US20060195155A1 - Methods and apparatus for effectuating a lasting change in a neural-function of a patient - Google Patents

Methods and apparatus for effectuating a lasting change in a neural-function of a patient Download PDF

Info

Publication number
US20060195155A1
US20060195155A1 US11/389,770 US38977006A US2006195155A1 US 20060195155 A1 US20060195155 A1 US 20060195155A1 US 38977006 A US38977006 A US 38977006A US 2006195155 A1 US2006195155 A1 US 2006195155A1
Authority
US
United States
Prior art keywords
brain
electrode
housing
stimulation
neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/389,770
Inventor
Andrew Firlik
Jeffrey Balzer
Bradford Gliner
Alan Levy
Carlton Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Neuromodulation Systems Inc
Original Assignee
Northstar Neuroscience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northstar Neuroscience Inc filed Critical Northstar Neuroscience Inc
Priority to US11/389,770 priority Critical patent/US20060195155A1/en
Publication of US20060195155A1 publication Critical patent/US20060195155A1/en
Assigned to ADVANCED NEUROMODULATION SYSTEMS, INC. reassignment ADVANCED NEUROMODULATION SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORTHSTAR NEUROSCIENCE, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0531Brain cortex electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0539Anchoring of brain electrode systems, e.g. within burr hole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36103Neuro-rehabilitation; Repair or reorganisation of neural tissue, e.g. after stroke
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37514Brain implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37518Anchoring of the implants, e.g. fixation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators

Definitions

  • Several embodiments of methods and apparatus in accordance with the invention are related to electrically stimulating a region in the cortex or other area of the brain to bring about a lasting change in a physiological function and/or a mental process of a patient.
  • a wide variety of mental and physical processes are known to be controlled or are influenced by neural activity in particular regions of the brain.
  • the organization of the brain resembles a map of the human body; this is referred to as the “somatotopic organization of the brain.”
  • This type of location-specific functional organization of the brain in which discrete locations of the brain are statistically likely to control particular mental or physical functions in normal individuals, is herein referred to as the “functional organization of the brain.”
  • a stroke is one very common condition that damages the brain. Strokes are generally caused by emboli (e.g., obstruction of a vessel), hemorrhages (e.g., rupture of a vessel), or thrombi (e.g., clotting) in the vascular system of a specific region of the cortex, which in turn generally causes a loss or impairment of a neural function (e.g., neural functions related to face muscles, limbs, speech, etc.). Stroke patients are typically treated using physical therapy to rehabilitate the loss of function of a limb or another affected body part.
  • emboli e.g., obstruction of a vessel
  • hemorrhages e.g., rupture of a vessel
  • thrombi e.g., clotting
  • a neural function e.g., neural functions related to face muscles, limbs, speech, etc.
  • drugs such as amphetamines
  • these drugs appear to enhance neural networks; these drugs, however, have limited efficacy because they are very non-selective in their mechanisms of action and cannot be delivered in high concentrations directly at the site where they are needed. Therefore, there is a need to develop effective treatments for rehabilitating stroke patients and patients that have other types of brain damage.
  • Alzheimer's disease for example, is known to affect portions of the cortex, but the cause of Alzheimer's disease and how it alters the neural activity in the cortex is not fully understood. Similarly, the neural activity of brain disorders (e.g., depression and obsessive-compulsive behavior) is also not fully understood. Therefore, there is also a need to develop more effective treatments for other brain disorders and diseases.
  • the neural activity in the brain can be influenced by electrical energy that is supplied from an external source outside of the body.
  • Various neural functions can thus be promoted or disrupted by applying an electrical current to the cortex or other region of the brain.
  • the quest for treating damage, disease and disorders in the brain have led to research directed toward using electricity or magnetism to control brain functions.
  • TES transcranial electrical stimulation
  • Patents directed to TES include: U.S. Pat. No. 5,540,736 issued to Haimovich et al. (for providing analgesia); U.S. Pat. No. 4,140,133 issued to Katrubin et al. (for providing anesthesia); U.S. Pat. No. 4,646,744 issued to Capel (for treating drug addiction, appetite disorders, stress, insomnia and pain); and U.S. Pat. No. 4,844,075 issued to Liss et al. (for treating pain and motor dysfunction associated with cerebral palsy).
  • TES is not widely used because the patients experience a great amount of pain and the electrical field is difficult to direct or focus accurately.
  • TMS transcranial magnetic stimulation
  • TES transcranial magnetic stimulation
  • Patents and published patent applications directed to TMS include: published international patent application WO 98/06342 (describing a transcranial magnetic stimulator and its use in brain mapping studies and in treating depression); U.S. Pat. No. 5,885,976 issued to Sandyk (describing the use of transcranial magnetic stimulation to treat a variety of disorders allegedly related to deficient serotonin neurotransmission and impaired pineal melatonin functions); and U.S. Pat. No. 5,092,835 issued to Schurig et al. (describing the treatment of neurological disorders (such as autism), treatment of learning disabilities, and augmentation of mental and physical abilities of “normal” people by a combination of transcranial magnetic stimulation and peripheral electrical stimulation).
  • TMS is able to produce a lasting change in neural activity within the cortex that occurs for a period of time after terminating the TMS treatment
  • neuroplasticity For example, Ziemann et al., Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block, 18 J Neuroscience 1115 (February 1998), disclose that TMS at subthreshold levels (e.g., levels at which movement was not induced) in neuro-block models that mimic amputation was able to modify the lasting changes in neural activity that normally accompany amputation.
  • subthreshold levels e.g., levels at which movement was not induced
  • TMS Although TMS appears to be able to produce a change in the underlying cortex beyond the time of actual stimulation, TMS is not presently effective for treating many patients because the existing delivery systems are not practical for applying stimulation over an adequate period of time.
  • TMS systems for example, are relatively complex and require stimulation treatments to be performed by a healthcare professional in a hospital or physician's office.
  • TMS systems also may not be reliable for longer-term therapies because it is difficult to (a) accurately localize the region of stimulation in a reproducible manner, and (b) hold the device in the correct position over the cranium for a long period, especially when a patient moves or during rehabilitation.
  • current TMS systems generally do not sufficiently focus the electromagnetic energy on the desired region of the cortex for many applications. As such, the potential therapeutic benefit of TMS using existing equipment is relatively limited.
  • Schiff's implant is designed to increase the level of arousal of a comatose patient by stimulating deep brain centers involved in consciousness.
  • Schiff's invention involves electrically stimulating at least a portion of the patient's intralaminar nuclei (i.e., the deep brain) using, e.g., an implantable multipolar electrode and either an implantable pulse generator or an external radiofrequency controlled pulse generator.
  • Schiff's deep brain implant is highly invasive, however, and could involve serious complications for the patient.
  • U.S. Pat. No. 6,066,163 issued to John acknowledges the ability of the brain to overcome some of the results of an injury through neuroplasticity. John also cites a series of articles as evidence that direct electrical stimulation of the brain can reverse the effects of a traumatic injury or stroke on the level of consciousness.
  • the system disclosed in John stimulates the patient and modifies the parameters of stimulation based upon the outcome of comparing the patient's present state with a reference state in an effort to optimize the results.
  • the invention disclosed in John is directed to a highly invasive deep brain stimulation system.
  • King discloses a device for cortical surface stimulation having electrodes mounted on a paddle implanted under the skull of the patient.
  • the electrodes are implanted on the surface of the brain in a fixed position.
  • the electrodes in King accordingly cannot move to accommodate changes in the shape of the brain.
  • King also discloses that the electrical pulses are generated by a pulse generator that is implanted in the patient remotely from the cranium (e.g., subclavicular implantation).
  • the pulse generator is not directly connected to the electrodes, but rather it is electrically coupled to the electrodes by a cable that extends from the remotely implanted pulse generator to the electrodes implanted in the cranium.
  • the cable disclosed in King extends from the paddle, around the skull, and down the neck to the subclavicular location of the pulse generator.
  • King discloses implanting the electrodes in contact with the surface of the cortex to create paresthesia, which is a sensation of vibration or “buzzing” in a patient. More specifically, King discloses inducing paresthesia in large areas by applying electrical stimulation to a higher element of the central nervous system (e.g., the cortex). As such, King discloses placing the electrodes against particular regions of the brain to induce the desired paresthesia. The purpose of creating paresthesia over a body region is to create a distracting stimulus that effectively reduces perception of pain in the body region. Thus, King appears to require stimulation above activation levels.
  • King discloses a device that stimulates a region on the cortical surface, this device is expected to have several drawbacks.
  • King discloses directly activating the neurons to cause paresthesia, which is not expected to cause entrainment of the activity in the stimulated population of neurons with other forms of therapy or adaptive behavior, such as physical or occupational therapy.
  • King is expected to have several drawbacks.
  • FIG. 1A is a schematic view of neurons.
  • FIG. 1B is a graph illustrating firing an “action potential” associated with normal neural activity.
  • FIG. 1C is a flowchart of a method for effectuating a neural-function of a patient associated with a location in the brain in accordance with one embodiment of the invention.
  • FIG. 2 is a top plan view of a portion of a brain illustrating neural activity in a first region of the brain associated with the neural-function of the patient according to the somatotopic organization of the brain.
  • FIG. 3 is a top plan image of a portion of the brain illustrating a loss of neural activity associated with the neural-function of the patient used in one stage of a method in accordance with an embodiment of the invention.
  • FIG. 4 is a top plan image of the brain of FIG. 3 showing a change in location of the neural activity associated with the neural-function of the patient at another stage of a method in accordance with an embodiment of the invention.
  • FIGS. 5A and 5B are schematic illustrations of an implanting procedure at a stage of a method in accordance with an embodiment of the invention.
  • FIG. 5C is a graph illustrating firing an “action potential” associated with stimulated neural activity in accordance with one embodiment of the invention.
  • FIG. 6 is an isometric view of an implantable stimulation apparatus in accordance with one embodiment of the invention.
  • FIG. 7 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 8 is a schematic illustration of a pulse system in accordance with one embodiment of the invention.
  • FIG. 9 is a schematic illustration of an implanted stimulation apparatus and an external controller in accordance with an embodiment of the invention.
  • FIG. 10 is a schematic illustration of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 11 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 12 is a schematic illustration of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 13 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 14 is a bottom plan view and FIG. 15 is a cross-sectional view illustrating an electrode configuration for an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 16 is a bottom plan view and FIG. 17 is a cross-sectional view of an electrode configuration for an implantable stimulation apparatus in accordance with another embodiment of the invention.
  • FIG. 18 is a bottom plan view and FIG. 19 is a cross-sectional view of an electrode configuration in accordance with yet another embodiment of the invention.
  • FIG. 20 is a bottom plan view of an electrode configuration for an implantable stimulation device in accordance with yet another embodiment of the invention.
  • FIG. 21 is a bottom plan view of an electrode configuration for an implantable stimulation device in accordance with another embodiment of the invention.
  • FIG. 22 is a bottom plan view of yet another embodiment of an electrode configuration for use with an implantable stimulation apparatus in accordance with the invention.
  • FIG. 23 is a bottom plan view and FIG. 24 is a cross-sectional view of an electrode configuration for use with a stimulation apparatus in accordance with still another embodiment of the invention.
  • FIG. 25 is an isometric view schematically illustrating a part of an implantable stimulation apparatus with a mechanical biasing element in accordance with an embodiment of the invention.
  • FIG. 26 is a cross-sectional view of a stimulation apparatus having a mechanical biasing element that has been implanted into a skull of a patient in accordance with an embodiment of the invention.
  • FIG. 27 is a cross-sectional view schematically illustrating a part of a stimulation apparatus having a biasing element in accordance with an embodiment of the invention.
  • FIG. 28 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with still another embodiment of the invention.
  • FIG. 29 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with yet another embodiment of the invention.
  • FIG. 30 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with yet another embodiment of the invention.
  • FIG. 31 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus having an external power source and pulse generator in accordance with an embodiment of the invention.
  • FIG. 32 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus having an external power source and pulse generator in accordance with another embodiment of the invention.
  • FIG. 33 is a cross-sectional view illustrating in greater detail a portion of the implantable stimulation apparatus of FIG. 32 .
  • FIG. 34 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus and an external controller in accordance with another embodiment of the invention.
  • FIG. 35 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus and an external controller in accordance with yet another embodiment of the invention.
  • FIG. 36 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus in accordance with yet another embodiment of the invention.
  • FIG. 37 is an isometric view and FIG. 38 is a cross-sectional view illustrating an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 39 is a cross-sectional view illustrating an implantable stimulation apparatus in accordance with yet another embodiment of the invention.
  • FIG. 40 is a schematic illustration of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • the following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient.
  • Several embodiments of methods in accordance with the invention are directed toward enhancing or otherwise inducing neuroplasticity to effectuate a particular neural-function.
  • Neuroplasticity refers to the ability of the brain to change or adapt over time. It was once thought adult brains became relatively “hard wired” such that functionally significant neural networks could not change significantly over time or in response to injury. It has become increasingly more apparent that these neural networks can change and adapt over time so that meaningful function can be regained in response to brain injury.
  • An aspect of several embodiments of methods in accordance with the invention is to provide the appropriate triggers for adaptive neuroplasticity. These appropriate triggers appear to cause or enable increased synchrony of functionally significant populations of neurons in a network.
  • Electrically enhanced or induced neural stimulation in accordance with several embodiments of the invention excites a portion of a neural network involved in a functionally significant task such that a selected population of neurons can become more strongly associated with that network. Because such a network will subserve a functionally meaningful task, such as motor relearning, the changes are more likely to be lasting because they are continually being reinforced by natural use mechanisms.
  • the nature of stimulation in accordance with several embodiments of the invention ensures that the stimulated population of neurons links to other neurons in the functional network. It is expected that this occurs because action potentials are not actually caused by the stimulation, but rather are caused by interactions with other neurons in the network.
  • Several aspects of the electrical stimulation in accordance with selected embodiments of the invention simply allows this to happen with an increased probability when the network is activated by favorable activities, such as rehabilitation or limb use.
  • the methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.).
  • brain damage e.g., stroke, trauma, etc.
  • brain disease e.g., Alzheimer's, Pick's, Parkinson's, etc.
  • brain disorders e.g., epilepsy, depression, etc.
  • the methods in accordance with the invention can also be used to enhance functions of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain).
  • Certain embodiments of methods in accordance with the invention electrically stimulate the brain at a stimulation site where neuroplasticity is occurring.
  • the stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular function according to the functional organization of the brain.
  • the method can include identifying the location where such neuroplasticity is present. This particular procedure may accordingly enhance a change in the neural activity to assist the brain in performing the particular neural function.
  • an aspect is to induce neuroplasticity at a stimulation site where it is expected to occur. This particular procedure may thus induce a change in the neural activity to instigate performance of the neural function.
  • FIGS. 1A-40 The specific details of certain embodiments of the invention are set forth in the following description and in FIGS. 1A-40 to provide a thorough understanding of these embodiments to a person of ordinary skill in the art. More specifically, several embodiments of methods in accordance with the invention are initially described with reference to FIGS. 1-5C , and then several embodiments of devices for stimulating the cortical and/or deep-brain regions of the brain are described with reference to FIGS. 6-40 . A person skilled in the art will understand that the present invention may have additional embodiments, or that the invention can be practiced without several of the details described below.
  • FIG. 1A is a schematic representation of several neurons N 1 -N 3 and FIG. 1B is a graph illustrating an “action potential” related to neural activity in a normal neuron.
  • Neural activity is governed by electrical impulses generated in neurons.
  • neuron N 1 can send excitatory inputs to neuron N 2 (e.g., times t 1 , t 3 and t 4 in FIG. 1B ), and neuron N 3 can send inhibitory inputs to neuron N 2 (e.g., time t 2 in FIG. 1B ).
  • the neurons receive/send excitatory and inhibitory inputs from/to a population of other neurons.
  • the excitatory and inhibitory inputs can produce “action potentials” in the neurons, which are electrical pulses that travel through neurons by changing the flux of sodium (Na) and potassium (K) ions across the cell membrane.
  • An action potential occurs when the resting membrane potential of the neuron surpasses a threshold level. When this threshold level is reached, an “all-or-nothing” action potential is generated.
  • the excitatory input at time t 5 causes neuron N 2 to “fire” an action potential because the input exceeds the threshold level for generating the action potential.
  • the action potentials propagate down the length of the axon (the long process of the neuron that makes up nerves or neuronal tracts) to cause the release of neurotransrmitters from that neuron that will further influence adjacent neurons.
  • FIG. 1C is a flowchart illustrating a method 100 for effectuating a neural-function in a patient in accordance with an embodiment of the invention.
  • the neural-function for example, can control a specific mental process or physiological function, such as a particular motor function or sensory function (e.g., movement of a limb) that is normally associated with neural activity at a “normal” location in the brain according to the functional organization of the brain.
  • a specific mental process or physiological function such as a particular motor function or sensory function (e.g., movement of a limb) that is normally associated with neural activity at a “normal” location in the brain according to the functional organization of the brain.
  • at least some neural activity related to the neural-function can be occurring at a site in the brain.
  • the site of the neural activity may be at the normal location where neural activity typically occurs to carry out the neural-function according to the functional organization of the brain, or the site of the neural activity may be at a different location where the brain has recruited material to perform the neural activity. In either situation, one aspect of several embodiments of the method 100 is to determine the location in the brain where this neural activity is present.
  • the method 100 includes a diagnostic procedure 102 involving identifying a stimulation site at a location of the brain where an intended neural activity related to the neural-function is present.
  • the diagnostic procedure 102 includes generating the intended neural activity in the brain from a “peripheral” location that is remote from the normal location, and then determining where the intended neural activity is actually present in the brain.
  • the diagnostic procedure 102 can be performed by identifying a stimulation site where neural activity has changed in response to a change in the neural-function.
  • the method 100 continues with an implanting procedure 104 involving positioning first and second electrodes at the identified stimulation site, and a stimulating procedure 106 involving applying an electrical current between the first and second electrodes.
  • the implanting procedure 104 position two or more electrodes at the stimulation site, but other embodiments of the implanting procedure involve positioning only one electrode at the stimulation site and another electrode remotely from the stimulation site.
  • the implanting procedure 104 of the method 100 can include implanting at least one electrode at the stimulation site.
  • the procedures 102 - 106 are described in greater detail below.
  • FIGS. 2-4 illustrate an embodiment of the diagnostic procedure 102 .
  • the diagnostic procedure 102 can be used to determine the region of the brain where stimulation will likely effectuate the desired function, such as rehabilitating a loss of a neural-function caused by a stroke, trauma, disease or other circumstance.
  • FIG. 2 is an image of a normal, healthy brain 200 having a first region 210 where the intended neural activity occurs to effectuate a specific neural-function in accordance with the functional organization of the brain.
  • the neural activity in the first region 210 shown in FIG. 2 is generally associated with the movement of a patient's fingers.
  • the first region 210 can have a high-intensity area 212 and a low-intensity area 214 in which different levels of neural activity occur. It is not necessary to obtain an image of the neural activity in the first region 210 shown in FIG. 2 to carry out the diagnostic procedure 102 , but rather it is provided to show an example of neural activity that typically occurs at a “normal location” according to the functional organization of the brain 200 for a large percentage of people with normal brain function. It will be appreciated that the actual location of the first region 210 will generally vary between individual patients.
  • the diagnostic procedure 102 begins by taking an image of the brain 200 that is capable of detecting neural activity to determine whether the intended neural activity associated with the particular neural function of interest is occurring at the region of the brain 200 where it normally occurs according to the functional organization of the brain.
  • FIG. 3 is an image of the brain 200 after the first region 210 has been affected (e.g., from a stroke, trauma or other cause). As shown in FIG. 3 , the neural activity that controlled the neural-function for moving the fingers no longer occurs in the first region 210 . The first region 210 is thus “inactive,” which is expected to result in a corresponding loss of the movement and/or sensation in the fingers.
  • the damage to the brain 200 may result in only a partial loss of the neural activity in the damaged region.
  • the image shown in FIG. 3 establishes that the loss of the neural-function is related to the diminished neural activity in the first region 210 .
  • the brain 200 may accordingly recruit other neurons to perform neural activity for the affected neural-function (i.e., neuroplasticity), or the neural activity may not be present at any location in the brain.
  • FIG. 4 is an image of the brain 200 illustrating a plurality of potential stimulation sites 220 and 230 for effectuating the neural-function that was originally performed in the first region 210 shown in FIG. 2 .
  • FIGS. 3 and 4 show an example of neuroplasticity in which the brain compensates for a loss of neural-function in one region of the brain by recruiting other regions of the brain to perform neural activity for carrying out the affected neural-function.
  • the diagnostic procedure 102 utilizes the neuroplasticity that occurs in the brain to identify the location of a stimulation site that is expected to be more responsive to the results of an electrical, magnetic, sonic, genetic, biologic, and/or pharmaceutical procedure to effectuate the desired neural-function.
  • One embodiment of the diagnostic procedure 102 involves generating the intended neural activity remotely from the first region 210 of the brain, and then detecting or sensing the location in the brain where the intended neural activity has been generated.
  • the intended neural activity can be generated by applying an input that causes a signal to be sent to the brain.
  • the affected limb is moved and/or stimulated while the brain is scanned using a known imaging technique that can detect neural activity (e.g., functional MRI, positron emission tomography, etc.).
  • the affected limb can be moved by a practitioner or the patient, stimulated by sensory tests (e.g., pricking), or subject to peripheral electrical stimulation.
  • the movement/stimulation of the affected limb produces a peripheral neural signal from the limb that is expected to generate a response neural activity in the brain.
  • the location in the brain where this response neural activity is present can be identified using the imaging technique.
  • FIG. 4 for example, can be created by moving the affected fingers and then noting where neural activity occurs in response to the peripheral stimulus.
  • this embodiment may accurately identify where the brain has recruited matter (i.e., sites 220 and 230 ) to perform the intended neural activity associated with the neural-function.
  • An alternative embodiment of the diagnostic procedure 102 involves identifying a stimulation site at a second location of the brain where the neural activity has changed in response to a change in the neural-function of the patient.
  • This embodiment of the method does not necessarily require that the intended neural activity be generated by peripherally actuating or stimulating a body part.
  • the brain can be scanned for neural activity associated with the impaired neural-function as a patient regains use of an affected limb or learns a task over a period of time.
  • This embodiment can also include peripherally generating the intended neural activity remotely from the brain explained above.
  • the diagnostic procedure 102 involves identifying a stimulation site at a location of the brain where the intended neural activity is developing to perform the neural-function.
  • This embodiment is similar to the other embodiments of the diagnostic procedure 102 , but it can be used to identify a stimulation site at (a) the normal region of the brain where the intended neural activity is expected to occur according to the functional organization of the brain and/or (b) a different region where the neural activity occurs because the brain is recruiting additional matter to perform the neural-function.
  • This particular embodiment of the method involves monitoring neural activity at one or more locations where the neural activity occurs in response to the particular neural-function of interest.
  • the neural activity can be monitored while a person performs the task or thinks about performing the task.
  • the stimulation sites can be defined by the areas of the brain where the neural activity has the highest intensity, the greatest increases, and/or other parameters that indicate areas of the brain that are being used to perform the particular task.
  • FIGS. 5A and 5B are schematic illustrations of the implanting procedure 104 described above with reference to FIG. 1C for positioning the first and second electrodes relative to a portion of the brain of a patient 500 .
  • a stimulation site 502 is identified in accordance with an embodiment of the diagnostic procedure 102 .
  • a skull section 504 is removed from the patient 500 adjacent to the stimulation site 502 .
  • the skull section 504 can be removed by boring a hole in the skull in a manner known in the art, or a much smaller hole can be formed in the skull using drilling techniques that are also known in the art. In general, the hole can be 0.2-4.0 cm in diameter. Referring to FIG.
  • an implantable stimulation apparatus 510 having first and second electrodes 520 can be implanted in the patient 500 .
  • Suitable techniques associated with the implantation procedure are known to practitioners skilled in the art.
  • a pulse system After the stimulation apparatus 510 has been implanted in the patient 500 , a pulse system generates electrical pulses that are transmitted to the stimulation site 502 by the first and second electrodes 520 .
  • Stimulation apparatus suitable for carrying out the foregoing embodiments of methods in accordance with the invention are described in more detail below with reference to the FIGS. 6-40 .
  • Several embodiments of methods for enhancing neural activity in accordance with the invention are expected to provide lasting results that promote the desired neural-function.
  • electrical and magnetic stimulation techniques typically stimulated the normal locations of the brain where neural activity related to the neural-functions occurred according to the functional organization of the brain.
  • Such conventional techniques may not be effective because the neurons in the “normal locations” of the brain may not be capable of carrying out the neural activity because of brain damage, disease, disorder, and/or because of variations of the location specific to individual patients.
  • Several embodiments of methods for enhancing neural activity in accordance with the invention overcome this drawback by identifying a stimulation site based on neuroplastic activity that appears to be related to the neural-function.
  • therapies e.g., electrical, magnetic, genetic, biologic, and/or pharmaceutical
  • therapies applied to this location will be more effective than conventional techniques. This is because the location that the brain is recruiting for the neural activity may not be the “normal location” where the neuro activity would normally occur according to the functional organization of the brain. Therefore, several embodiments of methods for enhancing neural activity in accordance with the invention are expected to provide lasting results because the therapies are applied to the portion of the brain where neural activity for carrying out the neural-function actually occurs in the particular patient.
  • the method 100 for effectuating a neural-function can also be used to induce neural activity in a region of the brain where such neural activity is not present.
  • the embodiments of the method 100 for inducing neural activity initiate the neural activity at a stimulation site where it is estimated that neuroplasticity will occur.
  • an image of the brain seeking to locate where neuroplasticity is occurring may be similar to FIG. 3 .
  • An aspect of inducing neural activity therefore, is to develop a procedure to determine where neuroplasticity is likely to occur.
  • a stimulation site may be identified by estimating where the brain will likely recruit neurons for performing the neural-function.
  • the location of the stimulation site is estimated by defining a region of the brain that is proximate to the normal location where neural activity related to the neural-function is generally present according to the functional organization of the brain.
  • An alternative embodiment for locating the stimulation site includes determining where neuroplasticity has typically occurred in patients with similar symptoms. For example, if the brain typically recruits a second region of the cortex to compensate for a loss of neural activity in the normal region of the cortex, then the second region of the cortex can be selected as the stimulation site either with or without imaging the neural activity in the brain.
  • Several embodiments of methods for inducing neural activity in accordance with the invention are also expected to provide lasting results that initiate and promote a desired neural-function.
  • therapies applied to this location may be more effective than conventional therapies for reasons that are similar to those explained above regarding enhancing neural activity.
  • methods for inducing neural activity may be easier and less expensive to implement because they do not require generating neural activity and/or imaging the brain to determine where the intended neural activity is occurring before applying the therapy.
  • the embodiments of the electrical stimulation methods described above are expected to be particularly useful for rehabilitating a loss of mental functions, motor functions and/or sensory functions caused by damage to the brain.
  • the brain has been damaged by a stroke or trauma (e.g., automobile accident).
  • the extent of the particular brain damage can be assessed using functional MRI or another appropriate imaging technique as explained above with respect to FIG. 3 .
  • a stimulation site can then be identified by: (a) peripherally stimulating a body part that was affected by the brain damage to induce the intended neural activity and determining the location where a response neural activity occurs; (b) determining where the neural activity has changed as a patient gains more use of the affected body part; and/or (c) estimating the location that the brain may recruit neurons to carry out the neural activity that was previously performed by the damaged portion of the brain.
  • An electrical stimulation therapy can then be applied to the selected stimulation site by placing the first and second electrodes relative to the stimulation site to apply an electrical current in that portion of the brain. As explained in more detail below, it is expected that applying an electrical current to the portion of the brain that has been recruited to perform the neural activity related to the affected body part will produce a lasting neurological effect for rehabilitating the affected body part.
  • the electrical stimulation can be applied directly to the pial surface of the brain or at least proximate to the pial surface (e.g., the dura mater, the fluid surrounding the cortex, or neurons within the cortex). Suitable devices for applying the electrical stimulation to the cortex are described in detail with reference to FIGS. 6-40 .
  • the electrical stimulation methods can also be used with adjunctive therapies to rehabilitate damaged portions of the brain.
  • the electrical stimulation methods can be combined with physical therapy and/or drug therapies to rehabilitate an affected neural function. For example, if a stroke patient has lost the use of a limb, the patient can be treated by applying the electrical therapy to a stimulation site where the intended neural activity is present while the affected limb is also subject to physical therapy.
  • An alternative embodiment can involve applying the electrical therapy to the stimulation site and chemically treating the patient using amphetamines or other suitable drugs.
  • the stimulation site can be identified by monitoring the neural activity using functional MRI or other suitable imaging techniques over a period of time to determine where the brain is recruiting material to perform the neural activity that is being affected by the disease. It may also be possible to identify the stimulation site by having the patient try to perform an act that the particular disease has affected, and monitoring the brain to determine whether any response neural activity is present in the brain. After identifying where the brain is recruiting additional matter, the electrical stimulation can be applied to this portion of the brain. It is expected that electrically stimulating the regions of the brain that have been recruited to perform the neural activity which was affected by the disease will assist the brain in offsetting the damage caused by the disease.
  • the embodiments of the electrical stimulation methods described above are also expected to be useful for treating neurological disorders, such as depression, passive-aggressive behavior, weight control, and other disorders.
  • the electrical stimulation can be applied to a stimulation site in the cortex or another suitable part of the brain where neural activity related to the particular disorder is present.
  • the embodiments of electrical stimulation methods for carrying out the particular therapy can be adapted to either increase or decrease the particular neural activity in a manner that produces the desired results. For example, an amputee may feel phantom sensations associated with the amputated limb. This phenomenon can be treated by applying an electrical pulse that reduces the phantom sensations.
  • the electrical therapy can be applied so that it will modulate the ability of the neurons in that portion of the brain to execute sensory functions.
  • the electrical stimulation methods in accordance with the invention can use several different pulse forms to effectuate the desired neuroplasticity.
  • the pulses can be a bi-phasic or monophasic stimulus that is applied to achieve a desired potential in a sufficient percentage of a population of neurons at the stimulation site.
  • the pulse form has a frequency of approximately 2-1000 Hz, but the frequency may be particularly useful in the range of approximately 40-200 Hz. For example, initial clinical trials are expected to use a frequency of approximately 50-100 Hz.
  • the pulses can also have pulse widths of approximately 10 ⁇ s-100 ms, or more specifically the pulse width can be approximately 20-200 ⁇ s. For example, a pulse width of 50-100 ⁇ s may produce beneficial results.
  • one particularly useful application of the invention involves enhancing or inducing neuroplasticity by raising the resting membrane potential of neurons to bring the neurons closer to the threshold level for firing an action potential. Because the stimulation raises the resting membrane potential of the neurons, it is expected that these neurons are more likely to “fire” an action potential in response to excitatory input at a lower level.
  • FIG. 5C is a graph illustrating applying a subthreshold potential to the neurons N 1 -N 3 of FIG. 1A .
  • the excitory/inhibitory inputs from other neurons do not “bridge-the-gap” from the resting potential at ⁇ X mV to the threshold potential.
  • the electrical stimulation is applied to the brain to raise the resting potential of neurons in the stimulated population such that the resting potential is at ⁇ Y mV.
  • the neurons receive another excitatory input, even a small input exceeds the gap between the raised resting potential ⁇ Y mV and the threshold potential to induce action potentials in these neurons.
  • the electrical stimulation can be applied to raise the resting potential of a sufficient number of neurons to approximately ⁇ 52 to ⁇ 60 mV.
  • the pulse form of the electrical stimulation (e.g., the frequency, pulse width, wave form, and voltage potential) is selected to raise the resting potential in a sufficient number neurons at the stimulation site to a level that is less than a threshold potential for a statistical portion of the neurons in the population.
  • the pulse form for example, can be selected so that the applied voltage of the stimulus achieves a change in the resting potential of approximately 10%-95%, and more specifically of 60%-80%, of the difference between the unstimulated resting potential and the threshold potential.
  • a subthreshold application for treating a patient's hand electrical stimulation is not initially applied to the stimulation site.
  • physical therapy related to the patient's hand may cause some activation of a particular population of neurons that is known to be involved in “hand function,” only a low level of activation might occur because physical therapy only produces a low level of action potential generation in that population of neurons.
  • the subthreshold electrical stimulation is applied, the resting membrane potentials of the neurons in the stimulated population are elevated. These neurons now are much closer to the threshold for action potential formation such that when the same type of physical therapy is given, this population of cells will have a higher level of activation because these cells are more likely to fire action potentials.
  • Subthreshold stimulation may produce better results than simply stimulating the neurons with sufficient energy levels to exceed the threshold for action potential formation.
  • One aspect of subthreshold stimulation is to increase the probability that action potentials will occur in response to the ordinary causes of activation—such as physical therapy. This will allow the neurons in this functional network to become entrained together, or “learn” to become associated with these types of activities. If neurons are given so much electricity that they continually fire action potentials without additional excitatory inputs (suprathreshold stimulation), this will create “noise” and disorganization that will not likely cause improvement in function. In fact, neurons that are “overdriven” soon deplete their neurotransmitters and effectively become silent.
  • subthreshold stimulation is very different than suprathreshold stimulation.
  • Subthreshold stimulation in accordance with several embodiments of the invention does not intend to directly make neurons fire action potentials with the electrical stimulation in a significant population of neurons at the stimulation site. Instead, subthreshold stimulation attempts to decrease the “activation energy” required to activate a large portion of the neurons at the stimulation site.
  • subthreshold stimulation in accordance with certain embodiments of the invention is expected to increase the probability that the neurons will fire in response to the usual intrinsic triggers, such as trying to move a limb, physical therapy, or simply thinking about movement of a limb, etc.
  • coincident stimulation associated with physical therapy is expected to increase the probability that the action potentials that are occurring with an increased probability due to the subthreshold stimulation will be related to meaningful triggers, and not just “noise.”
  • the stimulus parameters set forth above such as a frequency selection of approximately 50-100 Hz and an amplitude sufficient to achieve an increase of 60% to 80% of the difference between the resting potential and the threshold potential are specifically selected so that they will increase the resting membrane potential of the neurons, thereby increasing the likelihood that they will fire action potentials, without directly causing action potentials in most of the neuron population.
  • a frequency selection of approximately 50-100 Hz and an amplitude sufficient to achieve an increase of 60% to 80% of the difference between the resting potential and the threshold potential are specifically selected so that they will increase the resting membrane potential of the neurons, thereby increasing the likelihood that they will fire action potentials, without directly causing action potentials in most of the neuron population.
  • stimulation apparatus in accordance with the invention are designed to precisely apply a pulse form that produces subthreshold stimulation by selectively stimulating regions of the cerebral cortex of approximately 1-2 cm (the estimated size of a “functional unit” of cortex), directly contacting the pial surface with the electrodes to consistently create the same alterations in resting membrane potential, and/or biasing the electrodes against the pial surface to provide a positive connection between the electrodes and the cortex.
  • FIGS. 6-40 illustrate stimulation apparatus in accordance with several embodiments of the invention for electrically stimulating regions of the brain in accordance with one or more of the methods described above.
  • the devices illustrated in FIGS. 6-40 are generally used to stimulate a region of the cortex proximate to the pial surface of the brain (e.g., the dura mater, the pia mater, the fluid between the dura mater and the pia mater, and a depth in the cortex outside of the white matter of the brain).
  • the devices can also be adapted for stimulating other portions of the brain in other embodiments.
  • FIG. 6 is an isometric view and FIG. 7 is a cross-sectional view of a stimulation apparatus 600 in accordance with an embodiment of the invention for stimulating a region of the cortex proximate to the pial surface.
  • the stimulation apparatus 600 includes a support member 610 , an integrated pulse-system 630 (shown schematically) carried by the support member 610 , and first and second electrodes 660 (identified individually by reference numbers 660 a and 660 b ).
  • the first and second electrodes 660 are electrically coupled to the pulse system 630 .
  • the support member 610 can be configured to be implanted into the skull or another intracranial region of a patient.
  • the support member 610 includes a housing 612 and an attachment element 614 connected to the housing 612 .
  • the housing 612 can be a molded casing formed from a biocompatible material that has an interior cavity for carrying the pulse system 630 .
  • the housing can alternatively be a biocompatible metal or another suitable material.
  • the housing 612 can have a diameter of approximately 1-4 cm, and in many applications the housing 612 can be 1.5-2.5 cm in diameter.
  • the housing 612 can also have other shapes (e.g., rectilinear, oval, elliptical) and other surface dimensions.
  • the stimulation apparatus 600 can weigh 35 g or less and/or occupy a volume of 20 cc or less.
  • the attachment element 614 can be a flexible cover, a rigid plate, a contoured cap, or another suitable element for holding the support member 610 relative to the skull or other body part of the patient.
  • the attachment element 614 is a mesh, such as a biocompatible polymeric mesh, metal mesh, or other suitable woven material.
  • the attachment element 614 can alternatively be a flexible sheet of Mylar, a polyester, or another suitable material.
  • FIG. 7 is a cross-sectional view of the stimulation apparatus 600 after it has been implanted into a patient in accordance with an embodiment of the invention.
  • the stimulation apparatus 600 is implanted into the patient by forming an opening in the scalp 702 and cutting a hole 704 through the skull 700 and through the dura mater 706 .
  • the hole 704 should be sized to receive the housing 612 of the support member 610 , and in most applications, the hole 704 should be smaller than the attachment element 614 .
  • a practitioner inserts the support member 610 into the hole 704 and then secures the attachment element 614 to the skull 700 .
  • the attachment element 614 can be secured to the skull using a plurality of fasteners 618 (e.g., screws, spikes, etc.) or an adhesive.
  • a plurality of downwardly depending spikes can be formed integrally with the attachment element 614 to define anchors that can be driven into the skull 700 .
  • the embodiment of the stimulation apparatus 600 shown in FIG. 7 is configured to be implanted into a patient so that the electrodes 660 contact a desired portion of the brain at the stimulation site.
  • the housing 612 and the electrodes 660 can project from the attachment element 614 by a distance “D” such that the electrodes 660 are positioned at least proximate to the pia mater 708 surrounding the cortex 709 .
  • the electrodes 660 can project from a housing 612 as shown in FIG. 7 , or the electrodes 660 can be flush with the interior surface of the housing 612 .
  • the housing 612 has a thickness “T” and the electrodes 660 project from the housing 612 by a distance “P” so that the electrodes 660 press against the surface of the pia mater 708 .
  • the thickness of the housing 612 can be approximately 0.5-4 cm, and is more generally about 1-2 cm.
  • the configuration of the stimulation apparatus 600 is not limited to the embodiment shown in FIGS. 6 and 7 , but rather the housing 612 , the attachment element 614 , and the electrodes 660 can be configured to position the electrodes in several different regions of the brain.
  • the housing 612 and the electrodes 660 can be configured to position the electrodes deep within the cortex 709 , and/or a deep brain region 710 .
  • the electrodes can be flush with the housing or extend 0.1 mm to 5 cm from the housing. More specific embodiments of pulse system and electrode configurations for the stimulation apparatus will be described below.
  • the stimulation apparatus 600 are expected to be more effective than existing transcranial electrical stimulation devices and transcranial magnetic stimulation devices. It will be appreciated that much of the power required for transcranial therapies is dissipated in the scalp and skull before it reaches the brain. In contrast to conventional transcranial stimulation devices, the stimulation apparatus 600 is implanted so that the electrodes are at least proximate to the pial surface of the brain 708 . Several embodiments of methods in accordance with the invention can use the stimulation apparatus 600 to apply an electrical therapy directly to the pia mater 708 , the dura mater 706 , and/or another portion of the cortex 709 at significantly lower power levels than existing transcranial therapies.
  • a potential of approximately 1 mV to 10 V can be applied to the electrodes 660 ; in many instances a potential of 100 mV to 5 V can be applied to the electrodes 660 for selected applications. It will also be appreciated that other potentials can be applied to the electrodes 660 of the stimulation apparatus 600 in accordance with other embodiments of the invention.
  • Selected embodiments of the stimulation apparatus 600 are also capable of applying stimulation to a precise stimulation site. Again, because the stimulation apparatus 600 positions the electrodes 660 at least proximate to the pial surface 708 , precise levels of stimulation with good pulse shape fidelity will be accurately transmitted to the stimulation site in the brain. It will be appreciated that transcranial therapies may not be able to apply stimulation to a precise stimulation site because the magnetic and electrical properties of the scalp and skull may vary from one patient to another such that an identical stimulation by the transcranial device may produce a different level of stimulation at the neurons in each patient. Moreover, the ability to focus the stimulation to a precise area is hindered by delivering the stimulation transcranially because the scalp, skull and dura all diffuse the energy from a transcranial device. Several embodiments of the stimulation apparatus 600 overcome this drawback because the electrodes 660 are positioned under the skull 700 such that the pulses generated by the stimulation apparatus 600 are not diffused by the scalp 702 and skull 700 .
  • the pulse system 630 shown in FIGS. 6 and 7 generates and/or transmits electrical pulses to the electrodes 660 to create an electrical field at a stimulation site in a region of the brain.
  • the particular embodiment of the pulse system 630 shown in FIG. 7 is an “integrated” unit in that is carried by the support member 610 .
  • the pulse system 630 for example, can be housed within the housing 612 so that the electrodes 660 can be connected directly to the pulse system 630 without having leads outside of the stimulation apparatus 600 .
  • the distance between the electrodes 660 and the pulse system 630 can be less than 4 cm, and it is generally 0.10 to 2.0 cm.
  • the stimulation apparatus 600 can accordingly provide electrical pulses to the stimulation site without having to surgically create tunnels running through the patient to connect the electrodes 660 to a pulse generator implanted remotely from the stimulation apparatus 600 . It will be appreciated, however, that alternative embodiments of stimulation apparatus in accordance with the invention can include a pulse system implanted separately from the stimulation apparatus 600 in the cranium or an external pulse system. Several particular embodiments of pulse systems that are suitable for use with the stimulation apparatus 600 will now be described in more detail.
  • FIGS. 8 and 9 schematically illustrate an integrated pulse system 800 in accordance with one embodiment of the invention for being implanted in the cranium within the stimulation apparatus 600 .
  • the pulse system 800 can include a power supply 810 , an integrated controller 820 , a pulse generator 830 , and a pulse transmitter 840 .
  • the power supply 810 can be a primary battery, such as a rechargeable battery or another suitable device for storing electrical energy.
  • the power supply 810 can be an RF transducer or a magnetic transducer that receives broadcast energy emitted from an external power source and converts the broadcast energy into power for the electrical components of the pulse system 800 .
  • the integrated controller 820 can be a wireless device that responds to command signals sent by an external controller 850 .
  • the integrated controller 820 for example, can communicate with the external controller 850 by RF or magnetic links 860 .
  • the integrated controller 820 provides control signals to the pulse generator 830 in response to the command signals sent by the external controller 850 .
  • the pulse generator 830 can have a plurality of channels that send appropriate electrical pulses to the pulse transmitter 840 , which is coupled to the electrodes 660 . Suitable components for the power supply 810 , the integrated controller 820 , the pulse generator 830 , and the pulse transmitter 840 are known to persons skilled in the art of implantable medical devices.
  • the pulse system 800 can be carried by the support member 610 of the stimulation apparatus 600 in the manner described above with reference to FIGS. 6 and 7 .
  • the external controller 850 can be located externally to the patient 500 so that the external controller 850 can be used to control the pulse system 800 .
  • several patients that require a common treatment can be simultaneously treated using a single external controller 850 by positioning the patients within the operating proximity of the controller 850 .
  • the external controller 850 can contain a plurality of operating codes and the integrated controller 820 for a particular patient can have an individual operating code. A single controller 850 can thus be used to treat a plurality of different patients by entering the appropriate operating code into the controller 850 corresponding to the particular operating codes of the integrated controllers 820 for the patients.
  • FIG. 10 is a schematic view illustrating a pulse system 1000 and an external controller 1010 for use with the stimulation apparatus 600 in accordance with another embodiment of the invention.
  • the external controller 1010 includes a power supply 1020 , a controller 1022 coupled to the power supply 1020 , and a user interface 1024 coupled to the controller 1022 .
  • the external controller 1010 can also include a pulse generator 1030 coupled to the power supply 1020 , a pulse transmitter 1040 coupled to the pulse generator 1030 , and an antenna 1042 coupled to the pulse transmitter 1040 .
  • the external controller 1010 generates the power and the pulse signal, and the antenna 1042 transmits a pulse signal 1044 to the pulse system 1000 in the stimulation apparatus 600 .
  • the pulse system 1000 receives the pulse signal 1044 and delivers an electrical pulse to the electrodes.
  • the pulse system 1000 therefore, does not necessarily include an integrated power supply, controller and pulse generator within the housing 610 because these components are in the external controller 1010 .
  • FIG. 11 is a schematic view illustrating an embodiment of the pulse system 1000 in greater detail.
  • the pulse system 1000 is carried by the support member 610 of the stimulation apparatus 600 .
  • the pulse system 1000 can include an antenna 1060 and a pulse delivery system 1070 coupled to the antenna 1060 .
  • the antenna 1060 receives the pulse signal 1044 from the external controller 1010 and sends the pulse signal 1044 to the pulse delivery system 1070 , which transforms the pulse signal 1044 into electrical pulses.
  • the electrodes 660 can be coupled to the pulse delivery system 1070 .
  • the pulse delivery system 1070 can include a filter to remove noise from the pulse signal 1044 and a pulse former that creates an electrical pulse from the pulse signal 1044 .
  • the pulse former can be driven by the energy in the pulse signal 1044 , or in an alternative embodiment, the pulse system 1000 can also include an integrated power supply to drive the pulse former.
  • FIG. 12 is a schematic view illustrating an embodiment of pulse system 1200 for use in an embodiment of the stimulation apparatus 600 , and an external controller 1210 for controlling the pulse system 1200 remotely from the patient using RF energy.
  • the external controller 1210 includes a power supply 1220 , a controller 1222 coupled to the power supply 1220 , and a pulse generator 1230 coupled to the controller 1222 .
  • the external controller 1210 can also include a modulator 1232 coupled to the pulse generator 1230 and an RF generator 1234 coupled to the modulator 1232 .
  • the external controller 1210 broadcasts pulses of RF energy via an antenna 1242 .
  • the pulse system 1200 can be housed within the stimulation apparatus 600 (not shown).
  • the pulse system 1200 includes an antenna 1260 and a pulse delivery system 1270 .
  • the antenna 1260 incorporates a diode (not shown) that rectifies the broadcast RF energy from the antenna 1242 .
  • the pulse delivery system 1270 can include a filter 1272 and a pulse former 1274 that forms electrical pulses which correspond to the RF energy broadcast from the antenna 1242 .
  • the pulse system 1200 is accordingly powered by the RF energy in the pulse signal from the external controller 1210 such that the pulse system 1200 does not need a separate power supply carried by the stimulation apparatus 600 .
  • FIG. 13 is a cross-sectional view of a pulse system 1300 for use in another embodiment of the implantable stimulation apparatus 600 , together with an external controller 1310 for remotely controlling the pulse system 1300 externally from the patient using magnetic energy.
  • the external controller 1310 includes a power supply 1320 , a controller 1322 coupled to the power supply 1320 , and a user interface 1324 coupled to the controller 1322 .
  • the external controller 1310 can also include a pulse generator 1330 coupled to the controller 1332 , a pulse transmitter 1340 coupled to the pulse generator 1330 , and a magnetic coupler 1350 coupled to the pulse transmitter 1340 .
  • the magnetic coupler 1350 can include a ferrite core 1352 and a coil 1354 wrapped around a portion of the ferrite core 1352 .
  • the coil 1354 can also be electrically connected to the pulse transmitter 1340 so that electrical pulses applied to the coil 1354 generate changes in a corresponding magnetic field.
  • the magnetic coupler 1350 can also include a flexible cap 1356 to position the magnetic coupler 1350 over the implanted stimulation apparatus 600 .
  • the pulse system 1300 can include a ferrite core 1360 and a coil 1362 wrapped around a portion of the ferrite core 1360 .
  • the pulse system 1310 can also include a pulse delivery system 1370 including a rectifier and a pulse former.
  • the ferrite core 1360 and the coil 1362 convert the changes in the magnetic field generated by the magnetic coupler 1350 into electrical pulses that are sent to the pulse delivery system 1370 .
  • the electrodes 660 are coupled to the pulse delivery system 1370 so that electrical pulses corresponding to the electrical pulses generated by the pulse generator 1330 in the external controller 1310 are delivered to the stimulation site on the patient.
  • FIGS. 14-24 illustrate electrodes in accordance with various embodiments of the invention that can be used with the stimulation apparatus disclosed herein.
  • FIGS. 14-22 illustrate embodiments of electrodes configured to apply an electrical current to a stimulation site at least proximate to the pial surface of the cortex
  • FIGS. 23 and 24 illustrate embodiments of electrodes configured to apply an electrical current within the cortex or below the cortex. It will be appreciated that other configurations of electrodes can also be used with other implantable stimulation apparatus.
  • FIG. 14 is a bottom plan view and FIG. 15 is a cross-sectional view of a stimulation apparatus 1400 in accordance with an embodiment of the invention.
  • the stimulation apparatus 1400 includes a first electrode 1410 and a second electrode 1420 concentrically surrounding the first electrode 1410 .
  • the first electrode 1410 can be coupled to the positive terminal of a pulse generator 1430
  • the second electrode 1420 can be coupled to the negative terminal of the pulse generator 1430 .
  • the first and second electrodes 1410 and 1420 generate a toroidal electric field 1440 .
  • FIG. 16 is a bottom plan view and FIG. 17 is a cross-sectional view of a stimulation apparatus 1600 in accordance with another embodiment of the invention.
  • the stimulation apparatus 1600 includes a first electrode 1610 , a second electrode 1620 surrounding the first electrode 1610 , and a third electrode 1630 surrounding the second electrode 1620 .
  • the first electrode 1610 can be coupled to the negative terminals of a first pulse generator 1640 and a second pulse generator 1642 ;
  • the second electrode 1620 can be coupled to the positive terminal of the first pulse generator 1640 ;
  • the third electrode 1630 can be coupled to the positive terminal of the second pulse generator 1642 .
  • the first electrode 1610 and the third electrode 1630 generate a first toroidal electric field 1650
  • the first electrode the 1610 and the second electrode 1620 generate a second toroidal electric field 1660
  • the second toroidal electric field 1660 can be manipulated to vary the depth that the first toroidal electric field 1650 projects away from the base of the stimulation apparatus 1600 .
  • FIG. 18 is a bottom plan view and FIG. 19 is a cross-sectional view of a stimulation apparatus 1800 in accordance with yet another embodiment of the invention.
  • the stimulation apparatus 1800 includes a first electrode 1810 and a second electrode 1820 spaced apart from the first electrode 1810 .
  • the first and second electrodes 1810 and 1820 are linear electrodes which are coupled to opposite terminals of a pulse generator 1830 .
  • the first and second electrodes 1810 and 1820 can generate an approximately linear electric field.
  • FIG. 20 is a bottom plan view of a stimulation apparatus 2000 in accordance with still another embodiment of the invention.
  • the stimulation apparatus 2000 includes a first electrode 2010 , a second electrode 2020 , a third electrode 2030 , and a fourth electrode 2040 .
  • the first and second electrodes 2010 and 2020 are coupled to a first pulse generator 2050
  • the third and fourth electrodes 2030 and 2040 are coupled to a second pulse generator 2060 .
  • the first electrode 2010 is coupled to the positive terminal and the second electrode 2020 is coupled to the negative terminal of the first pulse generator 2050
  • the third electrode 2030 is coupled to the positive terminal and the fourth electrode 2040 is coupled to the negative terminal of the second pulse generator 2060 .
  • the first and second electrodes 2010 and 2020 are expected to generate a first electric field 2070
  • the third and fourth electrodes 2030 and 2040 are expected to generate a second electric field 2072 .
  • the ions will be relatively free to move through the brain such that a number of ions will cross between the first and second electric fields 2070 and 2072 as shown by arrows 2074 .
  • This embodiment provides control of electric field gradients at the stimulation sites.
  • FIG. 21 is a bottom plan view of another embodiment of the stimulation apparatus 2000 .
  • the first electrode 2010 is coupled to the positive terminal and the second electrode 2020 is coupled to the negative terminal of the first pulse generator 2050 .
  • the third electrode 2030 is coupled to the negative terminal and the fourth electrode 2040 is coupled to the positive terminal of the second pulse generator 2070 . It is expected that this electrode arrangement will result in a plurality of electric fields between the electrodes. This allows control of the direction or orientation of the electric field.
  • FIG. 22 is a bottom plan view that schematically illustrates a stimulation apparatus 2200 in accordance with still another embodiment of the invention.
  • the stimulation apparatus 2200 includes a first electrode 2210 , a second electrode 2220 , a third electrode 2230 , and a fourth electrode 2240 .
  • the electrodes are coupled to a pulse generator 2242 by a switch circuit 2250 .
  • the switch circuit 2250 can include a first switch 2252 coupled to the first electrode 2210 , a second switch 2254 coupled to the second electrode 2220 , a third switch 2256 coupled to the third electrode 2230 , and a fourth switch 2258 coupled to the fourth electrode 2240 .
  • the switches 2252 - 2258 can be opened and closed to establish various electric fields between the electrodes 2210 - 2240 .
  • the first switch 2252 and the fourth switch 2258 can be closed in coordination with a pulse from the pulse generator 2242 to generate a first electric field 2260
  • the second switch 2254 and the third switch 2256 can be closed in coordination with another pulse from the pulse generator 2242 to generate a second electric field 2270 .
  • the first and second electric fields 2260 and 2270 can be generated at the same pulse to produce concurrent fields or alternating pulses to produce alternating or rotating fields.
  • FIG. 23 is a bottom plan view and FIG. 24 is a side elevational view of a stimulation apparatus 2300 in accordance with another embodiment of the invention.
  • the stimulation apparatus 2300 has a first electrode 2310 , a second electrode 2320 , a third electrode 2330 , and a fourth electrode 2340 .
  • the electrodes 2310 - 2340 can be configured in any of the arrangements set forth above with reference to FIGS. 14-22 .
  • the electrodes 2310 - 2340 also include electrically conductive pins 2350 and/or 2360 .
  • the pins 2350 and 2360 can be configured to extend below the pial surface of the cortex.
  • the tip of the pin 2350 will accordingly conduct the electrical pulses to a stimulation site within the cortex 709 below the pial surface.
  • the length of the pin 2360 is greater than the thickness of the cortex 709 to conduct the electrical pulses to a portion of the brain below the cortex 709 , such as a deep brain region 710 .
  • the lengths of the pins are selected to conduct the electrical pulses to stimulation sites below the pia mater 708 .
  • the length of the pins 2350 and 2360 can be the same for each electrode or different for individual electrodes. Additionally, only a selected portion of the electrodes and the pins can have an exposed conductive area.
  • the electrodes 2310 - 2340 and a portion of the pins 2350 and 2360 can be covered with a dielectric material so that only exposed conductive material is at the tips of the pins. It will also be appreciated that the configurations of electrodes set forth in FIGS. 14-22 can be adapted to apply an electrical current to stimulation sites below the pia mater by providing pin-like electrodes in a matter similar to the electrodes shown in FIGS. 23 and 24 .
  • Several embodiments of the stimulation apparatus described above with reference to FIGS. 6-24 are expected to be more effective than existing transcranial or subcranial stimulation devices.
  • many embodiments of the stimulation apparatus described above also accurately focus the electrical energy in desired patterns relative to the pia mater 708 , the dura mater 706 , and/or the cortex 709 .
  • transcranial devices may not accurately focus the energy because the electrodes or other types of energy emitters are positioned relatively far from the stimulation sites and the skull diffuses some of the energy.
  • existing subcranial devices generally merely place the electrodes proximate to a specific nerve, but they do not provide electrode configurations that generate an electrical field in a pattern designed for the stimulation site.
  • the embodiments of the stimulation apparatus described above with reference to FIGS. 6-24 overcome this drawback because the electrodes can be placed against the neurons at the desired stimulation site. Additionally, the electrode configurations of the stimulation apparatus can be configured to provide a desired electric field that is not diffused by the skull 700 . Therefore, several embodiments of the stimulation apparatus in accordance with the invention are expected to be more effective because they can accurately focus the energy at the stimulation site.
  • FIGS. 25-30 illustrate several embodiments of stimulation apparatus having a biasing element in accordance with a different aspect of the invention.
  • the stimulation apparatus shown in FIGS. 25-30 can be similar to those described above with reference to FIGS. 6-24 . Therefore, the embodiments of the stimulation apparatus shown in FIGS. 25-30 can have the same pulse systems, support members and electrode configurations described above with reference to FIGS. 6-24 .
  • FIG. 25 is an isometric view and FIG. 26 is a cross-sectional view of a stimulation apparatus 2500 in accordance with an embodiment of the invention.
  • the stimulation apparatus 2500 includes a support member 2510 , a pulse-system 2530 carried by the support member 2510 , and first and second electrodes 2560 coupled to the pulse system 2530 .
  • the support member 2510 can be identical or similar to the support member 610 described above with reference to FIGS. 6 and 7 .
  • the support member 2510 can accordingly include a housing 2512 configured to be implanted in the skull 700 and an attachment element 2514 configured to be connected to the skull 700 by fasteners 2518 ( FIG. 2 ), an adhesive, and/or an anchor.
  • the pulse system 2530 can be identical or similar to any of the pulse systems described above with reference to FIGS. 6-13 , and the first and second electrodes 2560 can have any of the electrode configurations explained above with reference to FIGS. 14-24 .
  • the stimulation apparatus 2500 includes a biasing element 2550 coupled to the electrodes 2560 to mechanically bias the electrodes 2560 away from the support member 2510 .
  • the biasing element 2550 can be positioned between the housing 2512 and the attachment element 2514 , and the electrodes 2560 can be attached directly to the housing 2512 .
  • the biasing element 2550 can be a compressible member, a fluid filled bladder, a spring, or any other suitable element that resiliently and/or elastically drives the electrodes 2560 away from the support member 2510 .
  • FIG. 26 illustrates an embodiment of the stimulation apparatus 2500 after it has been implanted into the skull 700 of a patient.
  • the biasing element 2550 should be compressed slightly so that the electrodes 2560 contact the stimulation site.
  • the compressed biasing element 2550 gently presses the electrodes 2560 against the surface of the pia mater 708 . It is expected that the biasing element 2550 will provide a uniform, consistent contact between the electrodes 2560 and the pial surface of the cortex 709 .
  • the stimulation apparatus 2500 is expected to be particularly useful when the implantable device is attached to the skull and the stimulation site is on the pia mater 708 or the dura mater 706 .
  • the stimulation apparatus 2500 with the biasing element 2550 compensates for the different distances between the skull 700 and the pia mater 708 so that a single type of device can inherently fit several different patients. Moreover, the stimulation apparatus 2500 with the biasing element 2550 adapts to changes as the brain moves within the skull. In contrast to the stimulation apparatus 2500 with the biasing element 2550 , an implantable device that does not have a biasing element 2550 may not fit a particular patient or may not consistently provide electrical contact to the pia mater.
  • FIGS. 27 and 28 are cross-sectional views of stimulation apparatus in which the biasing elements are compressible members.
  • FIG. 27 more specifically, illustrates a stimulation apparatus 2700 having a biasing element 2750 in accordance with an embodiment of the invention.
  • the stimulation apparatus 2700 can have an integrated pulse system 2530 and electrodes 2560 coupled to the pulse system 2530 in a manner similar to the stimulation apparatus 2500 .
  • the biasing element 2750 in this embodiment is a compressible foam, such as a biocompatible closed cell foam or open cell foam. As best shown in FIG. 27 , the biasing element 2750 compresses when the stimulation apparatus 2700 is attached to the skull.
  • FIG. 28 illustrates a stimulation apparatus 2800 having a biasing element 2850 in accordance with another embodiment of the invention.
  • the biasing element 2850 can be a compressible solid, such as silicon rubber or other suitable compressible materials.
  • the electrodes 2560 are attached to the biasing element 2850 .
  • FIG. 29 is a cross-sectional view of a stimulation apparatus 2900 having a biasing element 2950 in accordance with another embodiment of the invention.
  • the stimulation apparatus 2900 can have a support member 2910 including an internal passageway 2912 and a diaphragm 2914 .
  • the biasing element 2950 can include a flexible bladder 2952 attached to the support member 2910 , and the electrodes 2560 can be attached to the flexible bladder 2952 .
  • the flexible bladder 2952 is filled with a fluid 2954 until the electrodes 2560 press against the stimulation site.
  • the flexible bladder 2952 is filled by inserting a needle of a syringe 2956 through the diaphragm 2914 and injecting the fluid 2954 into the internal passageway 2912 and the flexible bladder.
  • FIG. 30 is a cross-sectional view of a stimulation apparatus 3000 having a biasing element 3050 in accordance with another embodiment of the invention.
  • the biasing element 3050 is a spring and the electrodes 2560 are attached to the spring.
  • the biasing element 3050 can be a wave spring, a leaf spring, or any other suitable spring that can mechanically bias the electrodes 2560 against the stimulation site.
  • FIGS. 25-30 can have a biasing element and any of the pulse systems set forth above with respect to FIGS. 6-13 , it is not necessary to have a pulse system contained within the support member. Therefore, certain embodiments of implantable stimulation apparatus in accordance with the invention can have a pulse system and/or a biasing member in any combination of the embodiments set forth above with respect to FIGS. 6-30 .
  • FIGS. 31-35 are schematic cross-sectional views of various embodiments of implantable stimulation apparatus having external pulse systems.
  • FIG. 31 more specifically, illustrates an embodiment of a stimulation apparatus 3100 having a biasing element 3150 to which a plurality of electrodes 3160 are attached in a manner similar to the stimulation apparatus described above with reference to FIGS. 25-30 . It will be appreciated that the stimulation apparatus 3100 may not include the biasing element 3150 .
  • the stimulation apparatus 3100 can also include an external receptacle 3120 having an electrical socket 3122 and an implanted lead line 3124 coupling the electrodes 3160 to contacts (not shown) in the socket 3122 .
  • the lead line 3124 can be implanted in a subcutaneous tunnel or other passageway in a manner known to a person skilled and art.
  • the stimulation apparatus 3100 does not have an internal pulse system carried by the portion of the device that is implanted in the skull 700 of the patient 500 .
  • the stimulation apparatus 3100 receives electrical pulses from an external pulse system 3130 .
  • the external pulse system 3130 can have an electrical connector 3132 with a plurality of contacts 3134 configured to engage the contacts within the receptacle 3120 .
  • the external pulse system 3130 can also have a power supply, controller, pulse generator, and pulse transmitter to generate the electrical pulses. In operation, the external pulse system 3130 sends electrical pulses to the stimulation apparatus 3100 via the connector 3132 , the receptacle 3120 , and the lead line 3124 .
  • FIGS. 32 and 33 illustrate an embodiment of a stimulation apparatus 3200 for use with an external pulse system in accordance with another embodiment of the invention.
  • the stimulation apparatus 3200 can include a support structure 3210 having a socket 3212 , a plurality of contacts 3214 arranged in the socket 3212 , and a diaphragm 3216 covering the socket 3212 .
  • the stimulation apparatus 3200 can also include a biasing element 3250 and a plurality of electrodes 3260 attached to the biasing element 3250 . Each electrode 3260 is directly coupled to one of the contacts 3214 within the support structure 3210 . It will be appreciated that an alternative embodiment of the stimulation apparatus 3200 does not include the biasing element 3250 .
  • the stimulation apparatus 3200 receives the electrical pulses from an external pulse system 3230 that has a power supply, controller, pulse generator, and pulse transmitter.
  • the external pulse system 3230 can also include a plug 3232 having a needle 3233 ( FIG. 33 ) and a plurality of contacts 3234 ( FIG. 33 ) arranged on the needle 3233 to contact the internal contacts 3214 in the socket 3212 .
  • the needle 3233 is inserted into the socket 3212 to engage the contacts 3234 with the contacts 3214 , and then the pulse system 3230 is activated to transmit electrical pulses to the electrodes 3260 .
  • FIGS. 34 and 35 illustrate additional embodiments of stimulation apparatus for use with external pulse systems.
  • FIG. 34 illustrates an embodiment of a stimulation apparatus 3400 having electrodes 3410 coupled to a lead line 3420 that extends under the scalp 702 of the patient 500 .
  • the lead line 3420 is coupled to an external pulse system 3450 .
  • FIG. 35 illustrates an embodiment of a stimulation apparatus 3500 having a support member 3510 , electrodes 3512 coupled to the support member 3510 , and an external receptacle 3520 mounted on the scalp 702 .
  • the external receptacle 3520 can also be connected to the support member 3510 .
  • the external receptacle 3520 can have a socket 3522 with contacts (not shown) electrically coupled to the electrodes 3512 .
  • the stimulation apparatus 3500 can be used with the external pulse system 3130 described above with reference to FIG. 31 by inserting the plug 3132 into the socket 3522 until the contacts 3134 on the plug 3132 engage the contacts within the socket 3522 .
  • FIG. 36 is a schematic cross-sectional view of an implantable stimulation apparatus 3600 in accordance with another embodiment of the invention.
  • the stimulation apparatus 3600 has a support structure 3610 and a plurality of electrodes 3620 coupled to the support structure 3610 .
  • the support structure 3610 can be configured to be implanted under the skull 700 between an interior surface 701 of the skull 700 and the pial surface of the brain.
  • the support structure 3610 can be a flexible or compressible body such that the electrodes 3620 contact the pia mater 708 when the stimulation apparatus 3600 is implanted under the skull 700 .
  • the support structure 3610 can position the electrodes 3620 so that they are proximate to, but not touching, the pia mater 708 .
  • the stimulation apparatus 3600 can receive electrical pulses from an external controller 3630 .
  • the external controller 3630 can be electrically coupled to the stimulation apparatus 3600 by a lead line 3632 that passes through a hole 711 in the skull 700 .
  • the stimulation apparatus 3600 can include an integrated pulse system similar to the pulse systems described above with reference to FIGS. 6-13 .
  • Such an embodiment of the stimulation apparatus 3600 can accordingly use a wireless external control unit.
  • the electrodes 3620 of the stimulation apparatus 3600 can have several of the electrode configurations described above with reference to FIGS. 14-24 .
  • FIGS. 37 and 38 illustrate one embodiment of the implantable stimulation apparatus 3600 .
  • the support structure 3610 can be a flexible substrate and the electrodes 3620 can be conductive elements that are printed onto the flexible substrate.
  • the stimulation apparatus 3600 for example, can be manufactured in a manner similar to flexible printed circuit assemblies that are used in electrical components.
  • the stimulation apparatus 3600 can be implanted under the skull 700 using an insertion tool 3700 .
  • the insertion tool 3700 has a handle 3702 and a shaft 3704 projecting from the handle 3702 .
  • the shaft 3704 can have a slot 3706 configured to receive a flat portion of the support member 3610 . Referring to FIG.
  • the support member 3610 is wrapped around the shaft 3704 , and then the stimulation apparatus 3600 is passed to a tube 3720 positioned in the hole 711 through the scalp 700 and the dura mater 706 .
  • the stimulation apparatus 3600 is unfurled to place the electrodes 3620 at least proximate to the pia mater 708 .
  • the electrodes 3620 can be coupled to an external controller by the lead lines 3632 .
  • FIG. 39 illustrates another embodiment of an implantable stimulation apparatus 3900 that is also configured to be positioned between the skull 700 and the pia mater 708 .
  • the stimulation apparatus 3900 can include a support member 3910 and a plurality of electrodes 3920 coupled to the support member 3910 .
  • the electrodes 3920 can be coupled to individual lead lines 3922 to connect the electrodes 3920 to an external pulse system.
  • an integrated pulse system 3930 can be carried by the support member 3910 so that the electrodes 3920 can be coupled directly to the integrated pulse system 3930 without external lead lines 3922 .
  • the support member 3910 can be a resiliently compressible member, an inflatable balloon-like device, or a substantially solid incompressible body. In the particular embodiment shown in FIG.
  • the support member 3910 is an inflatable balloon-like device that carries the electrodes 3920 .
  • the stimulation apparatus 3900 is implanted by passing the distal end of the support member- 3910 through the hole 711 in the skull 700 until the electrodes 3920 are positioned at a desired stimulation site.
  • FIG. 40 is a schematic illustration of a stimulation apparatus 4000 together with an internal pulse system 4030 in accordance with another embodiment of the invention.
  • the stimulation apparatus 4000 can include a support member 4010 , a biasing element 4015 carried by the support member 4010 , and a plurality of electrodes 4020 carried by the biasing element 4015 .
  • the internal pulse system 4030 can be similar to any of the integrated pulse systems described above with reference to FIGS. 6-13 , but the internal pulse system 4030 is not an integrated pulse system because it is not carried by the housing 4010 .
  • the internal pulse system 4030 can be coupled to the electrodes 4020 by a cable 4034 .
  • the cable 4034 is implanted subcutaneously in a tunnel from a subclavicular region, along the back of the neck, and around the skull.
  • the stimulation apparatus 4000 can also include any of the electrode configurations described above with reference to FIGS. 14-24 .

Abstract

The following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. Several embodiments of methods in accordance with the invention are directed toward enhancing or otherwise inducing a lasting change in neural activity to effectuate a particular neural-function. Such lasting change in neural activity is defined as “neuroplasticity.” The methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.). The methods in accordance with the invention can also be used to enhance neural-function of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain). Certain embodiments of methods in accordance with the invention electrically stimulate the brain at a stimulation site where neuroplasticity is occurring. The stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular neural function according to the functional organization of the brain. In one embodiment in which neuroplasticity related to the neural-function occurs in the brain, the method can include identifying the location where such neuroplasticity is present. In an alternative embodiment in which neuroplasticity is not occurring in the brain, an alternative aspect is to induce neuroplasticity at a stimulation site where it is expected to occur. Several embodiments of these methods that are expected to produce a lasting effect on the intended neural activity at the stimulation site use electrical pulses that increase the resting membrane potential of neurons at the stimulation site to a subthreshold level.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 60/217,981, filed Jul. 31, 2000, which is incorporated herein in its entirety.
  • TECHNICAL FIELD
  • Several embodiments of methods and apparatus in accordance with the invention are related to electrically stimulating a region in the cortex or other area of the brain to bring about a lasting change in a physiological function and/or a mental process of a patient.
  • BACKGROUND
  • A wide variety of mental and physical processes are known to be controlled or are influenced by neural activity in particular regions of the brain. In some areas of the brain, such as in the sensory or motor cortices, the organization of the brain resembles a map of the human body; this is referred to as the “somatotopic organization of the brain.” There are several other areas of the brain that appear to have distinct functions that are located in specific regions of the brain in most individuals. For example, areas of the occipital lobes relate to vision, regions of the left inferior frontal lobes relate to language in the majority of people, and regions of the cerebral cortex appear to be consistently involved with conscious awareness, memory, and intellect. This type of location-specific functional organization of the brain, in which discrete locations of the brain are statistically likely to control particular mental or physical functions in normal individuals, is herein referred to as the “functional organization of the brain.”
  • Many problems or abnormalities with body functions can be caused by damage, disease and/or disorders of the brain. A stroke, for example, is one very common condition that damages the brain. Strokes are generally caused by emboli (e.g., obstruction of a vessel), hemorrhages (e.g., rupture of a vessel), or thrombi (e.g., clotting) in the vascular system of a specific region of the cortex, which in turn generally causes a loss or impairment of a neural function (e.g., neural functions related to face muscles, limbs, speech, etc.). Stroke patients are typically treated using physical therapy to rehabilitate the loss of function of a limb or another affected body part. For most patients, little can be done to improve the function of the affected limb beyond the recovery that occurs naturally without intervention. One existing physical therapy technique for treating stroke patients constrains or restrains the use of a working body part of the patient to force the patient to use the affected body part. For example, the loss of use of a limb is treated by restraining the other limb. Although this type of physical therapy has shown some experimental efficacy, it is expensive, time-consuming and little-used. Stroke patients can also be treated using physical therapy plus adjunctive therapies. For example, some types of drugs, such as amphetamines, that increase the activation of neurons in general, appear to enhance neural networks; these drugs, however, have limited efficacy because they are very non-selective in their mechanisms of action and cannot be delivered in high concentrations directly at the site where they are needed. Therefore, there is a need to develop effective treatments for rehabilitating stroke patients and patients that have other types of brain damage.
  • Other brain disorders and diseases are also difficult to treat. Alzheimer's disease, for example, is known to affect portions of the cortex, but the cause of Alzheimer's disease and how it alters the neural activity in the cortex is not fully understood. Similarly, the neural activity of brain disorders (e.g., depression and obsessive-compulsive behavior) is also not fully understood. Therefore, there is also a need to develop more effective treatments for other brain disorders and diseases.
  • The neural activity in the brain can be influenced by electrical energy that is supplied from an external source outside of the body. Various neural functions can thus be promoted or disrupted by applying an electrical current to the cortex or other region of the brain. As a result, the quest for treating damage, disease and disorders in the brain have led to research directed toward using electricity or magnetism to control brain functions.
  • One type of treatment is transcranial electrical stimulation (TES), which involves placing an electrode on the exterior of the scalp and delivering an electrical current to the brain through the scalp and skull. Patents directed to TES include: U.S. Pat. No. 5,540,736 issued to Haimovich et al. (for providing analgesia); U.S. Pat. No. 4,140,133 issued to Katrubin et al. (for providing anesthesia); U.S. Pat. No. 4,646,744 issued to Capel (for treating drug addiction, appetite disorders, stress, insomnia and pain); and U.S. Pat. No. 4,844,075 issued to Liss et al. (for treating pain and motor dysfunction associated with cerebral palsy). TES, however, is not widely used because the patients experience a great amount of pain and the electrical field is difficult to direct or focus accurately.
  • Another type of treatment is transcranial magnetic stimulation (TMS), which involves producing a high-powered magnetic field adjacent to the exterior of the scalp over an area of the cortex. TMS does not cause the painful side effects of TES. Since 1985, TMS has been used primarily for research purposes in brain-mapping endeavors. Recently, however, potential therapeutic applications have been proposed primarily for the treatment of depression. A small number of clinical trials have found TMS to be effective in treating depression when used to stimulate the left prefrontal cortex.
  • The TMS treatment of a few other patient groups have been studied with promising results, such as patients with Parkinson's disease and hereditary spinocerebellar degeneration. Patents and published patent applications directed to TMS include: published international patent application WO 98/06342 (describing a transcranial magnetic stimulator and its use in brain mapping studies and in treating depression); U.S. Pat. No. 5,885,976 issued to Sandyk (describing the use of transcranial magnetic stimulation to treat a variety of disorders allegedly related to deficient serotonin neurotransmission and impaired pineal melatonin functions); and U.S. Pat. No. 5,092,835 issued to Schurig et al. (describing the treatment of neurological disorders (such as autism), treatment of learning disabilities, and augmentation of mental and physical abilities of “normal” people by a combination of transcranial magnetic stimulation and peripheral electrical stimulation).
  • Independent studies have also demonstrated that TMS is able to produce a lasting change in neural activity within the cortex that occurs for a period of time after terminating the TMS treatment (“neuroplasticity”). For example, Ziemann et al., Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block, 18 J Neuroscience 1115 (February 1998), disclose that TMS at subthreshold levels (e.g., levels at which movement was not induced) in neuro-block models that mimic amputation was able to modify the lasting changes in neural activity that normally accompany amputation. Similarly, Pascual-Leone et al. (submitted for publication) disclose that applying TMS over the contralateral motor cortex in normal subjects who underwent immobilization of a hand in a cast for 5 days can prevent the decreased motor cortex excitability normally associated with immobilization. Other researchers have proposed that the ability of TMS to produce desired changes in the cortex may someday be harnessed to enhance neuro-rehabilitation after a brain injury, such as stroke, but there are no published studies to date.
  • Other publications related to TMS include Cohen et al., Studies of Neuroplasticity With Transcranial Magnetic Stimulation, 15 J. Clin. Neurophysiol. 305 (1998); Pascual-Leone et al., Transcranial Magnetic Stimulation and Neuroplasticity, 37 Neuropsychologia 207 (1999); Stefan et al., Induction of Plasticity in the Human Motor Cortex by Paired Associative Stimulation, 123 Brain 572 (2000); Sievner et al., Lasting Cortical Activation after repetitive TMS of the Motor Cortex, 54 Neurology 956 (February 2000); Pascual-Leone et al., Study and Modulation of Human Cortical Excitability With Transcranial Magnetic Stimulation, 15 J. Clin. Neurophysiol. 333 (1998); and Boylan et al., Magnetoelectric Brain Stimulation in the Assessment Of Brain Physiology And Pathophysiology, 111 Clin. Neurophysiology 504 (2000).
  • Although TMS appears to be able to produce a change in the underlying cortex beyond the time of actual stimulation, TMS is not presently effective for treating many patients because the existing delivery systems are not practical for applying stimulation over an adequate period of time. TMS systems, for example, are relatively complex and require stimulation treatments to be performed by a healthcare professional in a hospital or physician's office. TMS systems also may not be reliable for longer-term therapies because it is difficult to (a) accurately localize the region of stimulation in a reproducible manner, and (b) hold the device in the correct position over the cranium for a long period, especially when a patient moves or during rehabilitation. Furthermore, current TMS systems generally do not sufficiently focus the electromagnetic energy on the desired region of the cortex for many applications. As such, the potential therapeutic benefit of TMS using existing equipment is relatively limited.
  • Direct and indirect electrical stimulation of the central nervous system has also been proposed to treat a variety of disorders and conditions. For example, U.S. Pat. No. 5,938,688 issued to Schiff notes that the phenomenon of neuroplasticity may be harnessed and enhanced to treat cognitive disorders related to brain injuries caused by trauma or stroke. Schiff's implant is designed to increase the level of arousal of a comatose patient by stimulating deep brain centers involved in consciousness. To do this, Schiff's invention involves electrically stimulating at least a portion of the patient's intralaminar nuclei (i.e., the deep brain) using, e.g., an implantable multipolar electrode and either an implantable pulse generator or an external radiofrequency controlled pulse generator. Schiff's deep brain implant is highly invasive, however, and could involve serious complications for the patient.
  • Likewise, U.S. Pat. No. 6,066,163 issued to John acknowledges the ability of the brain to overcome some of the results of an injury through neuroplasticity. John also cites a series of articles as evidence that direct electrical stimulation of the brain can reverse the effects of a traumatic injury or stroke on the level of consciousness. The system disclosed in John stimulates the patient and modifies the parameters of stimulation based upon the outcome of comparing the patient's present state with a reference state in an effort to optimize the results. Like Schiff, however, the invention disclosed in John is directed to a highly invasive deep brain stimulation system.
  • Another device for stimulating a region of the brain is disclosed by King in U.S. Pat. No. 5,713,922. King discloses a device for cortical surface stimulation having electrodes mounted on a paddle implanted under the skull of the patient. The electrodes are implanted on the surface of the brain in a fixed position. The electrodes in King accordingly cannot move to accommodate changes in the shape of the brain. King also discloses that the electrical pulses are generated by a pulse generator that is implanted in the patient remotely from the cranium (e.g., subclavicular implantation). The pulse generator is not directly connected to the electrodes, but rather it is electrically coupled to the electrodes by a cable that extends from the remotely implanted pulse generator to the electrodes implanted in the cranium. The cable disclosed in King extends from the paddle, around the skull, and down the neck to the subclavicular location of the pulse generator.
  • King discloses implanting the electrodes in contact with the surface of the cortex to create paresthesia, which is a sensation of vibration or “buzzing” in a patient. More specifically, King discloses inducing paresthesia in large areas by applying electrical stimulation to a higher element of the central nervous system (e.g., the cortex). As such, King discloses placing the electrodes against particular regions of the brain to induce the desired paresthesia. The purpose of creating paresthesia over a body region is to create a distracting stimulus that effectively reduces perception of pain in the body region. Thus, King appears to require stimulation above activation levels.
  • Although King discloses a device that stimulates a region on the cortical surface, this device is expected to have several drawbacks. First, it is expensive and time-consuming to implant the pulse generator and the cable in the patient. Second, it appears that the electrodes are held at a fixed elevation that does not compensate for anatomical changes in the shape of the brain relative to the skull, which makes it difficult to accurately apply an electrical stimulation to a desired target site of the cortex in a focused, specific manner. Third, King discloses directly activating the neurons to cause paresthesia, which is not expected to cause entrainment of the activity in the stimulated population of neurons with other forms of therapy or adaptive behavior, such as physical or occupational therapy. Thus, King is expected to have several drawbacks.
  • King and the other foregoing references are also expected to have drawbacks in producing the desired neural activity because these references generally apply the therapy to the region of the brain that is responsible for the physiological function or mental process according to the functional organization of the brain. In the case of a brain injury or disease, however, the region of the brain associated with the affected physiological function or cognitive process may not respond to stimulation therapies. Thus, existing techniques may not produce adequate results that last beyond the stimulation period.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic view of neurons.
  • FIG. 1B is a graph illustrating firing an “action potential” associated with normal neural activity.
  • FIG. 1C is a flowchart of a method for effectuating a neural-function of a patient associated with a location in the brain in accordance with one embodiment of the invention.
  • FIG. 2 is a top plan view of a portion of a brain illustrating neural activity in a first region of the brain associated with the neural-function of the patient according to the somatotopic organization of the brain.
  • FIG. 3 is a top plan image of a portion of the brain illustrating a loss of neural activity associated with the neural-function of the patient used in one stage of a method in accordance with an embodiment of the invention.
  • FIG. 4 is a top plan image of the brain of FIG. 3 showing a change in location of the neural activity associated with the neural-function of the patient at another stage of a method in accordance with an embodiment of the invention.
  • FIGS. 5A and 5B are schematic illustrations of an implanting procedure at a stage of a method in accordance with an embodiment of the invention.
  • FIG. 5C is a graph illustrating firing an “action potential” associated with stimulated neural activity in accordance with one embodiment of the invention.
  • FIG. 6 is an isometric view of an implantable stimulation apparatus in accordance with one embodiment of the invention.
  • FIG. 7 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 8 is a schematic illustration of a pulse system in accordance with one embodiment of the invention.
  • FIG. 9 is a schematic illustration of an implanted stimulation apparatus and an external controller in accordance with an embodiment of the invention.
  • FIG. 10 is a schematic illustration of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 11 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 12 is a schematic illustration of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 13 is a cross-sectional view schematically illustrating a part of an implantable stimulation apparatus having a pulse system and an external controller in accordance with another embodiment of the invention.
  • FIG. 14 is a bottom plan view and FIG. 15 is a cross-sectional view illustrating an electrode configuration for an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 16 is a bottom plan view and FIG. 17 is a cross-sectional view of an electrode configuration for an implantable stimulation apparatus in accordance with another embodiment of the invention.
  • FIG. 18 is a bottom plan view and FIG. 19 is a cross-sectional view of an electrode configuration in accordance with yet another embodiment of the invention.
  • FIG. 20 is a bottom plan view of an electrode configuration for an implantable stimulation device in accordance with yet another embodiment of the invention.
  • FIG. 21 is a bottom plan view of an electrode configuration for an implantable stimulation device in accordance with another embodiment of the invention.
  • FIG. 22 is a bottom plan view of yet another embodiment of an electrode configuration for use with an implantable stimulation apparatus in accordance with the invention.
  • FIG. 23 is a bottom plan view and FIG. 24 is a cross-sectional view of an electrode configuration for use with a stimulation apparatus in accordance with still another embodiment of the invention.
  • FIG. 25 is an isometric view schematically illustrating a part of an implantable stimulation apparatus with a mechanical biasing element in accordance with an embodiment of the invention.
  • FIG. 26 is a cross-sectional view of a stimulation apparatus having a mechanical biasing element that has been implanted into a skull of a patient in accordance with an embodiment of the invention.
  • FIG. 27 is a cross-sectional view schematically illustrating a part of a stimulation apparatus having a biasing element in accordance with an embodiment of the invention.
  • FIG. 28 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with still another embodiment of the invention.
  • FIG. 29 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with yet another embodiment of the invention.
  • FIG. 30 is a cross-sectional view of a stimulation apparatus having a biasing element in accordance with yet another embodiment of the invention.
  • FIG. 31 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus having an external power source and pulse generator in accordance with an embodiment of the invention.
  • FIG. 32 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus having an external power source and pulse generator in accordance with another embodiment of the invention.
  • FIG. 33 is a cross-sectional view illustrating in greater detail a portion of the implantable stimulation apparatus of FIG. 32.
  • FIG. 34 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus and an external controller in accordance with another embodiment of the invention.
  • FIG. 35 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus and an external controller in accordance with yet another embodiment of the invention.
  • FIG. 36 is a cross-sectional view schematically illustrating a portion of an implantable stimulation apparatus in accordance with yet another embodiment of the invention.
  • FIG. 37 is an isometric view and FIG. 38 is a cross-sectional view illustrating an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • FIG. 39 is a cross-sectional view illustrating an implantable stimulation apparatus in accordance with yet another embodiment of the invention.
  • FIG. 40 is a schematic illustration of an implantable stimulation apparatus in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION
  • The following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. Several embodiments of methods in accordance with the invention are directed toward enhancing or otherwise inducing neuroplasticity to effectuate a particular neural-function. Neuroplasticity refers to the ability of the brain to change or adapt over time. It was once thought adult brains became relatively “hard wired” such that functionally significant neural networks could not change significantly over time or in response to injury. It has become increasingly more apparent that these neural networks can change and adapt over time so that meaningful function can be regained in response to brain injury. An aspect of several embodiments of methods in accordance with the invention is to provide the appropriate triggers for adaptive neuroplasticity. These appropriate triggers appear to cause or enable increased synchrony of functionally significant populations of neurons in a network.
  • Electrically enhanced or induced neural stimulation in accordance with several embodiments of the invention excites a portion of a neural network involved in a functionally significant task such that a selected population of neurons can become more strongly associated with that network. Because such a network will subserve a functionally meaningful task, such as motor relearning, the changes are more likely to be lasting because they are continually being reinforced by natural use mechanisms. The nature of stimulation in accordance with several embodiments of the invention ensures that the stimulated population of neurons links to other neurons in the functional network. It is expected that this occurs because action potentials are not actually caused by the stimulation, but rather are caused by interactions with other neurons in the network. Several aspects of the electrical stimulation in accordance with selected embodiments of the invention simply allows this to happen with an increased probability when the network is activated by favorable activities, such as rehabilitation or limb use.
  • The methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.). The methods in accordance with the invention can also be used to enhance functions of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain).
  • Certain embodiments of methods in accordance with the invention electrically stimulate the brain at a stimulation site where neuroplasticity is occurring.
  • The stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular function according to the functional organization of the brain. In one embodiment in which neuroplasticity related to the neural-function occurs in the brain, the method can include identifying the location where such neuroplasticity is present. This particular procedure may accordingly enhance a change in the neural activity to assist the brain in performing the particular neural function. In an alternative embodiment in which neuroplasticity is not occurring in the brain, an aspect is to induce neuroplasticity at a stimulation site where it is expected to occur. This particular procedure may thus induce a change in the neural activity to instigate performance of the neural function. Several embodiments of these methods are expected to produce a lasting effect on the intended neural activity at the stimulation site.
  • The specific details of certain embodiments of the invention are set forth in the following description and in FIGS. 1A-40 to provide a thorough understanding of these embodiments to a person of ordinary skill in the art. More specifically, several embodiments of methods in accordance with the invention are initially described with reference to FIGS. 1-5C, and then several embodiments of devices for stimulating the cortical and/or deep-brain regions of the brain are described with reference to FIGS. 6-40. A person skilled in the art will understand that the present invention may have additional embodiments, or that the invention can be practiced without several of the details described below.
  • A. Methods for Electrically Stimulating Regions of the Brain
  • 1. Embodiments of Electrically Enhancing Neural Activity
  • FIG. 1A is a schematic representation of several neurons N1-N3 and FIG. 1B is a graph illustrating an “action potential” related to neural activity in a normal neuron. Neural activity is governed by electrical impulses generated in neurons. For example, neuron N1 can send excitatory inputs to neuron N2 (e.g., times t1, t3 and t4 in FIG. 1B), and neuron N3 can send inhibitory inputs to neuron N2 (e.g., time t2 in FIG. 1B). The neurons receive/send excitatory and inhibitory inputs from/to a population of other neurons. The excitatory and inhibitory inputs can produce “action potentials” in the neurons, which are electrical pulses that travel through neurons by changing the flux of sodium (Na) and potassium (K) ions across the cell membrane. An action potential occurs when the resting membrane potential of the neuron surpasses a threshold level. When this threshold level is reached, an “all-or-nothing” action potential is generated. For example, as shown in FIG. 1B, the excitatory input at time t5 causes neuron N2 to “fire” an action potential because the input exceeds the threshold level for generating the action potential. The action potentials propagate down the length of the axon (the long process of the neuron that makes up nerves or neuronal tracts) to cause the release of neurotransrmitters from that neuron that will further influence adjacent neurons.
  • FIG. 1C is a flowchart illustrating a method 100 for effectuating a neural-function in a patient in accordance with an embodiment of the invention. The neural-function, for example, can control a specific mental process or physiological function, such as a particular motor function or sensory function (e.g., movement of a limb) that is normally associated with neural activity at a “normal” location in the brain according to the functional organization of the brain. In several embodiments of the method 100, at least some neural activity related to the neural-function can be occurring at a site in the brain. The site of the neural activity may be at the normal location where neural activity typically occurs to carry out the neural-function according to the functional organization of the brain, or the site of the neural activity may be at a different location where the brain has recruited material to perform the neural activity. In either situation, one aspect of several embodiments of the method 100 is to determine the location in the brain where this neural activity is present.
  • The method 100 includes a diagnostic procedure 102 involving identifying a stimulation site at a location of the brain where an intended neural activity related to the neural-function is present. In one embodiment, the diagnostic procedure 102 includes generating the intended neural activity in the brain from a “peripheral” location that is remote from the normal location, and then determining where the intended neural activity is actually present in the brain. In an alternative embodiment, the diagnostic procedure 102 can be performed by identifying a stimulation site where neural activity has changed in response to a change in the neural-function. The method 100 continues with an implanting procedure 104 involving positioning first and second electrodes at the identified stimulation site, and a stimulating procedure 106 involving applying an electrical current between the first and second electrodes. Many embodiments of the implanting procedure 104 position two or more electrodes at the stimulation site, but other embodiments of the implanting procedure involve positioning only one electrode at the stimulation site and another electrode remotely from the stimulation site. As such, the implanting procedure 104 of the method 100 can include implanting at least one electrode at the stimulation site. The procedures 102-106 are described in greater detail below.
  • FIGS. 2-4 illustrate an embodiment of the diagnostic procedure 102. The diagnostic procedure 102 can be used to determine the region of the brain where stimulation will likely effectuate the desired function, such as rehabilitating a loss of a neural-function caused by a stroke, trauma, disease or other circumstance. FIG. 2, more specifically, is an image of a normal, healthy brain 200 having a first region 210 where the intended neural activity occurs to effectuate a specific neural-function in accordance with the functional organization of the brain. For example, the neural activity in the first region 210 shown in FIG. 2 is generally associated with the movement of a patient's fingers. The first region 210 can have a high-intensity area 212 and a low-intensity area 214 in which different levels of neural activity occur. It is not necessary to obtain an image of the neural activity in the first region 210 shown in FIG. 2 to carry out the diagnostic procedure 102, but rather it is provided to show an example of neural activity that typically occurs at a “normal location” according to the functional organization of the brain 200 for a large percentage of people with normal brain function. It will be appreciated that the actual location of the first region 210 will generally vary between individual patients.
  • The neural activity in the first region 210, however, can be impaired. In a typical application, the diagnostic procedure 102 begins by taking an image of the brain 200 that is capable of detecting neural activity to determine whether the intended neural activity associated with the particular neural function of interest is occurring at the region of the brain 200 where it normally occurs according to the functional organization of the brain. FIG. 3 is an image of the brain 200 after the first region 210 has been affected (e.g., from a stroke, trauma or other cause). As shown in FIG. 3, the neural activity that controlled the neural-function for moving the fingers no longer occurs in the first region 210. The first region 210 is thus “inactive,” which is expected to result in a corresponding loss of the movement and/or sensation in the fingers. In some instances, the damage to the brain 200 may result in only a partial loss of the neural activity in the damaged region. In either case, the image shown in FIG. 3 establishes that the loss of the neural-function is related to the diminished neural activity in the first region 210. The brain 200 may accordingly recruit other neurons to perform neural activity for the affected neural-function (i.e., neuroplasticity), or the neural activity may not be present at any location in the brain.
  • FIG. 4 is an image of the brain 200 illustrating a plurality of potential stimulation sites 220 and 230 for effectuating the neural-function that was originally performed in the first region 210 shown in FIG. 2. FIGS. 3 and 4 show an example of neuroplasticity in which the brain compensates for a loss of neural-function in one region of the brain by recruiting other regions of the brain to perform neural activity for carrying out the affected neural-function. The diagnostic procedure 102 utilizes the neuroplasticity that occurs in the brain to identify the location of a stimulation site that is expected to be more responsive to the results of an electrical, magnetic, sonic, genetic, biologic, and/or pharmaceutical procedure to effectuate the desired neural-function.
  • One embodiment of the diagnostic procedure 102 involves generating the intended neural activity remotely from the first region 210 of the brain, and then detecting or sensing the location in the brain where the intended neural activity has been generated. The intended neural activity can be generated by applying an input that causes a signal to be sent to the brain. For example, in the case of a patient that has lost the use of limb, the affected limb is moved and/or stimulated while the brain is scanned using a known imaging technique that can detect neural activity (e.g., functional MRI, positron emission tomography, etc.). In one specific embodiment, the affected limb can be moved by a practitioner or the patient, stimulated by sensory tests (e.g., pricking), or subject to peripheral electrical stimulation. The movement/stimulation of the affected limb produces a peripheral neural signal from the limb that is expected to generate a response neural activity in the brain. The location in the brain where this response neural activity is present can be identified using the imaging technique. FIG. 4, for example, can be created by moving the affected fingers and then noting where neural activity occurs in response to the peripheral stimulus. By peripherally generating the intended neural activity, this embodiment may accurately identify where the brain has recruited matter (i.e., sites 220 and 230) to perform the intended neural activity associated with the neural-function.
  • An alternative embodiment of the diagnostic procedure 102 involves identifying a stimulation site at a second location of the brain where the neural activity has changed in response to a change in the neural-function of the patient. This embodiment of the method does not necessarily require that the intended neural activity be generated by peripherally actuating or stimulating a body part. For example, the brain can be scanned for neural activity associated with the impaired neural-function as a patient regains use of an affected limb or learns a task over a period of time. This embodiment, however, can also include peripherally generating the intended neural activity remotely from the brain explained above.
  • In still another embodiment, the diagnostic procedure 102 involves identifying a stimulation site at a location of the brain where the intended neural activity is developing to perform the neural-function. This embodiment is similar to the other embodiments of the diagnostic procedure 102, but it can be used to identify a stimulation site at (a) the normal region of the brain where the intended neural activity is expected to occur according to the functional organization of the brain and/or (b) a different region where the neural activity occurs because the brain is recruiting additional matter to perform the neural-function. This particular embodiment of the method involves monitoring neural activity at one or more locations where the neural activity occurs in response to the particular neural-function of interest. For example, to enhance the ability to learn a particular task (e.g., playing a musical instrument, memorizing, etc.), the neural activity can be monitored while a person performs the task or thinks about performing the task. The stimulation sites can be defined by the areas of the brain where the neural activity has the highest intensity, the greatest increases, and/or other parameters that indicate areas of the brain that are being used to perform the particular task.
  • FIGS. 5A and 5B are schematic illustrations of the implanting procedure 104 described above with reference to FIG. 1C for positioning the first and second electrodes relative to a portion of the brain of a patient 500. Referring to FIG. 5A, a stimulation site 502 is identified in accordance with an embodiment of the diagnostic procedure 102. In one embodiment, a skull section 504 is removed from the patient 500 adjacent to the stimulation site 502. The skull section 504 can be removed by boring a hole in the skull in a manner known in the art, or a much smaller hole can be formed in the skull using drilling techniques that are also known in the art. In general, the hole can be 0.2-4.0 cm in diameter. Referring to FIG. 5B, an implantable stimulation apparatus 510 having first and second electrodes 520 can be implanted in the patient 500. Suitable techniques associated with the implantation procedure are known to practitioners skilled in the art. After the stimulation apparatus 510 has been implanted in the patient 500, a pulse system generates electrical pulses that are transmitted to the stimulation site 502 by the first and second electrodes 520. Stimulation apparatus suitable for carrying out the foregoing embodiments of methods in accordance with the invention are described in more detail below with reference to the FIGS. 6-40.
  • Several embodiments of methods for enhancing neural activity in accordance with the invention are expected to provide lasting results that promote the desired neural-function. Before the present invention, electrical and magnetic stimulation techniques typically stimulated the normal locations of the brain where neural activity related to the neural-functions occurred according to the functional organization of the brain. Such conventional techniques, however, may not be effective because the neurons in the “normal locations” of the brain may not be capable of carrying out the neural activity because of brain damage, disease, disorder, and/or because of variations of the location specific to individual patients. Several embodiments of methods for enhancing neural activity in accordance with the invention overcome this drawback by identifying a stimulation site based on neuroplastic activity that appears to be related to the neural-function. By first identifying a location in the brain that is being recruited to perform the neural activity, it is expected that therapies (e.g., electrical, magnetic, genetic, biologic, and/or pharmaceutical) applied to this location will be more effective than conventional techniques. This is because the location that the brain is recruiting for the neural activity may not be the “normal location” where the neuro activity would normally occur according to the functional organization of the brain. Therefore, several embodiments of methods for enhancing neural activity in accordance with the invention are expected to provide lasting results because the therapies are applied to the portion of the brain where neural activity for carrying out the neural-function actually occurs in the particular patient.
  • 2. Electrically Inducing Desired Neural Activity
  • The method 100 for effectuating a neural-function can also be used to induce neural activity in a region of the brain where such neural activity is not present. As opposed to the embodiments of the method 100 described above for enhancing existing neural activity, the embodiments of the method 100 for inducing neural activity initiate the neural activity at a stimulation site where it is estimated that neuroplasticity will occur. In this particular situation, an image of the brain seeking to locate where neuroplasticity is occurring may be similar to FIG. 3. An aspect of inducing neural activity, therefore, is to develop a procedure to determine where neuroplasticity is likely to occur.
  • A stimulation site may be identified by estimating where the brain will likely recruit neurons for performing the neural-function. In one embodiment, the location of the stimulation site is estimated by defining a region of the brain that is proximate to the normal location where neural activity related to the neural-function is generally present according to the functional organization of the brain. An alternative embodiment for locating the stimulation site includes determining where neuroplasticity has typically occurred in patients with similar symptoms. For example, if the brain typically recruits a second region of the cortex to compensate for a loss of neural activity in the normal region of the cortex, then the second region of the cortex can be selected as the stimulation site either with or without imaging the neural activity in the brain.
  • Several embodiments of methods for inducing neural activity in accordance with the invention are also expected to provide lasting results that initiate and promote a desired neural-function. By first estimating the location of a stimulation site where desired neuroplasticity is expected to occur, therapies applied to this location may be more effective than conventional therapies for reasons that are similar to those explained above regarding enhancing neural activity. Additionally, methods for inducing neural activity may be easier and less expensive to implement because they do not require generating neural activity and/or imaging the brain to determine where the intended neural activity is occurring before applying the therapy.
  • 3. Applications of Methods for Electrically Stimulating Regions of the Brain
  • The foregoing methods for enhancing existing neural activity or inducing new neural activity are expected to be useful for many applications. As explained above, several embodiments of the method 100 involve determining an efficacious location of the brain to enhance or induce an intended neural activity that causes the desired neural-functions to occur. Additional therapies can also be implemented in combination with the electrical stimulation methods described above. Several specific applications using embodiments of electrical stimulation methods in accordance with the invention either alone or with adjunctive therapies will now be described, but it will be appreciated that the methods in accordance with the invention can be used in many additional applications.
  • a. General Applications
  • The embodiments of the electrical stimulation methods described above are expected to be particularly useful for rehabilitating a loss of mental functions, motor functions and/or sensory functions caused by damage to the brain. In a typical application, the brain has been damaged by a stroke or trauma (e.g., automobile accident). The extent of the particular brain damage can be assessed using functional MRI or another appropriate imaging technique as explained above with respect to FIG. 3. A stimulation site can then be identified by: (a) peripherally stimulating a body part that was affected by the brain damage to induce the intended neural activity and determining the location where a response neural activity occurs; (b) determining where the neural activity has changed as a patient gains more use of the affected body part; and/or (c) estimating the location that the brain may recruit neurons to carry out the neural activity that was previously performed by the damaged portion of the brain. An electrical stimulation therapy can then be applied to the selected stimulation site by placing the first and second electrodes relative to the stimulation site to apply an electrical current in that portion of the brain. As explained in more detail below, it is expected that applying an electrical current to the portion of the brain that has been recruited to perform the neural activity related to the affected body part will produce a lasting neurological effect for rehabilitating the affected body part.
  • Several specific applications are expected to have a stimulation site in the cortex because neural activity in this part of the brain effectuates motor functions and/or sensory functions that are typically affected by a stroke or trauma. In these applications, the electrical stimulation can be applied directly to the pial surface of the brain or at least proximate to the pial surface (e.g., the dura mater, the fluid surrounding the cortex, or neurons within the cortex). Suitable devices for applying the electrical stimulation to the cortex are described in detail with reference to FIGS. 6-40.
  • The electrical stimulation methods can also be used with adjunctive therapies to rehabilitate damaged portions of the brain. In one embodiment, the electrical stimulation methods can be combined with physical therapy and/or drug therapies to rehabilitate an affected neural function. For example, if a stroke patient has lost the use of a limb, the patient can be treated by applying the electrical therapy to a stimulation site where the intended neural activity is present while the affected limb is also subject to physical therapy. An alternative embodiment can involve applying the electrical therapy to the stimulation site and chemically treating the patient using amphetamines or other suitable drugs.
  • The embodiments of the electrical stimulation methods described above are also expected to be useful for treating brain diseases, such as Alzheimer's, Parkinson's, and other brain diseases. In this application, the stimulation site can be identified by monitoring the neural activity using functional MRI or other suitable imaging techniques over a period of time to determine where the brain is recruiting material to perform the neural activity that is being affected by the disease. It may also be possible to identify the stimulation site by having the patient try to perform an act that the particular disease has affected, and monitoring the brain to determine whether any response neural activity is present in the brain. After identifying where the brain is recruiting additional matter, the electrical stimulation can be applied to this portion of the brain. It is expected that electrically stimulating the regions of the brain that have been recruited to perform the neural activity which was affected by the disease will assist the brain in offsetting the damage caused by the disease.
  • The embodiments of the electrical stimulation methods described above are also expected to be useful for treating neurological disorders, such as depression, passive-aggressive behavior, weight control, and other disorders. In these applications, the electrical stimulation can be applied to a stimulation site in the cortex or another suitable part of the brain where neural activity related to the particular disorder is present. The embodiments of electrical stimulation methods for carrying out the particular therapy can be adapted to either increase or decrease the particular neural activity in a manner that produces the desired results. For example, an amputee may feel phantom sensations associated with the amputated limb. This phenomenon can be treated by applying an electrical pulse that reduces the phantom sensations. The electrical therapy can be applied so that it will modulate the ability of the neurons in that portion of the brain to execute sensory functions.
  • b. Pulse Forms and Potentials
  • The electrical stimulation methods in accordance with the invention can use several different pulse forms to effectuate the desired neuroplasticity. The pulses can be a bi-phasic or monophasic stimulus that is applied to achieve a desired potential in a sufficient percentage of a population of neurons at the stimulation site. In one embodiment, the pulse form has a frequency of approximately 2-1000 Hz, but the frequency may be particularly useful in the range of approximately 40-200 Hz. For example, initial clinical trials are expected to use a frequency of approximately 50-100 Hz. The pulses can also have pulse widths of approximately 10 μs-100 ms, or more specifically the pulse width can be approximately 20-200 μs. For example, a pulse width of 50-100 μs may produce beneficial results.
  • It is expected that one particularly useful application of the invention involves enhancing or inducing neuroplasticity by raising the resting membrane potential of neurons to bring the neurons closer to the threshold level for firing an action potential. Because the stimulation raises the resting membrane potential of the neurons, it is expected that these neurons are more likely to “fire” an action potential in response to excitatory input at a lower level.
  • FIG. 5C is a graph illustrating applying a subthreshold potential to the neurons N1-N3 of FIG. 1A. At times t1 and t2, the excitory/inhibitory inputs from other neurons do not “bridge-the-gap” from the resting potential at −X mV to the threshold potential. At time t3, the electrical stimulation is applied to the brain to raise the resting potential of neurons in the stimulated population such that the resting potential is at −Y mV. As such, at time t4 when the neurons receive another excitatory input, even a small input exceeds the gap between the raised resting potential −Y mV and the threshold potential to induce action potentials in these neurons. For example, if the resting potential is approximately −70 mV and the threshold potential is approximately −50 mV, then the electrical stimulation can be applied to raise the resting potential of a sufficient number of neurons to approximately −52 to −60 mV.
  • The actual electrical potential applied to electrodes implanted in the brain to achieve a subthreshold potential stimulation will vary according to the individual patient, the type of therapy, the type of electrodes, and other factors. In general, the pulse form of the electrical stimulation (e.g., the frequency, pulse width, wave form, and voltage potential) is selected to raise the resting potential in a sufficient number neurons at the stimulation site to a level that is less than a threshold potential for a statistical portion of the neurons in the population. The pulse form, for example, can be selected so that the applied voltage of the stimulus achieves a change in the resting potential of approximately 10%-95%, and more specifically of 60%-80%, of the difference between the unstimulated resting potential and the threshold potential.
  • In one specific example of a subthreshold application for treating a patient's hand, electrical stimulation is not initially applied to the stimulation site. Although physical therapy related to the patient's hand may cause some activation of a particular population of neurons that is known to be involved in “hand function,” only a low level of activation might occur because physical therapy only produces a low level of action potential generation in that population of neurons. However, when the subthreshold electrical stimulation is applied, the resting membrane potentials of the neurons in the stimulated population are elevated. These neurons now are much closer to the threshold for action potential formation such that when the same type of physical therapy is given, this population of cells will have a higher level of activation because these cells are more likely to fire action potentials.
  • Subthreshold stimulation may produce better results than simply stimulating the neurons with sufficient energy levels to exceed the threshold for action potential formation. One aspect of subthreshold stimulation is to increase the probability that action potentials will occur in response to the ordinary causes of activation—such as physical therapy. This will allow the neurons in this functional network to become entrained together, or “learn” to become associated with these types of activities. If neurons are given so much electricity that they continually fire action potentials without additional excitatory inputs (suprathreshold stimulation), this will create “noise” and disorganization that will not likely cause improvement in function. In fact, neurons that are “overdriven” soon deplete their neurotransmitters and effectively become silent.
  • The application of a subthreshold stimulation is very different than suprathreshold stimulation. Subthreshold stimulation in accordance with several embodiments of the invention, for example, does not intend to directly make neurons fire action potentials with the electrical stimulation in a significant population of neurons at the stimulation site. Instead, subthreshold stimulation attempts to decrease the “activation energy” required to activate a large portion of the neurons at the stimulation site. As such, subthreshold stimulation in accordance with certain embodiments of the invention is expected to increase the probability that the neurons will fire in response to the usual intrinsic triggers, such as trying to move a limb, physical therapy, or simply thinking about movement of a limb, etc. Moreover, coincident stimulation associated with physical therapy is expected to increase the probability that the action potentials that are occurring with an increased probability due to the subthreshold stimulation will be related to meaningful triggers, and not just “noise.”
  • The stimulus parameters set forth above, such as a frequency selection of approximately 50-100 Hz and an amplitude sufficient to achieve an increase of 60% to 80% of the difference between the resting potential and the threshold potential are specifically selected so that they will increase the resting membrane potential of the neurons, thereby increasing the likelihood that they will fire action potentials, without directly causing action potentials in most of the neuron population. In addition, and as explained in more detail below with respect to FIGS. 6-40, several embodiments of stimulation apparatus in accordance with the invention are designed to precisely apply a pulse form that produces subthreshold stimulation by selectively stimulating regions of the cerebral cortex of approximately 1-2 cm (the estimated size of a “functional unit” of cortex), directly contacting the pial surface with the electrodes to consistently create the same alterations in resting membrane potential, and/or biasing the electrodes against the pial surface to provide a positive connection between the electrodes and the cortex.
  • B. Devices for Electrically Stimulating Regions of the Brain
  • FIGS. 6-40 illustrate stimulation apparatus in accordance with several embodiments of the invention for electrically stimulating regions of the brain in accordance with one or more of the methods described above. The devices illustrated in FIGS. 6-40 are generally used to stimulate a region of the cortex proximate to the pial surface of the brain (e.g., the dura mater, the pia mater, the fluid between the dura mater and the pia mater, and a depth in the cortex outside of the white matter of the brain). The devices can also be adapted for stimulating other portions of the brain in other embodiments.
  • 1. Implantable Stimulation Apparatus with Integrated Pulse Systems
  • FIG. 6 is an isometric view and FIG. 7 is a cross-sectional view of a stimulation apparatus 600 in accordance with an embodiment of the invention for stimulating a region of the cortex proximate to the pial surface. In one embodiment, the stimulation apparatus 600 includes a support member 610, an integrated pulse-system 630 (shown schematically) carried by the support member 610, and first and second electrodes 660 (identified individually by reference numbers 660 a and 660 b). The first and second electrodes 660 are electrically coupled to the pulse system 630. The support member 610 can be configured to be implanted into the skull or another intracranial region of a patient. In one embodiment, for example, the support member 610 includes a housing 612 and an attachment element 614 connected to the housing 612. The housing 612 can be a molded casing formed from a biocompatible material that has an interior cavity for carrying the pulse system 630. The housing can alternatively be a biocompatible metal or another suitable material. The housing 612 can have a diameter of approximately 1-4 cm, and in many applications the housing 612 can be 1.5-2.5 cm in diameter. The housing 612 can also have other shapes (e.g., rectilinear, oval, elliptical) and other surface dimensions. The stimulation apparatus 600 can weigh 35 g or less and/or occupy a volume of 20 cc or less. The attachment element 614 can be a flexible cover, a rigid plate, a contoured cap, or another suitable element for holding the support member 610 relative to the skull or other body part of the patient. In one embodiment, the attachment element 614 is a mesh, such as a biocompatible polymeric mesh, metal mesh, or other suitable woven material. The attachment element 614 can alternatively be a flexible sheet of Mylar, a polyester, or another suitable material.
  • FIG. 7, more specifically, is a cross-sectional view of the stimulation apparatus 600 after it has been implanted into a patient in accordance with an embodiment of the invention. In this particular embodiment, the stimulation apparatus 600 is implanted into the patient by forming an opening in the scalp 702 and cutting a hole 704 through the skull 700 and through the dura mater 706. The hole 704 should be sized to receive the housing 612 of the support member 610, and in most applications, the hole 704 should be smaller than the attachment element 614. A practitioner inserts the support member 610 into the hole 704 and then secures the attachment element 614 to the skull 700. The attachment element 614 can be secured to the skull using a plurality of fasteners 618 (e.g., screws, spikes, etc.) or an adhesive. In an alternative embodiment, a plurality of downwardly depending spikes can be formed integrally with the attachment element 614 to define anchors that can be driven into the skull 700.
  • The embodiment of the stimulation apparatus 600 shown in FIG. 7 is configured to be implanted into a patient so that the electrodes 660 contact a desired portion of the brain at the stimulation site. The housing 612 and the electrodes 660 can project from the attachment element 614 by a distance “D” such that the electrodes 660 are positioned at least proximate to the pia mater 708 surrounding the cortex 709.
  • The electrodes 660 can project from a housing 612 as shown in FIG. 7, or the electrodes 660 can be flush with the interior surface of the housing 612. In the particular embodiment shown in FIG. 7, the housing 612 has a thickness “T” and the electrodes 660 project from the housing 612 by a distance “P” so that the electrodes 660 press against the surface of the pia mater 708. The thickness of the housing 612 can be approximately 0.5-4 cm, and is more generally about 1-2 cm. The configuration of the stimulation apparatus 600 is not limited to the embodiment shown in FIGS. 6 and 7, but rather the housing 612, the attachment element 614, and the electrodes 660 can be configured to position the electrodes in several different regions of the brain. For example, in an alternate embodiment, the housing 612 and the electrodes 660 can be configured to position the electrodes deep within the cortex 709, and/or a deep brain region 710. In general, the electrodes can be flush with the housing or extend 0.1 mm to 5 cm from the housing. More specific embodiments of pulse system and electrode configurations for the stimulation apparatus will be described below.
  • Several embodiments of the stimulation apparatus 600 are expected to be more effective than existing transcranial electrical stimulation devices and transcranial magnetic stimulation devices. It will be appreciated that much of the power required for transcranial therapies is dissipated in the scalp and skull before it reaches the brain. In contrast to conventional transcranial stimulation devices, the stimulation apparatus 600 is implanted so that the electrodes are at least proximate to the pial surface of the brain 708. Several embodiments of methods in accordance with the invention can use the stimulation apparatus 600 to apply an electrical therapy directly to the pia mater 708, the dura mater 706, and/or another portion of the cortex 709 at significantly lower power levels than existing transcranial therapies. For example, a potential of approximately 1 mV to 10 V can be applied to the electrodes 660; in many instances a potential of 100 mV to 5 V can be applied to the electrodes 660 for selected applications. It will also be appreciated that other potentials can be applied to the electrodes 660 of the stimulation apparatus 600 in accordance with other embodiments of the invention.
  • Selected embodiments of the stimulation apparatus 600 are also capable of applying stimulation to a precise stimulation site. Again, because the stimulation apparatus 600 positions the electrodes 660 at least proximate to the pial surface 708, precise levels of stimulation with good pulse shape fidelity will be accurately transmitted to the stimulation site in the brain. It will be appreciated that transcranial therapies may not be able to apply stimulation to a precise stimulation site because the magnetic and electrical properties of the scalp and skull may vary from one patient to another such that an identical stimulation by the transcranial device may produce a different level of stimulation at the neurons in each patient. Moreover, the ability to focus the stimulation to a precise area is hindered by delivering the stimulation transcranially because the scalp, skull and dura all diffuse the energy from a transcranial device. Several embodiments of the stimulation apparatus 600 overcome this drawback because the electrodes 660 are positioned under the skull 700 such that the pulses generated by the stimulation apparatus 600 are not diffused by the scalp 702 and skull 700.
  • 2. Integrated Pulse Systems for Implantable Stimulation Apparatus
  • The pulse system 630 shown in FIGS. 6 and 7 generates and/or transmits electrical pulses to the electrodes 660 to create an electrical field at a stimulation site in a region of the brain. The particular embodiment of the pulse system 630 shown in FIG. 7 is an “integrated” unit in that is carried by the support member 610. The pulse system 630, for example, can be housed within the housing 612 so that the electrodes 660 can be connected directly to the pulse system 630 without having leads outside of the stimulation apparatus 600. The distance between the electrodes 660 and the pulse system 630 can be less than 4 cm, and it is generally 0.10 to 2.0 cm. The stimulation apparatus 600 can accordingly provide electrical pulses to the stimulation site without having to surgically create tunnels running through the patient to connect the electrodes 660 to a pulse generator implanted remotely from the stimulation apparatus 600. It will be appreciated, however, that alternative embodiments of stimulation apparatus in accordance with the invention can include a pulse system implanted separately from the stimulation apparatus 600 in the cranium or an external pulse system. Several particular embodiments of pulse systems that are suitable for use with the stimulation apparatus 600 will now be described in more detail.
  • FIGS. 8 and 9 schematically illustrate an integrated pulse system 800 in accordance with one embodiment of the invention for being implanted in the cranium within the stimulation apparatus 600. Referring to FIG. 8, the pulse system 800 can include a power supply 810, an integrated controller 820, a pulse generator 830, and a pulse transmitter 840. The power supply 810 can be a primary battery, such as a rechargeable battery or another suitable device for storing electrical energy. In alternative embodiments, the power supply 810 can be an RF transducer or a magnetic transducer that receives broadcast energy emitted from an external power source and converts the broadcast energy into power for the electrical components of the pulse system 800. The integrated controller 820 can be a wireless device that responds to command signals sent by an external controller 850. The integrated controller 820, for example, can communicate with the external controller 850 by RF or magnetic links 860. The integrated controller 820 provides control signals to the pulse generator 830 in response to the command signals sent by the external controller 850. The pulse generator 830 can have a plurality of channels that send appropriate electrical pulses to the pulse transmitter 840, which is coupled to the electrodes 660. Suitable components for the power supply 810, the integrated controller 820, the pulse generator 830, and the pulse transmitter 840 are known to persons skilled in the art of implantable medical devices.
  • Referring to FIG. 9, the pulse system 800 can be carried by the support member 610 of the stimulation apparatus 600 in the manner described above with reference to FIGS. 6 and 7. The external controller 850 can be located externally to the patient 500 so that the external controller 850 can be used to control the pulse system 800. In one embodiment, several patients that require a common treatment can be simultaneously treated using a single external controller 850 by positioning the patients within the operating proximity of the controller 850. In an alternative embodiment, the external controller 850 can contain a plurality of operating codes and the integrated controller 820 for a particular patient can have an individual operating code. A single controller 850 can thus be used to treat a plurality of different patients by entering the appropriate operating code into the controller 850 corresponding to the particular operating codes of the integrated controllers 820 for the patients.
  • FIG. 10 is a schematic view illustrating a pulse system 1000 and an external controller 1010 for use with the stimulation apparatus 600 in accordance with another embodiment of the invention. In this embodiment, the external controller 1010 includes a power supply 1020, a controller 1022 coupled to the power supply 1020, and a user interface 1024 coupled to the controller 1022. The external controller 1010 can also include a pulse generator 1030 coupled to the power supply 1020, a pulse transmitter 1040 coupled to the pulse generator 1030, and an antenna 1042 coupled to the pulse transmitter 1040. The external controller 1010 generates the power and the pulse signal, and the antenna 1042 transmits a pulse signal 1044 to the pulse system 1000 in the stimulation apparatus 600. The pulse system 1000 receives the pulse signal 1044 and delivers an electrical pulse to the electrodes. The pulse system 1000, therefore, does not necessarily include an integrated power supply, controller and pulse generator within the housing 610 because these components are in the external controller 1010.
  • FIG. 11 is a schematic view illustrating an embodiment of the pulse system 1000 in greater detail. In this embodiment, the pulse system 1000 is carried by the support member 610 of the stimulation apparatus 600. The pulse system 1000 can include an antenna 1060 and a pulse delivery system 1070 coupled to the antenna 1060. The antenna 1060 receives the pulse signal 1044 from the external controller 1010 and sends the pulse signal 1044 to the pulse delivery system 1070, which transforms the pulse signal 1044 into electrical pulses. Accordingly, the electrodes 660 can be coupled to the pulse delivery system 1070. The pulse delivery system 1070 can include a filter to remove noise from the pulse signal 1044 and a pulse former that creates an electrical pulse from the pulse signal 1044. The pulse former can be driven by the energy in the pulse signal 1044, or in an alternative embodiment, the pulse system 1000 can also include an integrated power supply to drive the pulse former.
  • FIG. 12 is a schematic view illustrating an embodiment of pulse system 1200 for use in an embodiment of the stimulation apparatus 600, and an external controller 1210 for controlling the pulse system 1200 remotely from the patient using RF energy. In this embodiment, the external controller 1210 includes a power supply 1220, a controller 1222 coupled to the power supply 1220, and a pulse generator 1230 coupled to the controller 1222. The external controller 1210 can also include a modulator 1232 coupled to the pulse generator 1230 and an RF generator 1234 coupled to the modulator 1232. In operation, the external controller 1210 broadcasts pulses of RF energy via an antenna 1242.
  • The pulse system 1200 can be housed within the stimulation apparatus 600 (not shown). In one embodiment, the pulse system 1200 includes an antenna 1260 and a pulse delivery system 1270. The antenna 1260 incorporates a diode (not shown) that rectifies the broadcast RF energy from the antenna 1242. The pulse delivery system 1270 can include a filter 1272 and a pulse former 1274 that forms electrical pulses which correspond to the RF energy broadcast from the antenna 1242. The pulse system 1200 is accordingly powered by the RF energy in the pulse signal from the external controller 1210 such that the pulse system 1200 does not need a separate power supply carried by the stimulation apparatus 600.
  • FIG. 13 is a cross-sectional view of a pulse system 1300 for use in another embodiment of the implantable stimulation apparatus 600, together with an external controller 1310 for remotely controlling the pulse system 1300 externally from the patient using magnetic energy. In this embodiment, the external controller 1310 includes a power supply 1320, a controller 1322 coupled to the power supply 1320, and a user interface 1324 coupled to the controller 1322. The external controller 1310 can also include a pulse generator 1330 coupled to the controller 1332, a pulse transmitter 1340 coupled to the pulse generator 1330, and a magnetic coupler 1350 coupled to the pulse transmitter 1340. The magnetic coupler 1350 can include a ferrite core 1352 and a coil 1354 wrapped around a portion of the ferrite core 1352. The coil 1354 can also be electrically connected to the pulse transmitter 1340 so that electrical pulses applied to the coil 1354 generate changes in a corresponding magnetic field. The magnetic coupler 1350 can also include a flexible cap 1356 to position the magnetic coupler 1350 over the implanted stimulation apparatus 600.
  • The pulse system 1300 can include a ferrite core 1360 and a coil 1362 wrapped around a portion of the ferrite core 1360. The pulse system 1310 can also include a pulse delivery system 1370 including a rectifier and a pulse former. In operation, the ferrite core 1360 and the coil 1362 convert the changes in the magnetic field generated by the magnetic coupler 1350 into electrical pulses that are sent to the pulse delivery system 1370. The electrodes 660 are coupled to the pulse delivery system 1370 so that electrical pulses corresponding to the electrical pulses generated by the pulse generator 1330 in the external controller 1310 are delivered to the stimulation site on the patient.
  • 3. Electrode Configurations
  • FIGS. 14-24 illustrate electrodes in accordance with various embodiments of the invention that can be used with the stimulation apparatus disclosed herein. FIGS. 14-22 illustrate embodiments of electrodes configured to apply an electrical current to a stimulation site at least proximate to the pial surface of the cortex, and FIGS. 23 and 24 illustrate embodiments of electrodes configured to apply an electrical current within the cortex or below the cortex. It will be appreciated that other configurations of electrodes can also be used with other implantable stimulation apparatus.
  • FIG. 14 is a bottom plan view and FIG. 15 is a cross-sectional view of a stimulation apparatus 1400 in accordance with an embodiment of the invention. In this embodiment, the stimulation apparatus 1400 includes a first electrode 1410 and a second electrode 1420 concentrically surrounding the first electrode 1410. The first electrode 1410 can be coupled to the positive terminal of a pulse generator 1430, and the second electrode 1420 can be coupled to the negative terminal of the pulse generator 1430. Referring to FIG. 15, the first and second electrodes 1410 and 1420 generate a toroidal electric field 1440.
  • FIG. 16 is a bottom plan view and FIG. 17 is a cross-sectional view of a stimulation apparatus 1600 in accordance with another embodiment of the invention. In this embodiment, the stimulation apparatus 1600 includes a first electrode 1610, a second electrode 1620 surrounding the first electrode 1610, and a third electrode 1630 surrounding the second electrode 1620. The first electrode 1610 can be coupled to the negative terminals of a first pulse generator 1640 and a second pulse generator 1642; the second electrode 1620 can be coupled to the positive terminal of the first pulse generator 1640; and the third electrode 1630 can be coupled to the positive terminal of the second pulse generator 1642. In operation, the first electrode 1610 and the third electrode 1630 generate a first toroidal electric field 1650, and the first electrode the 1610 and the second electrode 1620 generate a second toroidal electric field 1660. The second toroidal electric field 1660 can be manipulated to vary the depth that the first toroidal electric field 1650 projects away from the base of the stimulation apparatus 1600.
  • FIG. 18 is a bottom plan view and FIG. 19 is a cross-sectional view of a stimulation apparatus 1800 in accordance with yet another embodiment of the invention. In this embodiment, the stimulation apparatus 1800 includes a first electrode 1810 and a second electrode 1820 spaced apart from the first electrode 1810. The first and second electrodes 1810 and 1820 are linear electrodes which are coupled to opposite terminals of a pulse generator 1830. Referring to FIG. 19, the first and second electrodes 1810 and 1820 can generate an approximately linear electric field.
  • FIG. 20 is a bottom plan view of a stimulation apparatus 2000 in accordance with still another embodiment of the invention. In this embodiment, the stimulation apparatus 2000 includes a first electrode 2010, a second electrode 2020, a third electrode 2030, and a fourth electrode 2040. The first and second electrodes 2010 and 2020 are coupled to a first pulse generator 2050, and the third and fourth electrodes 2030 and 2040 are coupled to a second pulse generator 2060. More specifically, the first electrode 2010 is coupled to the positive terminal and the second electrode 2020 is coupled to the negative terminal of the first pulse generator 2050, and the third electrode 2030 is coupled to the positive terminal and the fourth electrode 2040 is coupled to the negative terminal of the second pulse generator 2060. The first and second electrodes 2010 and 2020 are expected to generate a first electric field 2070, and the third and fourth electrodes 2030 and 2040 are expected to generate a second electric field 2072. It will be appreciated that the ions will be relatively free to move through the brain such that a number of ions will cross between the first and second electric fields 2070 and 2072 as shown by arrows 2074. This embodiment provides control of electric field gradients at the stimulation sites.
  • FIG. 21 is a bottom plan view of another embodiment of the stimulation apparatus 2000. In this embodiment, the first electrode 2010 is coupled to the positive terminal and the second electrode 2020 is coupled to the negative terminal of the first pulse generator 2050. In contrast to the embodiment shown in FIG. 20, the third electrode 2030 is coupled to the negative terminal and the fourth electrode 2040 is coupled to the positive terminal of the second pulse generator 2070. It is expected that this electrode arrangement will result in a plurality of electric fields between the electrodes. This allows control of the direction or orientation of the electric field.
  • FIG. 22 is a bottom plan view that schematically illustrates a stimulation apparatus 2200 in accordance with still another embodiment of the invention. In this embodiment, the stimulation apparatus 2200 includes a first electrode 2210, a second electrode 2220, a third electrode 2230, and a fourth electrode 2240. The electrodes are coupled to a pulse generator 2242 by a switch circuit 2250. The switch circuit 2250 can include a first switch 2252 coupled to the first electrode 2210, a second switch 2254 coupled to the second electrode 2220, a third switch 2256 coupled to the third electrode 2230, and a fourth switch 2258 coupled to the fourth electrode 2240. In operation, the switches 2252-2258 can be opened and closed to establish various electric fields between the electrodes 2210-2240. For example, the first switch 2252 and the fourth switch 2258 can be closed in coordination with a pulse from the pulse generator 2242 to generate a first electric field 2260, and/or the second switch 2254 and the third switch 2256 can be closed in coordination with another pulse from the pulse generator 2242 to generate a second electric field 2270. The first and second electric fields 2260 and 2270 can be generated at the same pulse to produce concurrent fields or alternating pulses to produce alternating or rotating fields.
  • FIG. 23 is a bottom plan view and FIG. 24 is a side elevational view of a stimulation apparatus 2300 in accordance with another embodiment of the invention. In this embodiment, the stimulation apparatus 2300 has a first electrode 2310, a second electrode 2320, a third electrode 2330, and a fourth electrode 2340. The electrodes 2310-2340 can be configured in any of the arrangements set forth above with reference to FIGS. 14-22. The electrodes 2310-2340 also include electrically conductive pins 2350 and/or 2360. The pins 2350 and 2360 can be configured to extend below the pial surface of the cortex. For example, because the length of the pin 2350 is less than the thickness of the cortex 709, the tip of the pin 2350 will accordingly conduct the electrical pulses to a stimulation site within the cortex 709 below the pial surface. The length of the pin 2360 is greater than the thickness of the cortex 709 to conduct the electrical pulses to a portion of the brain below the cortex 709, such as a deep brain region 710. The lengths of the pins are selected to conduct the electrical pulses to stimulation sites below the pia mater 708. As such, the length of the pins 2350 and 2360 can be the same for each electrode or different for individual electrodes. Additionally, only a selected portion of the electrodes and the pins can have an exposed conductive area. For example, the electrodes 2310-2340 and a portion of the pins 2350 and 2360 can be covered with a dielectric material so that only exposed conductive material is at the tips of the pins. It will also be appreciated that the configurations of electrodes set forth in FIGS. 14-22 can be adapted to apply an electrical current to stimulation sites below the pia mater by providing pin-like electrodes in a matter similar to the electrodes shown in FIGS. 23 and 24.
  • Several embodiments of the stimulation apparatus described above with reference to FIGS. 6-24 are expected to be more effective than existing transcranial or subcranial stimulation devices. In addition to positioning the electrodes under the skull, many embodiments of the stimulation apparatus described above also accurately focus the electrical energy in desired patterns relative to the pia mater 708, the dura mater 706, and/or the cortex 709. It will be appreciated that transcranial devices may not accurately focus the energy because the electrodes or other types of energy emitters are positioned relatively far from the stimulation sites and the skull diffuses some of the energy. Also, existing subcranial devices generally merely place the electrodes proximate to a specific nerve, but they do not provide electrode configurations that generate an electrical field in a pattern designed for the stimulation site. Several of the embodiments of the stimulation apparatus described above with reference to FIGS. 6-24 overcome this drawback because the electrodes can be placed against the neurons at the desired stimulation site. Additionally, the electrode configurations of the stimulation apparatus can be configured to provide a desired electric field that is not diffused by the skull 700. Therefore, several embodiments of the stimulation apparatus in accordance with the invention are expected to be more effective because they can accurately focus the energy at the stimulation site.
  • 4. Implantable Stimulation Apparatus with Biasing Elements
  • FIGS. 25-30 illustrate several embodiments of stimulation apparatus having a biasing element in accordance with a different aspect of the invention. The stimulation apparatus shown in FIGS. 25-30 can be similar to those described above with reference to FIGS. 6-24. Therefore, the embodiments of the stimulation apparatus shown in FIGS. 25-30 can have the same pulse systems, support members and electrode configurations described above with reference to FIGS. 6-24.
  • FIG. 25 is an isometric view and FIG. 26 is a cross-sectional view of a stimulation apparatus 2500 in accordance with an embodiment of the invention. In one embodiment, the stimulation apparatus 2500 includes a support member 2510, a pulse-system 2530 carried by the support member 2510, and first and second electrodes 2560 coupled to the pulse system 2530. The support member 2510 can be identical or similar to the support member 610 described above with reference to FIGS. 6 and 7. The support member 2510 can accordingly include a housing 2512 configured to be implanted in the skull 700 and an attachment element 2514 configured to be connected to the skull 700 by fasteners 2518 (FIG. 2), an adhesive, and/or an anchor. The pulse system 2530 can be identical or similar to any of the pulse systems described above with reference to FIGS. 6-13, and the first and second electrodes 2560 can have any of the electrode configurations explained above with reference to FIGS. 14-24. Unlike the stimulation apparatus described above, however, the stimulation apparatus 2500 includes a biasing element 2550 coupled to the electrodes 2560 to mechanically bias the electrodes 2560 away from the support member 2510. In an alternative embodiment, the biasing element 2550 can be positioned between the housing 2512 and the attachment element 2514, and the electrodes 2560 can be attached directly to the housing 2512. As explained in more detail below, the biasing element 2550 can be a compressible member, a fluid filled bladder, a spring, or any other suitable element that resiliently and/or elastically drives the electrodes 2560 away from the support member 2510.
  • FIG. 26 illustrates an embodiment of the stimulation apparatus 2500 after it has been implanted into the skull 700 of a patient. When the fasteners 2518 are attached to the skull 700, the biasing element 2550 should be compressed slightly so that the electrodes 2560 contact the stimulation site. In the embodiment shown in FIG. 26, the compressed biasing element 2550 gently presses the electrodes 2560 against the surface of the pia mater 708. It is expected that the biasing element 2550 will provide a uniform, consistent contact between the electrodes 2560 and the pial surface of the cortex 709. The stimulation apparatus 2500 is expected to be particularly useful when the implantable device is attached to the skull and the stimulation site is on the pia mater 708 or the dura mater 706. It can be difficult to position the contacts against the pia mater 708 because the distance between the skull 700, the dura mater 706, and the pia mater 708 varies within the cranium as the brain moves relative to the skull, and also as the depth varies from one patient to another. The stimulation apparatus 2500 with the biasing element 2550 compensates for the different distances between the skull 700 and the pia mater 708 so that a single type of device can inherently fit several different patients. Moreover, the stimulation apparatus 2500 with the biasing element 2550 adapts to changes as the brain moves within the skull. In contrast to the stimulation apparatus 2500 with the biasing element 2550, an implantable device that does not have a biasing element 2550 may not fit a particular patient or may not consistently provide electrical contact to the pia mater.
  • FIGS. 27 and 28 are cross-sectional views of stimulation apparatus in which the biasing elements are compressible members. FIG. 27, more specifically, illustrates a stimulation apparatus 2700 having a biasing element 2750 in accordance with an embodiment of the invention. The stimulation apparatus 2700 can have an integrated pulse system 2530 and electrodes 2560 coupled to the pulse system 2530 in a manner similar to the stimulation apparatus 2500. The biasing element 2750 in this embodiment is a compressible foam, such as a biocompatible closed cell foam or open cell foam. As best shown in FIG. 27, the biasing element 2750 compresses when the stimulation apparatus 2700 is attached to the skull. FIG. 28 illustrates a stimulation apparatus 2800 having a biasing element 2850 in accordance with another embodiment of the invention. The biasing element 2850 can be a compressible solid, such as silicon rubber or other suitable compressible materials. The electrodes 2560 are attached to the biasing element 2850.
  • FIG. 29 is a cross-sectional view of a stimulation apparatus 2900 having a biasing element 2950 in accordance with another embodiment of the invention. The stimulation apparatus 2900 can have a support member 2910 including an internal passageway 2912 and a diaphragm 2914. The biasing element 2950 can include a flexible bladder 2952 attached to the support member 2910, and the electrodes 2560 can be attached to the flexible bladder 2952. In operation, the flexible bladder 2952 is filled with a fluid 2954 until the electrodes 2560 press against the stimulation site. In one embodiment, the flexible bladder 2952 is filled by inserting a needle of a syringe 2956 through the diaphragm 2914 and injecting the fluid 2954 into the internal passageway 2912 and the flexible bladder.
  • FIG. 30 is a cross-sectional view of a stimulation apparatus 3000 having a biasing element 3050 in accordance with another embodiment of the invention. In this embodiment, the biasing element 3050 is a spring and the electrodes 2560 are attached to the spring. The biasing element 3050 can be a wave spring, a leaf spring, or any other suitable spring that can mechanically bias the electrodes 2560 against the stimulation site.
  • Although several embodiments of the stimulation apparatus shown in FIGS. 25-30 can have a biasing element and any of the pulse systems set forth above with respect to FIGS. 6-13, it is not necessary to have a pulse system contained within the support member. Therefore, certain embodiments of implantable stimulation apparatus in accordance with the invention can have a pulse system and/or a biasing member in any combination of the embodiments set forth above with respect to FIGS. 6-30.
  • 5. Implantable Stimulation Apparatus with External Pulse Systems
  • FIGS. 31-35 are schematic cross-sectional views of various embodiments of implantable stimulation apparatus having external pulse systems. FIG. 31, more specifically, illustrates an embodiment of a stimulation apparatus 3100 having a biasing element 3150 to which a plurality of electrodes 3160 are attached in a manner similar to the stimulation apparatus described above with reference to FIGS. 25-30. It will be appreciated that the stimulation apparatus 3100 may not include the biasing element 3150. The stimulation apparatus 3100 can also include an external receptacle 3120 having an electrical socket 3122 and an implanted lead line 3124 coupling the electrodes 3160 to contacts (not shown) in the socket 3122. The lead line 3124 can be implanted in a subcutaneous tunnel or other passageway in a manner known to a person skilled and art.
  • The stimulation apparatus 3100, however, does not have an internal pulse system carried by the portion of the device that is implanted in the skull 700 of the patient 500. The stimulation apparatus 3100 receives electrical pulses from an external pulse system 3130. The external pulse system 3130 can have an electrical connector 3132 with a plurality of contacts 3134 configured to engage the contacts within the receptacle 3120. The external pulse system 3130 can also have a power supply, controller, pulse generator, and pulse transmitter to generate the electrical pulses. In operation, the external pulse system 3130 sends electrical pulses to the stimulation apparatus 3100 via the connector 3132, the receptacle 3120, and the lead line 3124.
  • FIGS. 32 and 33 illustrate an embodiment of a stimulation apparatus 3200 for use with an external pulse system in accordance with another embodiment of the invention. Referring to FIG. 33, the stimulation apparatus 3200 can include a support structure 3210 having a socket 3212, a plurality of contacts 3214 arranged in the socket 3212, and a diaphragm 3216 covering the socket 3212. The stimulation apparatus 3200 can also include a biasing element 3250 and a plurality of electrodes 3260 attached to the biasing element 3250. Each electrode 3260 is directly coupled to one of the contacts 3214 within the support structure 3210. It will be appreciated that an alternative embodiment of the stimulation apparatus 3200 does not include the biasing element 3250.
  • Referring to FIGS. 32 and 33 together, the stimulation apparatus 3200 receives the electrical pulses from an external pulse system 3230 that has a power supply, controller, pulse generator, and pulse transmitter. The external pulse system 3230 can also include a plug 3232 having a needle 3233 (FIG. 33) and a plurality of contacts 3234 (FIG. 33) arranged on the needle 3233 to contact the internal contacts 3214 in the socket 3212. In operation, the needle 3233 is inserted into the socket 3212 to engage the contacts 3234 with the contacts 3214, and then the pulse system 3230 is activated to transmit electrical pulses to the electrodes 3260.
  • FIGS. 34 and 35 illustrate additional embodiments of stimulation apparatus for use with external pulse systems. FIG. 34 illustrates an embodiment of a stimulation apparatus 3400 having electrodes 3410 coupled to a lead line 3420 that extends under the scalp 702 of the patient 500. The lead line 3420 is coupled to an external pulse system 3450. FIG. 35 illustrates an embodiment of a stimulation apparatus 3500 having a support member 3510, electrodes 3512 coupled to the support member 3510, and an external receptacle 3520 mounted on the scalp 702. The external receptacle 3520 can also be connected to the support member 3510. The external receptacle 3520 can have a socket 3522 with contacts (not shown) electrically coupled to the electrodes 3512. The stimulation apparatus 3500 can be used with the external pulse system 3130 described above with reference to FIG. 31 by inserting the plug 3132 into the socket 3522 until the contacts 3134 on the plug 3132 engage the contacts within the socket 3522.
  • 6. Alternate Embodiments of Implantable Stimulation Apparatus
  • FIG. 36 is a schematic cross-sectional view of an implantable stimulation apparatus 3600 in accordance with another embodiment of the invention. In one embodiment, the stimulation apparatus 3600 has a support structure 3610 and a plurality of electrodes 3620 coupled to the support structure 3610. The support structure 3610 can be configured to be implanted under the skull 700 between an interior surface 701 of the skull 700 and the pial surface of the brain. The support structure 3610 can be a flexible or compressible body such that the electrodes 3620 contact the pia mater 708 when the stimulation apparatus 3600 is implanted under the skull 700. In other embodiments, the support structure 3610 can position the electrodes 3620 so that they are proximate to, but not touching, the pia mater 708.
  • In one embodiment, the stimulation apparatus 3600 can receive electrical pulses from an external controller 3630. For example, the external controller 3630 can be electrically coupled to the stimulation apparatus 3600 by a lead line 3632 that passes through a hole 711 in the skull 700. In an alternative embodiment, the stimulation apparatus 3600 can include an integrated pulse system similar to the pulse systems described above with reference to FIGS. 6-13. Such an embodiment of the stimulation apparatus 3600 can accordingly use a wireless external control unit. It will be appreciated that the electrodes 3620 of the stimulation apparatus 3600 can have several of the electrode configurations described above with reference to FIGS. 14-24.
  • FIGS. 37 and 38 illustrate one embodiment of the implantable stimulation apparatus 3600. Referring to FIG. 37, the support structure 3610 can be a flexible substrate and the electrodes 3620 can be conductive elements that are printed onto the flexible substrate. The stimulation apparatus 3600, for example, can be manufactured in a manner similar to flexible printed circuit assemblies that are used in electrical components. The stimulation apparatus 3600 can be implanted under the skull 700 using an insertion tool 3700. In one embodiment, the insertion tool 3700 has a handle 3702 and a shaft 3704 projecting from the handle 3702. The shaft 3704 can have a slot 3706 configured to receive a flat portion of the support member 3610. Referring to FIG. 38, the support member 3610 is wrapped around the shaft 3704, and then the stimulation apparatus 3600 is passed to a tube 3720 positioned in the hole 711 through the scalp 700 and the dura mater 706. After the stimulation apparatus 3600 has been passed through the tube 3720, it is unfurled to place the electrodes 3620 at least proximate to the pia mater 708. The electrodes 3620 can be coupled to an external controller by the lead lines 3632.
  • FIG. 39 illustrates another embodiment of an implantable stimulation apparatus 3900 that is also configured to be positioned between the skull 700 and the pia mater 708. In one embodiment, the stimulation apparatus 3900 can include a support member 3910 and a plurality of electrodes 3920 coupled to the support member 3910. The electrodes 3920 can be coupled to individual lead lines 3922 to connect the electrodes 3920 to an external pulse system. In an alternative embodiment, an integrated pulse system 3930 can be carried by the support member 3910 so that the electrodes 3920 can be coupled directly to the integrated pulse system 3930 without external lead lines 3922. The support member 3910 can be a resiliently compressible member, an inflatable balloon-like device, or a substantially solid incompressible body. In the particular embodiment shown in FIG. 39, the support member 3910 is an inflatable balloon-like device that carries the electrodes 3920. In operation, the stimulation apparatus 3900 is implanted by passing the distal end of the support member-3910 through the hole 711 in the skull 700 until the electrodes 3920 are positioned at a desired stimulation site.
  • FIG. 40 is a schematic illustration of a stimulation apparatus 4000 together with an internal pulse system 4030 in accordance with another embodiment of the invention. The stimulation apparatus 4000 can include a support member 4010, a biasing element 4015 carried by the support member 4010, and a plurality of electrodes 4020 carried by the biasing element 4015. The internal pulse system 4030 can be similar to any of the integrated pulse systems described above with reference to FIGS. 6-13, but the internal pulse system 4030 is not an integrated pulse system because it is not carried by the housing 4010. The internal pulse system 4030 can be coupled to the electrodes 4020 by a cable 4034. In a typical application, the cable 4034 is implanted subcutaneously in a tunnel from a subclavicular region, along the back of the neck, and around the skull. The stimulation apparatus 4000 can also include any of the electrode configurations described above with reference to FIGS. 14-24.
  • From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims (25)

1-123. (canceled)
124. A device for applying electrical stimulation to a region of a brain of a patient, comprising:
an implantable pulse generator that includes a signal source carried by an implantable housing;
a signal delivery electrode electrically coupled to the signal source and carried by the housing at a generally fixed lateral location relative to the housing; and
a return electrode, wherein the signal delivery electrode is electrically coupled to the signal source to have a different electrical bias than the return electrode.
125. The device of claim 124 wherein the return electrode has a generally fixed lateral location relative to the housing.
126. The device of claim 124 wherein the return electrode is carried by the implantable housing.
127. The device of claim 124 wherein the housing is configured to be implanted at least partially within the patient's skull, and wherein the device further includes an attachment element carried by the housing and attachable to the skull.
128. The device of claim 124 wherein the implantable pulse generator is programmed to provide electrical signals to the signal delivery electrode at subthreshold levels.
129. The device of claim 124 wherein the signal delivery electrode projects from the housing in a direction generally normal to the housing.
130. The device of claim 124 wherein the signal delivery electrode is one of a plurality of signal delivery electrodes.
131. The device of claim 124, further comprising an external controller operatively coupleable to the pulse generator via a communication link.
132. The device of claim 124 wherein the signal delivery electrode is movable in a direction generally normal to the housing to apply a force to adjacent tissue when the housing is implanted.
133. The device of claim 124 wherein the housing includes a forcing element to which the signal delivery electrode is coupled, the forcing element being positioned to apply a force to the signal delivery electrode in a direction generally normal to the housing.
134. The device of claim 124 wherein the signal delivery electrode has a pin shape and is positioned to extend into brain tissue of the patient.
135. The device of claim 124 wherein the signal delivery electrode has a generally blunt shape and is positioned to bear against at least one of a dura mater and a pia mater of the patient.
136. A device for applying electrical stimulation to a region of a brain of a patient, comprising:
an implantable pulse generator that includes a signal source carried by an implantable housing;
a first electrode carried by the housing and having a generally fixed lateral location relative to the housing;
a second electrode carried by the housing and having a generally fixed lateral location relative to the housing, wherein the first and second electrodes have different electrical biases.
137. The device of claim 136 wherein the first electrode includes a signal delivery electrode and the second electrode includes a return electrode.
138. The device of claim 136 wherein the first electrode includes one of a plurality of signal delivery electrodes.
139. The device of claim 136 wherein the signal source includes a pulse transmitter coupled to a power supply.
140. The device of claim 136 wherein the housing is configured to be implanted at least partially within the patient's skull, and wherein the device further includes an attachment element carried by the housing and attachable to the skull.
141. The device of claim 136 wherein the implantable pulse generator is programmed to provide electrical signals at subthreshold levels.
142. The device of claim 136 wherein the first electrode projects from the housing in a direction generally normal to the housing.
143. The device of claim 136, further comprising an external controller operatively coupleable to the pulse generator via a communication link.
144. The device of claim 136 wherein the first electrode is movable in a direction generally normal to the housing to apply a force to adjacent tissue when the housing is implanted.
145. The device of claim 136 wherein the housing includes a forcing element to which the first electrode is coupled, the forcing element being positioned to apply a force to the first electrode in a direction generally normal to the housing.
146. The device of claim 136 wherein the first electrode has a pin shape and is positioned to extend into brain tissue of the patient.
147. The device of claim 136 wherein the first electrode has a generally blunt shape and is positioned to bear against at least one of a dura mater and a pia mater of the patient.
US11/389,770 2000-07-13 2006-03-27 Methods and apparatus for effectuating a lasting change in a neural-function of a patient Abandoned US20060195155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/389,770 US20060195155A1 (en) 2000-07-13 2006-03-27 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21798100P 2000-07-13 2000-07-13
US09/802,808 US7010351B2 (en) 2000-07-13 2001-03-08 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US10/293,409 US20030097161A1 (en) 2000-07-13 2002-11-12 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/389,770 US20060195155A1 (en) 2000-07-13 2006-03-27 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/293,409 Continuation US20030097161A1 (en) 2000-07-13 2002-11-12 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Publications (1)

Publication Number Publication Date
US20060195155A1 true US20060195155A1 (en) 2006-08-31

Family

ID=25184758

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/802,808 Expired - Lifetime US7010351B2 (en) 2000-07-13 2001-03-08 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US10/293,409 Abandoned US20030097161A1 (en) 2000-07-13 2002-11-12 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/355,038 Expired - Fee Related US7577481B2 (en) 2000-07-13 2006-02-15 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/389,770 Abandoned US20060195155A1 (en) 2000-07-13 2006-03-27 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,650 Expired - Fee Related US8065012B2 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,642 Abandoned US20080161880A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,638 Abandoned US20080215112A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,621 Abandoned US20080161879A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US13/240,053 Abandoned US20120022611A1 (en) 2000-07-13 2011-09-22 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US13/587,607 Abandoned US20120316630A1 (en) 2000-07-13 2012-08-16 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/802,808 Expired - Lifetime US7010351B2 (en) 2000-07-13 2001-03-08 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US10/293,409 Abandoned US20030097161A1 (en) 2000-07-13 2002-11-12 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/355,038 Expired - Fee Related US7577481B2 (en) 2000-07-13 2006-02-15 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Family Applications After (6)

Application Number Title Priority Date Filing Date
US11/834,650 Expired - Fee Related US8065012B2 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,642 Abandoned US20080161880A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,638 Abandoned US20080215112A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US11/834,621 Abandoned US20080161879A1 (en) 2000-07-13 2007-08-06 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US13/240,053 Abandoned US20120022611A1 (en) 2000-07-13 2011-09-22 Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US13/587,607 Abandoned US20120316630A1 (en) 2000-07-13 2012-08-16 Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Country Status (9)

Country Link
US (10) US7010351B2 (en)
EP (2) EP1738794B1 (en)
JP (2) JP2004538041A (en)
AT (1) ATE341363T1 (en)
AU (1) AU2002247293B2 (en)
CA (1) CA2440260C (en)
DE (1) DE60215130T2 (en)
ES (1) ES2274014T3 (en)
WO (1) WO2002072194A2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080082137A1 (en) * 2006-09-28 2008-04-03 Cvrx, Inc. Electrode array structures and methods of use for cardiovascular reflex control
US20090105786A1 (en) * 2007-10-22 2009-04-23 University Of Washington Method and device for strengthening synaptic connections
US20090121989A1 (en) * 2007-11-09 2009-05-14 Seiko Epson Corporation Active matrix device, electrooptic display, and electronic apparatus
US7869885B2 (en) 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US7869867B2 (en) 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
US7869884B2 (en) 2007-04-26 2011-01-11 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7904175B2 (en) 2007-04-26 2011-03-08 Cyberonics, Inc. Trans-esophageal vagus nerve stimulation
US7962220B2 (en) 2006-04-28 2011-06-14 Cyberonics, Inc. Compensation reduction in tissue stimulation therapy
US7962214B2 (en) 2007-04-26 2011-06-14 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7974701B2 (en) 2007-04-27 2011-07-05 Cyberonics, Inc. Dosing limitation for an implantable medical device
US7996079B2 (en) 2006-01-24 2011-08-09 Cyberonics, Inc. Input response override for an implantable medical device
US8150508B2 (en) 2006-03-29 2012-04-03 Catholic Healthcare West Vagus nerve stimulation method
US8204603B2 (en) 2008-04-25 2012-06-19 Cyberonics, Inc. Blocking exogenous action potentials by an implantable medical device
US8260426B2 (en) 2008-01-25 2012-09-04 Cyberonics, Inc. Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device
US8457747B2 (en) 2008-10-20 2013-06-04 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
US8565867B2 (en) 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
US9314633B2 (en) 2008-01-25 2016-04-19 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US9616234B2 (en) 2002-05-03 2017-04-11 Trustees Of Boston University System and method for neuro-stimulation
US10653883B2 (en) 2009-01-23 2020-05-19 Livanova Usa, Inc. Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11446084B2 (en) 2019-07-12 2022-09-20 Neuralink Corp. Laser drilling of pia mater
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
EP4230251A3 (en) * 2011-10-19 2023-10-04 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication

Families Citing this family (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US7209787B2 (en) * 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9375573B2 (en) * 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US7062330B1 (en) * 1998-10-26 2006-06-13 Boveja Birinder R Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator
US20060217782A1 (en) * 1998-10-26 2006-09-28 Boveja Birinder R Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US7725523B2 (en) 2000-04-11 2010-05-25 Bolnick David A System, method and computer program product for gathering and delivering personalized user information
US20020097125A1 (en) * 2000-06-05 2002-07-25 Kent Davey Method for optimizing transcranial magnetic stimulation cores and magnetic cores produced thereby
US7024247B2 (en) * 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7756584B2 (en) * 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7236831B2 (en) * 2000-07-13 2007-06-26 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021118A1 (en) * 2000-07-13 2005-01-27 Chris Genau Apparatuses and systems for applying electrical stimulation to a patient
US20030125786A1 (en) * 2000-07-13 2003-07-03 Gliner Bradford Evan Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7672730B2 (en) * 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7146217B2 (en) * 2000-07-13 2006-12-05 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient
US7010351B2 (en) * 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040176831A1 (en) * 2000-07-13 2004-09-09 Gliner Bradford Evan Apparatuses and systems for applying electrical stimulation to a patient
US7831305B2 (en) * 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7299096B2 (en) * 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
US7013177B1 (en) * 2001-07-05 2006-03-14 Advanced Bionics Corporation Treatment of pain by brain stimulation
WO2003026738A1 (en) * 2001-09-28 2003-04-03 Northstar Neuroscience, Inc. Methods and apparatus for electrically stimulating cells implanted in the nervous system
WO2003026736A2 (en) * 2001-09-28 2003-04-03 Northstar Neuroscience, Inc. Methods and implantable apparatus for electrical therapy
US8014847B2 (en) * 2001-12-13 2011-09-06 Musc Foundation For Research Development Systems and methods for detecting deception by measuring brain activity
AU2003218433A1 (en) * 2002-03-25 2003-10-13 Musc Foundation For Research Development Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance
US7221981B2 (en) * 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
WO2003092795A1 (en) * 2002-05-03 2003-11-13 Afferent Corporation A method and apparatus for enhancing neurophysiologic performance
FI20021050A (en) * 2002-05-31 2003-12-01 Nexstim Oy Targeting method and apparatus for magnetic stimulation of the brain
US20060173274A1 (en) * 2002-07-15 2006-08-03 George Mark S Functional magnetic resonance imaging guided transcranial magnetic stimulation deception inhibitor
US6717804B1 (en) * 2002-09-30 2004-04-06 Hewlett-Packard Development Company, L.P. Light-emitting lock device control element and electronic device including the same
US20050075679A1 (en) * 2002-09-30 2005-04-07 Gliner Bradford E. Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system
US7236830B2 (en) * 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
AU2003294454A1 (en) * 2002-11-22 2004-06-18 International Rehabilitative Sciences, Inc. Surface stimulation for tremor control
US20050075680A1 (en) 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US7302298B2 (en) * 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
AU2003297761A1 (en) * 2002-12-09 2004-06-30 Northstar Neuroscience, Inc. Methods for treating neurological language disorders
US7596408B2 (en) * 2002-12-09 2009-09-29 Medtronic, Inc. Implantable medical device with anti-infection agent
AU2003297723A1 (en) * 2002-12-09 2004-06-30 Medtronic, Inc. Reducing relative intermodule motion in a modular implantable medical device
US6959215B2 (en) * 2002-12-09 2005-10-25 Northstar Neuroscience, Inc. Methods for treating essential tremor
JP2004201901A (en) * 2002-12-25 2004-07-22 Yoshimi Kurokawa Stomach electrostimulator
US7771341B2 (en) * 2003-01-22 2010-08-10 William Thomas Rogers Electromagnetic brain animation
US7153256B2 (en) 2003-03-07 2006-12-26 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
US8118722B2 (en) 2003-03-07 2012-02-21 Neuronetics, Inc. Reducing discomfort caused by electrical stimulation
CA2523540A1 (en) * 2003-04-24 2005-01-06 Northstar Neuroscience, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US7263401B2 (en) 2003-05-16 2007-08-28 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US7317947B2 (en) * 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US20050003268A1 (en) * 2003-05-16 2005-01-06 Scott Erik R. Battery housing configuration
US20050004637A1 (en) * 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
US7107104B2 (en) * 2003-05-30 2006-09-12 Medtronic, Inc. Implantable cortical neural lead and method
US10322284B2 (en) * 2003-07-18 2019-06-18 The John Hopkins University Method for treating nausea and vomiting by vagus nerve stimulation with selectable stimulation modes
JP2007501067A (en) * 2003-08-01 2007-01-25 ノーススター ニューロサイエンス インコーポレイテッド Apparatus and method for applying neural stimulation to patient
US7617002B2 (en) 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
US7239926B2 (en) * 2003-09-15 2007-07-03 Medtronic, Inc. Selection of neurostimulator parameter configurations using genetic algorithms
US7252090B2 (en) * 2003-09-15 2007-08-07 Medtronic, Inc. Selection of neurostimulator parameter configurations using neural network
US7184837B2 (en) * 2003-09-15 2007-02-27 Medtronic, Inc. Selection of neurostimulator parameter configurations using bayesian networks
US8190248B2 (en) * 2003-10-16 2012-05-29 Louisiana Tech University Foundation, Inc. Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
US20050143589A1 (en) * 2003-11-09 2005-06-30 Donoghue John P. Calibration systems and methods for neural interface devices
US7104947B2 (en) 2003-11-17 2006-09-12 Neuronetics, Inc. Determining stimulation levels for transcranial magnetic stimulation
US20060069415A1 (en) * 2003-11-20 2006-03-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing modified reduced neuroplasticity effect
EP1694403A2 (en) * 2003-11-20 2006-08-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing reduced neuroplasticity effects
US9050469B1 (en) 2003-11-26 2015-06-09 Flint Hills Scientific, Llc Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
CA2454184A1 (en) * 2003-12-23 2005-06-23 Andres M. Lozano Method and apparatus for treating neurological disorders by electrical stimulation of the brain
US7651459B2 (en) * 2004-01-06 2010-01-26 Neuronetics, Inc. Method and apparatus for coil positioning for TMS studies
US20060004422A1 (en) * 2004-03-11 2006-01-05 Dirk De Ridder Electrical stimulation system and method for stimulating tissue in the brain to treat a neurological condition
US8177702B2 (en) 2004-04-15 2012-05-15 Neuronetics, Inc. Method and apparatus for determining the proximity of a TMS coil to a subject's head
US7596399B2 (en) * 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US20050245984A1 (en) * 2004-04-30 2005-11-03 Medtronic, Inc. Implantable medical device with lubricious material
EP1827569A4 (en) * 2004-05-04 2008-04-16 Cleveland Clinic Foundation Corpus callosum neuromodulation assembly
US7725196B2 (en) 2004-05-04 2010-05-25 The Cleveland Clinic Foundation Corpus callosum neuromodulation assembly
NL1026137C2 (en) * 2004-05-07 2005-11-08 Vanderlande Ind Nederland Device for sorting products.
US7601115B2 (en) * 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
EP1755448A4 (en) * 2004-06-14 2009-12-02 Cephos Corp Systems and methods for detecting deception by measuring brain activity
US7346382B2 (en) * 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
JP2008506464A (en) 2004-07-15 2008-03-06 ノーススター ニューロサイエンス インコーポレイテッド System and method for enhancing or influencing neural stimulation efficiency and / or efficacy
US7286879B2 (en) 2004-07-16 2007-10-23 Boston Scientific Scimed, Inc. Method of stimulating fastigium nucleus to treat neurological disorders
US7486993B2 (en) * 2004-08-05 2009-02-03 Neurotone Systems, Inc. Brain stimulation method and device
US20060184209A1 (en) * 2004-09-02 2006-08-17 John Constance M Device for brain stimulation using RF energy harvesting
US20090099623A1 (en) * 2004-09-13 2009-04-16 Neuronix Ltd. Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
US20060058853A1 (en) 2004-09-13 2006-03-16 Jonathan Bentwich Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes)
WO2006041738A2 (en) 2004-10-04 2006-04-20 Cyberkinetics Neurotechnology Systems, Inc. Biological interface system
US20060161216A1 (en) * 2004-10-18 2006-07-20 John Constance M Device for neuromuscular peripheral body stimulation and electrical stimulation (ES) for wound healing using RF energy harvesting
WO2006044793A2 (en) * 2004-10-18 2006-04-27 Louisiana Tech University Foundation Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
CN101124010B (en) 2004-10-19 2012-09-26 国际复原科技公司(贸易用名Rs医药公司) Method and means for electrical stimulation of cutaneous sensory receptors
US8417352B2 (en) * 2004-10-19 2013-04-09 Meagan Medical, Inc. System and method for stimulating sensory nerves
US7857746B2 (en) * 2004-10-29 2010-12-28 Nueronetics, Inc. System and method to reduce discomfort using nerve stimulation
US20060106430A1 (en) * 2004-11-12 2006-05-18 Brad Fowler Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods
US7565200B2 (en) * 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US9352145B2 (en) * 2004-12-22 2016-05-31 Boston Scientific Neuromodulation Corporation Methods and systems for treating a psychotic disorder
US8515541B1 (en) 2004-12-22 2013-08-20 Boston Scientific Neuromodulation Corporation Methods and systems for treating post-stroke disorders
US8095209B2 (en) 2005-01-06 2012-01-10 Braingate Co., Llc Biological interface system with gated control signal
US20060253166A1 (en) 2005-01-06 2006-11-09 Flaherty J C Patient training routine for biological interface system
WO2006074029A2 (en) * 2005-01-06 2006-07-13 Cyberkinetics Neurotechnology Systems, Inc. Neurally controlled and multi-device patient ambulation systems and related methods
US20060189901A1 (en) 2005-01-10 2006-08-24 Flaherty J C Biological interface system with surrogate controlled device
US8060194B2 (en) 2005-01-18 2011-11-15 Braingate Co., Llc Biological interface system with automated configuration
US8088058B2 (en) * 2005-01-20 2012-01-03 Neuronetics, Inc. Articulating arm
US11389661B2 (en) * 2005-01-21 2022-07-19 Michael Sasha John Programming adjustment for brain network treatment
US7657316B2 (en) * 2005-02-25 2010-02-02 Boston Scientific Neuromodulation Corporation Methods and systems for stimulating a motor cortex of the brain to treat a medical condition
US20060212090A1 (en) * 2005-03-01 2006-09-21 Functional Neuroscience Inc. Method of treating cognitive disorders using neuromodulation
EP1863562A4 (en) 2005-03-01 2009-10-21 Northstar Neuroscience Inc Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20060199159A1 (en) * 2005-03-01 2006-09-07 Neuronetics, Inc. Head phantom for simulating the patient response to magnetic stimulation
US7555345B2 (en) * 2005-03-11 2009-06-30 Medtronic, Inc. Implantable neurostimulator device
US7231256B2 (en) * 2005-03-11 2007-06-12 Medtronic, Inc. Neurostimulation site screening
US7396326B2 (en) * 2005-05-17 2008-07-08 Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators
US7813803B2 (en) * 2005-06-09 2010-10-12 Medtronic, Inc. Regional therapies for treatment of pain
US9307925B2 (en) 2005-06-16 2016-04-12 Aaken Laboratories Methods and systems for generating electrical property maps of biological structures
US7824324B2 (en) * 2005-07-27 2010-11-02 Neuronetics, Inc. Magnetic core for medical procedures
US20070027486A1 (en) 2005-07-29 2007-02-01 Cyberonics, Inc. Medical devices for enhancing intrinsic neural activity
US8649876B2 (en) 2005-09-10 2014-02-11 Artann Laboratories Inc. Leadless system for deep brain stimulation using time reversal acoustics
US7725192B2 (en) * 2005-10-12 2010-05-25 The General Hospital Corporation Methods of increasing learning rate
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US20070088403A1 (en) * 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US7856264B2 (en) * 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US20070088404A1 (en) * 2005-10-19 2007-04-19 Allen Wyler Methods and systems for improving neural functioning, including cognitive functioning and neglect disorders
US8725243B2 (en) * 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US7974697B2 (en) * 2006-01-26 2011-07-05 Cyberonics, Inc. Medical imaging feedback for an implantable medical device
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
US20070287931A1 (en) * 2006-02-14 2007-12-13 Dilorenzo Daniel J Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8380300B2 (en) * 2006-04-28 2013-02-19 Medtronic, Inc. Efficacy visualization
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US8306624B2 (en) 2006-04-28 2012-11-06 Medtronic, Inc. Patient-individualized efficacy rating
US9084901B2 (en) 2006-04-28 2015-07-21 Medtronic, Inc. Cranial implant
US8116875B2 (en) * 2006-06-16 2012-02-14 Neuropoint Medical, Inc. Implantable neurostimulation systems
US7894904B2 (en) * 2006-06-20 2011-02-22 Ebr Systems, Inc. Systems and methods for implantable leadless brain stimulation
US8078283B2 (en) 2006-06-20 2011-12-13 Ebr Systems, Inc. Systems and methods for implantable leadless bone stimulation
US20080027515A1 (en) * 2006-06-23 2008-01-31 Neuro Vista Corporation A Delaware Corporation Minimally Invasive Monitoring Systems
WO2008041129A2 (en) * 2006-06-28 2008-04-10 Medtrode Inc. Systems and mthods for improving a cognitive function
CA2655438A1 (en) * 2006-06-30 2008-01-10 Novavision, Inc. Diagnostic and therapeutic system for eccentric viewing
WO2008005478A2 (en) 2006-07-05 2008-01-10 Brainvital Corporation Treatment of neurological disorders via electrical stimulation, and methods related thereto
US7753526B2 (en) 2006-07-25 2010-07-13 Novavision, Inc. Frequency doubling fixation stimuli for visual field testing and therapy
WO2008017055A2 (en) * 2006-08-02 2008-02-07 Northstar Neuroscience, Inc. Methods for treating neurological disorders, including neuropsychiatric and neuropsychological disorders, and associated systems
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US20080139870A1 (en) * 2006-12-12 2008-06-12 Northstar Neuroscience, Inc. Systems and methods for treating patient hypertonicity
US20080154331A1 (en) * 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
EP2114517B1 (en) * 2007-01-22 2017-07-12 NovaVision Inc. Device for treating human vision using combined optical and electrical stimulation
EP2124734A2 (en) * 2007-01-25 2009-12-02 NeuroVista Corporation Methods and systems for measuring a subject's susceptibility to a seizure
US9898656B2 (en) * 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US8128549B2 (en) * 2007-02-20 2012-03-06 Neuronetics, Inc. Capacitor failure detection
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US20080249591A1 (en) * 2007-04-06 2008-10-09 Northstar Neuroscience, Inc. Controllers for implantable medical devices, and associated methods
US7744523B2 (en) * 2007-06-07 2010-06-29 Emory University Drive circuit for magnetic stimulation
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9008782B2 (en) * 2007-10-26 2015-04-14 Medtronic, Inc. Occipital nerve stimulation
US9179850B2 (en) * 2007-10-30 2015-11-10 Neuropace, Inc. Systems, methods and devices for a skull/brain interface
US20090112278A1 (en) * 2007-10-30 2009-04-30 Neuropace, Inc. Systems, Methods and Devices for a Skull/Brain Interface
US20090108969A1 (en) * 2007-10-31 2009-04-30 Los Alamos National Security Apparatus and method for transcranial and nerve magnetic stimulation
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US8195287B2 (en) * 2007-12-05 2012-06-05 The Invention Science Fund I, Llc Method for electrical modulation of neural conduction
US20090149797A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for reversible chemical modulation of neural activity
US8170658B2 (en) * 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for electrical modulation of neural conduction
US8180446B2 (en) * 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method and system for cyclical neural modulation based on activity state
US8233976B2 (en) 2007-12-05 2012-07-31 The Invention Science Fund I, Llc System for transdermal chemical modulation of neural activity
US8989858B2 (en) 2007-12-05 2015-03-24 The Invention Science Fund I, Llc Implant system for chemical modulation of neural activity
US8165669B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc System for magnetic modulation of neural conduction
US8165668B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US8170660B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for thermal modulation of neural activity
WO2009073891A1 (en) * 2007-12-07 2009-06-11 Northstar Neuroscience, Inc. Systems and methods for providing targeted neural stimulation therapy to address neurological disorders, including neuropyschiatric and neuropyschological disorders
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US20090171168A1 (en) 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
SE533430C2 (en) * 2008-02-20 2010-09-28 Osseofon Ab Implantable vibrator
US9884200B2 (en) * 2008-03-10 2018-02-06 Neuronetics, Inc. Apparatus for coil positioning for TMS studies
US8315703B2 (en) * 2008-04-30 2012-11-20 Advanced Neuromodulation Systems, Inc. Methods for targeting deep brain sites to treat mood and/or anxiety disorders
US20090281623A1 (en) * 2008-05-12 2009-11-12 Medtronic, Inc. Customization of implantable medical devices
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US7803021B1 (en) 2008-07-21 2010-09-28 Boston Scientific Neuromodulation Corporation Implantable electrical stimulation systems with leaf spring connective contacts and methods of making and using
JP5653918B2 (en) 2008-07-30 2015-01-14 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ (イーピーエフエル) Apparatus and method for optimized stimulation of neural targets
US20100030227A1 (en) * 2008-07-31 2010-02-04 Medtronic, Inc. Medical lead implantation
US8262714B2 (en) * 2008-08-05 2012-09-11 Advanced Neuromodulation Systems, Inc. Techniques for selecting signal delivery sites and other parameters for treating depression and other neurological disorders, and associated systems and methods
US9079031B2 (en) * 2008-09-11 2015-07-14 Trifectas Medical Corp. Method for improving functional recovery after stroke by electrical stimulation of a cranial nerve
US8335551B2 (en) * 2008-09-29 2012-12-18 Chong Il Lee Method and means for connecting a large number of electrodes to a measuring device
US8798755B2 (en) 2008-10-03 2014-08-05 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US9802046B2 (en) 2008-10-03 2017-10-31 Duke University Non-regular electrical stimulation patterns for improved efficiency in treating Parkinson's Disease
EP2340078B1 (en) 2008-10-03 2023-08-30 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US8923981B2 (en) 2008-10-03 2014-12-30 Duke University Non-regular electrical stimulation patterns designed with a cost function for treating neurological disorders
US11013924B2 (en) 2008-10-03 2021-05-25 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US9662502B2 (en) 2008-10-14 2017-05-30 Great Lakes Neurotechnologies Inc. Method and system for tuning of movement disorder therapy devices
US9393418B2 (en) 2011-06-03 2016-07-19 Great Lakes Neuro Technologies Inc. Movement disorder therapy system, devices and methods of tuning
US8417344B2 (en) * 2008-10-24 2013-04-09 Cyberonics, Inc. Dynamic cranial nerve stimulation based on brain state determination from cardiac data
US9393432B2 (en) 2008-10-31 2016-07-19 Medtronic, Inc. Non-hermetic direct current interconnect
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US8788064B2 (en) 2008-11-12 2014-07-22 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
US8874235B1 (en) 2008-12-12 2014-10-28 Greatbatch Ltd. Self fixing spinal cord stimulation paddle lead
GB0823213D0 (en) 2008-12-19 2009-01-28 Sky Medical Technology Ltd Treatment
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
WO2010135634A2 (en) * 2009-05-22 2010-11-25 Arizona Board Of Regents For And On Behalf Of Arizona State University Systems, and methods for neurostimulation and neurotelemetry using semiconductor diode systems
US9700712B2 (en) 2009-01-26 2017-07-11 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Dipolar antenna system and related methods
US8396558B2 (en) * 2009-02-11 2013-03-12 University Of Maryland, Baltimore Methods for treating central pain syndrome and other pain related pathologies
EP2756864B1 (en) 2009-04-22 2023-03-15 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
EP2586488B1 (en) 2009-04-22 2017-03-15 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain with reduced side effects, and associated systems
US8827912B2 (en) 2009-04-24 2014-09-09 Cyberonics, Inc. Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters
US8239028B2 (en) * 2009-04-24 2012-08-07 Cyberonics, Inc. Use of cardiac parameters in methods and systems for treating a chronic medical condition
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9737703B2 (en) * 2009-07-10 2017-08-22 Boston Scientific Neuromodulation Corporation Method to enhance afferent and efferent transmission using noise resonance
EP2470258B1 (en) 2009-08-27 2017-03-15 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US20120220812A1 (en) * 2011-02-27 2012-08-30 Mishelevich David J Ultrasound neuromodulation for stroke mitigation and rehabilitation
JP2013512062A (en) 2009-12-01 2013-04-11 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ Microfabricated surface nerve stimulation device and methods of making and using the same
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
JP2011160893A (en) * 2010-02-05 2011-08-25 Terumo Corp Electrostimulator
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
EP2552536B1 (en) 2010-04-01 2016-06-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) Device for interacting with neurological tissue
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US9089708B2 (en) 2010-05-27 2015-07-28 Ndi Medical, Llc Waveform shapes for treating neurological disorders optimized for energy efficiency
EP2580710B1 (en) 2010-06-14 2016-11-09 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US8679009B2 (en) 2010-06-15 2014-03-25 Flint Hills Scientific, Llc Systems approach to comorbidity assessment
US10085689B1 (en) 2010-06-18 2018-10-02 Great Lakes NeuroTechnolgies Inc. Device and method for monitoring and assessment of movement disorder symptoms
US20130184781A1 (en) * 2010-07-06 2013-07-18 Emad N. Eskandar Brain Stimulation for Enhancement of Learning, Motivation, and Memory
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
US8562523B2 (en) 2011-03-04 2013-10-22 Flint Hills Scientific, Llc Detecting, assessing and managing extreme epileptic events
US8562524B2 (en) 2011-03-04 2013-10-22 Flint Hills Scientific, Llc Detecting, assessing and managing a risk of death in epilepsy
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
US10617361B2 (en) 2010-11-09 2020-04-14 Osaka University Casing of implantable device and implantable device, method for manufacturing casing of implantable device, and method for supporting treatment using implantable device
WO2012063377A1 (en) * 2010-11-09 2012-05-18 国立大学法人大阪大学 Casing for in vivo implantation device, in vivo implantation device, production method for casing for in vivo implantation device, and treatment support method using in vivo implantation device
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US9207845B2 (en) 2011-03-29 2015-12-08 Boston Scientific Neuromodulation Corporation System and method for atlas registration
US9498162B2 (en) 2011-04-25 2016-11-22 Cyberonics, Inc. Identifying seizures using heart data from two or more windows
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
WO2013012740A1 (en) * 2011-07-15 2013-01-24 University Of Connecticut Self-energized wireless sensor and method using magnetic field communications
AU2012304370B2 (en) 2011-09-08 2016-01-28 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
CA2886954A1 (en) 2011-10-05 2013-04-11 University Of Kansas Methods and associated neural prosthetic devices for bridging brain areas to improve function
WO2013055940A2 (en) * 2011-10-11 2013-04-18 Duke University Non-regular electrical stimulation patterns for treating neurological disorders
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
KR101398416B1 (en) * 2012-05-30 2014-05-27 광주과학기술원 Implantable Magnetic Stimulation System
US9511222B2 (en) * 2012-08-03 2016-12-06 Boston Scientific Neuromodulation Corporation System and method for post-stroke neural rehabilitation
EP2879757B1 (en) 2012-08-04 2019-06-26 Boston Scientific Neuromodulation Corporation Systems and methods for storing and transferring registration, atlas, and lead information between medical devices
EP2890451B1 (en) 2012-08-28 2021-09-22 Boston Scientific Neuromodulation Corporation Parameter visualization, selection, and annotation interface
US11786735B1 (en) * 2012-09-10 2023-10-17 Great Lakes Neurotechnologies Inc. Movement disorder therapy system, devices and methods of remotely tuning
US9211417B2 (en) 2012-09-10 2015-12-15 Great Lakes Neurotechnologies Inc Movement disorder therapy system, devices and methods, and intelligent methods of tuning
US9238142B2 (en) 2012-09-10 2016-01-19 Great Lakes Neurotechnologies Inc. Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically
US9289603B1 (en) * 2012-09-10 2016-03-22 Great Lakes Neuro Technologies Inc. Movement disorder therapy system, devices and methods, and methods of remotely tuning
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
CN103830841B (en) 2012-11-26 2018-04-06 赛威医疗公司 Wearable endermic electrical stimulation apparatus and its application method
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US9962546B2 (en) 2013-02-21 2018-05-08 Meagan Medical, Inc. Cutaneous field stimulation with disposable and rechargeable components
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
EP3865175A1 (en) 2013-05-22 2021-08-18 Deep Brain Innovations LLC Deep brain stimulator
EP3441109A1 (en) 2013-05-30 2019-02-13 Graham H. Creasey Flexible dermal patch for a topical nerve stimulator system
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN105934261B (en) 2013-06-29 2019-03-08 赛威医疗公司 For changing or induction cognitive state transcutaneous electrostimulation device and method
CN106413803B (en) 2013-12-23 2020-06-16 脑深部创新有限责任公司 Programming system for deep brain stimulator system
WO2015131093A1 (en) 2014-02-27 2015-09-03 Thync, Inc. Methods and apparatuses for user control of neurostimulation
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
EP3476430B1 (en) 2014-05-16 2020-07-01 Aleva Neurotherapeutics SA Device for interacting with neurological tissue
CN107666937A (en) 2014-05-17 2018-02-06 赛威医疗公司 The method and apparatus that Overall waveform is applied using nerve stimulation
US9393401B2 (en) 2014-05-25 2016-07-19 Thync Global, Inc. Wearable transdermal neurostimulator having cantilevered attachment
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
JP6602371B2 (en) 2014-08-15 2019-11-06 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド EMG lead placement and stimulation adjustment in a neural stimulation system for the treatment of overactive bladder
AU2015301402B2 (en) 2014-08-15 2020-06-04 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
US9855423B2 (en) 2014-08-15 2018-01-02 Axonics Modulation Technologies, Inc. Systems and methods for neurostimulation electrode configurations based on neural localization
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
EP3204112A1 (en) 2014-10-07 2017-08-16 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
DE102014117429A1 (en) * 2014-11-27 2016-06-02 Forschungszentrum Jülich GmbH Apparatus and method for effective invasive neurostimulation by means of varying stimulus sequences
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
WO2016191436A1 (en) 2015-05-26 2016-12-01 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
EP3302682A1 (en) 2015-05-29 2018-04-11 Cerevast Medical Inc. Methods and apparatuses for transdermal electrical stimulation
EP3280491B1 (en) 2015-06-29 2023-03-01 Boston Scientific Neuromodulation Corporation Systems for selecting stimulation parameters by targeting and steering
WO2017003946A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
US10071249B2 (en) 2015-10-09 2018-09-11 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulation leads
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
WO2017106411A1 (en) 2015-12-15 2017-06-22 Cerevast Medical, Inc. Electrodes having surface exclusions
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
WO2017132174A1 (en) 2016-01-25 2017-08-03 Nevro Corp. Treatment of congestive heart failure with electrical stimulation, and associated systems and methods
WO2017134587A1 (en) 2016-02-02 2017-08-10 Aleva Neurotherapeutics, Sa Treatment of autoimmune diseases with deep brain stimulation
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
EP3458152B1 (en) 2016-06-24 2021-04-21 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
US20190262612A1 (en) * 2016-07-26 2019-08-29 University Of Washington Neural co-processor for restoration and augmentation of brain function and associated systems and methods
KR101842965B1 (en) 2016-08-11 2018-03-29 한국과학기술연구원 Body stimulating structure comprising coil embedded therein
US10350404B2 (en) 2016-09-02 2019-07-16 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
US10603498B2 (en) 2016-10-14 2020-03-31 Boston Scientific Neuromodulation Corporation Systems and methods for closed-loop determination of stimulation parameter settings for an electrical simulation system
ES2781450T3 (en) * 2016-11-01 2020-09-02 Precisis Ag Electrode and electrode pad for electrical stimulation of brain tissue or other tissue of a patient
US10737091B2 (en) 2016-11-01 2020-08-11 Precisis Ag Electrode and electrode pad for the electrical stimulation of brain tissue or other tissue of a patient
EP3515548B1 (en) 2017-01-03 2021-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
US10589104B2 (en) 2017-01-10 2020-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for creating stimulation programs based on user-defined areas or volumes
EP3573700B1 (en) * 2017-01-25 2022-01-05 Epi-Minder Pty Ltd Electrode device for monitoring and/or stimulating activity in a subject
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
WO2018187090A1 (en) 2017-04-03 2018-10-11 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
WO2019014224A1 (en) 2017-07-14 2019-01-17 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
EP3634569A1 (en) 2017-08-15 2020-04-15 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
EP3706856A4 (en) 2017-11-07 2021-08-18 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
EP3731925A1 (en) * 2017-12-28 2020-11-04 Inner Cosmos LLC Intracalvarial bci systems and methods for their making, implantation and use
KR102029914B1 (en) * 2018-02-13 2019-10-08 (주) 비비비 Apparatus of stimulating a brain
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US11083895B2 (en) 2018-03-29 2021-08-10 University Of Washington Systems and methods for augmenting and/or restoring brain and nervous system function and inducing new neural connections using self-learning artificial networks
US11617887B2 (en) 2018-04-19 2023-04-04 University of Washington and Seattle Children's Hospital Children's Research Institute Systems and methods for brain stimulation for recovery from brain injury, such as stroke
EP3784337B1 (en) 2018-04-24 2023-06-28 Thync Global, Inc. Streamlined and pre-set neuromodulators
JP7295141B2 (en) 2018-04-27 2023-06-20 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Multimodal electrical stimulation system and methods of making and using
WO2019210214A1 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Systems for visualizing and programming electrical stimulation
EP3806732A4 (en) 2018-06-14 2022-03-16 Meron Gribetz Virtual user interface system and methods for use thereof
CA3103772A1 (en) * 2018-06-20 2019-12-26 Inner Cosmos Inc. Systems and methods for treating mood disorders
RU2754400C2 (en) * 2018-11-16 2021-09-02 Общество с ограниченной ответственностью "КИБЕРДОК" Device for creating electromagnetic field and measuring its absorption by conducting medium
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
WO2020161555A1 (en) * 2019-02-07 2020-08-13 Inner Cosmos Llc Intracalvarial bci systems and methods for their making, implantation and use
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
CN110262336B (en) * 2019-06-18 2021-02-02 中国科学院自动化研究所 Current output circuit and transcranial electrical stimulation device comprising same
JP2022538419A (en) 2019-06-26 2022-09-02 ニューロスティム テクノロジーズ エルエルシー Noninvasive neuroactivation device with adaptive circuitry
WO2021126921A1 (en) 2019-12-16 2021-06-24 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
CN113874069A (en) * 2020-04-27 2021-12-31 雅萌股份有限公司 Cosmetic device and current control method
CN116194174A (en) * 2020-07-20 2023-05-30 科利耳有限公司 Stimulation and electroporation assembly

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US53706A (en) * 1866-04-03 Improved bed-bottom
US3650276A (en) * 1969-03-26 1972-03-21 Inst Demedicina Si Farmacie Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US4140133A (en) * 1977-04-26 1979-02-20 Moskovsky Oblastnoi Nauchno-Issledovatelsky Institut Akusherstva I Ginekolog Ii Device for pulse current action on central nervous system
US4245645A (en) * 1977-09-28 1981-01-20 Arseneault Pierre Michel Self-locking cerebral electrical probe
US4328813A (en) * 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4431000A (en) * 1978-11-29 1984-02-14 Gatron Corporation Transcutaneous nerve stimulator with pseusorandom pulse generator
US4590946A (en) * 1984-06-14 1986-05-27 Biomed Concepts, Inc. Surgically implantable electrode for nerve bundles
US4646744A (en) * 1984-06-29 1987-03-03 Zion Foundation Method and treatment with transcranially applied electrical signals
US5002053A (en) * 1989-04-21 1991-03-26 University Of Arkansas Method of and device for inducing locomotion by electrical stimulation of the spinal cord
US5092835A (en) * 1990-07-06 1992-03-03 Schurig Janet L S Brain and nerve healing power apparatus and method
US5184620A (en) * 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
US5193540A (en) * 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5282468A (en) * 1990-06-07 1994-02-01 Medtronic, Inc. Implantable neural electrode
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5304206A (en) * 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5314458A (en) * 1990-06-01 1994-05-24 University Of Michigan Single channel microstimulator
US5405375A (en) * 1994-01-21 1995-04-11 Incontrol, Inc. Combined mapping, pacing, and defibrillating catheter
US5406957A (en) * 1992-02-05 1995-04-18 Tansey; Michael A. Electroencephalic neurofeedback apparatus for training and tracking of cognitive states
US5411540A (en) * 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
US5417719A (en) * 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5520190A (en) * 1994-10-31 1996-05-28 Ventritex, Inc. Cardiac blood flow sensor and method
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5593432A (en) * 1993-06-23 1997-01-14 Neuroware Therapy International, Inc. Method for neurostimulation for pain alleviation
US5601611A (en) * 1994-08-05 1997-02-11 Ventritex, Inc. Optical blood flow measurement apparatus and method and implantable defibrillator incorporating same
US5628317A (en) * 1996-04-04 1997-05-13 Medtronic, Inc. Ultrasonic techniques for neurostimulator control
US5707334A (en) * 1995-08-21 1998-01-13 Young; Robert B. Method of treating amygdala related transitory disorders
US5711316A (en) * 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5713922A (en) * 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5713923A (en) * 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US5716377A (en) * 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US5735814A (en) * 1996-04-30 1998-04-07 Medtronic, Inc. Techniques of treating neurodegenerative disorders by brain infusion
US5750376A (en) * 1991-07-08 1998-05-12 Neurospheres Holdings Ltd. In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny
US5752979A (en) * 1996-11-01 1998-05-19 Medtronic, Inc. Method of controlling epilepsy by brain stimulation
US5865842A (en) * 1996-08-29 1999-02-02 Medtronic, Inc. System and method for anchoring brain stimulation lead or catheter
US5871517A (en) * 1997-01-15 1999-02-16 Somatics, Inc. Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment
US5885976A (en) * 1995-05-08 1999-03-23 Sandyk; Reuven Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions
US5886769A (en) * 1998-05-18 1999-03-23 Zolten; A. J. Method of training and rehabilitating brain function using hemi-lenses
US5893883A (en) * 1997-04-30 1999-04-13 Medtronic, Inc. Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user
US5904916A (en) * 1996-03-05 1999-05-18 Hirsch; Alan R. Use of odorants to alter learning capacity
US6011996A (en) * 1998-01-20 2000-01-04 Medtronic, Inc Dual electrode lead and method for brain target localization in functional stereotactic brain surgery
US6016449A (en) * 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US6018682A (en) * 1998-04-30 2000-01-25 Medtronic, Inc. Implantable seizure warning system
US6021352A (en) * 1996-06-26 2000-02-01 Medtronic, Inc, Diagnostic testing methods and apparatus for implantable therapy devices
US6032074A (en) * 1995-10-11 2000-02-29 Trustees Of Boston University Method and apparatus for improving the function of sensory cells
US6035236A (en) * 1998-07-13 2000-03-07 Bionergy Therapeutics, Inc. Methods and apparatus for electrical microcurrent stimulation therapy
US6040180A (en) * 1996-05-23 2000-03-21 Neuralstem Biopharmaceuticals, Ltd. In vitro generation of differentiated neurons from cultures of mammalian multipotential CNS stem cells
US6042579A (en) * 1997-04-30 2000-03-28 Medtronic, Inc. Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain
US6052624A (en) * 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6055456A (en) * 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6057846A (en) * 1995-07-14 2000-05-02 Sever, Jr.; Frank Virtual reality psychophysiological conditioning medium
US6176242B1 (en) * 1999-04-30 2001-01-23 Medtronic Inc Method of treating manic depression by brain infusion
US6190893B1 (en) * 1998-09-18 2001-02-20 Massachusetts Institute Of Technology Electroactive materials for stimulation of biological activity of bone marrow stromal cells
US6198958B1 (en) * 1998-06-11 2001-03-06 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation
US6205360B1 (en) * 1995-09-07 2001-03-20 Cochlear Limited Apparatus and method for automatically determining stimulation parameters
US6210417B1 (en) * 1999-04-29 2001-04-03 Medtronic, Inc. Medical lead positioning and anchoring system
US6221908B1 (en) * 1998-03-12 2001-04-24 Scientific Learning Corporation System for stimulating brain plasticity
US6339725B1 (en) * 1996-05-31 2002-01-15 The Board Of Trustees Of Southern Illinois University Methods of modulating aspects of brain neural plasticity by vagus nerve stimulation
US6353754B1 (en) * 2000-04-24 2002-03-05 Neuropace, Inc. System for the creation of patient specific templates for epileptiform activity detection
US20020028072A1 (en) * 2000-09-01 2002-03-07 Ritsuo Kashiyama Camera having illumination device and control function for same
US6356792B1 (en) * 2000-01-20 2002-03-12 Electro Core Technologies, Llc Skull mounted electrode lead securing assembly
US6354299B1 (en) * 1997-10-27 2002-03-12 Neuropace, Inc. Implantable device for patient communication
US6366813B1 (en) * 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6375666B1 (en) * 1999-12-09 2002-04-23 Hans Alois Mische Methods and devices for treatment of neurological disorders
US6505075B1 (en) * 1999-05-29 2003-01-07 Richard L. Weiner Peripheral nerve stimulation method
US6507755B1 (en) * 1998-12-01 2003-01-14 Neurometrix, Inc. Apparatus and method for stimulating human tissue
US6529774B1 (en) * 2000-11-09 2003-03-04 Neuropace, Inc. Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation
US6539263B1 (en) * 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6549814B1 (en) * 2000-06-09 2003-04-15 Juergen Strutz Blade electrode array for insertion under soft tissue of lateral wall of cochlea
US20030074032A1 (en) * 2001-10-15 2003-04-17 Gliner Bradford Evan Neural stimulation system and method responsive to collateral neural activity
US20030078633A1 (en) * 2001-09-28 2003-04-24 Firlik Andrew D. Methods and implantable apparatus for electrical therapy
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6687525B2 (en) * 2000-06-07 2004-02-03 New York University Method and system for diagnosing and treating thalamocortical dysrhythmia
US6690974B2 (en) * 2000-04-05 2004-02-10 Neuropace, Inc. Stimulation signal generator for an implantable device
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US20040073270A1 (en) * 2000-07-13 2004-04-15 Firlik Andrew D. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6725094B2 (en) * 1999-03-24 2004-04-20 Lloyd R. Saberski Apparatus and methods for reducing pain and/or retraining muscles
US20040082847A1 (en) * 2002-10-23 2004-04-29 Mcdermott Kathleen B. System and methods for identifying brain regions supporting language
US6839594B2 (en) * 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
US20050004620A1 (en) * 2002-12-09 2005-01-06 Medtronic, Inc. Implantable medical device with anti-infection agent
US20050015129A1 (en) * 1999-12-09 2005-01-20 Mische Hans A. Methods and devices for the treatment of neurological and physiological disorders
US20050021118A1 (en) * 2000-07-13 2005-01-27 Chris Genau Apparatuses and systems for applying electrical stimulation to a patient
US20050021107A1 (en) * 2001-03-08 2005-01-27 Firlik Andrew D. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021105A1 (en) * 2000-07-13 2005-01-27 Firlik Andrew D. Methods and apparatus for effectuating a change in a neural-function of a patient
US20050021104A1 (en) * 1998-08-05 2005-01-27 Dilorenzo Daniel John Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20050033378A1 (en) * 2002-12-09 2005-02-10 Sheffield Warren Douglas Methods for treating and/or collecting information regarding neurological disorders, including language disorders
US6873872B2 (en) * 1999-12-07 2005-03-29 George Mason University Adaptive electric field modulation of neural systems
US20050070971A1 (en) * 2003-08-01 2005-03-31 Brad Fowler Apparatus and methods for applying neural stimulation to a patient
US20050075679A1 (en) * 2002-09-30 2005-04-07 Gliner Bradford E. Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system
US20050075680A1 (en) * 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US20060015153A1 (en) * 2004-07-15 2006-01-19 Gliner Bradford E Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US6990377B2 (en) * 2003-04-24 2006-01-24 Northstar Neuroscience, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US7006859B1 (en) * 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US7010351B2 (en) * 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7024247B2 (en) * 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US20070088403A1 (en) * 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716226A (en) 1951-06-22 1955-08-23 Reiner Electronics Co Inc Electrical solderless connector
US2721316A (en) 1953-06-09 1955-10-18 Joseph D Shaw Method and means for aiding the blind
US3628193A (en) 1969-02-19 1971-12-21 Inst Of Medical Sciences The Tactile image projection system
US3850161A (en) 1973-04-09 1974-11-26 S Liss Method and apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like
US3918461A (en) 1974-01-31 1975-11-11 Irving S Cooper Method for electrically stimulating the human brain
US4030509A (en) 1975-09-30 1977-06-21 Mieczyslaw Mirowski Implantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US4125116A (en) 1977-02-14 1978-11-14 The Johns Hopkins University Human tissue stimulation electrode structure
US4214804A (en) 1978-09-25 1980-07-29 Daig Corporation Press fit electrical connection apparatus
US4474186A (en) 1979-07-17 1984-10-02 Georgetown University Computerized electro-oculographic (CEOG) system with feedback control of stimuli
US4308868A (en) * 1980-05-27 1982-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Implantable electrical device
US4340038A (en) 1980-12-15 1982-07-20 Pacesetter Systems, Inc. Magnetic field concentration means and method for an implanted device
US4542752A (en) 1983-04-22 1985-09-24 Cordis Corporation Implantable device having porous surface with carbon coating
US4702254A (en) 1983-09-14 1987-10-27 Jacob Zabara Neurocybernetic prosthesis
US4844075A (en) 1984-01-09 1989-07-04 Pain Suppression Labs, Inc. Transcranial stimulation for the treatment of cerebral palsy
US4607639A (en) 1984-05-18 1986-08-26 Regents Of The University Of California Method and system for controlling bladder evacuation
CA1292285C (en) * 1985-08-21 1991-11-19 Paul H. Stypulkowski External ear canal electrode to be placed proximate the tympanic membrane and method of stimulating/recording utilizing external ear canal electrode placed proximate the tympanic membrane
US5054906A (en) 1986-01-17 1991-10-08 Brimfield Precision, Inc. Indirectly illuminating ophthalmological speculum
AU601203B2 (en) 1986-06-16 1990-09-06 Zion Educational Foundation Method and apparatus for delivering a prescriptive electrical signal
US4969468A (en) 1986-06-17 1990-11-13 Alfred E. Mann Foundation For Scientific Research Electrode array for use in connection with a living body and method of manufacture
US4869255A (en) 1987-12-04 1989-09-26 Ad-Tech Medical Instrument Corp. Electrical connection device
US4865048A (en) 1987-12-31 1989-09-12 Eckerson Harold D Method and apparatus for drug free neurostimulation
US4903702A (en) * 1988-10-17 1990-02-27 Ad-Tech Medical Instrument Corporation Brain-contact for sensing epileptogenic foci with improved accuracy
DE3914662A1 (en) 1989-05-03 1990-11-08 Alt Eckhard DEVICE FOR TRANSMITTING ELECTRICAL SIGNALS BETWEEN AN IMPLANTABLE MEDICAL DEVICE AND ELECTRICALLY EXPENSIBLE HUMAN TISSUE
US5024226A (en) 1989-08-17 1991-06-18 Critikon, Inc. Epidural oxygen sensor
US5063932A (en) 1989-10-03 1991-11-12 Mieczyslaw Mirowski Controlled discharge defibrillation electrode
US5215088A (en) 1989-11-07 1993-06-01 The University Of Utah Three-dimensional electrode device
US5271417A (en) 1990-01-23 1993-12-21 Cardiac Pacemakers, Inc. Defibrillation electrode having smooth current distribution
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5044368A (en) 1990-04-23 1991-09-03 Ad-Tech Medical Instrument Corporation Diagnostic electrode for use with magnetic resonance imaging
US5713926A (en) 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5121754A (en) 1990-08-21 1992-06-16 Medtronic, Inc. Lateral displacement percutaneously inserted epidural lead
US5618531A (en) * 1990-10-19 1997-04-08 New York University Method for increasing the viability of cells which are administered to the brain or spinal cord
US5224491A (en) 1991-01-07 1993-07-06 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5255678A (en) 1991-06-21 1993-10-26 Ecole Polytechnique Mapping electrode balloon
US5169384A (en) 1991-08-16 1992-12-08 Bosniak Stephen L Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue
US5303705A (en) * 1992-05-01 1994-04-19 Nenov Valeriy I Evoked 23NA MR imaging of sodium currents in the brain
US5263967B1 (en) 1992-05-15 2000-12-19 Brimfield Prec Inc Medical instrument with dual action drive
US5476494A (en) 1992-09-11 1995-12-19 Massachusetts Institute Of Technology Low pressure neural contact structure
US5441528A (en) 1992-09-25 1995-08-15 Symtonic, S.A. Method and system for applying low energy emission therapy
DE669839T1 (en) 1992-10-01 1996-10-10 Cardiac Pacemakers Inc STENT-LIKE STRUCTURE FOR DEFLICTION ELECTRODES.
US5370672A (en) 1992-10-30 1994-12-06 The Johns Hopkins University Computer-controlled neurological stimulation system
US5358513A (en) 1992-12-09 1994-10-25 Medtronic, Inc. Parameter selection and electrode placement of neuromuscular electrical stimulation apparatus
SE9203734D0 (en) 1992-12-11 1992-12-11 Siemens Elema Ab defibrillation
US5537512A (en) 1993-05-26 1996-07-16 Northrop Grumman Corporation Neural network elements
US5540736A (en) 1993-08-02 1996-07-30 Haimovich; Yechiel Transcranial electrostimulation apparatus having two electrode pairs and independent current generators
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
AU1837695A (en) * 1994-02-09 1995-08-29 University Of Iowa Research Foundation, The Human cerebral cortex neural prosthetic
US5843093A (en) 1994-02-09 1998-12-01 University Of Iowa Research Foundation Stereotactic electrode assembly
US5697975A (en) 1994-02-09 1997-12-16 The University Of Iowa Research Foundation Human cerebral cortex neural prosthetic for tinnitus
US5562708A (en) 1994-04-21 1996-10-08 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
US5769778A (en) 1994-04-22 1998-06-23 Somatics, Inc. Medical magnetic non-convulsive stimulation therapy
US6152143A (en) 1994-05-09 2000-11-28 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5685313A (en) 1994-05-31 1997-11-11 Brain Monitor Ltd. Tissue monitor
DE59506078D1 (en) * 1994-07-19 1999-07-08 Bat Cigarettenfab Gmbh Tobacco cartridge
US5549655A (en) 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
US5522864A (en) 1994-10-25 1996-06-04 Wallace; Larry B. Apparatus and method for ocular treatment
US5545186A (en) 1995-03-30 1996-08-13 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias
US5772591A (en) 1995-06-06 1998-06-30 Patient Comfort, Inc. Electrode assembly for signaling a monitor
US5649936A (en) 1995-09-19 1997-07-22 Real; Douglas D. Stereotactic guide apparatus for use with neurosurgical headframe
US6944501B1 (en) 2000-04-05 2005-09-13 Neurospace, Inc. Neurostimulator involving stimulation strategies and process for using it
US6480743B1 (en) 2000-04-05 2002-11-12 Neuropace, Inc. System and method for adaptive brain stimulation
US6095148A (en) 1995-11-03 2000-08-01 Children's Medical Center Corporation Neuronal stimulation using electrically conducting polymers
US5824030A (en) 1995-12-21 1998-10-20 Pacesetter, Inc. Lead with inter-electrode spacing adjustment
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6463328B1 (en) * 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US5611350A (en) * 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US6126657A (en) 1996-02-23 2000-10-03 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US5964794A (en) 1996-03-21 1999-10-12 Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Implantable stimulation electrode
US5925070A (en) 1996-04-04 1999-07-20 Medtronic, Inc. Techniques for adjusting the locus of excitation of electrically excitable tissue
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US5683422A (en) 1996-04-25 1997-11-04 Medtronic, Inc. Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US5824021A (en) 1996-04-25 1998-10-20 Medtronic Inc. Method and apparatus for providing feedback to spinal cord stimulation for angina
US5782798A (en) 1996-06-26 1998-07-21 Medtronic, Inc. Techniques for treating eating disorders by brain stimulation and drug infusion
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
EP0930849B1 (en) 1996-08-15 2007-07-11 Neotonus, Inc. Apparatus for transcranial brain stimulation
US5797970A (en) 1996-09-04 1998-08-25 Medtronic, Inc. System, adaptor and method to provide medical electrical stimulation
US5843148A (en) 1996-09-27 1998-12-01 Medtronic, Inc. High resolution brain stimulation lead and method of use
US6057847A (en) 1996-12-20 2000-05-02 Jenkins; Barry System and method of image generation and encoding using primitive reprojection
US6026326A (en) 1997-01-13 2000-02-15 Medtronic, Inc. Apparatus and method for treating chronic constipation
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US5975085A (en) 1997-05-01 1999-11-02 Medtronic, Inc. Method of treating schizophrenia by brain stimulation and drug infusion
US6128537A (en) 1997-05-01 2000-10-03 Medtronic, Inc Techniques for treating anxiety by brain stimulation and drug infusion
US5861017A (en) 1997-06-06 1999-01-19 Shriners Hospitals For Children Portable functional electrical stimulation (FES) system for upper or lower extremity applications
US5843150A (en) 1997-10-08 1998-12-01 Medtronic, Inc. System and method for providing electrical and/or fluid treatment within a patient's brain
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
US5938688A (en) * 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
US6647296B2 (en) 1997-10-27 2003-11-11 Neuropace, Inc. Implantable apparatus for treating neurological disorders
US6427086B1 (en) 1997-10-27 2002-07-30 Neuropace, Inc. Means and method for the intracranial placement of a neurostimulator
US6459936B2 (en) 1997-10-27 2002-10-01 Neuropace, Inc. Methods for responsively treating neurological disorders
DE19750043A1 (en) 1997-11-12 1999-05-20 Johann W Prof Dr Bartha Novel cuff electrode and method for producing it
US6128527A (en) 1997-12-03 2000-10-03 University Of Iowa Research Foundation Apparatus and method of analyzing electrical brain activity
DE19806029C1 (en) * 1998-02-13 1999-09-02 Siemens Nixdorf Inf Syst Device for removing bundles of banknotes and making them available at an extraction point
US6058331A (en) 1998-04-27 2000-05-02 Medtronic, Inc. Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6421566B1 (en) 1998-04-30 2002-07-16 Medtronic, Inc. Selective dorsal column stimulation in SCS, using conditioning pulses
US5938689A (en) 1998-05-01 1999-08-17 Neuropace, Inc. Electrode configuration for a brain neuropacemaker
US6006124A (en) 1998-05-01 1999-12-21 Neuropace, Inc. Means and method for the placement of brain electrodes
US6104960A (en) 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
US6304787B1 (en) 1998-08-26 2001-10-16 Advanced Bionics Corporation Cochlear electrode array having current-focusing and tissue-treating features
AU9348098A (en) 1998-08-27 2000-03-21 Novavision Ag Process and device for the training of human vision
US6569654B2 (en) 1998-09-18 2003-05-27 Massachusetts Institute Of Technology Electroactive materials for stimulation of biological activity of stem cells
US6615065B1 (en) 1998-10-13 2003-09-02 Somanetics Corporation Multi-channel non-invasive tissue oximeter
US7062330B1 (en) * 1998-10-26 2006-06-13 Boveja Birinder R Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator
US20060217782A1 (en) 1998-10-26 2006-09-28 Boveja Birinder R Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components
US6253109B1 (en) 1998-11-05 2001-06-26 Medtronic Inc. System for optimized brain stimulation
US6161044A (en) 1998-11-23 2000-12-12 Synaptic Corporation Method and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
JP2003526400A (en) 1999-05-11 2003-09-09 エクソジェン インコーポレイテッド Ultrasound therapy and apparatus for reflex sympathetic dystrophy
WO2000074769A2 (en) 1999-06-07 2000-12-14 Johns Hopkins University Cardiac shock electrode system and corresponding implantable defibrillator system
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6236892B1 (en) 1999-10-07 2001-05-22 Claudio A. Feler Spinal cord stimulation lead
US6499488B1 (en) * 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6764498B2 (en) 1999-12-09 2004-07-20 Hans Alois Mische Methods and devices for treatment of neurological disorders
AU1618401A (en) 1999-12-06 2001-06-12 Advanced Bionics Corporation Implantable device programmer
CA2393535A1 (en) 1999-12-07 2001-06-14 Krasnow Institute Adaptive electric field modulation of neural systems
US6658299B1 (en) 2000-01-04 2003-12-02 William H. Dobelle Artificial system for vision and the like
US6907296B1 (en) 2000-02-15 2005-06-14 Pacesetter, Inc. Implantable cardiac lead having convenient implant location identification and method of manufacture
US6487450B1 (en) 2000-02-24 2002-11-26 Cedars-Sinai Medical Center System and method for preventing Sudden Cardiac Death by nerve sprouting from right stellate ganglion
US6418344B1 (en) * 2000-02-24 2002-07-09 Electrocore Techniques, Llc Method of treating psychiatric disorders by electrical stimulation within the orbitofrontal cerebral cortex
US6810286B2 (en) 2000-03-06 2004-10-26 Medtronic, Inc Stimulation for delivery of molecular therapy
US6782292B2 (en) * 2000-06-20 2004-08-24 Advanced Bionics Corporation System and method for treatment of mood and/or anxiety disorders by electrical brain stimulation and/or drug infusion
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040176831A1 (en) 2000-07-13 2004-09-09 Gliner Bradford Evan Apparatuses and systems for applying electrical stimulation to a patient
US20030125786A1 (en) 2000-07-13 2003-07-03 Gliner Bradford Evan Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6402678B1 (en) 2000-07-31 2002-06-11 Neuralieve, Inc. Means and method for the treatment of migraine headaches
DE10039240A1 (en) 2000-08-11 2002-02-28 Hans Ulrich May Electrotherapeutic device
US6405079B1 (en) * 2000-09-22 2002-06-11 Mehdi M. Ansarinia Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions
WO2002038031A2 (en) 2000-10-30 2002-05-16 Neuropace, Inc. System and method for determining stimulation parameters for the treatment of epileptic seizures
US7089059B1 (en) 2000-11-03 2006-08-08 Pless Benjamin D Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology
US6591137B1 (en) 2000-11-09 2003-07-08 Neuropace, Inc. Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders
US6788975B1 (en) 2001-01-30 2004-09-07 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US7149586B2 (en) 2002-03-28 2006-12-12 Second Sight Medical Products, Inc. Variable pitch electrode array
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
WO2002073526A2 (en) * 2001-03-13 2002-09-19 Wide Horizon Holdings Inc. Cerebral programming
US7010856B2 (en) 2001-03-16 2006-03-14 Nihon Kohden Corporation Lead wire attachment method, electrode, and spot welder
US20060241717A1 (en) 2001-08-30 2006-10-26 Whitehurst Todd K Treatment of movement disorders by extra dural motor cortex stimulation
WO2003026738A1 (en) 2001-09-28 2003-04-03 Northstar Neuroscience, Inc. Methods and apparatus for electrically stimulating cells implanted in the nervous system
US6944497B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. System and method of treating stuttering by neuromodulation
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US7146222B2 (en) 2002-04-15 2006-12-05 Neurospace, Inc. Reinforced sensing and stimulation leads and use in detection systems
US20050154426A1 (en) 2002-05-09 2005-07-14 Boveja Birinder R. Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation
US20050182453A1 (en) 2002-05-24 2005-08-18 Whitehurst Todd K. Treatment of epilepsy by high frequency electrical stimulation and/or drug stimulation
US7187977B2 (en) 2002-06-13 2007-03-06 Atlantic Medical, Inc. Transcutaneous electrical nerve stimulation device and method using microcurrent
US6934580B1 (en) 2002-07-20 2005-08-23 Flint Hills Scientific, L.L.C. Stimulation methodologies and apparatus for control of brain states
US20040092809A1 (en) 2002-07-26 2004-05-13 Neurion Inc. Methods for measurement and analysis of brain activity
US7471974B2 (en) * 2002-09-13 2008-12-30 Brainlab Ag Method for planning stimulation of hyper/hypometabolic cortical areas
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US7302298B2 (en) 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
US6959215B2 (en) 2002-12-09 2005-10-25 Northstar Neuroscience, Inc. Methods for treating essential tremor
US7065412B2 (en) 2003-04-25 2006-06-20 Medtronic, Inc. Implantable trial neurostimulation device
US7107104B2 (en) 2003-05-30 2006-09-12 Medtronic, Inc. Implantable cortical neural lead and method
US7187968B2 (en) 2003-10-23 2007-03-06 Duke University Apparatus for acquiring and transmitting neural signals and related methods
EP1694403A2 (en) 2003-11-20 2006-08-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing reduced neuroplasticity effects
US8093205B2 (en) 2003-12-01 2012-01-10 Medtronic, Inc. Method for treating a stroke by implanting a first therapy delivery element in the CNS and a second therapy delivery element in a damaged tissue of the CNS to promote neurogenesis
CA2454184A1 (en) 2003-12-23 2005-06-23 Andres M. Lozano Method and apparatus for treating neurological disorders by electrical stimulation of the brain
US7107097B2 (en) 2004-01-14 2006-09-12 Northstar Neuroscience, Inc. Articulated neural electrode assembly
US20050154425A1 (en) 2004-08-19 2005-07-14 Boveja Birinder R. Method and system to provide therapy for neuropsychiatric disorders and cognitive impairments using gradient magnetic pulses to the brain and pulsed electrical stimulation to vagus nerve(s)
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US20060106430A1 (en) 2004-11-12 2006-05-18 Brad Fowler Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods
US20060173522A1 (en) 2005-01-31 2006-08-03 Medtronic, Inc. Anchoring of a medical device component adjacent a dura of the brain or spinal cord
US20070055320A1 (en) 2005-09-07 2007-03-08 Northstar Neuroscience, Inc. Methods for treating temporal lobe epilepsy, associated neurological disorders, and other patient functions
US20070088404A1 (en) 2005-10-19 2007-04-19 Allen Wyler Methods and systems for improving neural functioning, including cognitive functioning and neglect disorders
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US20070179558A1 (en) 2006-01-30 2007-08-02 Gliner Bradford E Systems and methods for varying electromagnetic and adjunctive neural therapies
US7949401B2 (en) 2006-04-11 2011-05-24 Advanced Neuromodulation Systems, Inc. Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods
US8926676B2 (en) 2006-04-11 2015-01-06 Advanced Neuromodulation Systems, Inc. Systems and methods for applying signals, including contralesional signals, to neural populations
US20080139870A1 (en) 2006-12-12 2008-06-12 Northstar Neuroscience, Inc. Systems and methods for treating patient hypertonicity
US20080249591A1 (en) 2007-04-06 2008-10-09 Northstar Neuroscience, Inc. Controllers for implantable medical devices, and associated methods

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US53706A (en) * 1866-04-03 Improved bed-bottom
US3650276A (en) * 1969-03-26 1972-03-21 Inst Demedicina Si Farmacie Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US4140133A (en) * 1977-04-26 1979-02-20 Moskovsky Oblastnoi Nauchno-Issledovatelsky Institut Akusherstva I Ginekolog Ii Device for pulse current action on central nervous system
US4245645A (en) * 1977-09-28 1981-01-20 Arseneault Pierre Michel Self-locking cerebral electrical probe
US4431000A (en) * 1978-11-29 1984-02-14 Gatron Corporation Transcutaneous nerve stimulator with pseusorandom pulse generator
US4328813A (en) * 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4590946A (en) * 1984-06-14 1986-05-27 Biomed Concepts, Inc. Surgically implantable electrode for nerve bundles
US4646744A (en) * 1984-06-29 1987-03-03 Zion Foundation Method and treatment with transcranially applied electrical signals
US5002053A (en) * 1989-04-21 1991-03-26 University Of Arkansas Method of and device for inducing locomotion by electrical stimulation of the spinal cord
US5314458A (en) * 1990-06-01 1994-05-24 University Of Michigan Single channel microstimulator
US5282468A (en) * 1990-06-07 1994-02-01 Medtronic, Inc. Implantable neural electrode
US5092835A (en) * 1990-07-06 1992-03-03 Schurig Janet L S Brain and nerve healing power apparatus and method
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5750376A (en) * 1991-07-08 1998-05-12 Neurospheres Holdings Ltd. In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny
US5304206A (en) * 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5193540A (en) * 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5184620A (en) * 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
US5406957A (en) * 1992-02-05 1995-04-18 Tansey; Michael A. Electroencephalic neurofeedback apparatus for training and tracking of cognitive states
US5411540A (en) * 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
US5593432A (en) * 1993-06-23 1997-01-14 Neuroware Therapy International, Inc. Method for neurostimulation for pain alleviation
US5417719A (en) * 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5405375A (en) * 1994-01-21 1995-04-11 Incontrol, Inc. Combined mapping, pacing, and defibrillating catheter
US5601611A (en) * 1994-08-05 1997-02-11 Ventritex, Inc. Optical blood flow measurement apparatus and method and implantable defibrillator incorporating same
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US5520190A (en) * 1994-10-31 1996-05-28 Ventritex, Inc. Cardiac blood flow sensor and method
US5885976A (en) * 1995-05-08 1999-03-23 Sandyk; Reuven Methods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US6057846A (en) * 1995-07-14 2000-05-02 Sever, Jr.; Frank Virtual reality psychophysiological conditioning medium
US5707334A (en) * 1995-08-21 1998-01-13 Young; Robert B. Method of treating amygdala related transitory disorders
US6205360B1 (en) * 1995-09-07 2001-03-20 Cochlear Limited Apparatus and method for automatically determining stimulation parameters
US6032074A (en) * 1995-10-11 2000-02-29 Trustees Of Boston University Method and apparatus for improving the function of sensory cells
US5904916A (en) * 1996-03-05 1999-05-18 Hirsch; Alan R. Use of odorants to alter learning capacity
US5628317A (en) * 1996-04-04 1997-05-13 Medtronic, Inc. Ultrasonic techniques for neurostimulator control
US5716377A (en) * 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5713922A (en) * 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5735814A (en) * 1996-04-30 1998-04-07 Medtronic, Inc. Techniques of treating neurodegenerative disorders by brain infusion
US5711316A (en) * 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5713923A (en) * 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US6040180A (en) * 1996-05-23 2000-03-21 Neuralstem Biopharmaceuticals, Ltd. In vitro generation of differentiated neurons from cultures of mammalian multipotential CNS stem cells
US6339725B1 (en) * 1996-05-31 2002-01-15 The Board Of Trustees Of Southern Illinois University Methods of modulating aspects of brain neural plasticity by vagus nerve stimulation
US6556868B2 (en) * 1996-05-31 2003-04-29 The Board Of Trustees Of Southern Illinois University Methods for improving learning or memory by vagus nerve stimulation
US6021352A (en) * 1996-06-26 2000-02-01 Medtronic, Inc, Diagnostic testing methods and apparatus for implantable therapy devices
US5865842A (en) * 1996-08-29 1999-02-02 Medtronic, Inc. System and method for anchoring brain stimulation lead or catheter
US5752979A (en) * 1996-11-01 1998-05-19 Medtronic, Inc. Method of controlling epilepsy by brain stimulation
US5871517A (en) * 1997-01-15 1999-02-16 Somatics, Inc. Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment
US5893883A (en) * 1997-04-30 1999-04-13 Medtronic, Inc. Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user
US6042579A (en) * 1997-04-30 2000-03-28 Medtronic, Inc. Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain
US6016449A (en) * 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US6354299B1 (en) * 1997-10-27 2002-03-12 Neuropace, Inc. Implantable device for patient communication
US6360122B1 (en) * 1997-10-27 2002-03-19 Neuropace, Inc. Data recording methods for an implantable device
US6011996A (en) * 1998-01-20 2000-01-04 Medtronic, Inc Dual electrode lead and method for brain target localization in functional stereotactic brain surgery
US6221908B1 (en) * 1998-03-12 2001-04-24 Scientific Learning Corporation System for stimulating brain plasticity
US6018682A (en) * 1998-04-30 2000-01-25 Medtronic, Inc. Implantable seizure warning system
US5886769A (en) * 1998-05-18 1999-03-23 Zolten; A. J. Method of training and rehabilitating brain function using hemi-lenses
US6198958B1 (en) * 1998-06-11 2001-03-06 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation
US6035236A (en) * 1998-07-13 2000-03-07 Bionergy Therapeutics, Inc. Methods and apparatus for electrical microcurrent stimulation therapy
US20050021104A1 (en) * 1998-08-05 2005-01-27 Dilorenzo Daniel John Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6366813B1 (en) * 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6190893B1 (en) * 1998-09-18 2001-02-20 Massachusetts Institute Of Technology Electroactive materials for stimulation of biological activity of bone marrow stromal cells
US6507755B1 (en) * 1998-12-01 2003-01-14 Neurometrix, Inc. Apparatus and method for stimulating human tissue
US6052624A (en) * 1999-01-07 2000-04-18 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6725094B2 (en) * 1999-03-24 2004-04-20 Lloyd R. Saberski Apparatus and methods for reducing pain and/or retraining muscles
US6055456A (en) * 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6210417B1 (en) * 1999-04-29 2001-04-03 Medtronic, Inc. Medical lead positioning and anchoring system
US6176242B1 (en) * 1999-04-30 2001-01-23 Medtronic Inc Method of treating manic depression by brain infusion
US6505075B1 (en) * 1999-05-29 2003-01-07 Richard L. Weiner Peripheral nerve stimulation method
US6539263B1 (en) * 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6873872B2 (en) * 1999-12-07 2005-03-29 George Mason University Adaptive electric field modulation of neural systems
US20050015129A1 (en) * 1999-12-09 2005-01-20 Mische Hans A. Methods and devices for the treatment of neurological and physiological disorders
US6375666B1 (en) * 1999-12-09 2002-04-23 Hans Alois Mische Methods and devices for treatment of neurological disorders
US6356792B1 (en) * 2000-01-20 2002-03-12 Electro Core Technologies, Llc Skull mounted electrode lead securing assembly
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US6690974B2 (en) * 2000-04-05 2004-02-10 Neuropace, Inc. Stimulation signal generator for an implantable device
US6353754B1 (en) * 2000-04-24 2002-03-05 Neuropace, Inc. System for the creation of patient specific templates for epileptiform activity detection
US6687525B2 (en) * 2000-06-07 2004-02-03 New York University Method and system for diagnosing and treating thalamocortical dysrhythmia
US6549814B1 (en) * 2000-06-09 2003-04-15 Juergen Strutz Blade electrode array for insertion under soft tissue of lateral wall of cochlea
US20050021105A1 (en) * 2000-07-13 2005-01-27 Firlik Andrew D. Methods and apparatus for effectuating a change in a neural-function of a patient
US20040073270A1 (en) * 2000-07-13 2004-04-15 Firlik Andrew D. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7010351B2 (en) * 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021118A1 (en) * 2000-07-13 2005-01-27 Chris Genau Apparatuses and systems for applying electrical stimulation to a patient
US20050021106A1 (en) * 2000-07-13 2005-01-27 Firlik Andrew D. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20020028072A1 (en) * 2000-09-01 2002-03-07 Ritsuo Kashiyama Camera having illumination device and control function for same
US6529774B1 (en) * 2000-11-09 2003-03-04 Neuropace, Inc. Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation
US20050021107A1 (en) * 2001-03-08 2005-01-27 Firlik Andrew D. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6839594B2 (en) * 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
US6684105B2 (en) * 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US20030078633A1 (en) * 2001-09-28 2003-04-24 Firlik Andrew D. Methods and implantable apparatus for electrical therapy
US20030074032A1 (en) * 2001-10-15 2003-04-17 Gliner Bradford Evan Neural stimulation system and method responsive to collateral neural activity
US7024247B2 (en) * 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7006859B1 (en) * 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US20050075679A1 (en) * 2002-09-30 2005-04-07 Gliner Bradford E. Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system
US20040082847A1 (en) * 2002-10-23 2004-04-29 Mcdermott Kathleen B. System and methods for identifying brain regions supporting language
US20050033378A1 (en) * 2002-12-09 2005-02-10 Sheffield Warren Douglas Methods for treating and/or collecting information regarding neurological disorders, including language disorders
US20050004620A1 (en) * 2002-12-09 2005-01-06 Medtronic, Inc. Implantable medical device with anti-infection agent
US20050075680A1 (en) * 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US6990377B2 (en) * 2003-04-24 2006-01-24 Northstar Neuroscience, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US20050070971A1 (en) * 2003-08-01 2005-03-31 Brad Fowler Apparatus and methods for applying neural stimulation to a patient
US20060015153A1 (en) * 2004-07-15 2006-01-19 Gliner Bradford E Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US20070088403A1 (en) * 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616234B2 (en) 2002-05-03 2017-04-11 Trustees Of Boston University System and method for neuro-stimulation
US9586047B2 (en) 2005-01-28 2017-03-07 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US8565867B2 (en) 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
US7996079B2 (en) 2006-01-24 2011-08-09 Cyberonics, Inc. Input response override for an implantable medical device
US8615309B2 (en) 2006-03-29 2013-12-24 Catholic Healthcare West Microburst electrical stimulation of cranial nerves for the treatment of medical conditions
US9289599B2 (en) 2006-03-29 2016-03-22 Dignity Health Vagus nerve stimulation method
US9533151B2 (en) 2006-03-29 2017-01-03 Dignity Health Microburst electrical stimulation of cranial nerves for the treatment of medical conditions
US8660666B2 (en) 2006-03-29 2014-02-25 Catholic Healthcare West Microburst electrical stimulation of cranial nerves for the treatment of medical conditions
US8738126B2 (en) 2006-03-29 2014-05-27 Catholic Healthcare West Synchronization of vagus nerve stimulation with the cardiac cycle of a patient
US9108041B2 (en) 2006-03-29 2015-08-18 Dignity Health Microburst electrical stimulation of cranial nerves for the treatment of medical conditions
US8280505B2 (en) 2006-03-29 2012-10-02 Catholic Healthcare West Vagus nerve stimulation method
US8219188B2 (en) 2006-03-29 2012-07-10 Catholic Healthcare West Synchronization of vagus nerve stimulation with the cardiac cycle of a patient
US8150508B2 (en) 2006-03-29 2012-04-03 Catholic Healthcare West Vagus nerve stimulation method
US7869885B2 (en) 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US7962220B2 (en) 2006-04-28 2011-06-14 Cyberonics, Inc. Compensation reduction in tissue stimulation therapy
US20080082137A1 (en) * 2006-09-28 2008-04-03 Cvrx, Inc. Electrode array structures and methods of use for cardiovascular reflex control
WO2008039982A3 (en) * 2006-09-28 2008-08-07 Cvrx Inc Electrode array structures and methods of use for cardiovascular reflex control
US8620422B2 (en) 2006-09-28 2013-12-31 Cvrx, Inc. Electrode array structures and methods of use for cardiovascular reflex control
US7869867B2 (en) 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
US7869884B2 (en) 2007-04-26 2011-01-11 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7904175B2 (en) 2007-04-26 2011-03-08 Cyberonics, Inc. Trans-esophageal vagus nerve stimulation
US7962214B2 (en) 2007-04-26 2011-06-14 Cyberonics, Inc. Non-surgical device and methods for trans-esophageal vagus nerve stimulation
US7974701B2 (en) 2007-04-27 2011-07-05 Cyberonics, Inc. Dosing limitation for an implantable medical device
US8306627B2 (en) 2007-04-27 2012-11-06 Cyberonics, Inc. Dosing limitation for an implantable medical device
US20090105786A1 (en) * 2007-10-22 2009-04-23 University Of Washington Method and device for strengthening synaptic connections
US20090121989A1 (en) * 2007-11-09 2009-05-14 Seiko Epson Corporation Active matrix device, electrooptic display, and electronic apparatus
US9314633B2 (en) 2008-01-25 2016-04-19 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US8260426B2 (en) 2008-01-25 2012-09-04 Cyberonics, Inc. Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device
US8204603B2 (en) 2008-04-25 2012-06-19 Cyberonics, Inc. Blocking exogenous action potentials by an implantable medical device
US8457747B2 (en) 2008-10-20 2013-06-04 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
US8874218B2 (en) 2008-10-20 2014-10-28 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
US10653883B2 (en) 2009-01-23 2020-05-19 Livanova Usa, Inc. Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation
EP4230251A3 (en) * 2011-10-19 2023-10-04 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11446084B2 (en) 2019-07-12 2022-09-20 Neuralink Corp. Laser drilling of pia mater

Also Published As

Publication number Publication date
EP1368091A2 (en) 2003-12-10
JP2004538041A (en) 2004-12-24
EP1738794A1 (en) 2007-01-03
US20020087201A1 (en) 2002-07-04
DE60215130D1 (en) 2006-11-16
CA2440260C (en) 2008-05-13
US20080161879A1 (en) 2008-07-03
US20080161880A1 (en) 2008-07-03
US20060200206A1 (en) 2006-09-07
JP2009202020A (en) 2009-09-10
EP1738794B1 (en) 2012-07-18
US20030097161A1 (en) 2003-05-22
DE60215130T2 (en) 2007-03-29
WO2002072194A3 (en) 2003-03-06
US20080215112A1 (en) 2008-09-04
US7010351B2 (en) 2006-03-07
ATE341363T1 (en) 2006-10-15
US8065012B2 (en) 2011-11-22
WO2002072194A2 (en) 2002-09-19
US20120022611A1 (en) 2012-01-26
ES2274014T3 (en) 2007-05-16
AU2002247293B2 (en) 2007-07-12
CA2440260A1 (en) 2002-09-19
EP1368091B1 (en) 2006-10-04
US20080161881A1 (en) 2008-07-03
US20120316630A1 (en) 2012-12-13
US7577481B2 (en) 2009-08-18

Similar Documents

Publication Publication Date Title
US8065012B2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US8050768B2 (en) Methods and apparatus for effectuating a change in a neural-function of a patient
US8073546B2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7672730B2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7236831B2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20120253442A1 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
AU2002247293A1 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20100274305A1 (en) Method and apparatus for electrically stimulating cells implanted in the nervous system
WO2003035163A2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient
WO2003026739A2 (en) Methods and apparatus for effectuating a lasting change in a neural-function of a patient

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542

Effective date: 20090521

Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC.,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542

Effective date: 20090521

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION