US20060185578A1 - Heterostructure semiconductor nanowires and method for producing the same - Google Patents

Heterostructure semiconductor nanowires and method for producing the same Download PDF

Info

Publication number
US20060185578A1
US20060185578A1 US11358510 US35851006A US2006185578A1 US 20060185578 A1 US20060185578 A1 US 20060185578A1 US 11358510 US11358510 US 11358510 US 35851006 A US35851006 A US 35851006A US 2006185578 A1 US2006185578 A1 US 2006185578A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
nanocrystal
zinc
cadmium
semiconductor
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11358510
Inventor
Eun Jang
Shin Jun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/715On an organic substrate
    • Y10S977/718Carbohydrate substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/766Bent wire, i.e. having nonliner longitudinal axis
    • Y10S977/768Helical wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/789Of specified organic or carbon-based composition in array format
    • Y10S977/79Of specified organic or carbon-based composition in array format with heterogeneous nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/827Nanostructure formed from hybrid organic/inorganic semiconductor compositions

Abstract

Disclosed herein are heterostructure semiconductor nanowires. The heterostructure semiconductor nanowires comprise semiconductor nanocrystal seeds and semiconductor nanocrystal wires grown in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition different from that of the semiconductor nanocrystal wires. Further disclosed is a method for producing the heterostructure semiconductor nanowires.

Description

    BACKGROUND OF THE INVENTION
  • This non-provisional application claims priority under 35 U.S.C. § 119(a) to Korean Patent Application Nos. 2005-14461 and 2005-114068 filed on Feb. 22, 2005 and Nov. 28, 2005, respectively, which are hereby incorporated in their entirety by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to heterostructure semiconductor nanowires and a method for producing the nanowires. More particularly, the present invention relates to heterostructure semiconductor nanowires comprising semiconductor nanocrystal seeds and semiconductor nanocrystal wires grown in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition that is different from that of the semiconductor nanocrystal wires. The present invention also relates to a method for producing the nanowires.
  • DESCRIPTION OF THE RELATED ART
  • Semiconductor nanocrystals produced by wet chemical processes can be utilized in microstructural devices due to their small size. In addition, the inherent characteristics of semiconductor nanocrystals can be controlled due to quantum confinement effects and the like, and as a result, various electrooptical properties can be induced and utilized. As a result, semiconductor nanocrystals have received a great deal of attention.
  • In particular, nanocrystals in the form of rods or wires advantageously afford the possibility of being able to use mobility characteristics of electrons in a particular direction along with the associated optical properties in that direction. For example, such nanocrystals can be used to induce a polarization phenomenon in microstructural devices in which they are employed. Much research has been conducted to synthesize such nanocrystals.
  • In this connection, Japanese Patent Laid-open No. 14-220300 teaches a method for producing nanowires comprising the steps of depositing microcrystalline silicon particles on the surface of a silicon substrate and heating the substrate to a temperature at which the surface of the silicon substrate is melted under a vacuum. The heating step generates surface segregation on the crystal surface of the microcrystalline silicon particles to allow a plurality of nanowires to grow thereon.
  • The problems of this method, however, are that both steps are carried out on the substrate using vapor deposition thereby causing an increase in production costs.
  • Further, Korean Patent Laid-open No. 2004-000418 proposes a nanowire comprising a first segment of a substantially crystalline material and a second segment of a material having a composition different from that of the first segment and joined to the first segment wherein at least one segment of the first and second segments has a substantially uniform diameter of less than approximately 200 nm. This patent publication discloses nanowires having two or more structures and suggests the possibility of using the nanowires in various applications.
  • However, although the patent publication proposes the basic concept regarding the structure of the nanowire, it fails to disclose detailed production processes, i.e., a process for controlling the reactivity of the second segment. Further, Japanese Patent Laid-open No. Hei 15-277029 introduces a method for manufacturing carbon nanotubes by disposing a nanocarbon material on a substrate and selectively growing carbon nanotubes almost perpendicular to the substrate. This patent publication is highly distinguished from the present invention in terms of the final products and processes employed.
  • Japanese Patent Laid-open No. Hei 16-122283 introduces a method for manufacturing a nanometer-sized microstructure comprising the steps of forming a material layer on a substrate, forming a pattern on the material layer using pyramidal particles, depositing a metal catalyst on the patterned material layer, peeling the material layer to form a patterned metal catalyst, and growing the patterned metal catalyst into a crystal. This patent publication is highly distinguished from the present invention in terms of the final products and processes employed.
  • SUMMARY OF THE INVENTION
  • To meet the above technical needs, it is desirable to manufacture heterostructure semiconductor nanowires whose diameter can be easily controlled and that has improved optical and electrical properties.
  • It is also desirable to provide a method for producing the heterostructure semiconductor nanowires.
  • In accordance with one aspect of the present invention, there are provided heterostructure semiconductor nanowires comprising semiconductor nanocrystal seeds and semiconductor nanocrystal wires formed in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition different from that of the semiconductor nanocrystal wires.
  • In accordance with another aspect of the present invention, there is provided a method for producing nanowires initiated from a semiconductor nanocrystal which comprises (a) preparing semiconductor nanocrystal seeds, (b) adding the nanocrystal seeds to a metal precursor solution of nanocrystal wires, and (c) adding a non-metal precursor solution of the nanocrystal wires to the mixture obtained (b) to allow the precursors to react with each other, thereby forming the nanocrystal wires on the nanocrystal seeds.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a schematic diagram of an InAs nanowire using a gold nanoparticle as a catalyst in accordance with the prior art;
  • FIG. 2 schematically shows ZnSe nanocrystal wires initiated from CdSe nanoparticles according to one embodiment of the present invention;
  • FIG. 3 is a graph showing UV and photoluminescence (PL) spectra of CdSe nanocrystal seeds prepared in Example 1 of the present invention;
  • FIG. 4 shows transmission electron microscope (TEM) images of CdSe—ZnSe nanowires produced in Example 2 of the present invention at different reaction times;
  • FIG. 5 is a graph showing UV and PL spectra of CdSe—ZnSe nanowires produced in Example 2 of the present invention;
  • FIG. 6 is a graph showing UV and PL spectra of CdSe—ZnSe nanowires produced in Example 3 of the present invention; and
  • FIG. 7 is a graph showing energy dispersive spectroscopy (EDS) of CdSe—ZnSe nanowires produced in Example 3 of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will now be described in more detail.
  • The present invention is directed to heterostructure semiconductor nanowires comprising semiconductor nanocrystal seeds and semiconductor nanocrystal wires formed in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition different from that of the semiconductor nanocrystal wires.
  • Hybrid nanowires that have hitherto been known have a complex structure consisting of a metal catalyst and silicon. However, hybrid nanowires composed of different semiconductor materials, which are features of the present invention, have not yet been reported. If nanowires are composed of different semiconductor materials bonded to each other with different valence bands and conduction bands, as in the present invention, separation of electrons and holes can be efficiently induced, which makes it possible to apply the nanowires to a variety of devices. Such devices generally make use of photoelectric properties of the nanowires. Examples of such devices are photodetectors.
  • Specific examples of materials constituting the nanocrystal seeds or the nanocrystal wires are Group II-VI, Group III-V, Group IV-VI semiconductor compounds, and mixtures thereof. The heterostructure semiconductor nanowires of the present invention are characterized in that the constituent material of the nanocrystal seeds is different from that of the nanocrystal wires. If the nanocrystal seeds and the nanocrystal wires are composed of the same material, separation of electrons and holes using a difference in energy bands is not induced. Accordingly, heterostructure semiconductor nanowires composed of different materials show electrooptical properties superior to those of semiconductor nanowires composed of the same materials.
  • More specific examples of materials constituting the nanocrystal seeds or the nanocrystal wires that can be used in the present invention include, but are not limited to, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, InP, GaP, TlP, and mixtures thereof.
  • The shapes of the nanocrystal seeds can be selected from the group consisting of platelet-like, cylindrical, spherical, ellipsoidal, cuboid, polygonal, or the like, or a combination comprising at least one of the foregoing shapes.
  • The size of the nanocrystal seeds may be varied in the range of 1 nm to 50 nm, depending on the specification of the nanowires to be produced. This size range of the nanocrystal seeds enables control of electrooptical properties due to quantum confinement effects, unlike larger bulky materials.
  • The semiconductor nanowires of the present invention can be applied in various industrial fields, such as displays, sensors, energy devices and semiconductors, and particularly are useful in energy and semiconductor industries, such as photodetectors using photoelectric properties, photovoltaic cells and optical memory devices.
  • The present invention is also directed to a method for producing heterostructure semiconductor nanowires initiated from a semiconductor nanocrystal. A conventional technique for producing InAs nanorods using gold nanoparticles is known (see, FIG. 1). In contrast, the semiconductor nanowires of the present invention are initiated from semiconductor nanocrystal seeds (see, FIG. 2), instead of metal catalysts. The method of the present invention is characterized in that the size and characteristics of the semiconductor nanowires can be induced from the characteristics of the seeds.
  • According to the method of the present invention, the nanocrystal wires are grown from the active surface of the seeds. Accordingly, the nanocrystal wires can be grown at a lower concentration at lower temperatures. The diameter of the nanocrystal wires growing on particular surfaces of the seeds can be controlled by controlling the size of the seeds.
  • Unlike the conventional technique that uses metal nanoparticles, growth points of the nanocrystal wires become distant from the seeds as the nanocrystal wires are grown on the surface of the seeds. This is a characteristic difference between the present invention and the conventional technique. This growth of the nanocrystal wires using the seeds provides an advantage that the diameters of the nanocrystal wires can be more easily controlled when compared to nanowires produced by a process that does not employ any nanocrystal seeds, in which one kind material is grown by controlling the kind of a surfactant, the concentration of a precursor or the reaction temperature. Another advantage is that various materials can be designed by combining the characteristics of the seeds and the nanocrystal wires.
  • The method of the present invention will be explained in more detail based on the respective steps.
  • (a) Step of Preparing Nanocrystal Seeds
  • Nanocrystal seeds used in the method of the present invention can be prepared, for example, in accordance with the following procedure. After cadmium oxide is mixed with a solvent (e.g., trioctyl amine) and a dispersant (e.g., oleic acid), the reaction temperature is raised to 300° C. in a nitrogen atmosphere. Subsequently, a Se/trioctyl phosphine solution is rapidly added to the reaction mixture, followed by rapid cooling to prepare the nanocrystal seeds.
  • Examples of suitable nanocrystals that can be used as the seeds in the method of the present invention include Group II-VI, Group III-V and Group IV-VI semiconductor compounds, and the like, and a combination comprising at least one of the foregoing semiconductor compounds.
  • Specific constituent materials of the seeds include, but are not limited to, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, InP, GaP, TlP, and the like, and a combination comprising at least one of the foregoing semiconductor compounds.
  • The shapes of the nanocrystal seeds can be selected from the group consisting of platelet-like, cylindrical, spherical, ellipsoidal, cuboid, polygonal, and the like, and a combination comprising at least one of the foregoing shapes.
  • The size of the nanocrystal seeds may be varied in the range of 1 nm to 50 nm, depending on the specification of the nanowires to be produced. This size range of the nanocrystal seeds enables control of electrooptical properties due to quantum confinement effects.
  • According to the method of the present invention, since the kind, shape and size of the material for the seeds are controlled to grow the nanocrystal wires on a particular surface of the seeds, the reactivity between the seeds and the nanocrystal wires can be controlled depending on the surface characteristics of the seeds. In addition, the formation of defects on the surface of the seeds in the initial stage of the growth of the nanocrystal wires can be reduced, leading to an improvement in luminescence efficiency. Furthermore, since separation of electrons and holes is facilitated as the growth of the nanocrystal wires proceeds, the mobility of electrons can be improved despite the possibility of low luminescence efficiency.
  • The nanocrystal seeds can be separated by common techniques, such as centrifugation. Transmission electron microscopy (TEM) is employed to evaluate the optical properties and to analyze the size and shape of the separated nanocrystal seeds.
  • (b) Step of Adding the Nanocrystal Seeds to Metal Precursor Solution of Nanocrystal Wires
  • First, zinc acetate is mixed with a solvent (e.g., trioctyl amine) and a dispersant (e.g., oleic acid) to create a mixture. After the mixture is heated to 300° C. in a nitrogen atmosphere, a solution comprising the nanocrystal seeds prepared in step (a) in an appropriate solvent (e.g., toluene) is rapidly added to thereto.
  • Specific examples of metal precursors that can be used in the method of the present invention include, but are not limited to, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, dimethyl cadmium, diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate, cadmium nitrate, cadmium oxide, cadmium perchlorate, cadmium phosphide, cadmium sulfate, mercury acetate, mercury iodide, mercury bromide, mercury chloride, mercury fluoride, mercury cyanide, mercury nitrate, mercury oxide, mercury perchlorate, mercury sulfate, lead acetate, lead bromide, lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulfate, lead carbonate, tin acetate, tin bisacetylacetonate, tin bromide, tin chloride, tin fluoride, tin oxide, tin sulfate, germanium tetrachloride, germanium oxide, germanium ethoxide, gallium acetylacetonate, gallium chloride, gallium fluoride, gallium oxide, gallium nitrate, gallium sulfate, indium chloride, indium oxide, indium nitrate, indium sulfate, and the like, and a combination comprising at least one of the foregoing metal precursors.
  • (c) Step of Adding Non-metal Precursor Solution of the Nanocrystal Wires to the Mixture Obtained in Step (b) to Allow the Precursors to React With Each Other, Thereby Forming the Nanocrystal Wires on the Nanocrystal Seeds
  • In this step, a non-metal precursor solution of the nanocrystal wires, such as a Se/trioctyl phosphine (TOP) solution, is slowly added to the mixture prepared in step (b) to allow the precursors to react with each other, completing the production of the final nanowires.
  • Specific examples of non-metal precursors that can be used in the method of the present invention include, but are not limited to, alkyl thiol compounds, such as hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol and mercapto propyl silane, sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), trimethylsilyl sulfur, ammonium sulfide, sodium sulfide, sellenium-trioctylphosphine (Se-TOP), sellenium-tributylphosphine (Se-TBP), sellenium-triphenylphosphine (Se-TPP), tellurium-tributylphosphine (Te-TBP), tellurium-triphenylphosphine (Te-TPP) and trimethylsilyl phosphine, alkyl phosphines, including triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine and tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, arsenic iodide, nitric oxide, nitric acid, ammonium nitrate, and the like, and a combination comprising at least one of the foregoing non-metal precursors.
  • The concentrations of the metal precursor and the non-metal precursor can be controlled in proportion to the concentration of the nanocrystal seeds. As the concentration of the seeds increases, the length of the nanocrystal wires is likely to decrease. In addition, the growth rate and crystallinity of the nanocrystal wires may depend on the characteristics of the crystalline surface of the seeds.
  • Specifically, the nanocrystal wires can be epitaxially grown on the crystalline surface of the nanocrystal seeds. The nanocrystal seeds are included in a portion of the nanocrystal wires. The concentration ratio of the nanocrystal seeds to the precursors of the nanocrystal wires is preferably in the range of about 0.01:1 to about 1:0.01.
  • Hereinafter, the present invention will be explained in more detail with reference to the following examples. However, these examples are given for the purpose of illustration and are not to be construed as limiting the scope of the invention.
  • EXAMPLE 1 Preparation of CdSe Nanocrystal Seeds
  • 1.6 mmol of cadmium oxide (CdO) and 3.2 mmol of oleic acid were added to 20 ml of trioctyl amine (TOA) in a 250 ml round flask equipped with a heating mantle. The mixture was heated to 150° C. with stirring under a vacuum. The flask was purged with nitrogen three times at 150° C. and heated to 300° C. with stirring. 1 ml of a 0.2 M Se/trioctyl phosphine (TOP) solution was rapidly added to the mixture at 300° C. After 1.5 minutes of the reaction, the mantle was removed to rapidly lower the reaction temperature, followed by addition of a low-boiling point solvent, e.g., ethanol. Centrifugation of the mixture produced a precipitate. The precipitate was dispersed in 5 ml of an organic solvent (e.g., toluene) to prepare CdSe nanocrystals. Ultraviolet (UV) and photoluminescence (PL) spectra of the CdSe nanocrystal are shown in FIG. 3. UV and PL spectroscopy data revealed that the CdSe nanocrystal has a maximum absorption wavelength of about 560 nm and a maximum emission wavelength of about 590 nm.
  • EXAMPLE 2 Preparation of ZnSe Nanocrystal Wires Using the CdSe Nanocrystal Seeds
  • 0.4 mmol of zinc acetate and 0.8 mmol of oleic acid were sequentially added to 20 ml of TOA in a 250 ml round flask. The mixture was heated to 150° C. while stirring under a vacuum. The flask was purged with nitrogen about three times at 150° C. and heated to 300° C. with stirring. 1 ml of the solution of the CdSe nanocrystal seeds prepared in Example 1 was rapidly added to the flask at 300° C. After 1 ml of a 0.2 M Se/TOP solution was slowly added to the flask, the reaction was allowed to proceed for one hour to prepare nanocrystal wires.
  • Samples were drawn from the flask every 20 minutes during the reaction. Analysis by electron microscopy confirmed that the length of the wires is increased with the passage of time (see, the images shown in FIG. 4).
  • FIG. 5 is a graph showing UV and PL spectra of the CdSe—ZnSe nanowires at different reaction times, together with the UV and PL spectra of the CdSe nanocrystal seeds. It can be seen from the graph that as the ZnSe is grown on the CdSe nanocrystal seeds, the maximum absorption wavelength is blue-shifted from 550 nm to 538 nm but the point at which the absorption starts remains unchanged due to the presence of the low energy bandgap of ZnSe. In addition, the photoluminescence spectrum shows that as the ZnSe is grown on the CdSe nanocrystal seeds, the maximum emission wavelength is blue-shifted from 568 nm to 558 nm but the initial emission wavelength (590 nm) of the nanocrystal seeds is still observed.
  • EXAMPLE 3 Control of Diameter of ZnSe Nanocrystal Wires Using CdSe Nanocrystal Seeds
  • A CdSe nanocrystal was prepared in the same manner as in Example 1, except that 1 ml of a 2.0 M Se/TOP was added and the reaction time was shortened to 30 seconds. Thereafter, the nanocrystal was separated by the same process as in Example 1, and dispersed in 5 ml of toluene. The absorption spectrum of the CdSe nanocrystal indicates a maximum absorption wavelength of 500 nm (see, FIG. 6).
  • The nanocrystal was used as seeds and was allowed to react under the same conditions as those employed in Example 2 to produce CdSe—ZnSe nanowires. UV and PL spectroscopy data revealed that the CdSe—ZnSe nanowires have a maximum absorption wavelength of about 418 nm and a maximum emission wavelength of about 502 nm (See, FIG. 6). It can be seen from the graph shown in FIG. 6 that the maximum absorption wavelength is blue-shifted from 500 nm to 418 nm, confirming the formation of the nanowires.
  • Energy dispersive spectroscopy (EDS) analysis of the CdSe—ZnSe nanowires was conducted, and the obtained analytical data are shown in FIG. 7. The data show the detection of cadmium (Cd), zinc and selenium, which confirms the formation of a heterostructure in which the nanocrystal wires are grown on the seeds.
  • As apparent from the foregoing, according to the present invention, the direction of nanocrystal wires grown on nanocrystal seeds can be controlled using the difference in the activity of the crystal surface of the nanocrystal seeds, and the diameter of the nanocrystal wires can be controlled by controlling the size of the seeds.
  • In addition, when the nanocrystal wires are grown on the surface of the nanocrystal seeds, the luminescence efficiency can be improved or the mobility of electrons can be increased as the reaction proceeds. The nanowires of various structures composed of two or more materials have improved emission or absorption properties, exhibit polarization properties due to their orientation, and facilitate migration of electrons and holes. Therefore, the nanowires of the present invention can be applied to a variety of optoelectronic devices.
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (13)

  1. 1. A heterostructure semiconductor nanowire comprising a semiconductor nanocrystal seed and a semiconductor nanocrystal wire formed in a selected direction from the surface of the semiconductor nanocrystal seed wherein the semiconductor nanocrystal seed have a composition different from that of the semiconductor nanocrystal wire.
  2. 2. The nanowire according to claim 1, wherein the nanocrystal seed or the nanocrystal wire is composed of a material selected from the group consisting of Group II-VI, Group III-V, Group IV-VI semiconductor compounds, and mixtures thereof.
  3. 3. The nanowire according to claim 1, wherein the nanocrystal seed has a shape selected from the group consisting of platelet-like, cylindrical, spherical, ellipsoidal, cuboid, polygonal and a combination comprising at least one of the foregoing shapes.
  4. 4. The nanowire according to claim 1, wherein the nanocrystal seed has a size of 1 nm to 50 nm.
  5. 5. A method for producing a nanowire initiated from a semiconductor nanocrystal, the method comprising the steps of (a) preparing a semiconductor nanocrystal seed, (b) adding the nanocrystal seed to a metal precursor solution of a nanocrystal wire, and (c) adding a non-metal precursor solution of the nanocrystal wire to the mixture obtained in step (b) to allow the precursors to react with each other, and forming the nanocrystal wire on the nanocrystal seed.
  6. 6. The method according to claim 5, wherein the nanocrystal seed prepared in step (a) is composed of a material selected from the group consisting of Group II-VI, Group III-V, Group IV-VI semiconductor compounds, and mixtures thereof.
  7. 7. The method according to claim 5, wherein the nanocrystal seed prepared in step (a) has a shape selected from the group consisting of platelet-like, cylindrical, spherical, ellipsoidal, cuboid, polygonal, and a combination comprising at least one of the foregoing shapes.
  8. 8. The method according to claim 5, wherein the nanocrystal seed prepared in step (a) has a size of 1 nm to 50 nm.
  9. 9. The method according to claim 5, wherein the metal precursor used in step (b) is selected from the group consisting of dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, dimethyl cadmium, diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate, cadmium nitrate, cadmium oxide, cadmium perchlorate, cadmium phosphide, cadmium sulfate, mercury acetate, mercury iodide, mercury bromide, mercury chloride, mercury fluoride, mercury cyanide, mercury nitrate, mercury oxide, mercury perchlorate, mercury sulfate, lead acetate, lead bromide, lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulfate, lead carbonate, tin acetate, tin bisacetylacetonate, tin bromide, tin chloride, tin fluoride, tin oxide, tin sulfate, germanium tetrachloride, germanium oxide, germanium ethoxide, gallium acetylacetonate, gallium chloride, gallium fluoride, gallium oxide, gallium nitrate, gallium sulfate, indium chloride, indium oxide, indium nitrate, indium sulfate, and a combination comprising at least one of the foregoing metal precursors.
  10. 10. The method according to claim 5, wherein the non-metal precursor used in step (c) is selected from the group consisting of alkyl thiol compounds, including hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol and mercapto propyl silane, sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), trimethylsilyl sulfur, ammonium sulfide, sodium sulfide, sellenium-trioctylphosphine (Se-TOP), sellenium-tributylphosphine (Se-TBP), sellenium-triphenylphosphine (Se-TPP), tellurium-tributylphosphine (Te-TBP), tellurium-triphenylphosphine (Te-TPP) and trimethylsilyl phosphine, alkyl phosphines, including triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine and tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, arsenic iodide, nitric oxide, nitric acid, ammonium nitrate and a combination comprising at least one of the foregoing non-metal precursors.
  11. 11. The method according to claim 5, wherein in step (c) the nanocrystal wire is epitaxially grown on the crystal surface of the nanocrystal seed.
  12. 12. The method according to claim 5, wherein the nanocrystal seed is included in a portion of the nanocrystal wire.
  13. 13. The method according to claim 5, wherein the concentration ratio of the nanocrystal seed to the precursors of the nanocrystal wire is in the range of 0.01:1 to 1:0.01.
US11358510 2005-02-22 2006-02-21 Heterostructure semiconductor nanowires and method for producing the same Abandoned US20060185578A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20050014461 2005-02-22
KR2005-14461 2005-02-22
KR20050114068A KR100661696B1 (en) 2005-02-22 2005-11-28 Semiconductor Nanowire of Heterostructure and Method for Producing the same
KR2005-114068 2005-11-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11835778 US7682449B2 (en) 2005-02-22 2007-08-08 Heterostructure semiconductor nanowires and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11835778 Division US7682449B2 (en) 2005-02-22 2007-08-08 Heterostructure semiconductor nanowires and method for producing the same

Publications (1)

Publication Number Publication Date
US20060185578A1 true true US20060185578A1 (en) 2006-08-24

Family

ID=37601712

Family Applications (2)

Application Number Title Priority Date Filing Date
US11358510 Abandoned US20060185578A1 (en) 2005-02-22 2006-02-21 Heterostructure semiconductor nanowires and method for producing the same
US11835778 Active US7682449B2 (en) 2005-02-22 2007-08-08 Heterostructure semiconductor nanowires and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11835778 Active US7682449B2 (en) 2005-02-22 2007-08-08 Heterostructure semiconductor nanowires and method for producing the same

Country Status (2)

Country Link
US (2) US20060185578A1 (en)
KR (1) KR100661696B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168943A1 (en) * 2005-02-22 2008-07-17 Samsung Electronics Co., Ltd. Heterostructure semiconductor nanowires and method for producing the same
US20140124021A1 (en) * 2012-11-07 2014-05-08 University Of South Florida Microstructured crystalline device in confined space, a dye-sensitized solar cell, and method of preparation thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851499B1 (en) * 2007-03-28 2008-08-08 금오공과대학교 산학협력단 The process for manufacturing zno nanorod and nanowall
KR101436000B1 (en) 2008-02-22 2014-08-29 삼성전자주식회사 Nano or micro sized diode and a method for preparing the same
KR101549620B1 (en) 2009-01-30 2015-09-02 삼성전자주식회사 Zn oxide nano wire and a method of manufacturing the same having a pn structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005723A1 (en) * 2002-04-02 2004-01-08 Nanosys, Inc. Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices
US20040026684A1 (en) * 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20040095658A1 (en) * 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7303628B2 (en) * 2004-03-23 2007-12-04 The Regents Of The University Of California Nanocrystals with linear and branched topology

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013650B2 (en) 2000-08-22 2012-08-29 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Doped elongated semiconductor, such a semiconductor growth, the device including such a semiconductor, and the manufacture of such devices
CN1306619C (en) * 2001-03-30 2007-03-21 加利福尼亚大学董事会 Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
WO2003053357A3 (en) * 2001-12-19 2003-12-04 Wilk Patent Dev Corp Method and related composition employing nanostructures
KR100499274B1 (en) * 2002-02-06 2005-07-01 학교법인 포항공과대학교 Manufacturing method for ZnO based hetero-structure nanowires
EP1733077B1 (en) * 2004-01-15 2018-04-18 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
KR20050104034A (en) * 2004-04-27 2005-11-02 삼성에스디아이 주식회사 Manufacturing method of nano wire
KR101504579B1 (en) * 2004-06-04 2015-03-23 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
KR101405353B1 (en) * 2004-12-09 2014-06-11 원드 매터리얼 엘엘씨 Nanowire-based membrane electrode assemblies for fuel cells
KR100661696B1 (en) * 2005-02-22 2006-12-26 삼성전자주식회사 Semiconductor Nanowire of Heterostructure and Method for Producing the same
US7597950B1 (en) * 2005-02-28 2009-10-06 Massachusetts Institute Of Technology Nanoparticles having sub-nanometer features
US8962130B2 (en) * 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
WO2009018092A1 (en) * 2007-07-27 2009-02-05 The Board Of Trustees Of The Leland Stanford Junior University Supramolecular functionalization of graphitic nanoparticles for drug delivery
US8647922B2 (en) * 2007-11-08 2014-02-11 Nanyang Technological University Method of forming an interconnect on a semiconductor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005723A1 (en) * 2002-04-02 2004-01-08 Nanosys, Inc. Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices
US20040026684A1 (en) * 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20040095658A1 (en) * 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites
US20050009224A1 (en) * 2003-06-20 2005-01-13 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7303628B2 (en) * 2004-03-23 2007-12-04 The Regents Of The University Of California Nanocrystals with linear and branched topology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168943A1 (en) * 2005-02-22 2008-07-17 Samsung Electronics Co., Ltd. Heterostructure semiconductor nanowires and method for producing the same
US7682449B2 (en) * 2005-02-22 2010-03-23 Samsung Electronics Co., Ltd. Heterostructure semiconductor nanowires and method for producing the same
US20140124021A1 (en) * 2012-11-07 2014-05-08 University Of South Florida Microstructured crystalline device in confined space, a dye-sensitized solar cell, and method of preparation thereof
US9443662B2 (en) * 2012-11-07 2016-09-13 University Of South Florida Microstructured crystalline device in confined space, a dye-sensitized solar cell, and method of preparation thereof
US9691554B2 (en) 2012-11-07 2017-06-27 University Of South Florida Microstructured crystalline device in confined space, a dye-sensitized solar cell, and method of preparation thereof

Also Published As

Publication number Publication date Type
US7682449B2 (en) 2010-03-23 grant
KR20060093642A (en) 2006-08-25 application
US20080168943A1 (en) 2008-07-17 application
KR100661696B1 (en) 2006-12-26 grant

Similar Documents

Publication Publication Date Title
Wang et al. Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and Cd x Zn1-x S
Zhao et al. Plasmonic Cu2− x S nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides
Yang et al. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide
Cumberland et al. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials
Mohan et al. Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays
Venugopal et al. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets
Mahler et al. Core/shell colloidal semiconductor nanoplatelets
Fang et al. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors
Wang et al. Growth of nanowires
Bunge et al. Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods, and spheres from CdO and Cd (O2CCH3) 2
Xie et al. Synthesis and characterization of highly luminescent CdSe− core CdS/Zn0. 5Cd0. 5S/ZnS multishell nanocrystals
Ge et al. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs
Guzelian et al. Synthesis of size-selected, surface-passivated InP nanocrystals
Ouyang et al. Catalyst-assisted solution− liquid− solid synthesis of CdS/CdSe nanorod heterostructures
Reiss et al. Core/shell semiconductor nanocrystals
Li et al. High‐yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals
Zhu et al. Hyperbranched lead selenide nanowire networks
Mekis et al. One-pot synthesis of highly luminescent CdSe/CdS core− shell nanocrystals via organometallic and “Greener” chemical approaches
Danek et al. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe
Lifshitz et al. Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes
US5262357A (en) Low temperature thin films formed from nanocrystal precursors
Markowitz et al. Phase Separation in Al x Ga1-x As Nanowhiskers Grown by the Solution− Liquid− Solid Mechanism
Mokari et al. Synthesis and properties of CdSe/ZnS core/shell nanorods
Pradhan et al. Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents
Yu et al. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANG, EUN JOO;JUN, SHIN AE;REEL/FRAME:017621/0480

Effective date: 20060213