Connect public, paid and private patent data with Google Patents Public Datasets

Delayed memory device

Download PDF

Info

Publication number
US20060184230A1
US20060184230A1 US11343382 US34338206A US2006184230A1 US 20060184230 A1 US20060184230 A1 US 20060184230A1 US 11343382 US11343382 US 11343382 US 34338206 A US34338206 A US 34338206A US 2006184230 A1 US2006184230 A1 US 2006184230A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
shape
device
means
member
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11343382
Inventor
Jan Solem
Per Kimblad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences AG
Original Assignee
Edwards Lifesciences AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2481Devices outside the heart wall, e.g. bags, strips or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/26Penis implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2002/043Bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/828Means for connecting a plurality of stents allowing flexibility of the whole structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • A61F2002/8483Barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable

Abstract

A delivery system for delivering a prosthetic heart valve to a native valve site within the human vasculature. The prosthetic valve is disposed on a balloon at the end of a balloon catheter. The balloon catheter passes through a delivery sleeve assembly and handle. A pull wire travels from the handle to a distal end of the delivery sleeve assembly. Actuation of the handle pulls on the pull wire, which causes openings in a slotted tube of the delivery sleeve assembly to close, thus causing the delivery sleeve assembly to bend. A stretchable cover is placed over the slotted tube for biasing the steerable catheter toward a straight position. Once advanced to the native valve site, the prosthetic valve is deployed by inflating the balloon.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    The present application is a divisional of co-pending, commonly assigned U.S. patent application Ser. No. 10/141,348, filed on May 9, 2002, which is incorporated by reference herein in its entirety.
  • TECHNICAL FIELD OF THE INVENTION
  • [0002]
    The present invention relates to a medical device for providing a change of shape in a part of the body of an organism. The invention further relates to a device and a method for reshaping a body vessel, and a device and a method for restraining growth of a body organ of an organism.
  • BACKGROUND OF THE INVENTION
  • [0003]
    At present the treatment of mitral annulus dilatation and other mitral insufficiencies consists of either repair or mitral valve replacements. Both methods require open-heart surgery, by the use of total cardiopulmonary by-pass, aortic cross-clamping and cardioplegic arrest. To certain groups of patients, open-heart surgery is particularly hazardous and therefore a less invasive method for repair of mitral insufficiency is desired.
  • [0004]
    Such a less invasive method is proposed in U.S. Pat. No. 6,210,432, which describes a method for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and opening of the chest and heart. The method uses a device comprising an elongate body having such dimensions as to be insertable into the coronary sinus, which is a vein that substantially encircles the mitral orifice and annulus and drains blood from the myocardium to the right atrium. The elongate body has two states, in a first of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second of which the elongate body is transferable from said first state assuming a reduced radius of curvature. Consequently, the radius of curvature of the coronary sinus is reduced. Due to the coronary sinus encircling the mitral annulus, the radius of curvature as well as the circumference of the mitral annulus are reduced. Thus, the described method takes advantage of the position of the coronary sinus being close to the mitral annulus, which makes repair possible by the use of current catheter-guided techniques.
  • [0005]
    According to one method described in U.S. Pat. No. 6,210,432, a device comprising an elongate stent is used. The elongate stent includes hooks which are arranged to dig into the walls of the coronary sinus, by means of the surgeon retracting a cover sheet from the stent, in order to fix the position of the stent in the coronary sinus. A stabilizing instrument is used for keeping the elongate stent in its first state and then, after the hooks have dug into the walls, releasing it to its second state assuming a reduced radius of curvature. However, the position fixation of the elongate stent in the coronary sinus by means of the hooks might be insufficient, so that the sudden release of the contraction of the elongate stent dislocates it. This dislocation of the device might result in unsatisfactory reduction of the circumference of the mitral annulus.
  • [0006]
    According to an alternative method described in U.S. Pat. No. 6,210,432 the device comprises three stent sections that are positioned in the coronary sinus and connected by wires. The wires may be maneuvered from outside the vein system such that the distances between the adjacent stent sections are reduced. Also with this method there is a risk of dislocation of the device, since the surgeon might accidentally move insufficiently fixed stent sections out of their proper position while manipulating them from outside the vein system.
  • SUMMARY OF THE INVENTION
  • [0007]
    An object of the present invention is to provide a more secure fixation of a medical device for providing a change of shape in a part of the body of an organism.
  • [0008]
    A particular object of the invention is to provide a more secure fixation of a device for reshaping a body vessel, as described above.
  • [0009]
    These and other objects are achieved by a device and method as defined in the claims.
  • [0010]
    More particularly, according to one aspect of the present invention, a medical device being insertable into the body of an organism comprises a member having a preferred state of shape, towards which the member by means of inherent forces strives when being in a non-preferred state of shape, and a delay means having a weakenable inherent stiffness to hold the member in the non-preferred state of shape for a period of time after the device is inserted into the body of the organism. The member is by means of said inherent forces arranged to provide a change of shape in a part of the body of an organism, whereas the delay means is arranged to delay the change of shape for a period of time. The time period is determined by how fast the weakening of said inherent stiffness proceeds. By delaying the change of shape this way, the device is allowed to heal on to body tissue of the organism before a change of shape of the device occurs. Which parts of the device that become fixed by the healing process can be determined by means of the design of the device. The normal healing process that occurs in every living organism is thus allowed to provide a well-established fixation of the device. Hence, the present invention provides a more secure fixation of a medical device for providing a change of shape in a part of the body of an organism.
  • [0011]
    In a preferred embodiment of the invention, said delay means holds said member in a non-preferred state of shape by counteracting the inherent forces of the member. Thus, the delay means is arranged to apply force to the member by means of the inherent stiffness, in order to counteract the inherent shape-changing forces of the member and thereby restrain the member from changing its shape.
  • [0012]
    Preferably, said delay means holds said member in a non-preferred state of shape while the inherent stiffness of the delay means overcomes the inherent forces of the member. That is, there is an equilibrium between the inherent forces of the member and the inherent stiffness of the delay means, and when the stiffness of the delay means no longer is strong enough to balance the inherent forces of the member, the change of shape will occur.
  • [0013]
    In another preferred embodiment of the invention, said delay means comprises a decomposable material. In this way, the inherent stiffness of the delay means is allowed to weaken simply as a result of the decomposable material of the delay means being decomposed.
  • [0014]
    Preferably, said delay means comprises a resorbable material. A resorbable material is a material that when it is inserted into the body of an organism, it will be resorbed by the body by means of enzymatic processes, by active absorption by the cells in the blood and tissue cells of the body, and/or by hydrolysis. Thus, the resorbable material of the delay means will advantageously be decomposed and vanish from the device by time, without leaving any major waste products in the body.
  • [0015]
    In another preferred embodiment, said member comprises an elastic material. An elastic material can in a simple way be forced to adopt a non-preferred shape.
  • [0016]
    In yet another preferred embodiment, said member comprises a material having superelasticity properties. Superelasticity properties means that the material may be deformed and in the deformed state the material will use its superelasticity forces to return to its preferred shape. These superelasticity forces thus constitute advantageously at least part of said inherent forces providing said strive towards said preferred state of shape of the member.
  • [0017]
    Preferably, said member comprises a shape memory material. A shape memory material is a material that has two different forms, one at lower temperatures and another at higher temperatures. At the lower temperatures, e.g. below 30.degree. C., the material is elastic and may be introduced into the body. At the higher temperatures, the material is still elastic but becomes also superelastic and assumes its preferred original shape unless the transformation to this original shape is obstructed by external stress to the material. The use of a shape memory material in the member is advantageous inter alia because then one can easily provide the device with said delay means while the member, at a lower temperature outside the body, more easily remains in a shape corresponding to said non-preferred state of shape inside the body.
  • [0018]
    According to another aspect of the present invention, a medical device for providing a change of shape in a part of the body of an organism comprises a first set of forces working towards a change of shape of the device, and a second set of forces working for preserving a present shape of the device and thereby counteracting said first set of forces. Said first and said second sets of forces are each inherent in a solid material of the device, and the forces of said second set of forces are arranged to decrease as a result of said solid material interacting chemically with said part of the body. As a result of the chemical interaction between the solid material of the device and the surrounding body, the forces of the second set of forces decrease and thus allow the device to provide said change of shape after a while, when parts of the device have become fixed in the body by a healing process. An advantage of the present invention, except that it provides a more secure fixation, is that there is no need for a stabilizing surgical instrument for keeping a present shape of the device during operation, since the shape is preserved by means of said second set of forces being inherent in the device itself.
  • [0019]
    Preferably said second set of forces is inherent in a decomposable material as mentioned above.
  • [0020]
    Said forces of said second set of forces are preferably arranged to decrease as a result of said solid material being decomposed by said part of the body.
  • [0021]
    In a preferred embodiment of the invention, said second set of forces is inherent in a resorbable material as described above.
  • [0022]
    Preferably, said forces of said second set of forces are arranged to decrease as a result of said solid material being resorbed by said part of the body.
  • [0023]
    In another preferred embodiment, said first set of forces is inherent in an elastic material.
  • [0024]
    Preferably, said first set of forces is inherent in a material having superelasticity properties as described above.
  • [0025]
    Said first set of forces is preferably inherent in a shape memory material as also described above.
  • [0026]
    In one embodiment of the invention, said first set of forces is inherent in a shape memory metal.
  • [0027]
    In an alternative embodiment of the invention, said first set of forces is inherent in a shape memory polymer.
  • [0028]
    The device is in one embodiment arranged to contract into a new shape as a result of said second set of forces being decreased.
  • [0029]
    In an alternative embodiment, the device is arranged to expand into a new shape as a result of said second set of forces being decreased.
  • [0030]
    The device could be arranged to change its shape in one dimension only, but it could also be arranged to change its shape in two dimensions, or even in three dimensions.
  • [0031]
    According to yet another aspect of the present invention, a medical device being insertable into the body of an organism comprises a member having a preferred state of shape and having a tendency to transfer its shape towards said preferred state of shape when being in a non-preferred state of shape. The device further comprises a resorbable means being arranged to hold the member in the non-preferred state of shape and to delay the transfer when the device is inserted into the body of the organism by counteracting said transfer during resorption of the resorbable means by the surrounding body of the organism. The resorption of the resorbable means by the surrounding body makes the resorbable means gradually vanish. Thus, after some period of time when parts of the device have grown on to body tissue, there is nothing left to hold the member in the non-preferred state of shape, whereby said transfer is released.
  • [0032]
    Also according to this aspect of the invention, said member preferably comprises an elastic material.
  • [0033]
    Preferably, said member comprises a material having superelasticity properties.
  • [0034]
    It is also preferred that said member comprises a shape memory material.
  • [0035]
    According to a particular aspect of the present invention, a device for reshaping a body vessel is elongate and has such dimensions as to be insertable into the vessel and has two states, in a first of which the device has a shape that is adaptable to the shape of the vessel, and to the second of which the device is transferable from said first state. The device further comprises a fixing means for fixing the ends of the device within the vessel, when the device is first positioned therein, a member for transferring the device to the second state by reshaping it, and a resorbable means for delaying said reshaping until the ends of the device are fixed by keeping said device in said first state until the resorbable means is resorbed. By allowing the ends of the device to heal on to the walls of the vessel, e.g. the coronary sinus, by means of said fixing means, before said reshaping of the device occurs, the present invention provides a more secure fixation of a device for reshaping a body vessel.
  • [0036]
    Preferably, said resorbable means comprises a resorbable sheath being arranged to enclose said member. This is advantageous since with the shape of a sheath the resorbable means is both easy to manufacture and easy to arrange on the member.
  • [0037]
    In another preferred embodiment of the invention, said fixing means is arranged to expand against the wall of the vessel when first positioned therein. This expansion against the wall of the vessel initiates and contributes to the fixing of the ends of the device, thus enabling a rigid fixing.
  • [0038]
    In yet another preferred embodiment of the invention, said fixing means is arranged to grow into the wall of the vessel. By taking advantage of the healing process in the tissue of the vessel wall, the fixing means can be fixed effectively. This can be facilitated by an expansion against the wall of the vessel as mentioned above.
  • [0039]
    In a preferred embodiment, said fixing means comprises a self-expandable stent at each end of the device.
  • [0040]
    According to another preferred embodiment, said member comprises a shape memory material providing said reshaping of the device.
  • [0041]
    Preferably, said reshaping of said device comprises shortening of said device.
  • [0042]
    In another preferred embodiment, said device is used for treatment of mitral annulus dilatation. Since the device can be inserted into a body vessel using catheter-guided techniques, the use of this device for treatment of mitral annulus dilatation is advantageous compared to open-heart surgery, which is the present procedure for repairing or replacing the mitral valve.
  • [0043]
    In yet another preferred embodiment, said vessel is the coronary sinus. The coronary sinus encircles the mitral orifice and annulus. Therefore, a reshaping of this vein also has a compressing effect on the mitral annulus.
  • [0044]
    Preferably, said reshaping of said device is used for reducing the radius of curvature of the coronary sinus. Hence, the radius of curvature as well as the circumference of the mitral annulus are also reduced. According to the invention, a method for reshaping a body vessel comprises the steps of inserting a device into the vessel, fixing the ends of the device within the vessel, reshaping the device, and delaying said reshaping by a resorbable means so that the step of fixing the ends of the device is performed before the step of reshaping the device.
  • [0045]
    According to a preferred embodiment, said step of fixing the ends of the device comprises providing a growth of the ends into the wall of the vessel.
  • [0046]
    According to another preferred embodiment, a shape memory material is used in the device for said step of reshaping the device.
  • [0047]
    Preferably, Nitinol is used in the device for said step of reshaping the device.
  • [0048]
    In a preferred embodiment, said step of reshaping the device comprises the step of shortening the device.
  • [0049]
    In another preferred embodiment, the method is used for treatment of mitral annulus dilatation.
  • [0050]
    In yet another preferred embodiment, said device is inserted into the coronary sinus in the vicinity of the posterior leaflet of the mitral valve.
  • [0051]
    Preferably, said reshaping is used for reducing the curvature of the coronary sinus and thereby reducing the radius of circumference of the mitral valve annulus.
  • [0052]
    The basic inventive idea, that reshaping of an implantable device may be delayed by means of a delay means being comprised in the device itself, opens up for new possibilities within many medical applications.
  • [0053]
    The present invention could be used for instance when a delayed expansion of a stent is desired. The stent could then preferably be crimped to a small diameter by means of a resorbable suture or, alternatively, a resorbable film. The film or thread would slowly be eaten away and the shape-changing forces may be released after the desired delay which is programmed in the properties of the resorbable restraining material. Such a stent might be used inside vessels, the trachea, the biliary tract or any other hollow structure in the human or animal body.
  • [0054]
    The invention would also be useful where openings of human, or animal, organs or other structures need to be opened or closed slowly. For instance, when an opening between the left and right side of the heart is present, an immediate closure of the opening could be dangerous, whereas a slower closure would be tolerated.
  • [0055]
    Within many medical areas, the present invention would be useful when a continuous long-term effect of shape-changing forces is desired. One such application would be a device designed to shorten or lengthen a human or animal structure in one or more dimensions. The device according to the invention would then have time to heal into the body structure before shape-changing forces are released and force the body structure to slowly change its shape.
  • [0056]
    This could for example be useful in the area of orthopedics for lengthening of a bone structure.
  • [0057]
    For orthodontic treatment, the described invention would be useful when it comes to tooth-regulation and lengthening of the maxilla and/or mandibula, i.e. the upper and lower jaws.
  • [0058]
    In plastic surgery an extra growth of skin area is often used to cover skin defects. Using the present invention a slow growth of skin area would be augmented.
  • [0059]
    An example within the area of urology surgery is lengthening of a penis. In this case a device made of three segments could be designed, where the distal ends of the device first are allowed to grow into the tissue. After fixation of the two ends of the device in the penis tissue, the mid portion which temporarily has been restrained by means of a resorbable material as described above will be released and the mid portion of the device will grow in length. One specific capacity of a human or animal body is to allow slow deformation of organs or tissues by compensatory tissue adaptation. A penis would therefore grow slowly to a predetermined length.
  • [0060]
    By means of the present invention, a sequential effect of shape-changing forces could also be provided, i.e. change of shape could occur in two or several steps as a result of resorbable material releasing the shape-changing forces in predetermined steps. In each step, a part or parts of a device could first heal into a body structure and secondly the desired shape-changing effects could be released.
  • [0061]
    As seen from the examples above, a substantial advantage of the present invention is that a change of shape is allowed to be made slowly so that body tissues have time to adapt.
  • [0062]
    Other medical applications of particular interest, which could be improved by using the present invention, are treatment of pathological heart growth and treatment of pathological alveolar sac growth. Some background of these two diseases will be given next.
  • [0063]
    Dilated cardiomyopathy (DCM) and ischemic heart disease (IHD) are common reasons for heart failure (HF). Heart failure in its terminal status is a deadly disease, and it is by far the most common cause of death in most countries, developed and undeveloped. Progressive HF, when it is deteriorating, results in a growth in the diameters of the heart ventricles, thus resulting in a general heart growth. The growth in heart size by dilatation initiated by myocardial pathology creates itself by its increase in heart diameter a pathology of its own, in the way of functional disorders.
  • [0064]
    Dr. Randas Batista implemented a surgical treatment for this disease by resecting big parts of the left ventricle (LV) with or without repair of the mitral valve. The long time results were, however, dismal since the LV tends to dilate again a second time despite of having been reduced in size by surgery (see Kawaguchi, A. T. et al. “Mitral Regurgitation Redilates the Left Ventricle After Partial Left Ventriculectomy (Batista Operation).” Journal of the American College of Cardiology, February 1998, Vol. 31, No. 2, Suppl. A, page 376A, ISSN: 0735-1097; see also Kawaguchi, A. T. et al. “Intraoperative Left Ventricular Pressure-Volume Relationship in Patients Undergoing Left Ventricular Diameter Reduction.” Circulation, 1997, Vol. 96, No. 8, Suppl., page 1198, ISSN: 0009-7322; and Prez de la Sota, E. et al. “Early Results with Partial Left Ventriculectomy (the Batista Operation).” Revista Espanola de Cardiologia, August 2000, Vol. 53, No. 8, pages 1022-1027, ISSN: 0300-8932).
  • [0065]
    Supporting the LV and preventing progressive LV dilatation in HF actively by means of wrapping the heart with living skeletal muscle from the back of the patient, stimulated by pacemaker, was introduced by Dr. Carpentier in the eighties (Chachques, J. C. et al. “Dynamic Cardiomyoplasty: clinical follow-up at 12 years.” European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery, October 1997, Vol. 12, No. 4, pages 560-568, ISSN: 1010-7940). The method has been rarely used and its effectiveness has been questioned.
  • [0066]
    More recently, methods of restraining the heart from growing have been introduced by Acorn Cardiovascular, Inc, St. Paul, Minn., USA. They are supporting the heart by means of a polyester mesh sutured to the surface of the heart after exposing the heart by splitting the sternum and opening the pericardium.
  • [0067]
    Even reducing the LV diameter by force, using wires that transverse the LV cavity and subsequent fixation, has been introduced by Myocor, Maple Grove, Minn. 55311, USA.
  • [0068]
    Chronic obstructive pulmonary disease (COPD) is an umbrella term used to describe airflow obstruction that is associated mainly with emphysema and chronic bronchitis. COPD is the fourth leading cause of death in the U.S. in 1998, according to the National Center for Health Statistics, Report of Final Morbidity Statistics, 1998. Emphysema causes irreversible lung damage by weakening and breaking the air sacs within the lungs. Further, sick air sacs sometimes grow unrestrainedly and repress smaller air sacs, resulting in lack of oxygen and by time death. This disease is hard to treat. At present, surgical treatment of dilated air sacs involves cutting them away, but this treatment gives no long-term effect since a new air sac will soon start to grow.
  • [0069]
    All these known methods for treatment of pathological heart growth and said known method for treatment of alveolar sac growth require, whether they are effective or not, major heart or lung surgery which, as mentioned before, is particularly hazardous to certain groups of patients. Therefore less invasive methods for treatment of pathological heart growth and alveolar sac growth are desired as well.
  • [0070]
    It is an object of the present invention to also provide less invasive treatments of pathological growth of body organs, by which treatments more long-term effects can be achieved.
  • [0071]
    A particular object of the invention is to provide less invasive treatments of pathological heart growth and alveolar sac growth.
  • [0072]
    These further objects are achieved by a device as defined in claim 50 and by a method as defined in claim 53.
  • [0073]
    More particularly, according to a further aspect of the present invention, a device for restraining growth of a body organ of an organism is implantable into the body of the organism and comprises an elastic contractable member being arranged to enclose said body organ, and a resorbable means being arranged to delay contraction of the contractable member when the device is implanted in the body of the organism by counteracting the contraction during resorption of the resorbable means by the surrounding body of the organism.
  • [0074]
    A basic advantage of the device according to the invention is that the device, since said contractable member is elastic, can be inserted into the body using catheter-guided techniques. Hence, less invasive treatments can be provided.
  • [0075]
    Another advantage, which comes both from the elasticity and the delayed contraction, is that the device can be inserted by means of catheter-guided techniques even if said contractable member comprises a large area. This is due to the fact that the substantially elastic device at the insertion can be rolled up on a catheter and then be unfolded to enclose said organ.
  • [0076]
    After a period of time after the surgical or percutaneous insertion, the device will start to contract as a result of the resorbable means being resorbed. The contraction will then make the device enclose the organ tight and apply a restraining force which holds back the growth of the organ. Since the implanted device applies a continuous restraining force to the organ, more long-term effects can be achieved in treatment of growing body organs. It is to be noted that if the contraction of the device would not have been delayed, it would have been very difficult to roll up the device on a catheter and then unfold it round the organ.
  • [0077]
    Preferably, said contractable member comprises a shape memory material.
  • [0078]
    According to the invention, a method for restraining growth of a body organ of an organism comprises the steps of inserting a restraining device into the body of the organism, enclosing at least partly the body organ with the restraining device, compressing said restraining device by means of a contractable member of said restraining device, and delaying said compression by a resorbable means.
  • [0079]
    This inventive method could be used not only for treatment of pathological heart growth and alveolar sac growth, but also for treatment of bullous emphysema and for treatment of other body organs growing pathologically.
  • [0080]
    A device according to the present invention may be fixed in body tissue by other means in combination with or instead of the healing process allowed by the delaying of the change of shape. Hence, fixing of a device according to the invention may as well be accomplished for example by means of suturing, gluing, clipping or using hooks. These means of fixation would permit a better healing in of the device in the tissue and also prohibit dislocation while healing in.
  • [0081]
    As already seen, the number of advantages of the inventive device is large, of which a few are mentioned next. The present invention allows:
  • [0082]
    1. less invasive surgical treatments;
  • [0083]
    2. devices that are properly fixed inside the body by means of parts healing into the body tissue;
  • [0084]
    3. devices to be designed that have multiple purposes;
  • [0085]
    4. eliminating stabilizing surgical instruments for keeping a present shape of the device during operation;
  • [0086]
    5. engineering to decide when a shape-changing action by the device is to take place in the body;
  • [0087]
    6. a change of shape to be made slowly so that body tissue has time to adapt.
  • [0088]
    It should be understood that many modifications are possible within the spirit and scope of the invention, which is only limited by the appended claims. A few applications of the invention are mentioned above, of which some will be further described by way of illustration only in the detailed description. However, many other medical areas where the invention might be used will become apparent to those skilled in the art.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0089]
    The invention will now be described in more detail with reference to the accompanying drawings, in which
  • [0090]
    FIGS. 1-4 are schematic views of the structure and the operation of an embodiment of a device according to the invention, illustrating the principle of delayed shortening;
  • [0091]
    FIGS. 5-8 are schematic views of the structure and the operation of another embodiment of a device according to the invention, illustrating the principle of delayed elongation;
  • [0092]
    FIG. 9 is a schematic view of another embodiment of a device according to the invention being an alternative to the embodiment shown in FIG. 7;
  • [0093]
    FIGS. 10 and 11 schematically illustrate another embodiment of a device according to the invention, shown in a first state and a second shortened state, respectively;
  • [0094]
    FIGS. 12 and 13 schematically illustrate another embodiment of a device according to the invention, shown in a first state and a second elongated state, respectively;
  • [0095]
    FIG. 14 is a schematic view of yet another embodiment of a device according to the invention, shown in a first state;
  • [0096]
    FIG. 15 a is a schematic view of another embodiment of a device according to the invention being an alternative to the embodiment shown in FIG. 14 and being shown in a first state;
  • [0097]
    FIG. 15 b is a schematic view of a device according to FIG. 15 a, illustrating the structure of a part of the device;
  • [0098]
    FIG. 16 is a schematic view illustrating the second state of a device according to FIG. 14 or 15 a;
  • [0099]
    FIGS. 17 and 18 are schematic views illustrating another embodiment of a device according to the invention, shown in a first state and a second state, respectively;
  • [0100]
    FIG. 19 is a schematic perspective view of a device for two-dimensional contraction according to the invention;
  • [0101]
    FIG. 20 is a schematic perspective view of another device for two-dimensional contraction according to the invention;
  • [0102]
    FIGS. 21 and 22 schematically illustrate an embodiment of a device according to the invention for treatment of mitral annulus dilatation, shown in a first state and a second shortened state, respectively;
  • [0103]
    FIGS. 23, 24 and 25 are schematic views illustrating the positioning, the fixing and the shortening respectively, of a device according to FIG. 21 when used in the coronary sinus;
  • [0104]
    FIG. 26 is a schematic perspective view illustrating a part of one possible arrangement of a device according to the invention presenting a reshapable area;
  • [0105]
    FIGS. 27-30 are schematic views illustrating the positioning and the contraction of an embodiment of the device according to the invention for treatment of pathological heart growth;
  • [0106]
    FIGS. 31 and 32 are schematic views illustrating the positioning of an embodiment of the device according to the invention for treatment of chronic obstructive pulmonary disease.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0107]
    FIGS. 1 to 4 show the principle of delayed shortening according to the invention.
  • [0108]
    In FIG. 1, a shape-changing member 1, here in the form of a thread 1, made of or at least in part including a shape memory material is shown having a curved shape. This shape is the original shape that the shape-changing member 1 “remembers” and will assume when the temperature thereof passes a certain threshold, e.g. exceeds 30.degree. C.
  • [0109]
    FIG. 2 shows the shape-changing member 1 of FIG. 1 having been straightened by stretching to a substantially straight shape.
  • [0110]
    FIG. 3 illustrates an embodiment of a device according to the invention, where the device is in its non-activated state of shape A. More specifically, by covering the stretched and straight shape-changing member 1 in FIG. 2 with a delay means 2, here in the form of a tube 2 having a sufficiently small inner cross-section, the stretched shape of the shape-changing member 1 can be maintained even when the device is implanted into a human body and the temperature of the shape-changing member 1 thus exceeds the threshold, e.g. 30. degree. C.
  • [0111]
    The delay means 2 may be flexible enough to follow the curves in e.g. vessels, but has a stiffness, here especially in its radial direction, which withstands the shape-changing force of the shape-changing member 1. Thus, having been implanted into the human body, the shape-changing member 1 of the device will strive towards its original, here curved, shape according to FIG. 1, but is restrained by the delay means 2.
  • [0112]
    However, by manufacturing the delay means 2 from a resorbable material, the delay means 2 will be resorbed by time and the shape-changing member 1 will resume its original shape when the delay means 2 has been resorbed to such a degree or extent that it cannot restrain the shape-changing member 1 any longer, as schematically illustrated in FIG. 4. Thus, the device has now “been transformed” from its non-activated long state of shape A (FIG. 3), to an activated, shortened state of shape A′ (FIG. 4), where the device consists essentially of the shape-changing member 1 only.
  • [0113]
    The device in FIG. 3 may be manufactured in the following way. The thread 1 of a shape memory material, e.g. with the shape illustrated in FIG. 2, is programmed to remember the shape illustrated in FIG. 1 by being held in that shape while at the same time being heated to a temperature above said threshold. Upon cooling, beneath the threshold temperature, e.g. down to room temperature, the thread 1 will become more flexible and may more easily be deformed into its previous shape shown in FIG. 2. In this cooled state, the thread 1 is covered by the resorbable tube 2, e.g. by threading the tube 2 onto the thread 1 or by forming the tube 2 around the thread 1. Other embodiments of a device according to the invention may operate and may be manufactured in a corresponding manner. Thus, a shape-changing member of a memory material is first held in a “preferred” state of shape while being heated above a threshold temperature, and then cooled beneath the threshold temperature so that it can easily be deformed into its previous “non-preferred” state of shape. Thereafter, the now “programmed” shape-changing member is “locked” in said non-preferred state of shape by a delay means in such a way that the delay means will obstruct the shape-changing member from resuming its preferred state of shape when being heated again, e.g. in a human body. Referring again to FIG. 3, the inner radius of the tube 2 must not necessarily be so small that the shape-changing member in the form of the thread 1 cannot move at all in the radial direction. Hence, there may be a small radial play in which the shape-changing member 1 can move without consequently being able to change the length of the device to any larger extent. However, the device in FIG. 3 may also be manufactured with essentially no play between the shape-changing member 1 and the inner side of the delay means 2, possibly also with a pretension or bias force from the delay means 2 acting on the shape-changing member 1.
  • [0114]
    In order to clearly illustrate the shortening of the device, the curved thread 1 is located to the left in FIG. 4, but, after its transformation, the thread 1 may just as well be located anywhere along the remaining parts of the tube 2.
  • [0115]
    FIGS. 5 to 8 show the principle of delayed elongation according to the invention.
  • [0116]
    In FIG. 5, a shape-changing member 3, here in the form of a thread 3 of a shape-memory material, is shown having a straight original shape.
  • [0117]
    FIG. 6 shows the shape-changing thread member 3 of FIG. 5 when having been folded to a curved shape.
  • [0118]
    FIG. 7 illustrates an embodiment of a device according to the invention comprising a thread as illustrated in FIG. 6, where the device is in its non-activated state of shape B. By covering the curved shape-changing member 3 with a delay means 4 in the form of a tube 4 of a resorbable material, the curved shape B can be maintained even when the device is implanted into a human body and strives towards its original straight shape.
  • [0119]
    As schematically illustrated in FIG. 8, after implantation into the human body, the delay means 4 is resorbed by time and consequently the shape-changing member 3 will be released to resume its original straight shape B′. Thus, the device has now been transformed from its non-activated short state of shape B (FIG. 7) to an activated, elongated state of shape B′ (FIG. 8).
  • [0120]
    In the illustrated embodiments, the length of the shape-changing member 1;3 is substantially unchanged by the transformation, whereas the shape of the shape-changing member 1;3 is changed so that the length of the device is changed.
  • [0121]
    According to the invention, the material from which the shape-changing member is made may consist of or at least include Nitinol, which is an alloy composed of nickel (54-60%) and titanium. Small traces of chromium, cobalt, magnesium and iron may also be present in Nitinol. Alternatively, other materials such as Shape Memory Polymers (SMP) could be used as the shape memory material.
  • [0122]
    Actually, as far as the present invention concerns, the shape-changing material does not have to be a shape memory material. Any superelastic material would function in most applications. For example stainless steel (and other metals) may also be forced into a non-preferred state of shape by means of a resorbable restraining means.
  • [0123]
    Examples of usable resorbable materials from which the delay means may be made, or that are at least included, are PDS (polydioxanon), Pronova (polyhexaflouropropylen-VDF), Maxon (polyglyconat), Dexon (PGA, polyglycolic acid), Vicryl (polyglactin), PLA (polylactic acid), PDLLA (polydexolactic acid), PLLA (pololevolactic acid), starch, different kinds of sugar, butyric acid, collagen, and collatamp.
  • [0124]
    Depending on the choice of material, the release of the shape-changing forces may be delayed for a desired period of time. Also design parameters such as the thickness of the resorbable material may be set so that the shape-changing forces are delayed as long as desired. The delay time may vary from e.g. a few days up to several years depending on the application.
  • [0125]
    The thickness of the delay means may vary along the device, so that the order in which different parts of the device are released by the delay means may be controlled.
  • [0126]
    FIGS. 9 to 20 show some different embodiments of a device according to the invention.
  • [0127]
    FIG. 9 shows an embodiment of a device according to the invention being an alternative arrangement of a device for delayed elongation as compared to the device shown in FIG. 7. Instead of a resorbable tube 4 as in FIG. 7, the resorbable means comprises resorbable crosslinks 6 which hold the shape-changing member 5 in its curved state of shape and thus the device in its non-activated short state of shape C.
  • [0128]
    Resorbable crosslinks 6 (FIG. 9) may also be combined with a tube 4 (FIG. 7).
  • [0129]
    FIG. 10 shows an embodiment of a device according to the invention in its non-activated elongate state of shape D. Here, the shape-changing member 7 is scissors-shaped. A delay means 8 in the form of a tube 8 of resorbable material holds the shape-changing member 7 in a stretched, elongated state of shape and, thus, also the device in its elongate state of shape D. When the delay means 8 has been sufficiently resorbed, the scissors-shaped shape-changing member 7 will resume its original non-stretched shape and the device is transformed to its activated short state of shape D′ (FIG. 11).
  • [0130]
    FIG. 10 a shows an alternative embodiment of a device according to the invention, where the tube 8 in FIG. 10 is replaced by a delay means in the form of resorbable threads 8 a. The delay means 8 a holds the scissors-shaped shape-changing member 7 a in a stretched, elongate state of shape and, thus, the device in a state of shape corresponding to D in FIG. 10. Referring to FIG. 11 a, when the delay means 8 a is cut off by means of resorption, the shape-changing member 7 a will resume its original non-stretched shape and the device is transformed to its activated short state of shape corresponding to D′ in FIG. 11.
  • [0131]
    FIG. 12 shows an embodiment of a device according to the invention in its non-activated short state of shape E. A scissors-shaped shape-changing member 9 of the device is held in a short state of shape by means of a delay means in the form of a resorbable thread 10, and, thereby, the whole device is held in its short state of shape E. When the delay means 10 is cut off by means of resorption, the shape-changing member 9 will resume its original elongate shape so that the device is transformed to its activated state of shape E′ (FIG. 13).
  • [0132]
    FIG. 14 shows an embodiment of a device according to the invention comprising a shape-changing member in the form of a coil 11 of a shape-memory material having been stretched and arranged in a delay means in the form of a tube 12 of resorbable material. The device is then in its non-activated state of shape F. When the delay means 12 has been sufficiently resorbed, the shape-changing member 11 will resume its original shorter and wider shape as shown in FIG. 16, and the device is transformed to its activated state of shape F′.
  • [0133]
    In an alternative embodiment shown in FIGS. 15 a and 15 b of a device according to the invention, the tube 12 in FIG. 14 is replaced by a resorbable rod 13 provided with grooves 13 a in which a coil 11 is initially wound. The winding of the coil 11 in the grooves 13 a obstructs the coil 11 from resuming its original shape (FIG. 16) and, hence, the device is held in its non-activated state of shape G by the rod 13, as illustrated in FIG. 15 a. By resorption of the rod 13 in e.g. a human body, the shape-changing force of the coil 11 is released and the device is transformed to its activated state of shape G′ as shown in FIG. 16.
  • [0134]
    In another embodiment shown in FIG. 17 of a device according to the invention, a coil 14 is wound around a resorbable rod 15. When the rod 15 is resorbed, the shape-changing forces of the coil 14 will be released so that the coil 14 resumes an original elongate shape, as shown in FIG. 18, whereby the device is transformed from its non-activated state of shape H to its activated state of shape H′.
  • [0135]
    FIG. 19 shows an embodiment of a device according to the invention in the form of a patch for closing or obstructing openings, e.g. in the heart of a human or animal body. The patch has a shape-changing member 16 comprising a grid matrix formed by threads made of memory material such as Nitinol or SMP. The threads may be covered individually by biocompatible material such as PTFE or dacron to fill in the gaps between the threads, e.g. in the way shown in FIG. 26 with threads 28 and biocompatible material 29.
  • [0136]
    The patch in FIG. 19 further comprises a frame 17 for anchoring the patch in the body, e.g. by means of sutures. The frame may be made of any biocompatible material, such as PTFE or dacron. By the use of a cone (not shown), the threads may be spread apart, creating a central opening 16 a in the patch. The cone is advanced until a delay means 18 in the form of a separate ring 18 of a resorbable material, initially positioned on the cone, is positioned in the opening 16 a. The cone is then drawn back and the ring 18 is left in the opening 16 a, restraining the elastic threads in such a way that the central opening 16 a in the patch is maintained. FIG. 19 shows the patch in its non-activated state of shape I with the ring 18 positioned centrally. After implant and sufficient resorption of the restraining ring 18 and after a specified period of time, the central opening in the patch is closed and the patch is activated.
  • [0137]
    FIG. 20 shows an alternative embodiment of a device according to the invention in the form of a patch for closing openings. The patch may be constructed by attaching delay means 19 in the form of resorbable threads or bands 19 to the top of a sharp cone and down along the sides of the cone, advancing the cone through the middle of the patch so that the elastic threads 16 are spread out and thus an opening 16 a in the patch is created, and fastening one end of each band to the frame 17 on one side of the patch and the other end of each band 19 to the frame 17 on the other side of the patch, so that each band 19 encircles the opening. The bands 19 could be placed at regular intervals along the circumference of the opening so that they expand a substantially circular hole in the middle of the patch. By means of the resorbable bands 19, the patch is held in its non-activated state of shape J.
  • [0138]
    It is to be noted that the above-described different embodiments are examples only. There are many possible different forms of a device according to the present invention. For example, the single shape-changing thread in FIGS. 1 to 9 may be replaced by several threads or by one or more bands. The scissors-shaped members 7 and 9 in FIGS. 10 to 13 may be multiplied so as to form a scissor-shaped area, which in turn may be shaped into different forms. The single tube in FIGS. 3, 7, 10 and 14 may be slotted or may be divided into several tube segments. A delay means may also be provided in the form of resorbable glue, which holds parts of the shape-changing member together and in that way delay the change of shape of the device. The number of possible designs of a device according to the invention is, in fact, infinitely great.
  • [0139]
    Next, an embodiment according to the invention of a device for treatment of mitral annulus dilatation will be described.
  • [0140]
    The device shown in FIG. 21, being in an elongate and non-activated state of shape K, comprises a shapechanging member 20 in the form of a shape memory metal thread 20, a delay means 21 in the form of a resorbable sheath 21 enclosing the shape memory metal thread 20 for holding it in a straightened state of shape, and preferably self-expandable stents 22 and 23 located at the opposite ends of the device.
  • [0141]
    The device may include one or more additional shape memory metal threads, e.g. if a stronger shortening force is desired.
  • [0142]
    The shape memory metal thread 20 may be made of Nitinol, or other similar material which has a memory of an original shape as illustrated in FIG. 22, and can be temporarily forced into another shape, e.g. as illustrated in FIG. 21.
  • [0143]
    The resorbable sheath 21 is made of PDS, but it may also be made of any other material which is resorbable by the surrounding blood and tissue when applied in a human body and has the required stability and bending properties. The thickness of the resorbable sheath 21 is chosen so that the time needed for the surrounding blood and tissue in the coronary sinus 24 to resorb the resorbable sheath 21 enough for the device to enter its second shorter state of shape K′ is adapted to the time needed for the ends of the device to be fixed within the coronary sinus 24.
  • [0144]
    The self-expandable stents 22 and 23 may be of conventional type with an elastic cylindrical unit, made of e.g. Nitinol, in an opened zigzag configuration. FIG. 21 a shows an alternative embodiment according to the invention of a device for treatment of mitral annulus dilatation. Here, the shape memory metal thread 20 is replaced by a scissors-shaped shape-changing member 20 a. The resorbable sheath 21 may then be replaced by resorbable threads 21 a, like in FIG. 10 a. Preferably, self-expandable stents 22 a and 23 a are located at the opposite ends of the device. The state of shape corresponding to K′ in FIG. 22 of the device shown in FIG. 21 a is shown in FIG. 22 a.
  • [0145]
    The above-described device as seen in FIG. 21 (or the device as seen in FIG. 21 a), is positioned in the coronary sinus 24, shown in FIGS. 23 to 25, in the following way:
  • [0146]
    An introduction sheath (not shown) of synthetic material may be used to get access to the venous system. Having reached the venous system, a long guiding metal wire (not shown) is advanced through the introduction sheath and via the venous system to the coronary sinus 24. This guiding wire and/or a delivery catheter is provided with X-ray distance markers so that the position of the device in the coronary sinus 24 may be monitored.
  • [0147]
    The elongate device in FIG. 21 (or the one in FIG. 21 a) is locked onto a stent insertion device (not shown) so that the self-expandable stents 22 and 23 (or 22 a and 23 a) are held in a crimped, non-expanded state. Thereafter, the stent insertion device with the elongate device locked thereon is pushed through the introduction sheath and the venous system to the coronary sinus 24 riding on the guiding wire. After having obtained an exact positioning of the elongate device in the coronary sinus 24, as illustrated in FIG. 23 where the mitral valve annulus 25 and the mitral valve 26 having a central gap 27 are shown, the stent insertion device is removed. This will release the self-expandable stents 22 and 23 (or 22 a and 23 a) so that they expand and contact the inner wall of the coronary sinus 24 and thereby provide for a temporary fixation of the elongate device in the coronary sinus 24. Then, the guiding wire and the introduction sheath are removed.
  • [0148]
    After the insertion, the self-expandable stents 22 and 23 (or 22 a and 23 a) will grow into the wall of the coronary sinus 24 while at the same time the resorbable sheath 21 (or restraining threads 21 a) will be resorbed by the surrounding blood and tissue in the coronary sinus 24, as schematically illustrated in FIG. 24. When the resorbable sheath 21 (or resorbable threads 21 a) has been resorbed to such a degree that it cannot hold the shape memory metal thread 20 (or the scissors-shaped member 20 a) in its straightened state of shape any longer, the self-expandable stents 22 and 23 (or 22 a and 23 a) will be properly fixed into the wall of the coronary sinus 24 as a result of the normal healing process which always occurs after positioning a stent in a blood vessel. Then the shape memory metal thread 20 (or the scissors-shaped member 20 a) retracts and the device is transformed to its activated shorter state of shape K′, as illustrated in FIGS. 22 and 25 (corresponding to FIG. 22 a). This shortening of the device makes it bend towards the mitral valve annulus 25, moving the posterior part thereof forward. This movement reduces the circumference of the mitral valve annulus 25 and thereby closes the central gap 27.
  • [0149]
    The device may be positioned by catheter technique or by any other adequate technique. It may be heparin-coated so as to avoid thrombosis in the coronary sinus 24, thus reducing the need for aspirin, ticlopedine or anticoagulant therapy. At least parts of the device may contain or be covered with drugs like Tacrolimus, Rappamycin or Taxiferol to be delivered into the tissue to prohibit excessive reaction from surrounding tissue. At least parts of the device may be covered with or contain VEGF (Vascular Endothelial Growth Factor) to ensure smooth coverage with endothelial cells.
  • [0150]
    FIG. 26 shows one possible arrangement of a part of a contractable area according to the invention. The contractable area comprises a shape-changing member in the form of a grid matrix of shape memory metal threads 28 covered by a delay means in the form of a fabric of a resorbable material (it should be noted that FIG. 26 was previously used to illustrate how the threads of the patches of FIGS. 19 and 20 may be covered with biocompatible material). The fabric comprises resorbable bands 29 which have been weaved together to form an area. Each of the resorbable bands 29 is solid except for a cylindrical hollow space in which a thread 28 is located, just like the thread 1 is located inside the tube 2 in FIG. 3.
  • [0151]
    The bands 29 restrain the threads 28 from being folded to their original curved shapes as long as the fabric 29 is not resorbed.
  • [0152]
    Analogously to the device in FIG. 3, there may be a radial play between the inner wall of each band 29 and the thread 28 being located inside it, in which play the thread 28 can move without consequently being able to change the size of the area of the device to any larger extent.
  • [0153]
    Further, the hollow space in each band 29 must not necessarily be cylindrical. In fact, if the width of each band 29 is small enough as compared to the curves that the threads 28 will assume when being “activated” as a result of the bands 29 being resorbed, the bands 29 may be hollow.
  • [0154]
    The contractable area in FIG. 26 may be manufactured by threading a thread 28 of a memory material into each resorbable band 29 and then weaving the bands 29 with threads 28 together to form the fabric as illustrated in FIG. 26.
  • [0155]
    Another possible way of making a contractable area according to the invention would be to arrange threads or bands of a memory material in a grid matrix and to fix the threads or bands together with resorbable crosslinks. The resorbable crosslinks would then restrain the threads or bands from being folded as long as enough resorbable material in the crosslinks is left unresorbed.
  • [0156]
    A contractable area according to the invention, as the one previously mentioned or as the one shown in FIG. 26, may be formed into a contractable sac as shown in FIGS. 27 to 30, which sac may be used to support a body organ or to restrain a pathologically growing body organ.
  • [0157]
    FIGS. 27 to 30 illustrate the use of a contractable sac 30 for treatment of pathological heart growth, according to another embodiment of the invention.
  • [0158]
    Referring to FIG. 27, the sac 30 in its non-activated state of shape L is threaded inside out on a catheter 31 with an anchoring means 32, here in the form of a suction cup 32, and the catheter 31 with the sac 30 is introduced to the apex cordis 33 a of the heart 33 in known manner.
  • [0159]
    Now referring to FIG. 28, the suction cup 32 is put on the apex cordis 33 a and the sac 30 is pushed off the catheter 31, by means of a catheter instrument (not shown), over the suction cup 32 and up over the heart 33.
  • [0160]
    Now referring to FIG. 29, when the sac 30 is positioned round the heart 33, the suction cup 32 is pulled out through the bottom of the sac 30 and the catheter 31 is removed from the body.
  • [0161]
    After a period of time, the resorbable material of the sac 30 will be resorbed and a restraining force by the shape memory metal threads against the heart 33 is released, and hence, the sac 30 is transformed to its activated state of shape L′, as illustrated in FIG. 30. The sac 30 will then press itself tight round the heart 33 and apply a continuous restraining force on the heart 33, thus decreasing the heart size, or at least preventing the heart 33 from growing further.
  • [0162]
    A contractable area according to the invention can also be used as a contractable sheet for treatment of alveolar sac growth, e.g. in emphysematic pulmonary diseases.
  • [0163]
    FIGS. 31 and 32 show the use of an embodiment of a device according to the invention for treatment of alveolar sac growth.
  • [0164]
    Referring to FIG. 31 a contractable sheet 34 in its non-activated state of shape M is rolled up on a catheter 35, introduced between ribs 36 into the pleural cavity (the space between the pleura of the lung and the pleura of the chest wall), and placed upon the lung 38 surface to be treated.
  • [0165]
    The contractable sheet 34 may also be inserted into the body by means of open surgery or by means of endoscopic surgery and positioned on an organ surface.
  • [0166]
    Now referring to FIG. 32, the sheet 34 is then rolled out over the lung 38 and the catheter 35 is removed.
  • [0167]
    The sheet 34 is arranged to grow fixed to the lung surface so that subsequent contraction of the sheet 34, as a result of the resorbable material of the sheet 34 being resorbed, causes the sheet 34 to compress the lung 38 by means of a force of the shape memory metal threads in the sheet 34. Hence, bullae and areas of enlarged alveolar sacs may be shrunk or eliminated and further pathological growth of alveolar sacs may be prevented.
  • [0168]
    In this embodiment the contractable sheet 34 contracts in two directions, one approximately vertical and one approximately horizontal. The sheet 34 could also be designed to contract in one direction only, e.g. the most horizontal one, or contract in a circular mode, and still be able to shrink bullous areas and prevent alveolar sacs from growing.
  • [0169]
    It is to be understood that modifications of the above described devices and methods can be made by people skilled in the art without departing from the spirit and scope of the invention.

Claims (20)

1. A method of reshaping a blood vessel in a patient, comprising:
providing a shape-changing member having a proximal end portion and a distal end portion;
maintaining the shape-changing member in a first configuration using a resorbable material;
inserting the shape-changing member into the blood vessel; and
fixing the proximal and distal end portions of the shape-changing member to an inner wall of the blood vessel;
wherein the resorbable material is resorbed in the patient's body, thereby causing the shape-changing member to adjust from the first configuration to a second configuration for reshaping the blood vessel.
2. The method of claim 1, wherein fixing the proximal and distal ends of the shape-changing member to the inner wall of the blood vessel comprises allowing tissue to grow into the proximal and distal end portions.
3. The method of claim 1, wherein the shape-changing member is formed at least in part of a shape memory material for causing the shape-changing member to adjust from the first configuration to the second configuration during absorption of the resorbable material.
4. The method of claim 1, wherein the first configuration is an elongated configuration and the second configuration is a shortened configuration.
5. The method of claim 1, wherein the blood vessel is a coronary sinus and wherein the shape-changing member presses the coronary sinus against a mitral valve annulus for treating mitral valve dilatation.
6. The method of claim 5, wherein the shape-changing member is inserted into the coronary sinus in the vicinity of a posterior leaflet of the mitral valve.
7. The method of claim 5, wherein the shape-changing member bends during adjustment from the first configuration to the second configuration for reducing the curvature of the coronary sinus and thereby reducing the radius of circumference of the mitral valve annulus.
8. The method of claim 1, wherein a proximal stent is provided along the proximal end portion and a distal stent is provided along the distal end portion.
9. The method of claim 8, wherein the proximal and distal stents are self-expandable.
10. The method of claim 9, wherein the self-expandable proximal and distal stents grow into the wall of the coronary sinus to fix the proximal and distal end portions of the shape-changing member to the coronary sinus.
11. A method of reshaping a mitral valve annulus in a body, comprising:
providing a device having a shape-changing member and first and second self-expandable stents located at opposite ends of the shape-changing member, the shape-changing member having a first set of forces working towards shortening the shape-changing member along a longitudinal axis;
maintaining the shape-changing member in an elongated shape by applying a second set of forces for counteracting the first set of forces, wherein the second set of forces is configured to decrease after the device has been implanted in the body; and
inserting the device at least partially into a coronary sinus such that the first and second self-expandable stents engage an inner wall of the coronary sinus and wherein the shape-changing member shortens over time to draw the first and second self-expandable stents toward each other.
12. The method of claim 11, wherein drawing the first and second self-expandable stents toward each other causes a reduction in a circumference of the mitral valve annulus.
13. The method of claim 11, wherein the second set of forces is provided by a resorbable material.
14. The method of claim 13, wherein the resorbable material is formed as a tube configured to surround at least a portion of the shape-changing member.
15. The method of claim 11, wherein the resorbable material is a restraining thread.
16. A method of reshaping a mitral valve annulus in a body, comprising:
providing an elongate device having proximal and distal stents;
creating an incision in the body;
advancing an introduction sheath into a venous system;
advancing a guidewire through the introduction sheath and into a coronary sinus;
advancing the elongate device over the guidewire and through the introduction sheath to the coronary sinus;
expanding the proximal and distal stents to contact an inner wall of the coronary sinus;
removing the introduction sheath and the guidewire;
closing the incision in the body; and
transforming the elongate device into a shorter shape after closing the incision.
17. The method of claim 16, wherein transforming the elongate device into a shorter shape is performed by dissolving a resorbable material, the resorbable material being coupled to the elongate device for maintaining the elongate device in a stretched shape.
18. The method of claim 16, wherein transforming the elongate device into a shorter shape causes the elongate device to bend.
19. The method of claim 16, wherein transforming the elongate device into a shorter shape is performed after the proximal and distal stents have substantially grown into the coronary sinus.
20. The method of claim 16, wherein the proximal and distal stents self-expand to contact an inner wall of the coronary sinus.
US11343382 2002-01-11 2006-01-30 Delayed memory device Abandoned US20060184230A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SE0200073-5 2002-01-11
SE0200073 2002-01-11
US10141348 US7192443B2 (en) 2002-01-11 2002-05-09 Delayed memory device
US11343382 US20060184230A1 (en) 2002-01-11 2006-01-30 Delayed memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11343382 US20060184230A1 (en) 2002-01-11 2006-01-30 Delayed memory device

Publications (1)

Publication Number Publication Date
US20060184230A1 true true US20060184230A1 (en) 2006-08-17

Family

ID=27354792

Family Applications (2)

Application Number Title Priority Date Filing Date
US10500188 Active 2024-12-19 US8075616B2 (en) 2001-12-28 2002-12-20 Apparatus for applying a compressive load on body tissue
US11343382 Abandoned US20060184230A1 (en) 2002-01-11 2006-01-30 Delayed memory device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10500188 Active 2024-12-19 US8075616B2 (en) 2001-12-28 2002-12-20 Apparatus for applying a compressive load on body tissue

Country Status (5)

Country Link
US (2) US8075616B2 (en)
CA (2) CA2688796A1 (en)
DE (1) DE60235834D1 (en)
EP (4) EP2181668A1 (en)
WO (1) WO2003055417A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20050080483A1 (en) * 2001-12-28 2005-04-14 Solem Jan Otto Delayed memory device
US20060116756A1 (en) * 1999-06-30 2006-06-01 Solem Jan O Method and device for treatment of mitral insufficiency
US20070038297A1 (en) * 2005-08-12 2007-02-15 Bobo Donald E Jr Medical implant with reinforcement mechanism
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20070185572A1 (en) * 2006-02-09 2007-08-09 Jan Otto Solem Coiled implant for mitral valve repair
US20070288090A1 (en) * 1999-06-29 2007-12-13 Solem Jan O Device and method for treatment of mitral insufficiency
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US20080221673A1 (en) * 2005-08-12 2008-09-11 Donald Bobo Medical implant with reinforcement mechanism
US20080255447A1 (en) * 2007-04-16 2008-10-16 Henry Bourang Diagnostic catheter
US7500989B2 (en) 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US7806928B2 (en) 2004-12-09 2010-10-05 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US8100820B2 (en) 2007-08-22 2012-01-24 Edwards Lifesciences Corporation Implantable device for treatment of ventricular dilation
US20120109199A1 (en) * 2008-11-12 2012-05-03 Simpirica Spine, Inc. Modulated constraining apparatus and methods of use

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US7011682B2 (en) * 2000-01-31 2006-03-14 Edwards Lifesciences Ag Methods and apparatus for remodeling an extravascular tissue structure
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US7635387B2 (en) 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US7179282B2 (en) 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
DE60325356D1 (en) * 2002-05-08 2009-01-29 Cardiac Dimensions Inc Means for changing the shape of a mitral valve
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7316708B2 (en) 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7314485B2 (en) 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
CA2526347C (en) * 2003-05-20 2010-07-06 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
CA2548541A1 (en) * 2003-12-16 2005-06-30 Edwards Lifesciences Ag Device for changing the shape of the mitral annulus
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20080228266A1 (en) 2007-03-13 2008-09-18 Mitralign, Inc. Plication assistance devices and methods
GB0329654D0 (en) * 2003-12-23 2004-01-28 Smith & Nephew Tunable segmented polyacetal
US7361190B2 (en) * 2004-06-29 2008-04-22 Micardia Corporation Adjustable cardiac valve implant with coupling mechanism
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
WO2006097931A3 (en) 2005-03-17 2007-07-26 Valtech Cardio Ltd Mitral valve treatment techniques
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7357815B2 (en) * 2005-04-21 2008-04-15 Micardia Corporation Dynamically adjustable implants and methods for reshaping tissue
US20060241745A1 (en) 2005-04-21 2006-10-26 Solem Jan O Blood flow controlling apparatus
US20060238019A1 (en) * 2005-04-21 2006-10-26 Mark Yu Brakable wheel hub device
CA2611545A1 (en) * 2005-06-07 2006-12-14 The International Heart Institute Of Montana Foundation A system, including method and apparatus for percutaneous endovascular treatment of functional mitral valve insufficiency
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070173926A1 (en) * 2005-12-09 2007-07-26 Bobo Donald E Jr Anchoring system for medical implant
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
EP1849440A1 (en) * 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
WO2007136532A3 (en) 2006-05-03 2008-03-13 St Jude Medical Soft body tissue remodeling methods and apparatus
JP2010511751A (en) * 2006-11-30 2010-04-15 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. Fiber-reinforced composite material
US20160361169A1 (en) 2006-12-05 2016-12-15 Valtech Cardio, Ltd. Implantation of repair devices in the heart
CA2671966A1 (en) 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
ES2441801T3 (en) 2007-02-05 2014-02-06 Boston Scientific Limited Percutaneous valve and delivery system
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
WO2008129245A1 (en) 2007-04-18 2008-10-30 Smith & Nephew Plc Expansion moulding of shape memory polymers
JP5520814B2 (en) 2007-04-19 2014-06-11 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. Multi-modal shape memory polymer
US9770534B2 (en) 2007-04-19 2017-09-26 Smith & Nephew, Inc. Graft fixation
FR2916959B1 (en) * 2007-06-08 2009-09-04 Perouse Soc Par Actions Simpli Necessary indicated to be implanted in a blood circulation conduit
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8167787B2 (en) * 2008-01-03 2012-05-01 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US8707960B2 (en) 2008-05-12 2014-04-29 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US20100076470A1 (en) * 2008-09-22 2010-03-25 Tyco Healthcare Group Lp Methods and Devices for Sheath Compression
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
EP2506777A4 (en) 2009-12-02 2015-02-11 Valtech Cardio Ltd Delivery tool for implantation of spool assembly coupled to a helical anchor
US8475525B2 (en) * 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US8733363B2 (en) 2010-03-19 2014-05-27 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
EP2547296A4 (en) 2010-03-19 2014-08-06 Revent Medical Inc Systems and methods for treatment of sleep apnea
WO2011146930A3 (en) 2010-05-21 2012-04-05 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9707122B2 (en) 2010-07-26 2017-07-18 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US20140343590A1 (en) * 2011-09-16 2014-11-20 Syntach Ag Device, And A Method For Treatment Of Increased Blood Pressure
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2775896A4 (en) 2011-11-08 2016-08-03 Valtech Cardio Ltd Controlled steering functionality for implant-delivery tool
US9011531B2 (en) 2012-02-13 2015-04-21 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US9439801B2 (en) 2012-06-29 2016-09-13 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Tissue anchor device
EP2967945A4 (en) 2013-03-15 2016-11-09 California Inst Of Techn Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
CN106573129A (en) 2014-06-19 2017-04-19 4科技有限公司 Cardiac tissue cinching

Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5071407A (en) * 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5170802A (en) * 1991-01-07 1992-12-15 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5209730A (en) * 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
US5224491A (en) * 1991-01-07 1993-07-06 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5304131A (en) * 1991-07-15 1994-04-19 Paskar Larry D Catheter
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5390661A (en) * 1993-02-03 1995-02-21 W. L. Gore & Associates, Inc. Introducer for esophageal probes
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5496275A (en) * 1991-05-15 1996-03-05 Advanced Cardiovascular Systems, Inc. Low profile dilatation catheter
US5531779A (en) * 1992-10-01 1996-07-02 Cardiac Pacemakers, Inc. Stent-type defibrillation electrode structures
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
US5935081A (en) * 1998-01-20 1999-08-10 Cardiac Pacemakers, Inc. Long term monitoring of acceleration signals for optimization of pacing therapy
US5954761A (en) * 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5980522A (en) * 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
US6006122A (en) * 1997-09-25 1999-12-21 Medtronic, Inc. Medical electrical lead
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6051020A (en) * 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6093203A (en) * 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6110100A (en) * 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6123662A (en) * 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6123699A (en) * 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US6161029A (en) * 1999-03-08 2000-12-12 Medtronic, Inc. Apparatus and method for fixing electrodes in a blood vessel
US6161543A (en) * 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US6165169A (en) * 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US6168619B1 (en) * 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US6221103B1 (en) * 1996-01-02 2001-04-24 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US20010018611A1 (en) * 1999-06-30 2001-08-30 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20020019660A1 (en) * 1998-09-05 2002-02-14 Marc Gianotti Methods and apparatus for a curved stent
US6368348B1 (en) * 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US20020111647A1 (en) * 1999-11-08 2002-08-15 Khairkhahan Alexander K. Adjustable left atrial appendage occlusion device
US20020183838A1 (en) * 2001-03-29 2002-12-05 Liddicoat John R. Method and apparatus for improving mitral valve function
US20020188170A1 (en) * 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US20030120341A1 (en) * 2001-12-21 2003-06-26 Hani Shennib Devices and methods of repairing cardiac valves
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20030171806A1 (en) * 2002-03-11 2003-09-11 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US6629534B1 (en) * 1999-04-09 2003-10-07 Evalve, Inc. Methods and apparatus for cardiac valve repair
US20030204138A1 (en) * 2002-04-25 2003-10-30 Choi Steven B. Dual balloon telescoping guiding catheter
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20050080483A1 (en) * 2001-12-28 2005-04-14 Solem Jan Otto Delayed memory device
US6890353B2 (en) * 2001-03-23 2005-05-10 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7011682B2 (en) * 2000-01-31 2006-03-14 Edwards Lifesciences Ag Methods and apparatus for remodeling an extravascular tissue structure
US7211110B2 (en) * 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876419A (en) * 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
GB2189150B (en) 1986-04-21 1990-02-14 Medinvent Sa Prosthesis and process for its manufacture
US4877030A (en) * 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5674280A (en) 1989-12-21 1997-10-07 Smith & Nephew, Inc. Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy
US5006106A (en) * 1990-10-09 1991-04-09 Angelchik Jean P Apparatus and method for laparoscopic implantation of anti-reflux prosthesis
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
DE4316673C1 (en) * 1993-05-12 1995-01-12 Ethicon Gmbh flexible implant
US5476471A (en) 1993-08-19 1995-12-19 Mind - E.M.S.G. Ltd Device and method for external correction of insufficient valves in venous junctions
US5571135A (en) 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
WO1995016407A1 (en) 1993-12-13 1995-06-22 Brigham And Women's Hospital Aortic valve supporting device
US5640955A (en) 1995-02-14 1997-06-24 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5575771A (en) * 1995-04-24 1996-11-19 Walinsky; Paul Balloon catheter with external guidewire
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5593442A (en) * 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5741274A (en) * 1995-12-22 1998-04-21 Cardio Vascular Concepts, Inc. Method and apparatus for laparoscopically reinforcing vascular stent-grafts
US6520904B1 (en) * 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US5690642A (en) * 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
DE19605042A1 (en) 1996-02-12 1998-01-15 Figulla Hans Reiner Prof Dr Me Vessel implant for bridging vascular weaknesses
DE19611755A1 (en) 1996-03-25 1998-02-05 Joerg Meyer Expandable blood vessel implant
US6270477B1 (en) * 1996-05-20 2001-08-07 Percusurge, Inc. Catheter for emboli containment
DE69719237D1 (en) * 1996-05-23 2003-04-03 Samsung Electronics Co Ltd Flexible, self-expanding stent and method for its production
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US5911732A (en) * 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US6071292A (en) * 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6024764A (en) * 1997-08-19 2000-02-15 Intermedics, Inc. Apparatus for imparting physician-determined shapes to implantable tubular devices
US5980548A (en) * 1997-10-29 1999-11-09 Kensey Nash Corporation Transmyocardial revascularization system
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US6250308B1 (en) * 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6350277B1 (en) * 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
DE60044289D1 (en) 1999-01-27 2010-06-10 Medtronic Inc Apparatus for heart valve surgery
US6264691B1 (en) * 1999-04-23 2001-07-24 Shlomo Gabbay Apparatus and method for supporting a heart valve
ES2279757T3 (en) * 1999-05-11 2007-09-01 Atrionix, Inc. Balloon anchor wire.
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6669687B1 (en) 1999-06-25 2003-12-30 Vahid Saadat Apparatus and methods for treating tissue
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
CN1806775A (en) 2000-01-14 2006-07-26 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
CA2433881C (en) 2001-01-30 2009-08-18 Randall T. Lashinski Medical system and method for remodeling an extravascular tissue structure
US7510576B2 (en) * 2001-01-30 2009-03-31 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US6248119B1 (en) * 2000-02-28 2001-06-19 Jan Otto Solem Device and method for endoscopic vascular surgery
US6425856B1 (en) 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
DE60023566T2 (en) * 2000-05-25 2006-07-27 Bioring Sa A device for reduction and / or reinforcing valvular orifices
DE60132005D1 (en) 2000-06-23 2008-01-31 Viacor Inc Automatic circular convolution for Mitral Valve Repair
EP1401358B1 (en) 2000-06-30 2016-08-17 Medtronic, Inc. Apparatus for performing a procedure on a cardiac valve
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
US6343605B1 (en) * 2000-08-08 2002-02-05 Scimed Life Systems, Inc. Percutaneous transluminal myocardial implantation device and method
US6890330B2 (en) 2000-10-27 2005-05-10 Viacor, Inc. Intracardiovascular access (ICVATM) system
US7052487B2 (en) * 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
EP1383448B1 (en) * 2001-03-29 2008-06-04 Viacor, Inc. Apparatus for improving mitral valve function
CA2441370C (en) 2001-03-05 2011-05-24 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
CA2821193C (en) * 2001-04-27 2015-09-08 Satterfield, Richard C. Prevention of myocardial infarction induced ventricular expansion and remodeling
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
DE10161543B4 (en) 2001-12-11 2004-02-19 REITAN, Öyvind Implant for the treatment of insufficiency of a heart valve
US6976995B2 (en) * 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
WO2004084746A3 (en) 2003-03-26 2004-12-16 Oeyvind M D Reitan Device for treatment of an insufficiency of a heart valve

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4655771B1 (en) * 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US5209730A (en) * 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
US5071407A (en) * 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5170802A (en) * 1991-01-07 1992-12-15 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5224491A (en) * 1991-01-07 1993-07-06 Medtronic, Inc. Implantable electrode for location within a blood vessel
US5496275A (en) * 1991-05-15 1996-03-05 Advanced Cardiovascular Systems, Inc. Low profile dilatation catheter
US5304131A (en) * 1991-07-15 1994-04-19 Paskar Larry D Catheter
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5531779A (en) * 1992-10-01 1996-07-02 Cardiac Pacemakers, Inc. Stent-type defibrillation electrode structures
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5390661A (en) * 1993-02-03 1995-02-21 W. L. Gore & Associates, Inc. Introducer for esophageal probes
US6161543A (en) * 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US6051020A (en) * 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6165169A (en) * 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US5980522A (en) * 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
US6217610B1 (en) * 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US6221103B1 (en) * 1996-01-02 2001-04-24 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5954761A (en) * 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US6123699A (en) * 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US6006122A (en) * 1997-09-25 1999-12-21 Medtronic, Inc. Medical electrical lead
US5935081A (en) * 1998-01-20 1999-08-10 Cardiac Pacemakers, Inc. Long term monitoring of acceleration signals for optimization of pacing therapy
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6110100A (en) * 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6093203A (en) * 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6123662A (en) * 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US20020019660A1 (en) * 1998-09-05 2002-02-14 Marc Gianotti Methods and apparatus for a curved stent
US6168619B1 (en) * 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
US6161029A (en) * 1999-03-08 2000-12-12 Medtronic, Inc. Apparatus and method for fixing electrodes in a blood vessel
US6629534B1 (en) * 1999-04-09 2003-10-07 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US20050043792A1 (en) * 1999-06-29 2005-02-24 Edwards Lifesciences Ag Device and method for treatment of mitral insufficiency
US7090695B2 (en) * 1999-06-30 2006-08-15 Edwards Lifesciences Ag Method for treatment of mitral insufficiency
US20060116756A1 (en) * 1999-06-30 2006-06-01 Solem Jan O Method and device for treatment of mitral insufficiency
US20040102840A1 (en) * 1999-06-30 2004-05-27 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20010018611A1 (en) * 1999-06-30 2001-08-30 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US20020111647A1 (en) * 1999-11-08 2002-08-15 Khairkhahan Alexander K. Adjustable left atrial appendage occlusion device
US20060116757A1 (en) * 2000-01-31 2006-06-01 Randall Lashinski Methods and apparatus for remodeling an extravascular tissue structure
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US6537314B2 (en) * 2000-01-31 2003-03-25 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty and cardiac reinforcement
US20040176840A1 (en) * 2000-01-31 2004-09-09 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US7011682B2 (en) * 2000-01-31 2006-03-14 Edwards Lifesciences Ag Methods and apparatus for remodeling an extravascular tissue structure
US20040102841A1 (en) * 2000-01-31 2004-05-27 Langberg Jonathan J. Percutaneous mitral annuloplasty with cardiac rhythm management
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6706065B2 (en) * 2000-01-31 2004-03-16 Ev3 Santa Rosa, Inc. Endoluminal ventricular retention
US6709456B2 (en) * 2000-01-31 2004-03-23 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6368348B1 (en) * 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US6890353B2 (en) * 2001-03-23 2005-05-10 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US20020183838A1 (en) * 2001-03-29 2002-12-05 Liddicoat John R. Method and apparatus for improving mitral valve function
US20020188170A1 (en) * 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20030120341A1 (en) * 2001-12-21 2003-06-26 Hani Shennib Devices and methods of repairing cardiac valves
US20050080483A1 (en) * 2001-12-28 2005-04-14 Solem Jan Otto Delayed memory device
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US7192443B2 (en) * 2002-01-11 2007-03-20 Edwards Lifesciences Ag Delayed memory device
US20030171806A1 (en) * 2002-03-11 2003-09-11 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US20030204138A1 (en) * 2002-04-25 2003-10-30 Choi Steven B. Dual balloon telescoping guiding catheter
US7211110B2 (en) * 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070288090A1 (en) * 1999-06-29 2007-12-13 Solem Jan O Device and method for treatment of mitral insufficiency
US20100185273A1 (en) * 1999-06-29 2010-07-22 Edwards Lifesciences Ag Device and method for treatment of mitral insufficiency
US7717954B2 (en) 1999-06-29 2010-05-18 Edwards Lifesciences Ag Device and method for treatment of mitral insufficiency
US20090182418A1 (en) * 1999-06-30 2009-07-16 Jan Otto Solem Treatment of mitral insufficiency
US8109984B2 (en) 1999-06-30 2012-02-07 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US20060116756A1 (en) * 1999-06-30 2006-06-01 Solem Jan O Method and device for treatment of mitral insufficiency
US7695512B2 (en) 2000-01-31 2010-04-13 Edwards Lifesciences Ag Remotely activated mitral annuloplasty system and methods
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20050080483A1 (en) * 2001-12-28 2005-04-14 Solem Jan Otto Delayed memory device
US8075616B2 (en) 2001-12-28 2011-12-13 Edwards Lifesciences Ag Apparatus for applying a compressive load on body tissue
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US7806928B2 (en) 2004-12-09 2010-10-05 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US7500989B2 (en) 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US20070038297A1 (en) * 2005-08-12 2007-02-15 Bobo Donald E Jr Medical implant with reinforcement mechanism
US20080221673A1 (en) * 2005-08-12 2008-09-11 Donald Bobo Medical implant with reinforcement mechanism
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20070185572A1 (en) * 2006-02-09 2007-08-09 Jan Otto Solem Coiled implant for mitral valve repair
US7637946B2 (en) 2006-02-09 2009-12-29 Edwards Lifesciences Corporation Coiled implant for mitral valve repair
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US20080255447A1 (en) * 2007-04-16 2008-10-16 Henry Bourang Diagnostic catheter
US8100820B2 (en) 2007-08-22 2012-01-24 Edwards Lifesciences Corporation Implantable device for treatment of ventricular dilation
US8764626B2 (en) 2007-08-22 2014-07-01 Edwards Lifesciences Corporation Method of treating a dilated ventricle
US20120109199A1 (en) * 2008-11-12 2012-05-03 Simpirica Spine, Inc. Modulated constraining apparatus and methods of use
US8394128B2 (en) * 2008-11-12 2013-03-12 Simpirica Spine, Inc. Modulated constraining apparatus and methods of use
US20140052186A1 (en) * 2008-11-12 2014-02-20 Simpirica Spine, Inc. Modulated constraining apparatus and methods of use

Also Published As

Publication number Publication date Type
EP2181668A1 (en) 2010-05-05 application
EP1458313A1 (en) 2004-09-22 application
EP2181670A2 (en) 2010-05-05 application
CA2507449A1 (en) 2003-07-10 application
WO2003055417A1 (en) 2003-07-10 application
US8075616B2 (en) 2011-12-13 grant
CA2688796A1 (en) 2003-07-10 application
EP1458313B1 (en) 2010-03-31 grant
CA2507449C (en) 2012-12-18 grant
EP2181669A3 (en) 2011-11-23 application
DE60235834D1 (en) 2010-05-12 grant
EP2181669A2 (en) 2010-05-05 application
EP2181670A3 (en) 2011-05-25 application
US20050080483A1 (en) 2005-04-14 application

Similar Documents

Publication Publication Date Title
US6676702B2 (en) Mitral valve therapy assembly and method
US7153324B2 (en) Prosthetic valve devices and methods of making such devices
US6764510B2 (en) Devices and methods for heart valve treatment
US6692520B1 (en) Systems and methods for imbedded intramuscular implants
US7025756B2 (en) Method of securing tissue
US7591848B2 (en) Riveted stent valve for percutaneous use
US7335213B1 (en) Apparatus and methods for heart valve repair
US7004958B2 (en) Transvenous staples, assembly and method for mitral valve repair
US7311729B2 (en) Device and method for modifying the shape of a body organ
US7037334B1 (en) Method and apparatus for catheter-based annuloplasty using local plications
US7364588B2 (en) Device, assembly and method for mitral valve repair
US6406420B1 (en) Methods and devices for improving cardiac function in hearts
US20050272969A1 (en) Device and method for modifying the shape of a body organ
US8652204B2 (en) Transcatheter valve with torsion spring fixation and related systems and methods
US7314485B2 (en) Mitral valve device using conditioned shape memory alloy
US20070156233A1 (en) Percutaneous atrioventricular valve and method of use
US20100249918A1 (en) Devices and methods for delivery of aortic and mitral valve prostheses
US6616684B1 (en) Endovascular splinting devices and methods
US20030220685A1 (en) Method and apparatus for catheter-based annuloplasty using local plications
US20040133273A1 (en) Apparatuses and methods for heart valve repair
US7442207B2 (en) Device, system, and method for treating cardiac valve regurgitation
US20040010305A1 (en) Device and method for modifying the shape of a body organ
US6997951B2 (en) Method and device for treatment of mitral insufficiency
US20030135269A1 (en) Laparoscopic-assisted endovascular/endoluminal graft placement
US20040254636A1 (en) Prosthetic valve with vessel engaging member

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNDEON AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOLEM, JAN OTTO;REEL/FRAME:025788/0526

Effective date: 20021129

Owner name: VALVIDA AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIMBLAD, PER-OLA;REEL/FRAME:025788/0661

Effective date: 20021129

Owner name: EDWARDS LIFESCIENCES AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALVIDA AB;SYNDEON AB;REEL/FRAME:025787/0443

Effective date: 20030214