Connect public, paid and private patent data with Google Patents Public Datasets

Process for finding endmembers in a data set

Download PDF

Info

Publication number
US20060188161A1
US20060188161A1 US11359681 US35968106A US2006188161A1 US 20060188161 A1 US20060188161 A1 US 20060188161A1 US 11359681 US11359681 US 11359681 US 35968106 A US35968106 A US 35968106A US 2006188161 A1 US2006188161 A1 US 2006188161A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
endmember
endmembers
weighting
spectra
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11359681
Other versions
US7680337B2 (en )
Inventor
John Gruninger
Steven Adler-Golden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectral Sciences Inc
Original Assignee
Spectral Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas

Abstract

A method of representing spectral data, such as hyperspectral imaging data (HSI) and multispectral imaging data (MSI), as a set of simplex models. The method finds end-images or end-spectra in the data (termed “endmembers”) as extreme points, and simultaneously determines the abundance of the endmembers.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    This application claims priority of Provisional application Ser. No. 60/655,185, filed on Feb. 22, 2005.
  • FIELD OF THE INVENTION
  • [0002]
    This invention relates to a process to rapidly and automatically find endmembers of a data set made up of spectra, such as a spectral image. Such endmembers are used in a number of applications, such as material classification.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Endmembers are spectra that are chosen to represent the most “pure” surface materials from which the pixels in a spectral image are composed. Mathematically, they are basis spectra whose physically constrained linear combinations match the pixel spectra (to within some error tolerance), but which themselves cannot be represented by such linear combinations. “Physically constrained” means constrained by positivity, at least. Endmembers that represent radiance spectra must satisfy the positivity constraint. Other physically-based constraints may be imposed, such as sum-to-unity (i.e., the pixels are weighted mixtures of the endmembers) or sum-to-unity or less (i.e., the pixels are weighted mixtures of the endmembers plus “black”). The latter constraint is common for reflectance spectra. The invention allows selection of any of these constraints.
  • [0004]
    There are two different categories of endmembers and several different methods and algorithms for finding them. The first category consists of endmembers that do not necessarily correspond to specific pixels in the image. For example, they may represent materials of a purer composition than occur in the scene. Such spectra might be obtained from a library of laboratory-measured reflectances for a variety of materials that might be present. Alternatively, the endmembers may represent cluster averages, which match many spectra well but none exactly.
  • [0005]
    The invention (sometimes termed “SMACC” herein) relates primarily to the second category of endmembers, which are actual pixels in the image. There are several well-known algorithms for finding these endmembers. IDL's ENVI software contains a method based on a “Pixel Purity Index” [ENVI Users Guide, Research Systems, Inc., 2001] and supervised N-dimensional visualization. This method is not automated (it requires manual operation by an analyst) and is fairly time-consuming. Another method, called N-FINDR [http://www.sennacon.com/nfindr/], chooses endmembers based on a maximum-simplex-volume criterion, and is fully automated and reasonably fast.
  • [0006]
    There are many uses of endmembers, including classification, detection and data compression. The endmembers can be used to identify unique materials in the scene, and thus can be input to classification routines. They can also be used in a constrained least-squares unmixing routine to find targets and their pixel fill fraction, as an alternative to matched filtering. If the number of spectral channels is large, the endmember abundances are sparse (most values are zero), so the abundance image represents an efficient compression of the original data cube. Upon matching the endmembers to library materials, the abundances define the surface material composition of the scene. This enables one to estimate various physical properties, such as surface reflectance at wavelengths not originally measured.
  • SUMMARY OF THE INVENTION
  • [0007]
    The inventive SMACC method is similar to N-FINDR in its speed and automation. However, it uses a different mathematical criterion, termed residual minimization, for finding the endmembers, and thus produces somewhat different results. In addition, SMACC simultaneously generates estimated endmember weights (abundances) for each pixel, and, unlike N-FINDR, it can be used to generate more endmembers than there are spectral channels. This may be useful for multispectral data.
  • [0008]
    A drawback of SMACC is that it can be adversely affected by noise. When a large number of endmembers is sought, there may be redundancies (i.e., pixels identified as endmembers that actually are nearly identical to one another). In addition, the SMACC endmember weights do not match full constrained least-squares results, but rather are stepwise constrained least squares results. However, the SMACC results, which are obtained with less computational and/or analyst time, are similar to those from other methods.
  • [0009]
    Typical endmember algorithms are most efficient when the entire spectral image to be analyzed fits in the random access memory (RAM) of the computer processor. However, images that contain a very large number of pixels and/or spectral channels may be too large to fit in the RAM, causing the processor to spend additional time repeatedly transferring portions of the data between the RAM and the computer hard disk or other storage medium. The SMACC invention includes a method for finding endmembers for an image of arbitrary size while minimizing this additional transfer time, by dividing the image into smaller images that fit in the RAM.
  • [0010]
    The SMACC method allows the user to select positivity-only, sum-to-unity, or sum-to-unity-or-less constraints on the endmember weights. The positivity-only option is appropriate for unmixing reflectance spectra under conditions of variable illumination. In this case, the sum of the endmember abundances for a given pixel may exceed unity. The sum-to-unity-or-less option is recommended when a strict physical interpretation of the abundances in terms of material and shadow fractions is desired; the results are typically similar to the positivity-only case but not identical. The sum-to-unity option is recommended for unmixing spectra, such as radiances or thermal IR emissivities, when a zero endmember is not physically plausible, or when it is desired to find very dark endmembers such as shadow endmembers. The second endmember found is among the darkest pixels in the scene, if not the darkest.
  • [0011]
    This invention features a process for determining a subset of members of a group of N data vectors, such as spectra, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group, comprising a. providing a data set (for example an image data) comprised of a plurality of spectra (for example, pixels in which each pixel comprises a spectrum), b. defining an error metric dependent on a difference between two spectra, c. selecting a first spectrum as the first endmember, d. for the member spectra in the group, determining a non-negative weighting factor such that, when the first spectrum is multiplied by the weighting factor and subtracted from the spectrum, the resulting difference generates a smallest error metric, e. selecting as a next endmember the member spectrum whose calculated difference from step d generates the largest error metric, f. for the N member spectra in the group, determining a weighting factor, determining an updated difference by subtracting from the prior difference the difference for the endmember in step e multiplied by the weighting factor, and determining an updated set of member weighting factors by subtracting from the prior set of weighting factors the set of weighting factors for the endmember in step d multiplied by the weighting factor, such that all updated weighting factors are non-negative and the updated member difference generates a smallest error metric, and g. repeating steps e and f for all or a subset of member spectra one or more times.
  • [0012]
    The process may further comprise multiplying each endmember by the weighting factor, to create a weighted endmember value. The process may further comprise approximating each member of a group of N spectra by means of a sum of the weighted endmember values. The invention can also feature a process for determining a subset of members of a group of N spectra, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group, comprising dividing the group of N spectra into sub-groups, determining endmembers of each sub-group by the process described above, forming the endmembers of the sub-groups into an endmember group, and determining endmembers of the endmember group by the process described above. The group of N spectra may be divided into sub-groups, and the weighting factors for the members in each sub-group may be determined.
  • [0013]
    The error metric may be the mean squared spectrum difference. The first spectrum may include the spectrum in the group with the largest mean or mean squared value. The first spectrum may include a target spectrum in the group. The first spectrum may include a spectrum that is not in the group.
  • [0014]
    The determinations may include the additional condition that the sum of the weighting factors does not exceed one, or the sum of the weighting factors may equal one. Step g above may be carried out for only those member spectra for which the differences from step d are greater than a predetermined value. Step g may be carried out for all member spectra until the largest difference from step d among all the member spectra is less than a predetermined value. In the case in which the data set comprises image data, if a sensor is used to gather the image data, the predetermined value may be estimated from the sensor noise. Step g may be terminated when a predetermined number of endmembers have been selected. The difference between one and the sum of the weighting factors is output as a shade weighting factor.
  • [0015]
    This invention also features a process for approximating each member of a group of N data vectors, such as spectra, by means of a positive linear combination of a prior selected subset of members, the subset denoted as endmembers, each endmember being multiplied by a corresponding positive weighting factor, in which the process for determining the weighting factors comprises a. providing a data set (for example an image data) comprised of a plurality of spectra (for example pixels in which each pixel comprises a spectrum), b. defining an error metric dependent on a spectrum difference, c. selecting a first endmember as a starting spectrum, d. for each of the N member spectra in the group that is not the starting spectrum, determining a non-negative member weighting factor such that, when the starting spectrum is multiplied by the member weighting factor and subtracted from the member spectrum, the resulting member difference generates a smallest error metric, e. selecting a next endmember, f. for each of the N member spectra in the group that is not the starting spectrum or any selected endmember, determining a weighting factor, determining an updated member difference by subtracting from the prior member difference the difference for the endmember in step e multiplied by the weighting factor, and determining an updated set of member weighting factors by subtracting from the prior set of member weighting factors the set of weighting factors for the endmember in step e multiplied by the weighting factor, such that all updated member and endmember weighting factors are non-negative and the updated member difference generates a smallest error metric, and g. repeating steps e and f until all endmembers have been selected.
  • [0016]
    In this process, a subset of members of a group of N spectra may be determined, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group. This may be accomplished by dividing the group of N spectra into sub-groups, determining endmembers of each sub-group by the process, forming the endmembers of the sub-groups into an endmember group, and determining endmembers of the endmember group by the process. The group of N spectra may be divided into sub-groups, and the weighting factors for the members in each sub-group may be determined.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0017]
    Other objects, features and advantages will occur to those skilled in the art from the following description of the invention and its preferred embodiments, including the FIGURE, which is a flow chart of the process of the two preferred embodiments described below.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0000]
    Nomenclature and Definitions
  • [0018]
    For ease of explanation, let the set of data vectors (which must be of equal length) be a group of N spectra (in the preferred embodiment the spectra are pixel spectra), in which each pixel spectrum consists of intensity values for a set of spectral channels.
  • [0019]
    The set of pixel spectra is denoted {r1r2 . . . rN}. An arbitrary individual member of this set is denoted r*.
  • [0020]
    The endmembers to be determined are a subset of the pixel spectra and are denoted {e1 e2 . . . eM}, where M is the number of endmembers. In addition, e0 is defined as the spectrum consisting of all zero intensities, referred to as the zero endmember; it is used as a placeholder to implement an optional summation constraint as will be described.
  • [0021]
    Let R*=the pixel spectrum vector difference (also referred to as the residual) between r* and its representation via the expression ΣkA*k ek, where k runs from 1 to M. A*k is referred to as the weight (or weighting factor) of endmember k in the r* spectrum. In the preferred embodiments, A*k is also defined for k=0, although its value does not affect the residual. A*0 is set to 1 in the first preferred embodiment and 0 in the second preferred embodiment.
  • [0022]
    When r* is an endmember, ej, its residual is Rj. The representation of ej is written as ΣkAjk ek, where k≠j. Ajk is referred to as the weight (or weighting factor) of endmember k in endmember j.
  • [0023]
    Let |x| denote the absolute value (length) of a spectrum vector x.
  • [0024]
    Let p(x,y) denote the projection length of spectrum vector x onto spectrum vector y, given by x·y/|y|.
  • [0000]
    Algorithm Description for the First Preferred Embodiment
  • [0025]
    This first preferred embodiment algorithm provides a positivity constraint on the weights, and, optionally, a constraint that the weights for each pixel spectrum must sum to unity or less. If the latter constraint is not used, then the zero endmember variables (i.e., A*0) are not needed; however, for ease of explanation they are retained in both cases in the following description.
  • [0000]
    Step a: Define an Error Metric
  • [0026]
    Define the error metric as the mean square difference between two spectra (the mean of the squares of the differences of the corresponding channels).
  • [0000]
    Step b: Select a Starting Spectrum as the First Endmember
  • [0027]
    Set the weights of the 0th endmember to unity, i.e., A*0=1, and select the pixel spectrum with the largest mean intensity squared or the largest mean intensity absolute value as endmember 1 (e1).
  • [0000]
    Step c: For Each Pixel Spectrum, Determine the Weighting Factor for the First Endmember
  • [0028]
    The weighting factor, A*1, is given by the larger of zero and p(r*,e1)/|e1|. If it is desired to impose the optional constraint that the weights for each pixel sum to unity or less, A*1 is restricted to be unity or less; i.e., A*1≦1. With this weighting factor definition, it can be shown that the mean square of the residual
    R*=r*−A* 1 e 1  (1a)
    (i.e., the error metric) is minimized with respect to the allowable values of A*1. This residual represents the difference between the pixel spectrum and its representation by the first endmember alone.
  • [0029]
    Next, the j=0 endmember weights A*0 are updated by subtracting A*1; i.e., the updated weights are A*0=1−A*1.
  • [0030]
    The following steps d and e constitute an iteration, or cycle, which is repeated as described in step f.
  • [0000]
    Step d: Select the Next Endmember
  • [0031]
    Select as the next endmember the pixel spectrum for which the most recently calculated residual R* (from the previous iteration or from step c) yields the largest error metric.
  • [0000]
    Step e: For Each Pixel Spectrum, Determine the Weighting Factor for the New Endmember Found in Step d.
  • [0032]
    For ease of illustration, the method is described below for endmember k, taken as an example.
  • [0000]
    Step e1: Calculate Provisional Weighting Factors by Projection.
  • [0033]
    The provisional values of A*k are larger of zero and p(R*,Rk)/|Rk|. The provisional updated residuals are
    R*=R* prev −A* k R k.,  (1b)
    where R*prev are the most recently calculated residuals (from the previous iteration or from step c). This residual is equal to the difference between the pixel spectrum and its representation by a weighted sum of the endmembers determined up to this point. If it is desired to impose the optional constraint that the weights for each pixel must sum to unity or less, the provisional A*k is restricted to be unity or less (i.e., A*k≦1).
  • [0034]
    In the updated pixel spectrum representation, the new endmember replaces a combination of prior endmembers that were used to represent it. Therefore, the previously determined weights of the prior endmembers in the pixel spectra no longer hold and must be updated; this is done in Step e2 below. In the updating process, the weights must not be allowed to become negative. This places an upper limit on the allowable value of the new endmember weight A*k, which is why the value calculated in step 1 is termed “provisional.” The A*k value accounting for this upper limit is calculated in step e2, and the updated weights of the prior endmembers are calculated in step e4.
  • [0000]
    Step e2: Find Upper Limits of New Endmember Weights
  • [0035]
    For the previously determined weights to remain non-negative upon updating (step e4), an upper limit on A*k is determined. To ensure that after A*kAjk is subtracted A*j remains non-negative, the inequality A*j prev≧A*kAjk must be satisfied. For a given previous endmember j>0, the maximum permissible value of A*k is given by the ratio A*j prev/Ajk; therefore, the smallest of these ratios for all j>0 is found, and this ratio is set as the A*k upper limit value. The A*k value is then reset to be the smaller of the A*k upper limit value and the A*k provisional value given in Step e1.
  • [0036]
    For a given pixel, the sum over all j of the endmember weights ΣjA*j remains at unity from each iteration to the next. Therefore, if it is chosen to extend the inequality condition A*j prev≧A*kAjk to j=0, thereby imposing a non-negativity constraint on A*0, the sum ΣjA*j is constrained to be unity or less over j>0 (i.e., over the non-zero endmembers). If this is not chosen, the sum is allowed to exceed unity.
  • [0000]
    Step e3: Update the Spectral Residuals and Error Metrics
  • [0037]
    The pixel and endmember residuals are updated via Eq. (1b) using the A*k value determined from Step e2. The error metrics are recalculated using the updated residuals.
  • [0000]
    Step e4: Update the Weights
  • [0038]
    The weights A*j (where j<k) are updated via
    A* j =A* j prev −A* k A jk.  (2)
    Step f: Repeat Steps d and e
  • [0039]
    Repeat steps d and e for endmembers 3, 4, etc., until the desired number of endmembers has been reached (i.e., k=M) and/or the error metrics have been reduced to smaller than a desired tolerance. For example, a tolerance may placed on the individual pixel error metrics, such that the repetition of steps d and e is halted for those pixels that have a smaller error metric; the repetition continues for those pixels that have a larger error metric. Alternatively, a tolerance may be placed on the largest pixel error metric, such that the repetition of steps d and e is halted for all pixels when they all have an error metric smaller than the tolerance.
  • [0000]
    Algorithm Description for the Second Preferred Embodiment
  • [0040]
    This second preferred embodiment algorithm provides a strict sum-to-unity constraint on the weights for each pixel. It is identical to the first preferred embodiment algorithm except that:
      • 1. the starting values of A*0 are set to 0 in step b,
      • 2. in step c, the A*1 are set to 1, and
      • 3. in step e2, the weight of the j=0 endmember is included in the determination of the upper limit, i.e. A*j prev≧A*kAjk for j=0 to k−1.
  • [0044]
    By applying the inequality (non-negativity condition) in step e.2 to j=0, A*0 remains zero. In combination with the sum-to-unity constraint on the A*j where j=0 is included, this forces ΣjA*j=1 for j>0.
  • [0000]
    Extension of the Preferred Embodiments to Arbitrarily Large Images
  • [0045]
    For efficiently determining the endmembers of an image that is too large to fit into the computer RAM, the following method may be used with either the first or second preferred embodiment algorithms:
      • divide the image consisting of a group of N spectra into sub-groups of spectra;
      • determine endmembers of each sub-group by the preferred embodiment algorithm;
      • form the endmembers of the sub-group into an endmember group;
      • by the preferred embodiment algorithm, determine endmembers of the endmember group, which constitute endmembers of the image.
        Applications to Other Data Sets
  • [0050]
    The invention applies to data sets comprised of a plurality of spectra. The data vectors are typically, but not necessarily, spectra from images. Alternatively, the data vectors can be temporal, such as a time sequence of spectra.
  • [0051]
    Other details may be set forth in the provisional patent application from which priority is claimed, the entire disclosure of which is incorporated herein by reference.

Claims (22)

1. A process for determining a subset of members of a group of N data vectors, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group, comprising:
a. providing a data set comprised of a plurality of spectra;
b. defining an error metric dependent on a difference between two spectra;
c. selecting a first spectrum as the first endmember;
d. for the member spectra in the group, determining a non-negative weighting factor such that, when the first spectrum is multiplied by the weighting factor and subtracted from the spectrum, the resulting difference generates a smallest error metric;
e. selecting as a next endmember the member spectrum whose calculated difference from step d generates the largest error metric;
f. for the N member spectra in the group, determining a weighting factor, determining an updated difference by subtracting from the prior difference the difference for the endmember in step e multiplied by the weighting factor, and determining an updated set of member weighting factors by subtracting from the prior set of weighting factors the set of weighting factors for the endmember in step d multiplied by the weighting factor, such that all updated weighting factors are non-negative and the updated member difference generates a smallest error metric; and
g. repeating steps e and f for all or a subset of member spectra one or more times.
2. The process of claim 1 further comprising multiplying each endmember by the weighting factor, to create a weighted endmember value.
3. The process of claim 2 further comprising approximating each member of a group of N spectra by means of a sum of the weighted endmember values.
4. A process for determining a subset of members of a group of N spectra, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group, comprising:
dividing the group of N spectra into sub-groups;
determining endmembers of each sub-group by the process of claim 1;
forming the endmembers of the sub-groups into an endmember group;
determining endmembers of the endmember group by the process of claim 1.
5. The process of claim 1 in which the error metric is the mean squared spectrum difference.
6. The process of claim 1 in which the first spectrum includes the spectrum in the group with the largest mean or mean squared value.
7. The process of claim 1 in which the first spectrum includes a target spectrum in the group.
8. The process of claim 1 in which the first spectrum includes a spectrum that is not in the group.
9. The process of claim 1 in which the determinations in step f include the additional condition that the sum of the weighting factors does not exceed 1.
10. The process of claim 1 in which the determinations in step f include the additional condition that the sum of the weighting factors equals 1.
11. The process of claim 1 in which step g is carried out for only those member spectra for which the differences from step d are greater than a predetermined value.
12. The process of claim 1 in which step g is carried out for all member spectra until the largest difference from step d among all the member spectra is less than a predetermined value.
13. The process of claim 11 in which a sensor is used to gather the data, and the predetermined value is estimated from the sensor noise.
14. The process of claim 12 in which a sensor is used to gather the data, and the predetermined value is estimated from the sensor noise.
15. The process of claim 1 in which step g is terminated when a predetermined number of endmembers have been selected.
16. The process of claim 1 wherein the difference between 1 and the sum of the weighting factors is output as a shade weighting factor.
17. A process for approximating each member of a group of N data vectors by means of a positive linear combination of a prior selected subset of members, the subset denoted as endmembers, each endmember being multiplied by a corresponding positive weighting factor, in which the process for determining the weighting factors comprises:
a. providing a data set comprised of a plurality of spectra;
b. defining an error metric dependent on a spectrum difference;
c. selecting a first endmember as a starting spectrum;
d. for each of the N member spectra in the group that is not the starting spectrum, determining a non-negative member weighting factor such that, when the starting spectrum is multiplied by the member weighting factor and subtracted from the member spectrum, the resulting member difference generates a smallest error metric;
e. selecting a next endmember;
f. for each of the N member spectra in the group that is not the starting spectrum or any selected endmember, determining a weighting factor, determining an updated member difference by subtracting from the prior member difference the difference for the endmember in step e multiplied by the weighting factor, and determining an updated set of member weighting factors by subtracting from the prior set of member weighting factors the set of weighting factors for the endmember in step e multiplied by the weighting factor, such that all updated member and endmember weighting factors are non-negative and the updated member difference generates a smallest error metric; and
g. repeating steps e and f until all endmembers have been selected.
18. A process for determining a subset of members of a group of N spectra, the subset denoted as endmembers, which may be taken in positive linear combinations to approximate the other members of the group, comprising:
dividing the group of N spectra into sub-groups;
determining endmembers of each sub-group by the process of claim 17;
forming the endmembers of the sub-groups into an endmember group; and
determining endmembers of the endmember group by the process of claim 17.
19. The process of claim 18 wherein the group of N spectra are divided into sub-groups, and the weighting factors for the members in each sub-group are determined.
20. The process of claim 4 wherein the group of N spectra are divided into sub-groups, and the weighting factors for the members in each sub-group are determined.
21. The process of claim 1 in which the data set comprises image data comprised of a plurality of pixels.
22. The process of claim 17 in which the data set comprises image data comprised of a plurality of pixels.
US11359681 2005-02-22 2006-02-22 Process for finding endmembers in a data set Active 2028-11-18 US7680337B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US65518505 true 2005-02-22 2005-02-22
US11359681 US7680337B2 (en) 2005-02-22 2006-02-22 Process for finding endmembers in a data set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11359681 US7680337B2 (en) 2005-02-22 2006-02-22 Process for finding endmembers in a data set

Publications (2)

Publication Number Publication Date
US20060188161A1 true true US20060188161A1 (en) 2006-08-24
US7680337B2 US7680337B2 (en) 2010-03-16

Family

ID=36912779

Family Applications (1)

Application Number Title Priority Date Filing Date
US11359681 Active 2028-11-18 US7680337B2 (en) 2005-02-22 2006-02-22 Process for finding endmembers in a data set

Country Status (1)

Country Link
US (1) US7680337B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090192742A1 (en) * 2008-01-30 2009-07-30 Mensur Omerbashich Procedure for increasing spectrum accuracy
US8571325B1 (en) 2011-03-31 2013-10-29 Raytheon Company Detection of targets from hyperspectral imagery
EP2511680A3 (en) * 2011-04-13 2014-02-26 Raytheon Company Optimized orthonormal system and method for reducing dimensionality of hyperspectral Images
US8805115B2 (en) 2012-11-02 2014-08-12 Raytheon Company Correction of variable offsets relying upon scene
US8842937B2 (en) 2011-11-22 2014-09-23 Raytheon Company Spectral image dimensionality reduction system and method
US20140321697A1 (en) * 2013-04-25 2014-10-30 Raytheon Company Kernel with iterative computation
US8897571B1 (en) 2011-03-31 2014-11-25 Raytheon Company Detection of targets from hyperspectral imagery
US8897570B1 (en) 2011-03-31 2014-11-25 Raytheon Company Detection of targets from hyperspectral imagery
US9031354B2 (en) 2011-03-31 2015-05-12 Raytheon Company System and method for post-detection artifact reduction and removal from images
US9064308B2 (en) 2011-04-13 2015-06-23 Raytheon Company System and method for residual analysis of images
US9147265B2 (en) 2012-06-04 2015-09-29 Raytheon Company System and method for rapid cluster analysis of hyperspectral images

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538195B2 (en) * 2007-09-17 2013-09-17 Raytheon Company Hyperspectral image dimension reduction system and method
US8417748B2 (en) * 2007-09-28 2013-04-09 University Of Maryland At Baltimore County Maximum simplex volume criterion-based endmember extraction algorithms
US8760561B2 (en) 2011-02-23 2014-06-24 Canon Kabushiki Kaisha Image capture for spectral profiling of objects in a scene
US8655091B2 (en) 2012-02-24 2014-02-18 Raytheon Company Basis vector spectral image compression
US8660360B1 (en) 2012-08-03 2014-02-25 Raytheon Company System and method for reduced incremental spectral clustering
US9412005B2 (en) 2013-10-25 2016-08-09 Gooch & Housego Plc Use of error image for unmixing artifact removal in linear spectral unmixing
US9449244B2 (en) 2013-12-11 2016-09-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Methods for in-scene atmospheric compensation by endmember matching

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038344A (en) * 1996-07-12 2000-03-14 The United States Of America As Represented By The Secretary Of The Navy Intelligent hypersensor processing system (IHPS)
US6075891A (en) * 1998-07-06 2000-06-13 General Dynamics Government Systems Corporation Non-literal pattern recognition method and system for hyperspectral imagery exploitation
US6167156A (en) * 1996-07-12 2000-12-26 The United States Of America As Represented By The Secretary Of The Navy Compression of hyperdata with ORASIS multisegment pattern sets (CHOMPS)
US6282301B1 (en) * 1999-04-08 2001-08-28 The United States Of America As Represented By The Secretary Of The Army Ares method of sub-pixel target detection
US6304664B1 (en) * 1999-08-03 2001-10-16 Sri International System and method for multispectral image processing of ocean imagery
US6480273B1 (en) * 2000-05-10 2002-11-12 Trw Inc. Multispectral imaging system and method
US6484099B1 (en) * 1999-07-16 2002-11-19 Deutsches Zentrum Fur Luft -Und Raumfahrt E.V. Process for correcting atmospheric influences in multispectral optical remote sensing data
US6608931B2 (en) * 2001-07-11 2003-08-19 Science Applications International Corporation Method for selecting representative endmember components from spectral data
US6665438B1 (en) * 1999-05-05 2003-12-16 American Gnc Corporation Method for hyperspectral imagery exploitation and pixel spectral unmixing
US6804400B1 (en) * 2000-11-01 2004-10-12 Bae Systems Mission Solutions Inc. Adaptive hyperspectral data compression
US20050286770A1 (en) * 2004-06-29 2005-12-29 Nec Corporation Endmember spectrum database construction method, endmember spectrum database construction apparatus and endmember spectrum database construction program
US7046859B2 (en) * 2003-01-31 2006-05-16 Bernstein Lawrence S Methods for determining a measure of atmospheric aerosol optical properties using a multi- or hyperspectral, multi-pixel image
US7194132B1 (en) * 2002-07-09 2007-03-20 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting anomalies in multispectral and hyperspectral imagery employing the normal compositional model
US7567712B2 (en) * 2002-04-05 2009-07-28 Commonwealth Scientific And Industrial Research Organisation Method of identifying endmember spectral values from hyperspectral image data

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038344A (en) * 1996-07-12 2000-03-14 The United States Of America As Represented By The Secretary Of The Navy Intelligent hypersensor processing system (IHPS)
US6167156A (en) * 1996-07-12 2000-12-26 The United States Of America As Represented By The Secretary Of The Navy Compression of hyperdata with ORASIS multisegment pattern sets (CHOMPS)
US6075891A (en) * 1998-07-06 2000-06-13 General Dynamics Government Systems Corporation Non-literal pattern recognition method and system for hyperspectral imagery exploitation
US6282301B1 (en) * 1999-04-08 2001-08-28 The United States Of America As Represented By The Secretary Of The Army Ares method of sub-pixel target detection
US6665438B1 (en) * 1999-05-05 2003-12-16 American Gnc Corporation Method for hyperspectral imagery exploitation and pixel spectral unmixing
US6484099B1 (en) * 1999-07-16 2002-11-19 Deutsches Zentrum Fur Luft -Und Raumfahrt E.V. Process for correcting atmospheric influences in multispectral optical remote sensing data
US6304664B1 (en) * 1999-08-03 2001-10-16 Sri International System and method for multispectral image processing of ocean imagery
US6480273B1 (en) * 2000-05-10 2002-11-12 Trw Inc. Multispectral imaging system and method
US6804400B1 (en) * 2000-11-01 2004-10-12 Bae Systems Mission Solutions Inc. Adaptive hyperspectral data compression
US6608931B2 (en) * 2001-07-11 2003-08-19 Science Applications International Corporation Method for selecting representative endmember components from spectral data
US6741740B2 (en) * 2001-07-11 2004-05-25 Science Applications International Corporation Method for selecting representative endmember components from spectral data
US7567712B2 (en) * 2002-04-05 2009-07-28 Commonwealth Scientific And Industrial Research Organisation Method of identifying endmember spectral values from hyperspectral image data
US7194132B1 (en) * 2002-07-09 2007-03-20 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting anomalies in multispectral and hyperspectral imagery employing the normal compositional model
US7046859B2 (en) * 2003-01-31 2006-05-16 Bernstein Lawrence S Methods for determining a measure of atmospheric aerosol optical properties using a multi- or hyperspectral, multi-pixel image
US20050286770A1 (en) * 2004-06-29 2005-12-29 Nec Corporation Endmember spectrum database construction method, endmember spectrum database construction apparatus and endmember spectrum database construction program

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090192742A1 (en) * 2008-01-30 2009-07-30 Mensur Omerbashich Procedure for increasing spectrum accuracy
US8571325B1 (en) 2011-03-31 2013-10-29 Raytheon Company Detection of targets from hyperspectral imagery
US9031354B2 (en) 2011-03-31 2015-05-12 Raytheon Company System and method for post-detection artifact reduction and removal from images
US8897570B1 (en) 2011-03-31 2014-11-25 Raytheon Company Detection of targets from hyperspectral imagery
US8897571B1 (en) 2011-03-31 2014-11-25 Raytheon Company Detection of targets from hyperspectral imagery
US9064308B2 (en) 2011-04-13 2015-06-23 Raytheon Company System and method for residual analysis of images
US8675989B2 (en) 2011-04-13 2014-03-18 Raytheon Company Optimized orthonormal system and method for reducing dimensionality of hyperspectral images
US8948540B2 (en) 2011-04-13 2015-02-03 Raytheon Company Optimized orthonormal system and method for reducing dimensionality of hyperspectral images
EP2511680A3 (en) * 2011-04-13 2014-02-26 Raytheon Company Optimized orthonormal system and method for reducing dimensionality of hyperspectral Images
US8842937B2 (en) 2011-11-22 2014-09-23 Raytheon Company Spectral image dimensionality reduction system and method
US9147265B2 (en) 2012-06-04 2015-09-29 Raytheon Company System and method for rapid cluster analysis of hyperspectral images
US8805115B2 (en) 2012-11-02 2014-08-12 Raytheon Company Correction of variable offsets relying upon scene
US20140321697A1 (en) * 2013-04-25 2014-10-30 Raytheon Company Kernel with iterative computation
US9189704B2 (en) * 2013-04-25 2015-11-17 Raytheon Company Kernel with iterative computation

Also Published As

Publication number Publication date Type
US7680337B2 (en) 2010-03-16 grant

Similar Documents

Publication Publication Date Title
Funt et al. Is machine colour constancy good enough?
US7149262B1 (en) Method and apparatus for enhancing data resolution
Gijsenij et al. Color constancy using natural image statistics and scene semantics
Gevers et al. Color-based object recognition
Mertens et al. Using genetic algorithms in sub-pixel mapping
Gómez-Sanchis et al. Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins
US6697529B2 (en) Data compression method and recording medium with data compression program recorded therein
US20020135743A1 (en) Digital image processing method and apparatus for brightness adjustment of digital images
Bianco et al. Improving color constancy using indoor–outdoor image classification
Maritorena et al. Optimization of a semianalytical ocean color model for global-scale applications
Overzier et al. Lyman break galaxies, Lyα emitters, and a radio galaxy in a protocluster at z= 4.1
Finlayson et al. Color by correlation: A simple, unifying framework for color constancy
Pitie et al. N-dimensional probability density function transfer and its application to color transfer
Gijsenij et al. Computational color constancy: Survey and experiments
Chen et al. Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model
Irwin et al. VISTA data flow system: pipeline processing for WFCAM and VISTA
Keshava A survey of spectral unmixing algorithms
Cardei et al. Estimating the scene illumination chromaticity by using a neural network
US7596266B2 (en) Method and system for separating illumination and reflectance using a log color space
Frieden et al. Restoring with maximum entropy. III. Poisson sources and backgrounds
US20110064308A1 (en) Method and system for learning a same-material constraint in an image
Barnard Practical colour constancy
US6898312B2 (en) Method and device for the correction of colors of photographic images
Gijsenij et al. Improving color constancy by photometric edge weighting
Agarwal et al. An overview of color constancy algorithms

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPECTRAL SCIENCES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUNINGER, JOHN;ADLER-GOLDEN, STEVEN;REEL/FRAME:017598/0966

Effective date: 20060221

Owner name: SPECTRAL SCIENCES, INC.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUNINGER, JOHN;ADLER-GOLDEN, STEVEN;REEL/FRAME:017598/0966

Effective date: 20060221

AS Assignment

Owner name: UNITED STATE AIR FORCE, MASSACHUSETTS

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SPECTRAL SCIENCES INCORPORATED;REEL/FRAME:017807/0488

Effective date: 20060413

Owner name: UNITED STATE AIR FORCE,MASSACHUSETTS

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SPECTRAL SCIENCES INCORPORATED;REEL/FRAME:017807/0488

Effective date: 20060413

AS Assignment

Owner name: UNITED STATES AIR FORCE, MASSACHUSETTS

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SPECTRAL SCIENCES INCORPORATED;REEL/FRAME:017910/0701

Effective date: 20060413

Owner name: UNITED STATES AIR FORCE,MASSACHUSETTS

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SPECTRAL SCIENCES INCORPORATED;REEL/FRAME:017910/0701

Effective date: 20060413

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8