US20060178589A1 - Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations - Google Patents

Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations Download PDF

Info

Publication number
US20060178589A1
US20060178589A1 US11/347,623 US34762306A US2006178589A1 US 20060178589 A1 US20060178589 A1 US 20060178589A1 US 34762306 A US34762306 A US 34762306A US 2006178589 A1 US2006178589 A1 US 2006178589A1
Authority
US
United States
Prior art keywords
heart
frequency
acceleration sensor
system
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/347,623
Inventor
John Dobak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CARDIOSYNC Inc
Original Assignee
CARDIOSYNC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US65053205P priority Critical
Priority to US65503805P priority
Priority to US65630705P priority
Priority to US65776605P priority
Priority to US65965805P priority
Priority to US66378805P priority
Priority to US66932405P priority
Priority to US67756905P priority
Priority to US68067305P priority
Application filed by CARDIOSYNC Inc filed Critical CARDIOSYNC Inc
Priority to US11/347,623 priority patent/US20060178589A1/en
Assigned to CARDIOSYNC, INC. reassignment CARDIOSYNC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOBAK III, JOHN D.
Publication of US20060178589A1 publication Critical patent/US20060178589A1/en
Priority claimed from US13/230,084 external-priority patent/US8831705B2/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Measuring bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • A61B5/0456Detecting R peaks, e.g. for synchronising diagnostic apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36542Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36585Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N2001/0585Coronary sinus electrodes

Abstract

Methods and systems are disclosed that characterize cardiac function using an acceleration sensor to acquire and analyze the frequency dynamics associated with the isovolumic contraction phase (“ICP”). This information can be used to characterize heart function; optimize therapy for cardiomyopathy, including CRT therapy (including pacing intervals and required pharmacologic therapy); and to optimize CCM therapy. In addition, this information can be used to identify target pacing regions for CRT lead placement. Further, analyzing the frequency dynamics can be used to characterize pathologic heart vibrational motion, such as mitral regurgitation and the third or fourth heart sound, and the response of this motion to therapy for cardiomyopathy.

Description

    STATEMENT OF RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/650,532, filed Feb. 7, 2005, U.S. Provisional Application No. 60/655,038, filed Feb. 22, 2005, U.S. Provisional Application No. 60/656,307, filed Feb. 25, 2005, U.S. Provisional Application No. 60/657,766, filed Mar. 1, 2005, U.S. Provisional Application No. 60/659,658, filed Mar. 8, 2005, U.S. Provisional Application No. 60/663,788, filed Mar. 21, 2005, U.S. Provisional Application No. 60/669,324, filed Apr. 7, 2005, U.S. Provisional Application No. 60/677,569, filed May 4, 2005 and U.S. Provisional Application No. 60/680,673, filed May 13, 2005. Each of the prior U.S. Provisional Patent Applications is incorporated by reference in its entirety herein.
  • This application is also related to U.S. patent application Ser. No. 11/318,325, filed Dec. 23, 2005, entitled “Devices and Methods For Accelerometer-Based Characterization of Cardiac Function and Identification of LV Target Pacing Zones,” which is incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • In prior provisional applications of the inventor, the use of acceleration sensors to monitor LV function (including the degree of mitral regurgitation) and to optimize cardiac resynchronization therapy (CRT) or cardiac contractility modulation therapy (CCM) was disclosed. In these applications, acceleration sensors, both wireless and conductively coupled, are integrated into disposable and implantable devices to monitor therapy for cardiomyopathy. In addition, sensors are integrated into a system for identifying target left ventricular (LV) pacing regions for CRT. The accelerometers are used to measure both vibration and displacement motion of the LV veins. The desired motion signal is acquired at the appropriate frequency. Thus, displacement is measured at frequencies less that about 20 Hz, isovolumic contraction/relaxation vibrational motion is measured at frequencies of 20 Hz to 150 Hz, and vibrational motion related to mitral regurgitation is measured at frequencies greater than about 150 Hz. Various indices of LV function may be monitored including amplitudes and slopes of displacement motion, time intervals of vibrational motion, and changes in the time interval and frequency of mitral regurgitation signal.
  • Acceleration sensors have been previously disclosed for measuring the amplitude of acceleration signals during isovolumic contraction. Using a uniaxial accelerometer integrated into a right ventricular (RV) pacing lead, work done by Plicchi (“An implantable intracardiac accelerometer for monitoring myocardial contractility”, PACE 1996, 19:2066-2071) and others indicates that measurement of the peak amplitude of acceleration signals during the ICP correlates ventricular contractility and the rate of rise of ventricular pressure. Prior patent publications also disclose the measurement of peak amplitude acceleration signals to characterize contractility. For example, Chinchoy [US 2004/0172079 A1 and US 2004/0172078 A1] discloses the measurement of peak amplitude of the acceleration signal during the ICP from the LV epicardium to optimize the atrioventricular (“AV”) delay and interventricular (“VV”) timing interval of a CRT device and to monitor long-term LV function. Yu and others disclose the measurement of the phase shift in the peak amplitude of acceleration signals derived from the LV and RV to optimize AV and VV interval timing of a CRT device.
  • Accurate measurement of the peak amplitude of an acceleration signal using an acceleration sensor as discussed in prior disclosures, may be problematic due to variables that can affect the signal. One variable is the influence of the acceleration signal related to the gravitational field of the earth. This acceleration signal will change with the angle of tilt of the sensor relative to the gravitational acceleration vector. Thus, depending on the orientation of the sensor in the heart, the acceleration signal due to earth's gravity may increase or decrease the peak amplitude. Another factor which may affect the peak amplitude is the relative motion of the lead or catheter type device to which the acceleration sensor is affixed. Relative motion of the acceleration sensor device (e.g., a catheter LV lead) in the direction of acceleration may increase the signal amplitude and, if counter to the direction of myocardial acceleration, may reduce the peak amplitude. Further, if the axis of the acceleration sensor is not parallel to the axis of motion, the amplitude of the signal will also be reduced. Lastly, the motion of the heart due to respiration may affect the accuracy of the peak amplitude.
  • Further in the disclosures of Chinchoy and Yu [US 2003/0104596 A1], it is not clear if the sensor is measuring vibrational or displacement motion of the heart. Measurement of these different motion types requires signal acquisition in the appropriate frequency band; however, these prior disclosures do not indicate the acquired acceleration signal's frequency band. Chinchoy indicates that the isovolumic contraction phase analyzed from the acceleration signal correlates with the S1 peak of myocardial Tissue Doppler velocity curve. However, this curve is a measurement of the displacement motion of the LV and therefore does not contain the vibrational component that may be more indicative of LV function. These above disclosures do not provide for measurement of pathologic vibrational motion, such as mitral regurgitation or the third/fourth heart sounds, and monitoring changes that may be indicative of improved LV function. Lastly, the above disclosures do not disclose a system and method for identifying target LV pacing sites for CRT through appropriate analysis of the ICP.
  • SUMMARY OF THE INVENTION
  • Monitoring changes in the frequency of the vibrational component of the ICP may be more practical and accurate than measuring amplitude changes for assessing cardiac function. Similarly, monitoring the time interval of this phase may prove more practical and accurate. Such an approach would reduce the sensitivity of the acceleration signal measurement and the interpretation of this measurement to the effects of gravity, sensor axis orientation, relative motion of the sensing device to which the sensor is affixed, and translational motion of the heart.
  • In this disclosure, systems characterize cardiac function using an acceleration sensor to acquire and analyze the frequency dynamics associated with the isovolumic contraction phase (“ICP”). This information can be used to characterize heart function; optimize therapy for cardiomyopathy, including CRT therapy (including pacing intervals and required pharmacologic therapy); and to optimize CCM therapy. In addition, this information can be used to identify target pacing regions for CRT lead placement. Lastly, but not exhaustively, analyzing the frequency dynamics can be used to characterize pathologic heart vibrational motion, such as mitral regurgitation and the third or fourth heart sound, and the response of this motion to therapy for cardiomyopathy.
  • The system uses an acceleration sensor to characterize the frequency dynamics of the isovolumic contraction phase as it relates to contractility and ventricular function. In addition the system measures pathologic heart vibrations such as mitral regurgitation and the third/fourth heart sounds and the effect of therapy on these signals. The sensor is placed into the ventricular chambers, onto the ventricular epicardium (e.g. LV), into the ventricular veins (e.g. the coronary sinus, great cardiac veins, or tributaries of this vein), or into the esophagus along the posterior side of the heart. The sensor can be integrated into an LV lead for CRT or CCM therapy for monitoring LV function. The sensor may also be incorporated into a catheter system for identifying target CRT pacing regions. The sensor may also be wireless and integrate into an implantable device (e.g. a stent) for long term monitoring of cardiac function.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a graph depicting various parameters of the cardiac pumping and ECG cycle.
  • FIG. 2 shows a graph depicting the correlation of peak frequency during the isovolumic contraction phase and the change in pressure rise in the left ventricle (dP/dt).
  • FIG. 3 shows vibrational acceleration signals from the epicardial surface of the left ventricle during isovolumic contraction, as measured with an accelerometer.
  • FIG. 4(A)-(E) shows a roving pacing guide wire device and acceleration-sensing catheter system for target pacing region identification and for characterizing the changes in LV function due to pacing.
  • FIG. 5 shows improved myocardial performance post-stimulation as determined by an increase in the peak frequency of the isovolumic contraction phase and a shortening of the time interval of the isovolumic contraction phase.
  • FIG. 6 shows shows myocardial motion mapping, display output, and target pacing identification.
  • FIG. 7 shows a subpectoral or subcutaneous implantable acceleration sensor with a wireless communications capability for monitoring S1, S2, S3, and S4 and murmur-related heart sounds.
  • FIG. 8 shows a graph indicating how the proper placement of an LV lead can be predicted using methods and devices according to embodiments of the invention.
  • DETAILED DESCRIPTION
  • A graph of the cardiac filling and pumping cycle and valvular events is shown in FIG. 1. The cardiac LV pumping cycle (LV cycle) is divided into two periods: diastole and systole. Diastole is the filling period and systole is the ejection period. Five different phases of the LV cycle can be identified within the systolic and diastolic periods: isovolumic contraction 56, ejection 58, isovolumic relaxation 62, early diastolic filling (rapid filling) 64, and late diastolic filling (atrial contraction) 66. Mitral valve closure 68 (“MVC”) occurs during isovolumic contraction and aortic valve closure 72 (“AVC”) occurs during isovolumic relaxation. Also shown in the figures are the left ventricular pressure LV Press 74, a regular electrocardiogram ECG 76, the left ventricular end-diastolic volume LVEDV 78, the left ventricular end-systolic volume LVESV 82, a graph depicting heart sounds 84, the left atrial pressure LA Press 86, the aortic pressure 88, a-wave 92, c-wave 94, and v-wave 96.
  • During the isovolumic contraction phase, the ventricles begin to contract but there is no ejection of blood into the aorta. As the myocardial cells contract, they generate a force that results in the development of wall tension in the ventricles. This contraction causes vibrational motion that is related to cardiac and ventricular resonance. This vibrational motion in its audible form is thought to be the cause the first heart sound and is associated with mitral valve closure. The vibrations may be related to abrupt changes in acceleration and direction of flow of the blood in the ventricular chamber.
  • In the normal heart, the isovolumic contraction starts within about 10-20 ms of ventricular depolarization (i.e., the R wave on the ECG), and lasts from about 30 milliseconds to 75 milliseconds depending on the heart rate and contractility of the ventricles. In the cardiomyopathic heart, the time interval of the isovolumic contraction phase is prolonged.
  • The frequency of the vibration motion that occurs during isovolumic contraction changes with the development of myocardial tension. Time-frequency transform analyses of this motion indicates that in the normal heart the frequency rises from about 20 Hz to about 150 Hz in the first 20-50 ms of the isovolumic contraction period. There are approximately 5-8 cycles that occur in this time period. Referring to FIG. 3, vibrational acceleration signals from the epicardial surface of the LV are shown during isovolumic contraction as measured with an accelerometer. The amplitudes of these cycles ranges from about 50 to 100 milli Gs (1 G=9.8 m/sec2) up to about 1 to 3 Gs.
  • Analysis of the frequency dynamics of the ICP can be used to characterize cardiac function. Thus the starting frequency of the ICP vibration motion signal, the peak frequency, and the time interval of change in frequency, may be affected by the mechanical and contractile properties of the ventricles. Peak frequency of this vibrational motion during ICP is probably related to the tension that develops in the ventricles and hence may be related to the contractility of the myocardium. Referring to FIG. 2, which shows the correlation of peak frequency during the isovolumic contraction phase and the change in pressure rise in the LV in dP/dt, a correlation between dP/dt (a surrogate for myocardial contractility) and the peak frequency during the ICP exists. The time interval over which this frequency rises may also be a measure of contractile function. The starting frequency during this phase may be related to the baseline ventricular wall tension.
  • In diseased hearts, such as those with cardiomyopathy, the contractile function of the myocardium is reduced, and changes in the thickness and diameter of the LV can cause an increase in the wall tension. These changes also lead to an increase in the time interval of the isovolumic contraction phase. Therefore, monitoring changes in the frequency dynamics of the isovolumic contraction phase can give insights into the cardiac and LV function in cardiomyopathy patients. This frequency information may also be used to monitor the effects of therapy, such as CRT, and to identify target pacing regions in CRT. Similarly, monitoring changes in the time interval of the ICP can be indicative of cardiac function and the response to therapy. Because the frequency and time interval can be measured without having an accurate measure of amplitude, this approach may be preferred.
  • Similarly, vibrations from pathologic heart conditions may also be indicative of cardiac function and response to therapy. The frequency of the mitral regurgitation signal in cardiomyopathy is related to the degree of LV dilation and the back flow of blood through the mitral valve. Therapies that reduce dilation and or back flow, e.g., CRT or percutaneous annuloplasty, show a favorable response in the frequency and frequency dynamics of this vibration motion. The third or fourth heart sounds are also a vibrational motion that may be present in cardiomyopathy. Changes in the presence and frequency of these signal may be indicative of cardiac function and response to cardiomyopathy therapy. For example, the frequency dynamics of the S4 correlates with ventricular mass which can be indicative of worsening (increased mass) or improving (reduced mass) heart failure. The frequency of the S1 may also correlate with LV stiffness.
  • Acceleration sensors are well suited for measuring ICP vibration motion and pathologic cardiac vibrational motion. The sensor is preferably based on micro electromechanical (MEMs) principles, which allows for miniaturization and low power consumption. The design and fabrication of capacitance MEMs-based accelerometers are known to those of ordinary skill in the art and may be used in this system. MEMs-based accelerometers are typically fabricated from silicon or semiconductor substrates. The sensor may be fabricated from a radiation-resistant semiconductor as the sensor will be implanted in many cases under fluoroscopic guidance. The general design of the accelerometer measures capacitance changes due to the movement of a proof mass beam with a side arm interdigitated between two capacitor plates. As the proof mass beam and side arm move with acceleration or vibration, the capacitance changes and can be output as a measure of motion. These accelerometers are fabricated from silicon substrates which allows for single-chip fabrication of the sensor with the necessary signal processing circuitry. This single-chip design increases the device's sensitivity as extremely small changes in capacitance can be measured. MEMs-based acceleration sensors as described above can measure milli Gs (1 G equals 9.8 meters/sec2) which is suitable for myocardial acceleration measurements which may occur between 50 and 2000 milli Gs or higher. While a capacitive sensor may be used in this embodiment, other acceleration sensor designs could be utilized and are known to those skilled in the art. For example, a thermal acceleration sensor could also be utilized in which the proof mass is a gas. Also, while a multi axis (2 or 3 axes) is preferred, single axis sensors could also be used and oriented appropriately to detect different axes of motion. It should also be noted that a pressure sensor can sense vibrational motion and may also be used to indirectly monitor the frequency dynamics of the ICP.
  • Preferably 3-axis sensing is utilized. A more accurate measurement of peak amplitude can be measured by calculating the composite acceleration vector of each axis (x, y, and z). This can account for the gravitational acceleration and its effects on sensor tilting. The composite vector can be calculated by taking the square root of the x-axis measurement squared, plus the y-axis measurement squared, plus the z-axis measurement squared. This peak amplitude calculation can be applied to both the vibrational motion and the displacement motion. This may be particularly accurate during the implantation of an LV lead for CRT therapy when the patient is lying still on a procedure table. Here the sensor measures the peak in the LV veins or coronary sinus.
  • Vibrational motion related to ICP may be sensed in a frequency range greater than 20 Hz and up to 200 Hz. The sensors may be tuned to sense the desired range. Alternatively, band pass filters or digital signal processing could eliminate or reduce frequency bands that are lower or higher.
  • Sensors can be mounted on devices that access the heart or are disposed near the heart (e.g., via an esophageal probe) to optimally detect the desired ICP. In one embodiment, a uniaxial sensor is oriented such that the axis of acceleration is parallel to the radial plane of the heart, i.e., toward the center of the ventricular chamber. Alternatively, two uniaxial sensors could be oriented longitudinally, e.g., anatomically base to apex, and radially, or three uniaxial sensors, oriented longitudinally, radially, and laterally, may be used. A single triaxial sensor could measure all these components. In another embodiment, two dual-axis sensors are oriented perpendicularly to each other in the catheter or LV lead device. This provides three axes in the appropriate planes.
  • The acceleration sensor is coupled to a signal processing and powering module. A battery may be used to power the sensor but other sources may also be utilized. Acquisition of the signal may be triggered by a ventricular depolarization signal from a cardiac electrogram. For example, the R-wave from a surface cardiac electrogram (ECG) may serve as a trigger. The vibrational acceleration signal may then be acquired for about 100 ms. A shorter time interval for sampling could also be used (e.g., 50 ms) to focus in on the initial frequency associated with a rise in ventricular wall tension. A longer sampling interval may be used to acquire the mitral valve regurgitation and third/fourth heart sound signals. The R-wave or another signal of ventricular depolarization can also be used to provide a zero point for the acquisition of acceleration signals, and will also factor in the effects of gravity and tilt of the sensor. Thus, the accelerations signal measured around the time of the R-wave signal can be used as an off-set correction for subsequently acquired signals.
  • The signal may be first amplified by an isolation amplifier that provides an isolation barrier to reduce the potential for electric shock hazard. The signal may be then band-pass-filtered to remove low frequency (e.g. <20 Hz) and high frequency (e.g. >300 Hz) signals. The signal may then be subject to processing, both digital and analog, to characterize and identify the frequency changes of the ICP. Representative analog processing may be used to measure the spacing between signal crossing above a certain threshold (e.g. +/−10-50 milli Gs). The time interval between the first two crossings may be indicative of the base line frequency. The shortest time interval between crossings may be indicative of the highest frequency. Digital signal processing could include the mathematical computations such as time-frequency transforms (See, e.g. “Time-frequency transforms: a new approach to first heart sound frequency dynamics”, IEEE transactions in Biomedical Engineering, vol. 39, no. 7, July 1992) with peak frequency identification. Taking the mathematical derivative of the acceleration signal, analog or digital, would identify jerk motion. Measuring the jerk signals and the time difference between these signals could similarly characterize the frequency signal.
  • The output of the signal processing could be digital or analog and could be displayed on a workstation for graphical display of the ICP vibration. For example, an analog output would allow the signal to be input into a multi-channel electrogram recorder. The workstation would typically have data storage and analysis capabilities. Alternatively a single number, such as the peak frequency or peak frequency divided by measured time interval, could be displayed. An accurate peak amplitude could be multiplied or divided by the time interval or frequency, or both multipled and divided by the time interval or frequency, to yield a value related to LV function and improved response to therapies such as cardiac resynchronization therapy. Changes in this number would be used to guide the therapy and make changes such as the position of the LV pacing lead.
  • Devices and systems for incorporating acceleration sensors are described in the pending non-provisional patent application incorporated by reference above. The disclosed devices could be used to characterize the frequency dynamics of the ICP and pathologic LV vibration motion. Descriptions of exemplary devices are representative of acceleration sensing devices for the ICP and pathologic heart sounds.
  • An acceleration sensor may be incorporated into a catheter for insertion into the LV veins such as the coronary sinus, great cardiac veins, or tributary vessels of these veins. The acceleration sensor may also be incorporated into a probe inserted into the esophagus, which lies immediately behind the posterior surface of the heart. The acceleration sensor may be a single dual axis sensor oriented perpendicularly to the long axis of the catheter. This orientation of the sensor allows the measurement of longitudinal and radial acceleration signals, which predominate in the heart, from the coronary sinus and great cardiac vein. The catheter probe may have a guidewire lumen; however this may not be required for an esophageal probe. The catheter or esophageal probe may monitor the frequency dynamics of the ICP and assess LV function. The esophageal probe could be used to monitor the ICP and third and fourth heart sounds to detect ischemia, for example during surgical procedures. For example, a decrease in amplitude of the ICP signal as measured by the esophageal probe could be indicative of ischemia. Because the esophageal probe would not move with heart contraction and the patient would be still during surgery, more accurate amplitude measures could be obtained.
  • In addition the catheter and esophageal probe may be used to identify target LV pacing regions for CRT using a pacing guide wire. Referring to FIG. 4(A)-(E), a guide catheter 102 is shown with a proximal end 104. An acceleration sensing catheter 100, that may be inserted into the guide catheter 102, is shown with a pacing guidewire port 114 and a guidewire lumen 108. The guidewire lumen may have a diameter of, e.g., 0.014″ to 0.038″. The catheter 100 also has a sensor assembly 106 that may have one, two, or three acceleration sensors disposed within, the sensors being disposed perpendicularly to each other. The catheter 100 may have a bend near the distal end thereof, as shown in FIG. 4(B). The bend may be from 0 degrees to 90 degrees. At the proximal end of catheter 100 is also disposed a power source such as a battery 126, a connector for low frequency (<20 Hz) signals 124, a connector for mid-frequency (20 Hz to 150 Hz) signals 122, and a connector for high frequency (>150 Hz) signals 118.
  • A pacing guidewire 120 is shown in FIG. 4(C) having an insulated region 128 and an uninsulated region 132 for pacing. A flexible conductor 134 is disposed at the proximal portion of the guidewire 120, as well as a connector 136 to a pulse generator.
  • FIG. 4(D) shows a more detailed view of the catheter 100, showing the guide lumen 108 and an alternate sensor assembly 112. The sensor assembly 112 is perpendicular to the long axis of the catheter 100.
  • Referring to FIG. 4(E), the mapping system 710 is made of an acceleration sensing catheter 700 and a pacing guidewire 684. The pacing guidewire may be powered by a pulse generator 712.
  • The output of the sensors may be connected to a signal conditioning module and battery power module 714 prior to input into the electrogram recording 716 and display device 718. The output of the signal conditioning module may be analog signals if the electrocardiogram display is to be used. The signal conditioning module may also be used to correct or zero out the effects of gravity and the related tilt signal. Output from the signal conditioning module may also be digital. A microprocessing chip in the conditioning module may also perform functions such as forming a composite signal from multiple orientation axes and integration. The catheter within the guide catheter may have a guidewire lumen through which a pacing guidewire may be used to test pace target sites. This catheter may also have a port for contrast injection and may additionally have a balloon to perform an occlusive venogram.
  • A pacing guidewire would be positioned in various regions of the LV veins to elicit contractions. The LV response to this pacing may be measured by monitoring the frequency dynamics of the vibrational motion during ICP with the catheter. FIG. 5 indicates this technique. In particular, the figure shows improved myocardial funcation post-stimulation as determined by an increase in the peak frequency of the isovolumic contraction phase. The left side of FIG. 5 shows the pre-stimulation signal, and the right side shows the post-stimulation signal. As can be seen, the peak frequency increases post-stimulation from about 80 Hz to about 170 Hz (note that the peak frequency is related to the time interval of the threshold crossing). Also seen is a shortening of the time interval of the isovolumic contraction phase from about 100 ms to about 75 ms. The isovolumic contraction phase signal was acquired by sampling over a 100 ms time period after the onset of the QRS ECG signal.
  • Alternatively the frequency dynamics or amplitude could be measured with the esophageal probe. LV regions associated with changes in the ICP frequency indicative of improved LV function would be target pacing regions. For example, an increase in the peak frequency, the rate of change of the frequency over time, a reduction in the baseline frequency, or some combination of the three may be indicative of improved LV function. Similarly, the location of implantation and pacing of the RV lead or right atrial lead may also be optimized by test pacing and monitoring the frequency dynamics of the ICP.
  • The change in the presence or frequency of the third or fourth heart sounds may also be indicative of a favorable response to pacing and hence help identify a target pacing region. Changes in the frequency and duration of vibration motion related to mitral valve regurgitation may also help guide therapy and target pacing regions. Thus a reduction in the frequency or duration of the signal may be indicative of a favorable response.
  • In more detail, referring to FIG. 6, which shows myocardial motion mapping, display output, and target pacing identification through a roving pace guidewire, changes or variables indicative of a favorable LV functional response may be sensed at the low, mid, and high frequency ranges. In the figure, “MVR” refers to mitral valve regurgitation, “IVC” refers to isovolumic contraction, and “IVR” refers to isovolumic relaxation. The top curve is ECG 556, curve 558 shows the velocity or LV displacement, obtained by integrating the acceleration signal, curve 562 shows LV function, and curve 562 shows the sounds of mitral valve regurgitation.
  • ECG 556 shows the QRS and T waves along with a pacing spike 566 which is delivered in the LV vein region. Examination of curve 558 shows a delayed onset motion 568 but a lessened delayed onset motion 572 following the pacing spike. Curve 562 shows a value of ejection phase 574, as measured by the time between the MVC or IVC and the AVC or IVR, and then a longer ejection phase 576. Here the MPI can be seen to be MPI=(a+b)/c. Curve 564 shows a reduced MVR signal 578 as compared to the pre-pacing MVR signal 582. Finally, it is noted that paced signal shows no third heart sound.
  • The accelerometer for monitoring the frequency dynamics of heart sounds may also be integrated into a pulse generator of a CRT/defibrillator device, including leadless defibrillator devices implanted subcutaneously over the chest. This device would be implanted subcutaneously on the chest or abdomen and would sense the vibrational motion of the heart sounds (S1, S2, S3, S4 and valvular murmurs) to characterize the peak amplitude and frequency. This pulse generator could perform software algorithms to characterize the frequency dynamics of these sounds and assess LV function and pathology including contractility, mitral regurgitation, LV thickening etc. The start of systole as measured by the cardiac electrogram (internally or externally measured by the IPG) could be used to synchronize the accelerometer sensor with the onset of systole. Thus the S1 vibrational motion as measured by the accelerometer would occur within a few milliseconds of the sensed electrogram. Thereafter, additional vibrational motion (S2, S3, and S4 and murmurs) could be identified based on there occurrence after the electrogram and S1. Additional a time window of sensing with the acceleration sensor (eg. 100 ms) could be sensed to measure only the S1. with the This information could be uploaded via a radiofrequency link to provide a read out to the physician for monitoring purposes. The RF communication device that would acquire the data from the pulse generator could reside at the patients home and be transmitted to a physician or central monitoring station via the internet or a phone line link. The accelerometer could be used to sense that the patient in whom the device is implanted is not moving and is in the proper orientation (eg. upright or lying flat) prior to the acquisition of the heart function data.
  • A stand alone implantable accelerometer device (IAD) (i.e. not incorporated into the IPG/CRT device) could also be implanted subcutaneously or subpectorally and not require an transvenous lead or extension. For example, referring to FIG. 7(B), a subpectorally-placed IAD 208 may be disposed adjacent the pectoral muscle 210 of a patient. The device 208 may have an acceleration sensor 220, an RF communications transceiver chip 214 and antenna 212, signal processing and control circuit 218 with digital memory storage capacity 222, and a battery 216. Referring to FIG. 7(A), the device 208 may be contained in a hermetically sealed titanium shell 202. The device could have a curved form factor as shown in FIG. 7(A) to lie flat along the chest. The antenna could be wire wound or integrated onto the communications chip. The sensor may be a low-power consumption 3-axis MEMs device. The device may sense at a frequency greater than about 20 Hz to avoid acceleration signals due to respiration or displacement motion of the heart. Optional electrodes 204 and 206 with accompanying circuitry may be employed to obtain a surface cardiac electrogram. As shown in FIG. 7(A), the electrodes would reside on the side of the device that is oriented toward the heart. 3-7 years of battery life may be provided, although variations are within the scope of the invention. Low power RF transceiver chips (applications specific integrated circuit or ASIC), such as that produced by Zarlink Semiconductor of San Diego, Calif. (e.g., model number ZL 70100) can improve battery life and data transmission of the device. The device need not require leads that extend into the heart and may reside in proximity to the left ventricle after subcutaneous or subpectoral implantation. The device may sense and measure vibrational data related to LV function and pathology such as frequency dynamics, time intervals, and peak amplitude of the ICP, S1, S2, S3, S4, and valvular murmurs. The surface of the device oriented toward the heart may have electrodes for sensing the surface electrocardiogram and the onset of the QRS. Similar to the inventor's prior applications, incorporated by reference above, this allows for the identification of the S1 as the vibrational signal immediately following the QRS. The subsequent vibrational signals could also be identified and time windows of sensing could also be incorporated to focus on the desired heart sound/vibrational motion. A narrow window of sensing that ascertains only the S1 vibrational signal may be preferred to avoid signal distortion or noise caused by movement of the heart against the chest during displacement or ejection. The S1 may be sensed and averaged over several to many beats. The vibrational motion could be sensed continuously or periodically. Periodic sensing may be used to extend battery life. The data may be collected at the same time during each day (e.g., at bedtime during quiet resting). The acceleration data could be stored or uploaded via an RF link in real time. The accelerometer could be battery-powered or inductively-powered with an RF coil. The data could be periodically or in real time uploaded with an RF link to a signal processing station for monitoring of the LV function such as contractility and pathology such as LV mass/thickness and valvular murmurs. The uploaded data could be sent via the internet to a physician or central monitoring station or both. The device could also interface with a cell phone type device for the same purpose of uploading data from the IAD.
  • Analysis of the frequency dynamics of the ICP (catheter or esophageal probe) could also be used to optimize the pacing timing intervals for CRT (A-V and V-V). Thus the V-V timing could be set to 0 ms (both ventricles paced simultaneously), and the AV delay could be varied between about 100 and 140 ms. The AV delay that provides a the highest peak frequency (or some other measure of improved cardiac function) during ICP could be chosen. Subsequently the A-V delay would be fixed at the previously determined optimal value and the V-V delay could be varied between −30 ms (LV to RV; thus −30 means the RV was paced 30 ms before the LV) to +30 ms LV to RV. Again the interval causing the highest peak frequency during ICP may be chosen. An automated system could run through the various pacing timing intervals and monitor the frequency dynamics of the ICP and provide optimal timing intervals.
  • The acceleration sensor may also be incorporated into the lead of a CRT or CCM device. The sensor may monitor the frequency dynamics of the ICP to ascertain cardiac function in a manner similar to the above. The sensor could also be used to test different timing intervals for the atrioventricular and interventricular timing. The sensor may also be integrated into other implantable devices such as cardiac stents or epicardial leads to monitor cardiac function through analysis of the frequency dynamics of the ICP and pathologic heart sounds.
  • FIG. 8 shows how information from the acceleration sensor can be employed to develop a predictive algorithm for determining CRT response. The peak amplitude and peak frequency are seen at LV site #3. A linear threshold relationship, or other such relationship, may be employed to determine when LV lead placement is acceptable for any given patient. If the amplitude is high enough at a certain frequency, and thus is above the linear threshold, then the response may be deemed to be good and the site chosen as a location for an LV lead.
  • The invention has been described with respect to certain embodiments. It will be clear to one of ordinary skill in the art given this disclosure that variations may be made to these embodiments. Accordingly, the scope of the invention is to be limited only by the claims appended hereto.

Claims (42)

1. A system for monitoring cardiac function, comprising:
a catheter component, the catheter component including:
a portion for insertion within or on a patient's heart, the insertion portion including an acceleration sensor;
an external portion including a connector to carry signals from the acceleration sensor;
a signal receiving and analysis component, the signal receiving and analysis component including:
a frequency analyzer to analyze the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor.
2. The device of claim 1, wherein the sensor measures acceleration in three perpendicular components.
3. The device of claim 1, wherein the frequency analyzer analyzes the frequency dynamics of the S1 heart sound as well as the frequency dynamics of at least one other heart sound.
4. The device of claim 1, wherein the sensor is synchronized with a cardiac electrical signal indicative of the onset of myocardial contraction.
5. The device of claim 1, wherein the cardiac function monitored is heart failure.
6. The device of claim 1, wherein the frequencies analyzed are greater than about 20 Hz.
7. The device of claim 4, further comprising an ECG component to measure an ECG of the patient, and wherein the sensor is synchronized with the R-wave measured by the ECG.
8. The device of claim 7, wherein the signal receiving and analysis component further comprises a circuit implemented in hardware, software, firmware, or a combination of the above, to analyze the frequency change of the signal measured by the sensor.
9. A method for monitoring cardiac function, comprising:
inserting a catheter into a patient, a distal tip of the catheter including a section that resides within or on a patient's heart, the section including an acceleration sensor;
receiving signals from the acceleration sensor at a signal receiving and analysis component;
analyzing the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor.
10. The method of claim 9, further comprising analyzing the frequency dynamics of at least one other heart sound besides the S1.
11. The method of claim 9, wherein the cardiac function monitored is heart failure.
12. A system for optimizing CRT lead placement and/or CRT device timing intervals, comprising:
a test pacing component to perform test pacing of a patient's heart;
a catheter component, the catheter component including:
a portion for insertion within or on a patient's heart, the insertion portion including an acceleration sensor to monitor heart sounds responding to the test pacing;
an external portion including a connector to carry signals from the acceleration sensor;
a signal receiving and analysis component, the signal receiving and analysis component including:
a frequency analyzer to analyze the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor in response to the test pacing.
13. The system of claim 12, wherein the sensor measures acceleration in three perpendicular components.
14. The system of claim 12, wherein the frequency analyzer analyzes the frequency dynamics of the S1 heart sound as well as the frequency dynamics of at least one other heart sound.
15. The system of claim 12, wherein the sensor is synchronized with a pacing spike from the test pacing component.
16. The system of claim 14, wherein the frequencies analyzed include those at frequencies greater than about 20 Hz.
17. The system of claim 12, wherein the test pacing component is a pacing guidewire.
18. A method for optimizing CRT lead placement and/or CRT device timing intervals, comprising:
inserting a catheter into a patient, a distal tip of the catheter including a section that resides within or on a patient's heart, the section including an acceleration sensor;
inserting a test pacing component within or on a patient's heart;
test pacing the patient's heart;
receiving signals from the acceleration sensor at a signal receiving and analysis component in response to the test pacing;
analyzing the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor in response to the test pacing.
19. The method of claim 18, further comprising analyzing the frequency dynamics of at least one other heart sound besides the S1.
20. A system for monitoring cardiac function, comprising:
an implantable component, the implantable component including an acceleration sensor and a transmitter;
a signal receiving and analysis component, the signal receiving and analysis component including:
a receiver to receive signals from the transmitter; and
a frequency analyzer to analyze the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor.
21. The system of claim 20, wherein the sensor measures acceleration in three perpendicular components.
22. The system of claim 20, wherein the receiver is a wand-type receiver.
23. The system of claim 20, wherein the implantable component further comprises a rechargeable battery and wherein the signal receiving and analysis component further comprises a wireless battery charger for recharging the battery.
24. The system of claim 20, wherein the frequency analyzer analyzes the frequency dynamics of the S1 heart sound as well as the frequency dynamics of at least one other heart sound.
25. A method for monitoring cardiac function, comprising:
subcutaneously inserting an implantable component into a patient, the implantable component including an acceleration sensor and a transmitter;
receiving signals from the acceleration sensor at a signal receiving and analysis component;
receiving signals from a surface electrode disposed on the implantable component;
synchronizing the acceleration sensor with a signal received from the surface electrode corresponding to the onset of myocardial contraction;
analyzing the frequency dynamics of at least the S1 heart sound as measured by the acceleration sensor.
26. The method of claim 25, further comprising analyzing the frequency dynamics of at least one other heart sound besides the S1.
27. The method of claim 25, wherein the frequencies analyzed are greater than about 20 Hz.
28. A system for long-term monitoring of heart failure, comprising:
a. a housing, including:
a) an accelerometer;
b) A transceiver chip coupled to the accelerometer;
c) A battery coupled to the accelerometer;
b. wherein said housing is structured and configured to be implanted sub-cutaneously to monitor vibrational motion of the heart.
29. The system of claim 28, further comprising at least one surface electrode structured within or on the housing for sensing a surface ECG.
30. The system of claim 28, wherein the housing is integrated into a CRT device.
31. The system of claim 28, wherein the housing is integrated into an implantable defibrillator.
32. The system of claim 31, wherein the housing is integrated into a leadless implantable defibrillator.
33. The system of claim 29, wherein the accelerometer senses vibrational motion in a time window of 100 milliseconds or less following a QRS of the surface ECG.
34. A method for monitoring cardiac function, comprising:
c. installing an acceleration sensor within or on a patient's heart;
d. installing a surface ECG electrode and measuring a patient's surface ECG; and
e. sensing vibrational motion in a time window following the R-wave measured by the surface ECG.
35. The method of claim 34, wherein the sensing further comprises sensing acceleration in three perpendicular components.
36. The method of claim 34, wherein the sensing is at a frequency greater than about 20 Hz.
37. The method of claim 34, wherein the sensing further comprises sensing vibrational motion in a time window of 100 milliseconds or less following a QRS of the surface ECG.
38. The method of claim 34, wherein the acceleration sensor and the surface ECG electrode are disposed within a single housing.
39. A method for optimizing CRT device timing intervals, comprising:
test pacing a patient's heart;
monitoring heart sounds responding to the test pacing using an acceleration sensor;
receiving signals corresponding to the monitored heart sounds;
analyzing the frequency dynamics of the received signals;
varying an AV or VV timing interval of the test pacing while analyzing the changes of the varying on the frequency dynamics.
40. The method of claim 39, wherein the test pacing includes test pacing with a pacing guidewire.
41. The method of claim 39, wherein the acceleration sensor is mounted on a catheter.
42. The method of claim 39, wherein the receiving signals includes receiving signals including at least the S1 heart sound.
US11/347,623 2005-02-07 2006-02-03 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations Abandoned US20060178589A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US65053205P true 2005-02-07 2005-02-07
US65503805P true 2005-02-22 2005-02-22
US65630705P true 2005-02-25 2005-02-25
US65776605P true 2005-03-01 2005-03-01
US65965805P true 2005-03-08 2005-03-08
US66378805P true 2005-03-21 2005-03-21
US66932405P true 2005-04-07 2005-04-07
US67756905P true 2005-05-04 2005-05-04
US68067305P true 2005-05-13 2005-05-13
US11/347,623 US20060178589A1 (en) 2005-02-07 2006-02-03 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/347,623 US20060178589A1 (en) 2005-02-07 2006-02-03 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations
PCT/US2006/004369 WO2006086435A2 (en) 2005-02-07 2006-02-07 Devices and methods for accelerometer-based characterization of cardiac function and monitoring of frequency dynamics of the isov
US12/337,581 US20090306736A1 (en) 2005-02-07 2008-12-17 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations
US13/230,084 US8831705B2 (en) 2005-02-07 2011-09-12 Devices and method for accelerometer-based characterization of cardiac synchrony and dyssynchrony

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/396,420 Continuation-In-Part US8118751B2 (en) 2005-02-07 2009-03-02 Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/337,581 Continuation US20090306736A1 (en) 2005-02-07 2008-12-17 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations

Publications (1)

Publication Number Publication Date
US20060178589A1 true US20060178589A1 (en) 2006-08-10

Family

ID=36780822

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/318,325 Abandoned US20060178586A1 (en) 2005-02-07 2005-12-23 Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US11/347,623 Abandoned US20060178589A1 (en) 2005-02-07 2006-02-03 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations
US12/337,581 Abandoned US20090306736A1 (en) 2005-02-07 2008-12-17 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations
US12/396,420 Expired - Fee Related US8118751B2 (en) 2005-02-07 2009-03-02 Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/318,325 Abandoned US20060178586A1 (en) 2005-02-07 2005-12-23 Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/337,581 Abandoned US20090306736A1 (en) 2005-02-07 2008-12-17 Accelerometer-based monitoring of the frequency dynamics of the isovolumic contraction phase and pathologic cardiac vibrations
US12/396,420 Expired - Fee Related US8118751B2 (en) 2005-02-07 2009-03-02 Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones

Country Status (2)

Country Link
US (4) US20060178586A1 (en)
WO (1) WO2006086435A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287753A1 (en) * 2007-05-16 2008-11-20 Parlikar Tushar A System and method for prediction and detection of circulatory shock
US20080287812A1 (en) * 2007-05-16 2008-11-20 Parlikar Tushar A Systems and Methods for Model-Based Estimation of Cardiac Output and Total Peripheral Resistance
US20080294057A1 (en) * 2007-05-16 2008-11-27 Parlikar Tushar A Systems and methods for model-based estimation of cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume
US20090036941A1 (en) * 2007-07-31 2009-02-05 Giorgio Corbucci Cardiac resynchronization therapy for patients with right bundle branch block
WO2009029943A1 (en) * 2007-08-31 2009-03-05 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Implantable device, system including same, and method utilizing same
US20090157136A1 (en) * 2007-02-16 2009-06-18 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US20090254140A1 (en) * 2007-02-16 2009-10-08 Pacesetter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US20100069985A1 (en) * 2008-09-16 2010-03-18 Stahmann Jeffrey E Cardiac function management integrating cardiac contractility modulation
US8790264B2 (en) 2010-05-27 2014-07-29 Biomedical Acoustics Research Company Vibro-acoustic detection of cardiac conditions
US8972009B2 (en) 2010-12-22 2015-03-03 Pacesetter, Inc. Systems and methods for determining optimal interventricular pacing delays based on electromechanical delays
US20160051823A1 (en) * 2014-08-22 2016-02-25 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker having a sensor with a lower power mode
US10384058B2 (en) 2017-06-16 2019-08-20 Cardiaccs As Methods and devices for securing a sensor at the heart

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004274005A1 (en) 2003-09-16 2005-03-31 Cardiomems, Inc. Implantable wireless sensor
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US10390714B2 (en) 2005-01-12 2019-08-27 Remon Medical Technologies, Ltd. Devices for fixing a sensor in a lumen
US7572228B2 (en) 2004-01-13 2009-08-11 Remon Medical Technologies Ltd Devices for fixing a sensor in a lumen
US8915859B1 (en) 2004-09-28 2014-12-23 Impact Sports Technologies, Inc. Monitoring device, system and method for a multi-player interactive game
US8172761B1 (en) 2004-09-28 2012-05-08 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
EP1893080A2 (en) 2005-06-21 2008-03-05 CardioMems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
CA2614599C (en) * 2005-07-08 2016-02-02 Jason Kroh Coupling loop, cable assembly and method for positioning coupling loop
EP1957158B1 (en) * 2005-11-30 2015-02-25 St. Jude Medical AB Implantable cardiac stimulator and system for monitoring cardiac synchrony
EP1957159B1 (en) * 2005-11-30 2015-09-09 St. Jude Medical AB Implantable cardiac stimulator for monitoring the heart cycle in a human heart
US8060214B2 (en) 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
US20070219592A1 (en) * 2006-02-28 2007-09-20 Physical Logic Ag Cardiac Pacemaker and/or ICD Control and Monitor
US7873410B2 (en) * 2006-04-26 2011-01-18 Medtronic, Inc. Implantable medical device with electromechanical delay measurement for lead position and ventricular
EP2037999B1 (en) 2006-07-07 2016-12-28 Proteus Digital Health, Inc. Smart parenteral administration system
US20080058772A1 (en) * 2006-08-31 2008-03-06 Robertson Timothy L Personal paramedic
AT543267T (en) * 2006-09-08 2012-02-15 Cardiomems Inc System for collecting and managing physiological data for use in an implanted radio sensor
US8676349B2 (en) 2006-09-15 2014-03-18 Cardiac Pacemakers, Inc. Mechanism for releasably engaging an implantable medical device for implantation
US8057399B2 (en) 2006-09-15 2011-11-15 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
JP2010505494A (en) * 2006-10-04 2010-02-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Medical imaging system
WO2008057720A1 (en) * 2006-11-08 2008-05-15 Cardiac Pacemakers, Inc. Implant for securing a sensor in a vessel
US8016764B1 (en) * 2006-11-08 2011-09-13 Pacesetter, Inc. Systems and methods for evaluating ventricular dyssynchrony using atrial and ventricular pressure measurements obtained by an implantable medical device
US7848822B2 (en) * 2006-11-14 2010-12-07 Cardiac Pacemakers, Inc. Cardiac force sensor and methods of use
US8229557B2 (en) 2007-03-29 2012-07-24 Cardiac Pacemakers, Inc. Estimating acute response to cardiac resynchronization therapy
US7912544B1 (en) * 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US8204599B2 (en) 2007-05-02 2012-06-19 Cardiac Pacemakers, Inc. System for anchoring an implantable sensor in a vessel
WO2008156981A2 (en) 2007-06-14 2008-12-24 Cardiac Pacemakers, Inc. Multi-element acoustic recharging system
US8180428B2 (en) * 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US20090125078A1 (en) * 2007-10-03 2009-05-14 Medtronic, Inc. Selecting cardiac pacing sites
JP5243548B2 (en) 2007-10-25 2013-07-24 プロテウス デジタル ヘルス, インコーポレイテッド Fluid communication port for information systems
US8419638B2 (en) 2007-11-19 2013-04-16 Proteus Digital Health, Inc. Body-associated fluid transport structure evaluation devices
DE102007057227B4 (en) 2007-11-28 2018-08-02 Biotronik Se & Co. Kg Cardiac stimulation arrangement
US8287458B2 (en) 2008-04-25 2012-10-16 Pacesetter, Inc. Coronary venous system pressure sensing
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8014864B2 (en) * 2008-06-17 2011-09-06 Pacesetter, Inc. Cardiomechanical assessment for cardiac resynchronization therapy
US9037235B2 (en) 2008-06-19 2015-05-19 Cardiac Pacemakers, Inc. Pacing catheter with expandable distal end
US8244352B2 (en) 2008-06-19 2012-08-14 Cardiac Pacemakers, Inc. Pacing catheter releasing conductive liquid
US8639357B2 (en) 2008-06-19 2014-01-28 Cardiac Pacemakers, Inc. Pacing catheter with stent electrode
US9409012B2 (en) 2008-06-19 2016-08-09 Cardiac Pacemakers, Inc. Pacemaker integrated with vascular intervention catheter
US8457738B2 (en) 2008-06-19 2013-06-04 Cardiac Pacemakers, Inc. Pacing catheter for access to multiple vessels
US8934987B2 (en) 2008-07-15 2015-01-13 Cardiac Pacemakers, Inc. Implant assist apparatus for acoustically enabled implantable medical device
US9717914B2 (en) * 2008-09-16 2017-08-01 Pacesetter, Inc. Use of cardiohemic vibration for pacing therapies
IT1393012B1 (en) * 2008-12-16 2012-04-11 Tre Esse Progettazione Biomedica S R L telemetric implantable device, for heart monitoring.
WO2010093489A2 (en) 2009-02-13 2010-08-19 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
US8301267B2 (en) * 2009-09-18 2012-10-30 Cardiac Pacemakers, Inc. Method and apparatus for sensing mechanical energy of an implantable lead
US8187199B2 (en) * 2009-11-05 2012-05-29 Cardiac Pacemakers, Inc. Myocardial contractile reserve measured during activities of daily living
BR112012019212A2 (en) 2010-02-01 2017-06-13 Proteus Digital Health Inc data collection system
WO2011094608A2 (en) 2010-02-01 2011-08-04 Proteus Biomedical, Inc. Two-wrist data gathering system
US9265951B2 (en) 2010-02-12 2016-02-23 The Brigham And Women's Hospital System and method for automated adjustment of cardiac resynchronization therapy control parameters
US8626279B2 (en) * 2010-02-22 2014-01-07 Oslo Universitetssykehus Hf Methods for estimating the risk for ventricular arrhythmias in a subject
US8798721B2 (en) * 2010-05-26 2014-08-05 Dib Ultrasound Catheter, Llc System and method for visualizing catheter placement in a vasculature
US8092393B1 (en) 2010-07-28 2012-01-10 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
US9216296B2 (en) 2011-01-21 2015-12-22 Neurocardiac Innovations, Llc Implantable medical device capable of preserving battery energy to extend its operating life
US9174060B2 (en) 2011-01-21 2015-11-03 Neurocardiac Innovations, Llc Implantable cardiac devices and methods
US9144686B2 (en) 2011-01-21 2015-09-29 Neurocardiac Innovations, Llc Implantable medical device with external access for recharging and data communication
US9907972B2 (en) 2011-01-21 2018-03-06 Neurocardiac Innovations, Llc Implantable cardiac devices and methods with body orientation unit
EP2478935B1 (en) * 2011-01-21 2017-08-23 NeuroCardiac Innovations, LLC Implantable cardiac devices with body orientation unit
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US9109902B1 (en) 2011-06-13 2015-08-18 Impact Sports Technologies, Inc. Monitoring device with a pedometer
US8682436B2 (en) 2011-12-23 2014-03-25 Medtronic, Inc. Detection of target vein for CRT therapy
US10390762B2 (en) 2012-01-16 2019-08-27 Valencell, Inc. Physiological metric estimation rise and fall limiting
EP2804526A1 (en) 2012-01-16 2014-11-26 Valencell, Inc. Reduction of physiological metric error due to inertial cadence
US9675315B2 (en) 2012-04-27 2017-06-13 Medtronic, Inc. Method and apparatus for cardiac function monitoring
US9801721B2 (en) * 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US20140121721A1 (en) * 2012-10-30 2014-05-01 Medtronic, Inc. Apparatus and method for placement of lead for cardiac resynchronization therapy
CN104969035B (en) 2013-01-09 2019-05-10 瓦伦赛尔公司 Step detection method and system based on inertia harmonic wave
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9924884B2 (en) 2013-04-30 2018-03-27 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9295397B2 (en) 2013-06-14 2016-03-29 Massachusetts Institute Of Technology Method and apparatus for beat-space frequency domain prediction of cardiovascular death after acute coronary event
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
DE102013014685B4 (en) 2013-09-05 2018-01-04 Universität Stuttgart urokatheter
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US10206601B2 (en) 2013-12-09 2019-02-19 Medtronic, Inc. Noninvasive cardiac therapy evaluation
EP3092034B1 (en) 2014-01-10 2019-10-30 Cardiac Pacemakers, Inc. Systems for detecting cardiac arrhythmias
EP3146896A1 (en) 2014-02-28 2017-03-29 Valencell, Inc. Method and apparatus for generating assessments using physical activity and biometric parameters
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US9179849B1 (en) 2014-07-25 2015-11-10 Impact Sports Technologies, Inc. Mobile plethysmographic device
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
WO2016033197A2 (en) 2014-08-28 2016-03-03 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US10092745B2 (en) 2014-11-04 2018-10-09 Cardiac Pacemakers, Inc Implantable medical devices and methods for making and delivering implantable medical devices
CN107206240A (en) 2015-02-06 2017-09-26 心脏起搏器股份公司 System and method for treating cardiac arrhythmia
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
WO2016130477A2 (en) 2015-02-09 2016-08-18 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
CN104644157B (en) * 2015-02-26 2017-05-10 首都医科大学附属北京安贞医院 Special sacculus radiography electrophysiological mapping catheter for CRT (Cardiac Resynchronization Therapy)
US9924905B2 (en) * 2015-03-09 2018-03-27 Graftworx, Inc. Sensor position on a prosthesis for detection of a stenosis
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US9757574B2 (en) 2015-05-11 2017-09-12 Rainbow Medical Ltd. Dual chamber transvenous pacemaker
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186A (en) 2015-08-20 2018-06-08 心脏起搏器股份公司 For the system and method for the communication between medical treatment device
US9968787B2 (en) * 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
EP3341076A1 (en) 2015-08-28 2018-07-04 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
CN108136185A (en) 2015-10-08 2018-06-08 心脏起搏器股份公司 For adjusting the device and method of the paced rates in implantable medical device
CN108472490A (en) 2015-12-17 2018-08-31 心脏起搏器股份公司 Conductive communication in medical apparatus system
CN109069840A (en) 2016-02-04 2018-12-21 心脏起搏器股份公司 Delivery system with the force snesor for leadless cardiac device
CA3015372A1 (en) 2016-03-09 2017-09-14 CARDIONOMIC, Inc. Cardiac contractility neurostimulation systems and methods
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
WO2018009392A1 (en) 2016-07-07 2018-01-11 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018035343A1 (en) 2016-08-19 2018-02-22 Cardiac Pacemakers, Inc. Trans septal implantable medical device
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
JP2019531838A (en) 2016-10-31 2019-11-07 カーディアック ペースメイカーズ, インコーポレイテッド System and method for activity level pacing
CN110234392A (en) 2017-01-26 2019-09-13 心脏起搏器股份公司 With the component being overmolded without thread guide devices
AU2018214450A1 (en) * 2017-02-06 2019-09-26 Western Sydney Local Health District Methods and apparatuses for monitoring cardiac dysfunction
WO2019055434A1 (en) * 2017-09-13 2019-03-21 CARDIONOMIC, Inc. Neurostimulation systems and methods for affecting cardiac contractility
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031614A (en) * 1986-09-12 1991-07-16 Eckhard Alt Pacemaker rate control using amplitude and frequency of activity signal
US5383473A (en) * 1993-05-10 1995-01-24 Pacesetter, Inc. Rate-responsive implantable stimulation device having a miniature hybrid-mountable accelerometer-based sensor and method of fabrication
US5425750A (en) * 1993-07-14 1995-06-20 Pacesetter, Inc. Accelerometer-based multi-axis physical activity sensor for a rate-responsive pacemaker and method of fabrication
US5454838A (en) * 1992-07-27 1995-10-03 Sorin Biomedica S.P.A. Method and a device for monitoring heart function
US5540727A (en) * 1994-11-15 1996-07-30 Cardiac Pacemakers, Inc. Method and apparatus to automatically optimize the pacing mode and pacing cycle parameters of a dual chamber pacemaker
US5549650A (en) * 1994-06-13 1996-08-27 Pacesetter, Inc. System and method for providing hemodynamically optimal pacing therapy
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5628777A (en) * 1993-07-14 1997-05-13 Pacesetter, Inc. Implantable leads incorporating cardiac wall acceleration sensors and method of fabrication
US5715827A (en) * 1994-09-02 1998-02-10 Cardiometrics, Inc. Ultra miniature pressure sensor and guide wire using the same and method
US5792195A (en) * 1996-12-16 1998-08-11 Cardiac Pacemakers, Inc. Acceleration sensed safe upper rate envelope for calculating the hemodynamic upper rate limit for a rate adaptive cardiac rhythm management device
US6002963A (en) * 1995-02-17 1999-12-14 Pacesetter, Inc. Multi-axial accelerometer-based sensor for an implantable medical device and method of measuring motion measurements therefor
US6077236A (en) * 1994-06-07 2000-06-20 Cunningham; David Apparatus for monitoring cardiac contractility
US6275724B1 (en) * 1998-03-27 2001-08-14 Intravascular Research Limited Medical ultrasonic imaging
US20020016615A1 (en) * 1998-05-08 2002-02-07 Dev Nagendu B. Electrically induced vessel vasodilation
US6542775B2 (en) * 1998-05-08 2003-04-01 Cardiac Pacemakers, Inc. Cardiac pacing using adjustable atrio-ventricular delays
US6643548B1 (en) * 2000-04-06 2003-11-04 Pacesetter, Inc. Implantable cardiac stimulation device for monitoring heart sounds to detect progression and regression of heart disease and method thereof
US6650940B1 (en) * 2000-02-02 2003-11-18 Cardiac Pacemakers, Inc. Accelerometer-based heart sound detection for autocapture
US6667725B1 (en) * 2002-08-20 2003-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Radio frequency telemetry system for sensors and actuators
US7117035B2 (en) * 2003-04-11 2006-10-03 Cardiac Pacemakers, Inc. Subcutaneous cardiac stimulation system with patient activity sensing
US7270634B2 (en) * 2003-03-27 2007-09-18 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695253A (en) * 1970-06-29 1972-10-03 Harold G Vielhauer Apparatus for physiological investigation
US4496361A (en) * 1981-08-05 1985-01-29 E. I. Du Pont De Nemours And Company Platelet storage container
US4763645A (en) * 1987-08-25 1988-08-16 Kapp Michael J Tracheal tube filter
US5268777A (en) * 1987-12-23 1993-12-07 Seiko Epson Corporation Driving method of active matrix display having ferroelectric layer as active layer
US4932407A (en) * 1988-12-15 1990-06-12 Medtronic, Inc. Endocardial defibrillation electrode system
IT1245814B (en) * 1991-05-21 1994-10-18 Sorin Biomedica Spa rate responsive pacemaker-type device
IT1260692B (en) * 1993-10-05 1996-04-22 Sorin Biomedica Spa Device for the determination of the myocardial function and relativoprocedimento.
US5705999A (en) * 1995-06-05 1998-01-06 Shell Oil Company Engine operation detection
US6053913A (en) * 1998-09-10 2000-04-25 Tu; Lily Chen Rapid exchange stented balloon catheter having ablation capabilities
US6466821B1 (en) * 1999-12-08 2002-10-15 Pacesetter, Inc. AC/DC multi-axis accelerometer for determining patient activity and body position
US6705999B2 (en) * 2001-03-30 2004-03-16 Guidant Corporation Method and apparatus for determining the coronary sinus vein branch accessed by a coronary sinus lead
US6665564B2 (en) * 2001-05-21 2003-12-16 Cardiac Pacemakers, Inc. Cardiac rhythm management system selecting A-V delay based on interval between atrial depolarization and mitral valve closure
US7127289B2 (en) * 2001-12-05 2006-10-24 Cardiac Pacemakers, Inc. Cardiac resynchronization system employing mechanical measurement of cardiac walls
US7206634B2 (en) * 2002-07-26 2007-04-17 Cardiac Pacemakers, Inc. Method and apparatus for optimizing cardiac pumping performance
EP1592344A4 (en) * 2003-01-31 2006-08-16 Univ Leland Stanford Junior Detection of apex motion for monitoring cardiac dysfunction
US6869404B2 (en) * 2003-02-26 2005-03-22 Medtronic, Inc. Apparatus and method for chronically monitoring heart sounds for deriving estimated blood pressure
US6885889B2 (en) * 2003-02-28 2005-04-26 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
US7610088B2 (en) * 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US7092759B2 (en) * 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
AU2004273998A1 (en) * 2003-09-18 2005-03-31 Advanced Bio Prosthetic Surfaces, Ltd. Medical device having mems functionality and methods of making same
US7248923B2 (en) * 2003-11-06 2007-07-24 Cardiac Pacemakers, Inc. Dual-use sensor for rate responsive pacing and heart sound monitoring

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031614A (en) * 1986-09-12 1991-07-16 Eckhard Alt Pacemaker rate control using amplitude and frequency of activity signal
US5454838A (en) * 1992-07-27 1995-10-03 Sorin Biomedica S.P.A. Method and a device for monitoring heart function
US5383473A (en) * 1993-05-10 1995-01-24 Pacesetter, Inc. Rate-responsive implantable stimulation device having a miniature hybrid-mountable accelerometer-based sensor and method of fabrication
US5425750A (en) * 1993-07-14 1995-06-20 Pacesetter, Inc. Accelerometer-based multi-axis physical activity sensor for a rate-responsive pacemaker and method of fabrication
US5628777A (en) * 1993-07-14 1997-05-13 Pacesetter, Inc. Implantable leads incorporating cardiac wall acceleration sensors and method of fabrication
US6077236A (en) * 1994-06-07 2000-06-20 Cunningham; David Apparatus for monitoring cardiac contractility
US5549650A (en) * 1994-06-13 1996-08-27 Pacesetter, Inc. System and method for providing hemodynamically optimal pacing therapy
US5715827A (en) * 1994-09-02 1998-02-10 Cardiometrics, Inc. Ultra miniature pressure sensor and guide wire using the same and method
US5540727A (en) * 1994-11-15 1996-07-30 Cardiac Pacemakers, Inc. Method and apparatus to automatically optimize the pacing mode and pacing cycle parameters of a dual chamber pacemaker
US6002963A (en) * 1995-02-17 1999-12-14 Pacesetter, Inc. Multi-axial accelerometer-based sensor for an implantable medical device and method of measuring motion measurements therefor
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5792195A (en) * 1996-12-16 1998-08-11 Cardiac Pacemakers, Inc. Acceleration sensed safe upper rate envelope for calculating the hemodynamic upper rate limit for a rate adaptive cardiac rhythm management device
US6275724B1 (en) * 1998-03-27 2001-08-14 Intravascular Research Limited Medical ultrasonic imaging
US20020016615A1 (en) * 1998-05-08 2002-02-07 Dev Nagendu B. Electrically induced vessel vasodilation
US6542775B2 (en) * 1998-05-08 2003-04-01 Cardiac Pacemakers, Inc. Cardiac pacing using adjustable atrio-ventricular delays
US6650940B1 (en) * 2000-02-02 2003-11-18 Cardiac Pacemakers, Inc. Accelerometer-based heart sound detection for autocapture
US6643548B1 (en) * 2000-04-06 2003-11-04 Pacesetter, Inc. Implantable cardiac stimulation device for monitoring heart sounds to detect progression and regression of heart disease and method thereof
US6667725B1 (en) * 2002-08-20 2003-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Radio frequency telemetry system for sensors and actuators
US7270634B2 (en) * 2003-03-27 2007-09-18 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
US7117035B2 (en) * 2003-04-11 2006-10-03 Cardiac Pacemakers, Inc. Subcutaneous cardiac stimulation system with patient activity sensing

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157136A1 (en) * 2007-02-16 2009-06-18 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US20090254140A1 (en) * 2007-02-16 2009-10-08 Pacesetter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US8346372B2 (en) 2007-02-16 2013-01-01 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US9375160B2 (en) 2007-05-16 2016-06-28 Massachusetts Institute Of Technology Systems and methods for model-based estimation of cardiac output and total peripheral resistance
US9332911B2 (en) 2007-05-16 2016-05-10 Massachusetts Institute Of Technology System and method for prediction and detection of circulatory shock
US20080294057A1 (en) * 2007-05-16 2008-11-27 Parlikar Tushar A Systems and methods for model-based estimation of cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume
US20080287812A1 (en) * 2007-05-16 2008-11-20 Parlikar Tushar A Systems and Methods for Model-Based Estimation of Cardiac Output and Total Peripheral Resistance
US8282564B2 (en) 2007-05-16 2012-10-09 Massachusetts Institute Of Technology Systems and methods for model-based estimation of cardiac output and total peripheral resistance
US8262579B2 (en) 2007-05-16 2012-09-11 Massachusetts Institute Of Technology System and method for prediction and detection of circulatory shock
US8235910B2 (en) 2007-05-16 2012-08-07 Parlikar Tushar A Systems and methods for model-based estimation of cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume
WO2008144490A1 (en) * 2007-05-16 2008-11-27 Massachusetts Instutute Of Technology Systems and methods for model-based estimation of cardiac ejection fraction, cardiac contractility, and ventricular end-diastolic volume
US20080287753A1 (en) * 2007-05-16 2008-11-20 Parlikar Tushar A System and method for prediction and detection of circulatory shock
US8041424B2 (en) * 2007-07-31 2011-10-18 Medtronic, Inc. Cardiac resynchronization therapy for patients with right bundle branch block
US20090036941A1 (en) * 2007-07-31 2009-02-05 Giorgio Corbucci Cardiac resynchronization therapy for patients with right bundle branch block
WO2009029943A1 (en) * 2007-08-31 2009-03-05 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Implantable device, system including same, and method utilizing same
US20090171413A1 (en) * 2007-08-31 2009-07-02 Marco Zenati Implantable device, system including same, and method utilizing same
US8634910B2 (en) 2008-09-16 2014-01-21 Cardiac Pacemakers, Inc. Cardiac function management integrating cardiac contractility modulation
US8712520B2 (en) 2008-09-16 2014-04-29 Cardiac Pacemakers, Inc. Cardiac function management integrating cardiac contractility modulation
US8718764B2 (en) 2008-09-16 2014-05-06 Cardiac Pacemakers, Inc. Cardiac function management integrating cardiac contractility modulation
US20100069980A1 (en) * 2008-09-16 2010-03-18 Stahmann Jeffrey E Cardiac function management integrating cardiac contractility modulation
US20100069985A1 (en) * 2008-09-16 2010-03-18 Stahmann Jeffrey E Cardiac function management integrating cardiac contractility modulation
US8718761B2 (en) 2008-09-16 2014-05-06 Cardiac Pacemakers, Inc. Cardiac function management integrating cardiac contractility modulation
US8790264B2 (en) 2010-05-27 2014-07-29 Biomedical Acoustics Research Company Vibro-acoustic detection of cardiac conditions
US8972009B2 (en) 2010-12-22 2015-03-03 Pacesetter, Inc. Systems and methods for determining optimal interventricular pacing delays based on electromechanical delays
US20160051823A1 (en) * 2014-08-22 2016-02-25 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker having a sensor with a lower power mode
US9427589B2 (en) * 2014-08-22 2016-08-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker having a sensor with a lower power mode
US10384058B2 (en) 2017-06-16 2019-08-20 Cardiaccs As Methods and devices for securing a sensor at the heart

Also Published As

Publication number Publication date
WO2006086435A2 (en) 2006-08-17
US20060178586A1 (en) 2006-08-10
US8118751B2 (en) 2012-02-21
US20090306736A1 (en) 2009-12-10
US20100049063A1 (en) 2010-02-25
WO2006086435A3 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
EP2223718B1 (en) Apparatus for monitoring of diastolic hemodynamics
US7559901B2 (en) Determining a patient&#39;s posture from mechanical vibrations of the heart
US9949668B2 (en) Assessing autonomic activity using baroreflex analysis
JP5330692B2 (en) System and method for measuring heart sounds and posture
JP4557964B2 (en) Method and apparatus for improving cardiac pacing
US7445605B2 (en) Detection of apex motion for monitoring cardiac dysfunction
US5702427A (en) Verification of capture using pressure waves transmitted through a pacing lead
CN100478043C (en) Atrioventricular delay adjustment
US8617082B2 (en) Heart sounds-based pacing optimization
US6937899B2 (en) Ischemia detection
US7413547B1 (en) Reference sensor correction for implantable sensors
US8996109B2 (en) Leadless intra-cardiac medical device with dual chamber sensing through electrical and/or mechanical sensing
EP1586348A1 (en) Electrotherapeutic apparatus
US20070265671A1 (en) Selectable switching of implantable sensors to provide fault toleance for implantable medical devices
US20100249863A1 (en) Hemodynamic stability assessment based on heart sounds
US7769451B2 (en) Method and apparatus for optimizing cardiac resynchronization therapy
US7844334B2 (en) Dual-use sensor for rate responsive pacing and heart sound monitoring
US20060247702A1 (en) Measurement of coronary sinus parameters to optimize left ventricular performance
US7181268B2 (en) Ischemia detection
US8155739B2 (en) Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
CA2220770C (en) Detection of pressure waves transmitted through catheter/lead body
US20030199779A1 (en) Estimation of stroke volume cardiac output using an intracardiac pressure sensor
US7103403B1 (en) Implantable cardiac stimulation system and method for monitoring diastolic function
EP1911399A1 (en) Techniques for correlating thoracic impedance with physiological status
US7774055B1 (en) Left atrial pressure-based criteria for monitoring intrathoracic impedance

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIOSYNC, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOBAK III, JOHN D.;REEL/FRAME:017544/0822

Effective date: 20060125

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION