupling 55 also permits the inner cylindrical body 24 to be rotated about its center axis relative to the outer cylindrical body 36 by said further motor so as to vary the radial offset either during a working operation or during a non-working phase to adjust the radial offset to another desired radial offset value.
  • the present invention provides a new coupling 56 for rotating the inner cylindrical body 24 relative to the outer cylindrical body 36 .
  • the same reference numerals are used here for components corresponding to those in FIG. 1 .
  • the belt wheel 54 which is driven by a motor 50 and the belt 52 , is connected to a drive element 57 in shape of a yoke having two diametrically opposed, axially extending lugs 58 .
  • a flat carrier ring 60 is located radially inside of the lugs 58 and is connected to and rotated by the drive element 57 by means of two diametrically opposed, radial drive pins 62 which extend inwardly from the lugs 58 and are slidably mounted in diametrically opposed sleeves 59 fixated to the carrier ring 60 such that the carrier ring 60 may perform a radial sliding movement along the longitudinal axis of the drive pins 62 relative to the drive element 57 while being rotated thereby.
  • two diametrically opposed, radial carrier guide shafts 64 which are circumferentially spaced 90° from the drive pins 62 , connect the carrier ring 60 and the inner cylindrical body 24 such that the latter may perform a radial sliding movement along the longitudinal axis of the guide shafts 64 relative to the carrier ring 60 while being rotated thereby.
  • the drive pins 62 and the guide shafts 64 are snugly received in respective linear bearings 66 located in the carrier ring 60 .
  • the radial offset value of the cutting tool axis 16 will be changed. This will make it possible to form a conical or tapered hole or a conical or curved section or recess in the workpiece when combined with an axial feed of the cutting tool 14 into the workpiece.
  • the adjustment of the radial offset may also be done during a non-working phase or during a stop of the axial feed of the cutting tool.

Abstract

An orbital machining apparatus for producing a workpiece hole with a cutting tool, including: a first actuator for rotating the tool about its longitudinal center axis during the machining of the hole; a second actuator for moving the tool in an axial feed direction substantially parallel to the tool axis; a third actuator for rotating the cutting tool about a principal axis; and a radial offset mechanism. The third actuator includes a rotating drive driven by a motor, a carrier ring connected to and rotated by the drive by two opposed, radial drive pins. The ring performs a radial sliding movement relative to the drive while being rotated thereby. Two opposed, radial carrier guide shafts circumferentially spaced 90° from the drive pins and connecting the ring and an inner cylindrical eccentric body such that the latter may perform a radial sliding movement relative to the ring while being rotated thereby.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention generally relates to an orbital machining apparatus for producing a hole in a workpiece by means of a cutting tool rotating about its own tool axis as well as eccentrically (orbiting) about a principal axis corresponding to the longitudinal center axis of the hole to be machined. More particularly, the invention relates to an improved mechanism of said apparatus for transferring a rotational movement to an inner eccentric cylindrical body of a mechanism for adjusting the radial offset (orbit radius) of the cutting tool axis relative to the principal axis.
  • 2. Description of the Related Art
  • WO 03/008136 A1 discloses an orbital machining apparatus for producing a hole in a workpiece by means of a cutting tool, said apparatus comprising:
  • a first actuator configured for rotating the cutting tool about its longitudinal center axis during the machining of the hole;
  • a second actuator configured for moving the cutting tool in an axial feed direction substantially parallel to said tool axis, said second actuator being simultaneously operable with said first actuator;
  • a third actuator configured for rotating the cutting tool about a principal axis, said principal axis being substantially parallel to said center axis of the tool and coaxial with a longitudinal center axis of the hole to be machined, said third actuator being simultaneously operable with said first and second actuators; and
  • a radial offset mechanism configured for controlling the radial distance of the center axis of the cutting tool from said principal axis, said radial offset mechanism comprising:
  • an inner cylindrical body having an eccentric cylindrical hole, said eccentric hole having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said inner body, said eccentric hole being configured to radially and rotatably support a spindle unit for operating said cutting tool; and
  • an outer cylindrical body having an eccentric cylindrical hole, said eccentric hole of said outer body having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said outer body, said inner cylindrical body being radially supported in said eccentric hole of the outer cylindrical body and rotatable therein so as to allow for adjustment of the radial distance of said center axis of the cutting tool from said principal axis, said third actuator including a first motor drivingly connected to the outer cylindrical body for individually rotating the latter about the longitudinal center axis thereof, and a second motor drivingly connected to the inner cylindrical body for individually rotating the latter about the longitudinal center axis thereof, said first and second motors being configured to rotate the outer and inner cylindrical bodies in synchronism to maintain a mutual rotary position thereof so as to keep the radial offset position of the cutting tool unchanged during a working operation.
  • The first and second motors are also configured to rotate the outer and inner cylindrical bodies in different angular speeds so as to vary the radial offset position of the cutting tool. Thus, two separate motors and the transmissions are configured for rotating the outer and inner cylindrical bodies either in synchronism (=no mutual rotation) during a working operation to maintain a predetermined mutual rotary position of the cylindrical bodies and thereby a predetermined radial offset (for making a cylindrical hole or recess in a workpiece), or in different angular speeds (mutual rotation) to vary the radial offset either during a working operation (e.g. for making a conical hole or recess) or during a non-working phase to adjust the radial offset to another desired radial offset value.
  • The transmission or mechanism for transferring a rotational movement from the second motor to the inner cylindrical body includes a coupling, which is configured for allowing the inner cylindrical body to perform an orbital movement about the principal axis while not rotating about its own center axis relative to the outer cylindrical body. The coupling also permits the inner cylindrical body to be rotated about its center axis relative to the outer cylindrical body by the second motor so as to vary the radial offset either during a working operation or during a non-working phase to adjust the radial offset to another desired radial offset value. This coupling comprises a fork-and-cam roller mechanism. A problem related to the fork-and-cam roller mechanism is that the contact surface of the cam roller wears with time and creates a play, which affects the degree of precision of the coupling mechanism and thus of the working process of the orbital machining apparatus.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide an orbital machining apparatus having a coupling arrangement, which eliminates the above mentioned drawbacks of the previous machines. For this purpose the apparatus comprises:
  • a first actuator configured for rotating the cutting tool about its longitudinal center axis during the machining of the hole;
  • a second actuator configured for moving the cutting tool in an axial feed direction substantially parallel to said tool axis, said second actuator being simultaneously operable with said first actuator;
  • a third actuator configured for rotating the cutting tool about a principal axis, said principal axis being substantially parallel to said center axis of the tool and coaxial with a longitudinal center axis of the hole to be machined, said third actuator being simultaneously operable with said first and second actuators; and
  • a radial offset mechanism configured for controlling the radial distance of the center axis of the cutting tool from said principal axis, said radial offset mechanism comprising:
  • an inner cylindrical body having an eccentric cylindrical hole, said eccentric hole having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said inner body, said eccentric hole being configured to radially and rotatably support a spindle unit for operating said cutting tool; and
  • an outer cylindrical body having an eccentric cylindrical hole, said eccentric hole of said outer body having a longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said outer body, said inner cylindrical body being radially supported in said eccentric hole of the outer cylindrical body and rotatable therein so as to allow for adjustment of the radial distance of said center axis of the cutting tool from said principal axis,
  • said third actuator including a first motor drivingly connected to the outer cylindrical body for individually rotating the latter about the longitudinal center axis thereof, and a second motor drivingly connected to the inner cylindrical body for individually rotating the latter about the longitudinal center axis thereof, said first and second motors being configured to rotate the outer and inner cylindrical bodies in synchronism to maintain a mutual rotary position thereof so as to keep the radial offset position of the cutting tool unchanged during a working operation, and the first and second motors being further configured to rotate the cylindrical bodies relative to each other so as to vary the radial offset position of the cutting tool, the third actuator further including a first rotating drive element coaxial to the outer cylindrical body and driven by the first motor, and a second rotating drive element coaxial to the outer cylindrical body and rotated by the second motor. According to the invention the second drive element is rotatably connected to a carrier ring by means of two diametrically opposed, radial drive pins such that the carrier ring may perform a radial sliding movement along the longitudinal axis of the drive pins relative to the second drive element while being rotated thereby, the carrier ring being connected to the inner cylindrical body by means of two diametrically opposed, radial carrier guide shafts, which are circumferentially spaced 90° from the drive pins, such that the inner cylindrical body may perform a radial sliding movement relative to the carrier ring while being rotated thereby.
  • Further details of the apparatus of the present invention will be clear from the following detailed description of a preferred embodiment thereof with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic side sectional view of a previously known orbital machining apparatus having many components in common with the apparatus of the invention;
  • FIG. 2 is a side view of an orbital machining apparatus of the present invention;
  • FIG. 3 is a perspective view of the orbital machining apparatus of the invention;
  • FIG. 4 is an enlarged perspective view of a coupling arrangement for rotating an inner cylindrical eccentric body of the apparatus;
  • FIG. 5 is an end view of the coupling arrangement in FIG. 4; and
  • FIG. 6 is a perspective view from behind of the apparatus of the invention.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • As shown in FIG. 1, a conventional orbital machining apparatus 10 generally includes a spindle motor unit 12 that rotates a cutting tool 14 about its own axis 16, a radial offset mechanism 18, an eccentric rotation mechanism 20 and an axial feed mechanism 21. The apparatus 10 may be slideably mounted to a stationary stand 22 or mounted to a movable member, such as a robot arm (not shown). The axial feed mechanism 21 includes a stationary motor M which drives a ball screw 23 a engaging a ball nut 23 b fixedly secured to a machine housing H.
  • As shown in FIG. 1, the radial offset mechanism 18 basically comprises an inner hollow cylindrical body 24 rotatably supporting the spindle motor unit 12 therein. The spindle motor unit 12 is rotatably supported in an eccentric cylindrical hole 26 of the inner cylindrical body 24 via a fixation sleeve 28 and bearings 29. The eccentric hole 26 has a longitudinal center axis that is parallel to but radially offset a distance from the longitudinal center axis of the inner cylindrical body 24.
  • The eccentric inner cylindrical body 24 is, in its turn, rotatably supported within an axially extending eccentric hole 34 of a second, outer hollow cylindrical body 36. The eccentric hole 34 has a longitudinal center axis that is parallel to but radially offset a distance from the center axis of the outer cylindrical body 36 (the principal axis). Preferably, the holes 26 and 34 of the cylindrical bodies 24 and 36 have the same eccentricity, i.e. the hole center axes are radially offset the same distance from the respective center axis of the bodies 24 and 36. By rotating the inner cylindrical body 24 within the eccentric hole 34 of the outer cylindrical body 36, or by a mutual, relative rotation of the cylindrical bodies 24 and 36, it is thus possible to locate the center axis of the eccentric hole 26 of the inner cylindrical body 24 such that it, and hence the spindle motor unit 12 and the center axis 16 of the cutting tool 14, will coincide with the center axis of the outer cylindrical body 36. In this case there is no radial offset at all of the cutting tool axis 16. By performing a mutual, relative rotation of 180° of the inner and outer cylindrical bodies 24 and 36 away from this zero radial offset position, a maximum offset of the cutting tool axis 16 is obtained.
  • Basically, the outer cylindrical body 36 is rotatably supported in the housing H of the apparatus 10 and is rotatable by a motor (not shown) via a belt 46, which engages a belt wheel 48 connected to the outer body 36. Likewise, the inner cylindrical body 24 is rotatable by a further motor via a belt 52, which engages a belt wheel 54 connected to the inner body 24 via a coupling 55 comprising a fork-and-cam roller mechanism. The belt wheel 54 is arranged to rotate in a concentric position relative to the belt wheel 48. The coupling 55 is configured for allowing the inner cylindrical body 24 to perform an orbital movement about the principal axis while not rotating about its own center axis relative to the outer cylindrical body 36. This coupling 55 also permits the inner cylindrical body 24 to be rotated about its center axis relative to the outer cylindrical body 36 by said further motor so as to vary the radial offset either during a working operation or during a non-working phase to adjust the radial offset to another desired radial offset value.
  • As shown in FIGS. 2-5, the present invention provides a new coupling 56 for rotating the inner cylindrical body 24 relative to the outer cylindrical body 36. The same reference numerals are used here for components corresponding to those in FIG. 1. The belt wheel 54, which is driven by a motor 50 and the belt 52, is connected to a drive element 57 in shape of a yoke having two diametrically opposed, axially extending lugs 58. A flat carrier ring 60 is located radially inside of the lugs 58 and is connected to and rotated by the drive element 57 by means of two diametrically opposed, radial drive pins 62 which extend inwardly from the lugs 58 and are slidably mounted in diametrically opposed sleeves 59 fixated to the carrier ring 60 such that the carrier ring 60 may perform a radial sliding movement along the longitudinal axis of the drive pins 62 relative to the drive element 57 while being rotated thereby. Furthermore, two diametrically opposed, radial carrier guide shafts 64, which are circumferentially spaced 90° from the drive pins 62, connect the carrier ring 60 and the inner cylindrical body 24 such that the latter may perform a radial sliding movement along the longitudinal axis of the guide shafts 64 relative to the carrier ring 60 while being rotated thereby. The drive pins 62 and the guide shafts 64 are snugly received in respective linear bearings 66 located in the carrier ring 60.
  • When the belt wheels 48 and 54 are rotated with the same angular speed during a working operation, the cylindrical bodies 36, 24 are rotated in synchronism by their respective motors 44, 50 and belts 46, 52. This means that no change of the radial offset value of the tool axis 16 will occur. In combination with an axial feed of the cutting tool 14 into the workpiece (not shown) a cylindrical hole or recess may then be formed therein.
  • If the inner and outer cylinder bodies 24 and 36 are caused to perform a relative rotation by rotating the belt wheels 54 and 48 in different angular speeds, the radial offset value of the cutting tool axis 16 will be changed. This will make it possible to form a conical or tapered hole or a conical or curved section or recess in the workpiece when combined with an axial feed of the cutting tool 14 into the workpiece. The adjustment of the radial offset may also be done during a non-working phase or during a stop of the axial feed of the cutting tool.

Claims (4)

1-3. (canceled)
4. An orbital machining apparatus for producing a hole in a workpiece by way of a cutting tool, said apparatus comprising:
a first actuator configured for rotating the cutting tool about a cutting tool longitudinal center axis during a machining of the hole;
a second actuator configured for moving the cutting tool in an axial feed direction substantially parallel to said cutting tool longitudinal center axis, said second actuator being simultaneously operable with said first actuator;
a third actuator configured for rotating the cutting tool about a principal axis, said principal axis being substantially parallel to said cutting tool longitudinal center axis of the tool and coaxial with a longitudinal center axis of the hole to be machined, said third actuator being simultaneously operable with said first actuator and second actuator; and
a radial offset mechanism configured for controlling a radial distance of said cutting tool longitudinal center axis of the cutting tool from said principal axis, said radial offset mechanism including:
an inner cylindrical body having a first eccentric cylindrical hole, said first eccentric hole having a first eccentric hole longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said inner cylindrical body, said first eccentric hole being configured to radially and rotatably support a spindle unit for operating said cutting tool; and
an outer cylindrical body having a second eccentric cylindrical hole, said second eccentric hole of said outer cylindrical body having a second eccentric hole longitudinal center axis that is parallel to and radially offset from a longitudinal center axis of said outer cylindrical body, said inner cylindrical body being radially supported in said second eccentric hole of said outer cylindrical body and rotatable therein so as to allow for adjustment of a radial distance of said cutting tool longitudinal center axis of the cutting tool from said principal axis;
said third actuator including a first motor drivingly connected to said outer cylindrical body for individually rotating said outer cylindrical body about said longitudinal center axis of said outer cylindrical body, and a second motor drivingly connected to said inner cylindrical body for individually rotating said inner cylindrical body about said longitudinal center axis of said inner cylindrical body, said first motor and second motor being configured to rotate said outer cylindrical body and said inner cylindrical body in synchronism to maintain a mutual rotary position thereof so as to keep a radial offset position of the cutting tool unchanged during a working operation, said first motor and second motor being further configured to rotate said outer cylindrical body and said inner cylindrical body relative to each other so as to vary said radial offset position of the cutting tool;
said third actuator further including a first rotating drive element coaxial to said outer cylindrical body and driven by said first motor, and a second rotating drive element coaxial to said outer cylindrical body and rotated by said second motor, said second drive element being rotatably connected to a carrier ring by way of two diametrically opposed, radial drive pins such that said carrier ring performs a radial sliding movement along a longitudinal axis of said drive pins relative to said second drive element while being rotated thereby, said carrier ring being connected to said inner cylindrical body by way of two diametrically opposed, radial carrier guide shafts, which are circumferentially spaced 90° from said drive pins, such that said inner cylindrical body performs a radial sliding movement relative to said carrier ring while being rotated thereby.
5. The orbital machining apparatus of claim 4, further including a belt wheel rotated by said second motor via an endless belt, said second drive element is coaxially connected to said belt wheel.
6. The orbital machining apparatus of claim 4, wherein said second drive element constitutes a yoke having two diametrically opposed, axially extending lugs guidingly supporting said carrier ring by way of said drive pins.
US10/562,614 2003-06-26 2004-06-28 Orbital machining apparatus with drive element with drive pins Expired - Fee Related US7189038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/562,614 US7189038B2 (en) 2003-06-26 2004-06-28 Orbital machining apparatus with drive element with drive pins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48102603P 2003-06-26 2003-06-26
US10/562,614 US7189038B2 (en) 2003-06-26 2004-06-28 Orbital machining apparatus with drive element with drive pins
PCT/SE2004/001036 WO2004113002A1 (en) 2003-06-26 2004-06-28 Orbital machining apparatus with drive element with drive pins

Publications (2)

Publication Number Publication Date
US20060198710A1 true US20060198710A1 (en) 2006-09-07
US7189038B2 US7189038B2 (en) 2007-03-13

Family

ID=33539328

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/562,614 Expired - Fee Related US7189038B2 (en) 2003-06-26 2004-06-28 Orbital machining apparatus with drive element with drive pins

Country Status (7)

Country Link
US (1) US7189038B2 (en)
EP (1) EP1635975B1 (en)
JP (1) JP4653085B2 (en)
AT (1) ATE454945T1 (en)
DE (1) DE602004025109D1 (en)
ES (1) ES2337057T3 (en)
WO (1) WO2004113002A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699403A (en) * 2012-06-21 2012-10-03 天津大学 Automatic spiral hole milling device
CN102794491A (en) * 2012-08-22 2012-11-28 浙江大学 Device and method of automatic helical milling of hole
CN103659403A (en) * 2013-11-25 2014-03-26 中国航空工业集团公司北京航空制造工程研究所 Hole forming device capable of adjusting aperture of formed hole on line
CN104289743A (en) * 2013-07-17 2015-01-21 株式会社神崎高级工机制作所 Boring device
WO2016209145A1 (en) * 2015-06-26 2016-12-29 Novator Ab Orbital machine, method, computer program and a computer program product for using said machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256092B1 (en) 2008-01-30 2012-09-04 Makino Inc. Method for helical boring
DE102008031487A1 (en) 2008-07-03 2010-01-07 Ex-Cell-O Gmbh Processing plant for workpieces
ITTV20090142A1 (en) * 2009-07-09 2011-01-10 O M V Ohg Venete S R L NUMERIC CONTROL GRINDING MACHINE
US9242303B2 (en) * 2010-05-03 2016-01-26 National Oilwell Varco, L.P. Cutting device on moveable platform
FR3066420B1 (en) * 2017-05-18 2019-07-05 Precise France MECHANICAL HEAD FOR ORBITAL DRILLING, INTENDED TO BE MOUNTED ON A MACHINE TOOL, ON A ROBOT ARM, ON A PORTABLE UNIT
FR3085011B1 (en) * 2018-08-16 2020-12-04 Advanced Electrical Tools ORBITAL DRILLING PROCESS AND ORBITAL DRILLING DEVICE
JP7320391B2 (en) 2019-06-28 2023-08-03 株式会社Subaru End mill and drilling method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803981A (en) * 1972-01-17 1974-04-16 Owens Illinois Inc Independent drive sub-spindle mounted for eccentric adjustment in prime spindle
US4423991A (en) * 1981-11-23 1984-01-03 Gulf & Western Manufacturing Company Cam activated planetary turning machine
US4934040A (en) * 1986-07-10 1990-06-19 Turchan Manuel C Spindle driver for machine tools
US5536152A (en) * 1994-11-30 1996-07-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor having improved orbital drive mechanism
USRE36053E (en) * 1993-08-26 1999-01-19 Carrier Corporation Compact Oldham coupling
US5971678A (en) * 1998-06-05 1999-10-26 Novator Ab Spindle unit
US6135737A (en) * 1997-07-10 2000-10-24 Mitsubishi Heavy Industries, Ltd. Scroll hydraulic machine
US20030113181A1 (en) * 1999-09-01 2003-06-19 Novator Ab Orbital hand tool apparatus for drilling
US6663327B2 (en) * 2001-07-20 2003-12-16 Novator Ab Numerically controlled orbital machining apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803981A (en) * 1972-01-17 1974-04-16 Owens Illinois Inc Independent drive sub-spindle mounted for eccentric adjustment in prime spindle
US4423991A (en) * 1981-11-23 1984-01-03 Gulf & Western Manufacturing Company Cam activated planetary turning machine
US4934040A (en) * 1986-07-10 1990-06-19 Turchan Manuel C Spindle driver for machine tools
USRE36053E (en) * 1993-08-26 1999-01-19 Carrier Corporation Compact Oldham coupling
US5536152A (en) * 1994-11-30 1996-07-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor having improved orbital drive mechanism
US6135737A (en) * 1997-07-10 2000-10-24 Mitsubishi Heavy Industries, Ltd. Scroll hydraulic machine
US5971678A (en) * 1998-06-05 1999-10-26 Novator Ab Spindle unit
US20030113181A1 (en) * 1999-09-01 2003-06-19 Novator Ab Orbital hand tool apparatus for drilling
US6719505B2 (en) * 1999-09-01 2004-04-13 Novator Ab Orbital hand tool apparatus for drilling
US6758642B2 (en) * 1999-09-01 2004-07-06 Novator Ab Orbital hand tool apparatus for drilling
US6663327B2 (en) * 2001-07-20 2003-12-16 Novator Ab Numerically controlled orbital machining apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699403A (en) * 2012-06-21 2012-10-03 天津大学 Automatic spiral hole milling device
CN102794491A (en) * 2012-08-22 2012-11-28 浙江大学 Device and method of automatic helical milling of hole
CN104289743A (en) * 2013-07-17 2015-01-21 株式会社神崎高级工机制作所 Boring device
CN103659403A (en) * 2013-11-25 2014-03-26 中国航空工业集团公司北京航空制造工程研究所 Hole forming device capable of adjusting aperture of formed hole on line
WO2016209145A1 (en) * 2015-06-26 2016-12-29 Novator Ab Orbital machine, method, computer program and a computer program product for using said machine

Also Published As

Publication number Publication date
EP1635975B1 (en) 2010-01-13
ES2337057T3 (en) 2010-04-20
WO2004113002A1 (en) 2004-12-29
EP1635975A1 (en) 2006-03-22
ATE454945T1 (en) 2010-01-15
DE602004025109D1 (en) 2010-03-04
WO2004113002A8 (en) 2005-02-24
JP4653085B2 (en) 2011-03-16
JP2007521143A (en) 2007-08-02
US7189038B2 (en) 2007-03-13

Similar Documents

Publication Publication Date Title
AU2002316018B2 (en) Numerically controlled orbital machining apparatus
US20100183395A1 (en) Orbital drilling tool unit
AU2002316018A1 (en) Numerically controlled orbital machining apparatus
EP1635975B1 (en) Orbital machining apparatus with drive element with drive pins
WO2003080277A1 (en) Orbital hand tool apparatus for drilling
AU731880B2 (en) External abrasive machine
PL92571B1 (en) Grinding machine for machining polygonal workpieces[US3886693A]
JP4016426B2 (en) Method and apparatus for drilling conical or predetermined holes in a workpiece
CA2092930C (en) Tool spindle, in particular boring spindle
JP3733712B2 (en) Rotational power transmission device
US5984599A (en) Method and machine for rotary milling the crankpins and main bearing pins of crankshafts
JPH10151501A (en) Attachment for lathing eccentric or elliptic shaft
RU2686426C1 (en) Composite for cutting of long-length workpiece
US6772659B2 (en) Tool head for use in machine tools
JP2001047162A (en) Spinning device
US11883890B2 (en) Orbital drilling device
JPH11514594A (en) Cutting device with rotating head
JPH0557513A (en) Contouring device for multi-spindle head
JP2019508278A (en) Tool spindle
JP2000280121A (en) Thread cutting and cutting apparatus therefor
JP4566315B2 (en) Cutting method
JPH0627286Y2 (en) Revolution radius adjusting device for revolution tool
JPH0529814Y2 (en)
JPH11123626A (en) Revolution control device for spindle
JP2005153074A (en) Crankshaft machining device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVATOR AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STUXBERG, MATS;PETTERSSON, BJORN;REEL/FRAME:018802/0615

Effective date: 20060218

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150313