US20060170472A1 - Variable delay circuit - Google Patents

Variable delay circuit Download PDF

Info

Publication number
US20060170472A1
US20060170472A1 US11/367,566 US36756606A US2006170472A1 US 20060170472 A1 US20060170472 A1 US 20060170472A1 US 36756606 A US36756606 A US 36756606A US 2006170472 A1 US2006170472 A1 US 2006170472A1
Authority
US
United States
Prior art keywords
variable delay
circuit
clock signal
signal
plural stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/367,566
Inventor
Masakatsu Suda
Satoshi Sudou
Toshiyuki Okayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to US11/367,566 priority Critical patent/US20060170472A1/en
Publication of US20060170472A1 publication Critical patent/US20060170472A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31922Timing generation or clock distribution
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31937Timing aspects, e.g. measuring propagation delay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0816Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00026Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter

Definitions

  • the present invention relates to a variable delay circuit. More particularly, the present invention relates to a variable delay circuit using a DLL circuit.
  • a conventional variable delay circuit is configured with a rough delay circuit whose resolution is low and variable amount is large and a fine delay circuit whose resolution is high and variable amount is the same as the rough delay circuit.
  • the rough delay circuit which takes the propagation delay time of a delay element as its resolution, and the fine delay circuit changes the delay amount by varying the load capacity of the delay element using a variable capacity element.
  • it is proposed to configure the rough delay circuit with a DLL circuit (cf. International Publication Pamphlet No. 03/036769).
  • variable delay circuit using the conventional DLL circuit the fine delay circuit is provided out of the feed-back system of the DLL, so the delay precision deteriorates as it is impossible to comply with the effect of the noise of the DLL circuit or the change of its environment such as the voltage or temperature.
  • a variable delay circuit for delaying and outputting a reference clock signal or a data signal includes plural stages of first variable delay elements coupled in series for sequentially delaying the reference clock signal or data signal, a second variable delay element coupled in parallel to the plural stages of first variable delay elements for delaying the reference clock signal, a phase comparator for comparing a phase of the reference clock signal delayed by the plural stages of first variable delay elements with a phase of the reference clock signal delayed by the second variable delay element, and a delay amount control unit for controlling a delay amount of each of the plural stages of first variable delay elements based on a comparison result of the phase comparator in order that the phase of the reference clock signal delayed by the plural stages of first variable delay elements is substantially the same as the phase of the reference clock signal delayed by the second variable delay element after predetermined cycles.
  • the variable delay circuit may further include a selector for selecting one reference clock signal among a plurality of the reference clock signals or data signals outputted by each of the plural stages of first variable delay elements and supplying the one reference clock signal to the phase comparator, while selecting one reference clock signal among a plurality of the reference clock signals or data signals outputted by each of the plural stages of first variable delay elements in a reciprocally independent manner and outputting the one reference clock signal out of the variable delay circuit.
  • the variable delay circuit may further include plural stages of third variable delay elements, which are coupled in series, with substantially the same delay characteristics as the plural stages of first variable delay elements for sequentially delaying the data signal, wherein the delay amount control unit may control the delay amount by supplying a first control signal to each of the plural stages of first variable delay elements, while controlling the delay amount by supplying a second control signal, which is uniquely determined from the first control signal, to the plural stages of third variable delay elements.
  • the delay amount control unit may control the plural stages of first and third variable delay elements to have substantially a same delay amount by supplying the first control signal to each of the plural stages of first variable delay elements while supplying the second control signal, which is the same as the first control signal, to each of the plural stages of third variable delay elements.
  • the phase comparator may include a dynamic D flip-flop circuit for latching and outputting the reference clock signal delayed by the plural stages of first variable delay elements with parasitic capacitance thereof based on the reference clock signal delayed by the second variable delay element and a D flip-flop circuit for latching and outputting an output signal outputted by the dynamic D flip-flop circuit based on the reference clock signal delayed by the second variable delay element.
  • the dynamic D flip-flop circuit may include a first analog switch for performing an on/off control based on the reference clock signal delayed by the second variable delay element, a first inverter for inverting a signal passing through the first analog switch, a second analog switch coupled to a next stage of the first inverter for performing an on/off control inverse to the on/off control of the first analog switch based on the clock signal delayed by the second variable delay element, and a second inverter for inverting a signal passing through the second analog switch.
  • the D flip-flop circuit may include a third analog switch for performing an on/off control based on the clock signal delayed by the second variable delay element, a third inverter for inverting a signal passing through the third analog switch, a fourth analog switch coupled to a next stage of the third inverter for performing an on/off control inverse to the on/off control of the third analog switch based on the clock signal delayed by the second variable delay element, a fourth inverter for inverting a signal passing through the fourth analog switch, a fifth inverter for inverting a signal outputted from the third inverter, a fifth analog switch coupled to a next stage of the fifth inverter for performing an on/off control inverse to the on/off control of the third analog switch based on the clock signal delayed by the second variable delay element and supplying the passing signal to the third inverter, a sixth inverter for inverting a signal outputted from the fourth inverter, and a sixth analog switch coupled to a next stage of the sixth inverter for performing an on
  • the phase comparator may output a flag signal indicating whether the phase of the clock signal delayed by the plural stages of first variable delay elements is early or later relatively to the phase of the clock signal delayed by the second variable delay element
  • the delay amount control unit may include a counter for increasing a count value if the flag signal indicates that the phase of the clock signal delayed by the plural stages of first variable delay elements is early, whereas decreasing the count value if the flag signal indicates that the phase is late and a DAC for supplying a bias signal to control the delay amount for at least one of the plural stages of first variable delay elements based on the count value of the counter.
  • FIG. 1 shows an example of the configuration of a timing comparator 100 .
  • FIG. 2 shows an example of the configuration of a dynamic D flip-flop circuit 102 .
  • FIG. 3 shows an example of the configuration of a positive feed-back D flip-flop circuit 106 .
  • FIG. 4 shows an example of the configuration of a variable delay circuit 400 .
  • FIG. 5 shows an example of the configuration of a variable delay circuit 500 .
  • FIG. 6 shows an example of the configuration of a phase comparator 406 .
  • FIG. 7 shows an example of the configuration of a testing apparatus 700 .
  • FIG. 8 shows an example of the configuration of a comparing unit 712 .
  • FIG. 9 shows an example of the configuration of a testing apparatus 900 .
  • FIG. 10 shows an example of the configuration of a signal characteristic detecting unit 912 .
  • FIG. 11 shows an example of the phase detection operation by a signal characteristic detecting unit 912 .
  • FIG. 12 shows an example of the configuration of the signal characteristic detecting unit 912 .
  • FIG. 13 shows an example of the edge detection operation by the signal characteristic detecting unit 912 .
  • FIG. 14 shows an example of the configuration of the signal characteristic detecting unit 912 .
  • FIG. 15 shows an example of the jitter measurement operation by the signal characteristic detecting unit 912 .
  • FIG. 16 shows an example of the jitter measurement operation by the signal characteristic detecting unit 912 .
  • FIG. 17 shows an example of the configuration of communication devices 1700 and 1702 .
  • FIG. 18 shows an example of the configuration of a clock recovery circuit 1716 .
  • FIG. 19 shows an example of the configuration of the clock recovery circuit 1716 .
  • FIG. 1 shows an example of the configuration of a timing comparator 100 according to the present invention.
  • the timing comparator 100 includes a dynamic D flip-flop circuit 102 , a buffer 104 and a positive feed-back D flip-flop circuit 106 , and samples and outputs a data signal (D) by a clock signal (CK).
  • the dynamic D flip-flop circuit 102 latches and outputs the data signal (D) with its parasitic capacitance based on the clock signal (CK) received by the timing comparator 100 and supplies it to the positive feed-back D flip-flop circuit 106 .
  • the buffer 104 delays the clock signal (CK) received by the timing comparator 100 by a predetermined time and supplies it to the positive feed-back D flip-flop circuit 106 .
  • the positive feed-back D flip-flop circuit 106 latches and outputs the output signal outputted by the dynamic D flip-flop circuit 102 based on the clock signal (CK) delayed by the buffer 104 using its positive feed-back circuit.
  • the buffer 104 preferably delays the clock signal (CK) more than the set-up time of the positive feed-back D flip-flop circuit 106 .
  • the positive feed-back D flip-flop circuit 106 is an example of the D flip-flop circuit of this invention.
  • the timing comparator 100 includes the buffer 104 , whereby it can allow the dynamic D flip-flop circuit 102 and the positive feed-back D flip-flop circuit 106 not to perform a pipeline process but to operate as a delay line. In other words, the dynamic D flip-flop circuit 102 and the positive feed-back D flip-flop circuit 106 can operate with the same clock signal.
  • FIG. 2 shows an example of the configuration of the dynamic D flip-flop circuit 102 .
  • the dynamic D flip-flop circuit 102 includes a first analog switch 200 , a first inverter 202 , a second analog switch 204 , and a second inverter 206 .
  • the first analog switch 200 performs an on/off control based on the clock signal (CK) received by the timing comparator 100 .
  • the first inverter 202 inverts and outputs the signal passing through the first analog switch 200 .
  • the second analog switch 204 is coupled to the next stage of the first inverter 202 and performs the on/off control inverse to the on/off control of the first analog switch 200 based on the clock signal (CK) received by the timing comparator 100 .
  • the second inverter 206 inverts and outputs the signal passing through the second analog switch 204 .
  • the first and second analog switches 200 and 204 are analog switches using P-channel/N-channel transistors and preform switching operation by CKP whose phase is the same as CK and CKN whose phase is inverse to it.
  • the first and second inverters 202 and 206 are CMOS inverters.
  • the dynamic D flip-flop circuit 102 configures a sample-and-hold circuit by the analog switches, the first and second analog switches 200 and 204 , and the parasitic capacitance such as the gate capacitance and the wiring capacitance of the first and second inverters 202 and 206 .
  • the dynamic D flip-flop circuit 102 does not include a loop circuit, its logic output becomes an intermediate level between “H” and “L” levels unless the electric charge is sufficient.
  • the phase width to output the intermediate level is extremely small, and the width of the hysteresis is extremely small.
  • FIG. 3 shows an example of the configuration of the positive feed-back D flip-flop circuit 106 .
  • the positive feed-back D flip-flop circuit 106 includes a third analog switch 300 , a third inverter 302 , a fourth analog switch 304 , a fourth inverter 306 , a fifth inverter 308 , a fifth analog switch 310 , a sixth inverter 312 , and a sixth analog switch 314 .
  • the third analog switch 300 performs an on/off control based on the clock signal (CK) delayed by the buffer 104 .
  • the third inverter 302 inverts and outputs the signal passing through the third analog switch 300 .
  • the fourth analog switch 304 is coupled to the next stage of the third inverter 302 , and performs the on/off control inverse to the on/off control of the third analog switch 300 based on the clock signal (CK) delayed by the buffer 104 .
  • the fourth inverter 306 inverts and outputs the signal passing through the fourth analog switch 304 .
  • the fifth inverter 308 inverts and outputs the signal passing through the third analog switch 302 .
  • the fifth analog switch 310 which is coupled to the next stage of the fifth inverter 308 , performs the on/off control inverse to the on/off control of the third analog switch 300 based on the clock signal (CK) delayed by the buffer 104 and supplies the passing signal to the third inverter 302 .
  • the sixth inverter 312 inverts and outputs the signal passing through the fourth analog switch 306 .
  • the sixth analog switch 314 which is coupled to the next stage of the sixth inverter 312 , performs the on/off control inverse to the on/off control of the fourth analog switch 304 based on the clock signal (CK) delayed by the buffer 104 and supplies the passing signal to the fourth inverter 306 .
  • the third, fourth, fifth and sixth analog switches 300 , 304 , 310 and 314 are analog switches using P-channel/N-channel transistors and preform switching operation by CKP whose phase is the same as CK and CKN whose phase is inverse to it.
  • the third, fourth, fifth and sixth inverters 302 , 306 , 308 and 312 are CMOS inverters.
  • the positive feed-back D flip-flop circuit 106 holds the output of the third analog switch 300 by the loop circuit which consists of the third and fifth inverters 302 and 308 and the fifth analog switch 310 , while holding the output of the fourth analog switch 304 which consists of the fourth and sixth inverters 306 and 312 and the sixth analog switch 314 .
  • the positive feed-back D flip-flop circuit 106 amplifies and outputs the signal by its positive feed-back circuit. Accordingly, if the data signal (D) of an intermediate level is inputted from the dynamic D flip-flop circuit 102 , hysteresis occurs. However, the width of the hysteresis is such that the logic output of the dynamic D flip-flop circuit 102 becomes the intermediate level, so it is extremely small. Therefore, according to the timing comparator 100 related to this invention, the logic output of an intermediate level is not outputted, and thus the time required until the phase is locked can be reduced, so it is possible to correspond to a higher frequency band.
  • FIG. 4 shows an example of the configuration of a variable delay circuit 400 according to this invention.
  • the variable delay circuit 400 is a DLL (Delay Lock Loop) circuit and delays and outputs a reference clock signal by a designated time.
  • the variable delay circuit 400 includes plural stages of variable delay elements 402 , a selector 403 , a variable delay element 404 , a phase comparator 406 , and a delay amount control unit 408 .
  • the delay amount control unit 408 includes a counter 410 and a DAC 412 .
  • the plural stages of variable delay elements 402 which are coupled in series sequentially delay the reference clock signal or the data signal and supply it to the selector 403 .
  • the selector 403 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 402 in a reciprocally independent manner and supplies it to the phase comparator 406 , while selecting one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 402 and supplying it out of the variable delay circuit 400 .
  • the variable delay element 404 which is coupled in parallel to the plural stages of variable delay elements 402 delays the reference clock signal.
  • phase comparator 406 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 , supplied from the selector 403 , with the phase of the reference clock signal delayed by the variable delay element 404 .
  • the delay amount control unit 408 controls the delay amount of each of the plural stages of variable delay elements 402 based on the comparison result of the phase comparator 406 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 , supplied from the selector 403 , is approximately the same as the phase of the reference clock signal delayed by the variable delay element 404 for each of predetermined cycles.
  • the phase comparator 406 outputs a flag signal that indicates whether the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is early or late relatively to the phase of the reference clock signal delayed by the variable delay element 404 .
  • the counter 410 increases the count value if the flag signal outputted from the phase comparator 406 indicates that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is early, whereas decreasing the count value if the flag signal indicates that it is late.
  • the DAC 412 supplies a bias signal to control the delay amounts for the plural stages of variable delay elements 402 based on the count value of the counter 410 .
  • the delay time per one stage of the variable delay elements 402 is determined by the following equation:
  • (the delay amount of one stage of the variable delay elements 402 ) ((the period of the reference clock signal) ⁇ (the delay amount of the variable delay element 404 ))/(the number of the stages of the variable delay elements 402 used in the DLL).
  • variable delay circuit 400 since the variable amounts of the propagation delay time of the plural stages of variable delay elements 402 caused by the change of processes or the environmental change such as voltage or temperature can be assigned to the lock range of the DLL, each of the variable delay elements 402 has its variable amount as much as (the delay amount of the variable delay element 404 ))/(the number of the stages of the variable delay elements 402 used in the DLL), and thus it is possible to absorb the deviation of the propagation delay time of the plural stages of variable delay elements 402 caused by the change of processes or the environmental change such as voltage or temperature. Further, the width of the period of the reference clock signal which can be delayed can be increased, and even if the period of the reference clock signal changes, it is possible to easily correspond to such situation simply by the process of software without correcting any circuits.
  • FIG. 5 shows an example of the configuration of a variable delay circuit 500 according to this invention.
  • the variable delay circuit 500 includes a DLL circuit which is an example of the variable delay circuit 400 shown in FIG. 4 and delays the data signal by a predetermined time and outputs it.
  • the variable delay circuit 500 includes plural stages of variable delay elements 502 and a selector 504 in addition to the configuration elements of the variable delay circuit 400 shown in FIG. 4 .
  • the plural stages of variable delay elements 502 which have approximately the same delay characteristics as the plural stages of variable delay elements 402 are coupled in series and sequentially delay the data signal. By decreasing the number of the stages of the variable delay elements 402 to such a limit as the number of the stages required for the delay time as much as the period of the reference clock signal, the circuit size can be reduced. And the selector 504 selects one of the data signals outputted by the plural stages of variable delay elements 502 and outputs it out of the variable delay circuit 500 .
  • the delay amount control unit 408 controls the delay amount of each of the plural stages of variable delay elements 402 based on the comparison result of the phase comparator 406 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is approximately equal to the phase of the reference clock signal delayed by the variable delay element 404 after predetermined cycles, while controlling the delay amount of each of the plural stages of variable delay elements 402 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 502 is approximately equal to the phase of the reference clock signal delayed by the variable delay element 404 after predetermined cycles.
  • the delay amount control unit 408 controls the delay amount by supplying a first control signal to each of the plural stages of variable delay elements 402 , whereas controlling the delay amount by supplying a second control signal uniquely determined from the first control signal to each of the plural stages of variable delay elements 502 .
  • the delay amount control unit 408 may control the plural stages of variable delay elements 402 and the plural stages of variable delay elements 502 to have approximately the same delay amount by supplying the first control signal to each of the plural stages of variable delay elements 402 whereas supplying the second control signal which is the same as the first control signal to each of the plural stages of variable delay elements 502 .
  • FIG. 6 shows an example of the configuration of a phase comparator 406 .
  • the phase comparator 406 includes a dynamic D flip-flop circuit 600 and a positive feed-back D flip-flop circuit 602 .
  • the dynamic D flip-flop circuit 600 latches and outputs the reference clock signal delayed by the plural stages of variable delay elements 402 with its parasitic capacitance based on the reference clock signal delayed by the variable delay element 404 .
  • the positive feed-back D flip-flop circuit 602 latches and outputs the output signal outputted by the dynamic D flip-flop circuit 600 by its positive feed-back circuit based on the reference clock signal delayed by the variable delay element 404 .
  • the dynamic D flip-flop circuit 600 has the same configuration and function as the dynamic D flip-flop circuit 102 shown in FIG. 2
  • the positive feed-back D flip-flop circuit 602 has the same configuration and function as the positive feed-back D flip-flop circuit 106 shown in FIG. 3 , so they will not be described.
  • FIG. 7 shows an example of the configuration of the testing apparatus 700 according to a first exemplary embodiment of this invention.
  • the testing apparatus 700 includes a pattern generator 702 , a waveform formatting unit 704 , a timing generator 706 , a reference clock generator 708 , a timing generator 710 , a comparing unit 712 , and a judging unit 714 .
  • the pattern generator 702 generates the data signal to be supplied to the device under test 716 and supplies it to the waveform formatting unit 704 .
  • the reference clock generator 708 generates an expected value signal required to judge the quality of the device under test 716 and supplies it to the judging unit 714 .
  • the timing generator 706 generates a strobe signal that indicates the timing at which the waveform formatting unit 704 should supply the data signal to the device under test 716 based on the reference clock signal generated by the reference clock generator 708 .
  • the timing generator 710 generates a strobe signal that indicates the timing at which the comparing unit 712 should sample the data signal outputted from the device under test 716 based on the reference clock signal generated by the reference clock generator 708 .
  • the waveform formatting unit 704 formats the waveform of the data signal generated by the pattern generator 702 and supplies the data signal to the device under test 716 based on the strobe signal generated by the timing generator 706 .
  • the device under test 716 outputs the data signal in response to the data signal supplied.
  • the comparing unit 712 samples the data signal outputted from the device under test 716 by the strobe signal generated by the timing generator 710 .
  • the judging unit 714 judges the quality of the device under test 716 by comparing the sampling result of the comparing unit 712 with the expected value signal generated by the pattern generator 702 .
  • FIG. 8 shows an example of the configuration of the comparing unit 712 .
  • the comparing unit 712 includes an H-side level comparator 800 , an H-side timing comparator 802 , an L-side level comparator 804 , and an L-side timing comparator 806 .
  • the H-side level comparator 800 compares the data signal outputted from the device under test 716 with an H-side threshold value (VOH) and outputs the comparison result (SH).
  • VH H-side threshold value
  • the H-side level comparator 800 outputs a logic value “0” if the data signal outputted from the device under test 716 is larger than the H-side threshold value (VOH) , whereas outputting a logic value “1” if the data signal outputted from the device under test 716 is smaller than the H-side threshold value (VOH).
  • the L-side level comparator 804 compares the data signal outputted from the device under test 716 with an L-side threshold value (VOL) and outputs the comparison result (SL).
  • the L-side level comparator 804 outputs the logic value “0” if the data signal outputted from the device under test 716 is smaller than the L-side threshold value (VOL), whereas outputting the logic value “1” if the data signal outputted from the device under test 716 is larger than the L-side threshold value (VOL).
  • the H-side timing comparator 802 samples the comparison result (SH) of the H-side level comparator 800 with an H-side strobe signal (STRBH) generated by the timing generator 710 and outputs the sampling result to the judging unit 714 .
  • the L-side timing comparator 80 samples the comparison result (SL) of the L-side level comparator 804 with an L-side strobe signal (STRBL) generated by the timing generator 710 and outputs the sampling result to the judging unit 714 .
  • the H-side and L-side timing comparators 802 and 806 have the same configuration and function as the timing comparator 100 shown in FIG. 1 , so they will be described. Since the H-side and L-side timing comparators 802 and 806 have the same configuration and function as the timing comparator 100 shown in FIG. 1 , it is possible to sample the data signal outputted from the device under test 716 with high precision, and thus the device under test 716 can be accurately tested.
  • FIG. 9 shows an example of the configuration of a testing apparatus 900 according to a second exemplary embodiment of this invention.
  • the testing apparatus 900 includes a pattern generator 902 , a waveform formatting unit 904 , a timing generator 906 , a reference clock generator 908 , a timing generator 910 , a signal characteristic detecting unit 912 , and a judging unit 914 .
  • the pattern generator 902 generates a data signal to be supplied to a device under test 916 and supplies it to the waveform formatting unit 904 .
  • the reference clock generator 908 generates an expected value signal required to judge the quality of the device under test 916 and supplies it to the judging unit 914 .
  • the reference clock generator 908 generates the reference clock signal and supplies it to the timing generator 906 , the timing generator 910 and the signal characteristic detecting unit 912 .
  • the timing generator 906 generates a strobe signal that indicates the timing at which the waveform formatting unit 904 should supply the data signal to the device under test 916 based on the reference clock signal generated by the reference clock generator 908 .
  • the timing generator 910 generates a strobe signal that indicates the timing at which the signal characteristic detecting unit 912 should sample the data signal outputted from the device under test 916 based on the reference clock signal generated by the reference clock generator 908 .
  • the waveform formatting unit 904 formats the waveform of the data signal generated by the pattern generator 902 and supplies the data signal to the device under test 916 based on the strobe signal generated by the timing generator 906 .
  • the device under test 916 outputs the data signal in response to the data signal supplied.
  • the signal characteristic detecting unit 912 samples the data signal outputted from the device under test 916 by the strobe signal generated by the timing generator 910 and detects the signal characteristics of the data signal outputted from the device under test 916 .
  • the judging unit 914 judges the quality of the device under test 916 by comparing the detection result of the signal characteristic detecting unit 912 with the expected value signal generated by the pattern generator 902 .
  • FIG. 10 shows an example of the configuration of the signal characteristic detecting unit 912 .
  • the signal characteristic detecting unit 912 includes plural stages of variable delay elements 1000 , a selector 1002 , a variable delay element 1004 , a phase comparator 1006 , a delay amount control unit 1007 , plural stages of variable delay elements 1012 , a plurality of timing comparators 1014 , plural stages of variable delay elements 1016 , plural stages of variable delay elements 1018 , a selector 1020 , a variable delay element 1022 , a phase comparator 1024 , and a delay amount control unit 1025 .
  • the delay amount control unit 1007 includes a counter 1008 and a DAC 1010
  • the delay amount control unit 1025 includes a counter 1026 and a DAC 1028
  • the signal characteristic detecting unit 912 is an example of the data sampling apparatus of this invention.
  • the plural stages of variable delay elements 1012 which are coupled in series sequentially delay the data signal outputted from the device under test 916 by a delay amount T. And the plural stages of variable delay elements 1016 which are coupled in series sequentially delay the strobe signal outputted from the timing generator 910 by a delay amount T+ ⁇ t which is larger than the delay amount T.
  • the plurality of timing comparators 1014 sample each of a plurality of the data signals, whose delay amounts are different, delayed by each of the plural stages of variable delay elements 1012 by the strobe signal delayed by the variable delay elements 1016 whose stage is the same as each of the plural stages of variable delay elements 1012 .
  • the signal characteristic detecting unit 912 detects the phase of the data signal outputted from the device under test 916 based on the sampling result by each of the plurality of timing comparators 1014 .
  • each of the plurality of timing comparators 1014 which has the same configuration and function as the timing comparator 100 shown in FIG. 1 , samples each of the plurality of data signals (D 0 , D 1 , D 2 , . . . Dn ⁇ 1 , Dn), whose delay amounts are different, by each of the plurality of strobe signals C 0 , C 1 , C 2 , . . . Cn ⁇ 1 , Cn), whose delay amounts are different, and outputs the sampling result (Q 0 , Q 1 , Q 2 , . . . Qn ⁇ 1 , Qn).
  • the timing comparators 1014 with the same proofreading and function as the timing comparator 100 shown in FIG. 1 , it is possible to correspond to a higher frequency band and to reduce the skew at the rising or falling edge of the sampling signal.
  • variable delay elements 1000 which are coupled in series sequentially delay the reference clock signal outputted by the reference clock generator 908 and supply it to the selector 1002 .
  • the plural stages of variable delay elements 1000 have approximately the same characteristics as the plural stages of variable delay elements 1012 .
  • the selector 1002 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 1000 and supplies it to the phase comparator 1006 .
  • variable delay element 1004 which is coupled in series to the plural stages of variable delay elements 1000 delays the reference clock signal outputted by the reference clock generator 908 as much as the delay amount predetermined and supplies it to the phase comparator 1006 .
  • the phase comparator 1006 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 1000 , supplied from the selector 1002 , with the phase of the reference clock signal delayed by the variable delay element 1004 .
  • the delay amount control unit 1007 controls the delay amounts of the plural stages of variable delay elements 1000 and the delay amounts of the plural stages of variable delay elements 1012 based on the comparison result of the phase comparator 1006 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 1000 , supplied from the selector 1002 , and the phase of the data signal delayed by the plural stages of variable delay elements 1012 are approximately equal to the phase of the reference clock signal delayed by the variable delay element 1004 after predetermined cycles.
  • variable delay elements 1018 which are coupled in series sequentially delay the reference clock signal outputted by the reference clock generator 908 and supply it to the selector 1020 . Further, the plural stages of variable delay elements 1018 have the same delay characteristics as the plural stages of variable delay elements 1016 .
  • the selector 1020 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 1018 and supplies it to the phase comparator 1024 .
  • variable delay element 1022 which is coupled in parallel to the plural stages of variable delay elements 1018 delays the reference clock signal outputted by the reference clock generator 908 as much as the delay amount predetermined and supplies it to the phase comparator 1024 .
  • the phase comparator 1024 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 1018 , supplied from the selector 1020 , with the phase of the reference clock signal delayed by the variable delay element 1022 .
  • the delay amount control unit 1025 controls the delay amounts of the plural stages of variable delay elements 1018 and the delay amounts of the plural stages of variable delay elements 1016 based on the comparison result of the phase comparator 1024 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 1018 , supplied from the selector 1020 , and the phase of the data signal delayed by the plural stages of variable delay elements 1016 are approximately equal to the phase of the reference clock signal delayed by the variable delay element 1022 after predetermined cycles.
  • each of the variable delay elements 1000 , the selector 1002 , the variable delay element 1004 , the phase comparator 1006 , the delay amount control unit 1007 , the counter 1008 , the DAC 1010 , and the variable delay elements 1012 has the same configuration and function as each of the variable delay elements 402 , the selector 403 , the variable delay element 404 , the phase comparator 406 , the delay amount control unit 408 , the counter 410 , the DAC 412 , and the variable delay elements 502 shown in FIG. 5 .
  • each of the variable delay elements 1018 , the selector 1020 , the variable delay element 1022 , the phase comparator 1024 , the delay amount control unit 1025 , the counter 1026 , the DAC 1028 , and the variable delay elements 1016 has the same configuration and function as each of the variable delay elements 402 , the selector 403 , the variable delay element 404 , the phase comparator 406 , the delay amount control unit 408 , the counter 410 , the DAC 412 , and the variable delay elements 502 shown in FIG. 5 and functions as a multi-strobe generating circuit for generating a plurality of strobe signals whose delay times are different.
  • FIG. 11 shows an example of the phase detection operation by the signal characteristic detecting unit 912 .
  • FIG. 11 ( a ) shows the input and output signals of a plurality of timing comparators 1014 .
  • FIG. 11 ( b ) shows the outline of the phase detection operation.
  • the timing comparator 1014 of the first stage samples the data signal (D 0 ) outputted from the device under test 916 by the strobe signal (C 0 ), whose phase is earlier than the change point of the data signal (D 0 ) as much as Tofs, generated by the timing generator 910 and outputs the sampling result (Q 0 ).
  • the sampling result (Q 0 ) is “L”.
  • the timing comparator 1014 of the second stage samples the data signal (D 1 ), which results from delaying the data signal (D 0 ) as much as the delay amount T by the variable delay element 1012 of the first stage, by the strobe signal (C 1 ), which results from delaying the strobe signal (C 0 ) as much as the delay amount T+ ⁇ t by the variable delay element 1016 of the first stage, and outputs the sampling result (Q 1 ).
  • the sampling result (Q 1 ) is “L”.
  • the timing comparator 1014 of the third stage samples the data signal (D 2 ), which results from further delaying the data signal (D 1 ) as much as the delay amount T by the variable delay element 1012 of the second stage, by the strobe signal (C 2 ), which results from further delaying the strobe signal (C 1 ) as much as the delay amount T+ ⁇ t by the variable delay element 1016 of the second stage, and outputs the sampling result (Q 2 ).
  • the sampling result (Q 2 ) is “L”.
  • the plurality of timing comparators 1014 sample the plurality of data signals (D 0 , D 1 , D 2 , . . . Dn ⁇ 1 , Dn) by the plurality of strobe signal (C 0 , C 1 , C 2 , . . . Cn ⁇ 1 , Cn) respectively and output the sampling results (Q 0 , Q 1 , Q 2 , . . . Qn ⁇ 1 , Qn).
  • the timing comparator 1014 of the n-th stage samples the data signal (Dn), which results from delaying the data signal (Dn ⁇ 1 ) as much as the delay amount T by the variable delay element 1012 of the n-th stage, by the strobe signal (Cn), which results from delaying the strobe signal (Cn ⁇ 1 ) as much as the delay amount T+ ⁇ t by the variable delay element 1016 of the n-th stage, and outputs the sampling result (Qn).
  • the sampling result (Q 2 ) is “H”.
  • the judging unit 914 retrieves the sampling results (Q 0 , Q 1 , Q 2 , . . . Qn ⁇ 1 , Qn) of the plurality of timing comparators 1014 and plots them, so that it can realize the same function of detecting the change point of the data signal by supplying a plurality of strobe signals (C 0 , C 1 , C 2 , . . . Cn ⁇ 1 , Cn) over the change point of the data signal outputted from the device under test 916 and sampling the data signal by each of the plurality of strobe signals (C 0 , C 1 , C 2 , . . . Cn ⁇ 1 , Cn) as shown in FIG. 11 ( b ).
  • the testing apparatus 700 related to this embodiment since the phase of the data signal can be detected by the test process of one pass, i.e. simply by outputting the data signal to the device under test 916 once, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 12 shows an example of the configuration of the signal characteristic detecting unit 912 .
  • the signal characteristic detecting unit 912 includes a plurality of EOR circuits 1200 in addition to the configuration elements shown in FIG. 10 .
  • the plurality of EOR circuits 1200 take a set of two sampling results of each of pairs of the sequential timing comparators 1014 and perform exclusive OR operation on the sets of sampling results respectively.
  • the EOR circuit 1200 of the first stage performs exclusive OR operation on the sampling result (Q 0 ) of the timing comparator 1014 of the first stage and the sampling result (Q 1 ) of the timing comparator 1014 of the second stage and outputs the operation result (EDG 1 ).
  • the EOR circuit 1200 of the second stage performs exclusive OR operation on the sampling result (Q 1 ) of the timing comparator 1014 of the second stage and the sampling result (Q 2 ) of the timing comparator 1014 of the third stage and outputs the operation result (EDG 2 ).
  • the EOR circuit 1200 of the third stage performs exclusive OR operation on the sampling result (Q 2 ) of the timing comparator 1014 of the third stage and the sampling result (Q 3 ) of the timing comparator 1014 of the fourth stage and outputs the operation result (EDG 3 ).
  • the EOR circuit l 200 of the n-th stage performs exclusive OR operation on the sampling result (Qn ⁇ 1 ) of the timing comparator 1014 of the n-th stage and the sampling result (Qn) of the timing comparator 1014 of the n+ 1 -th stage and outputs the operation result (EDGn).
  • the plurality of EOR circuits 1200 may be other circuits except the EOR circuits if they are to output a logic value that indicates whether the pair of sampling results are different from each other or not.
  • FIG. 13 shows an example of the edge detection operation by the signal characteristic detecting unit 912 .
  • the signal characteristic detecting unit 912 detects the timing of the strobe signal in response to one of the EOR circuits 1200 , which outputs the logic value indicating that a pair of sampling results are different from each other among the plurality of EOR circuits 1200 , as the edge of the data signal. In other words, it detects the timing of the strobe signal, when the timing comparators 1014 sample the pair of sampling results used by the EOR circuit 1200 , which outputs the logic value indicating that the pair of sampling results are different from each other, to perform exclusive OR operation, as the edge of the data signal outputted from the device under test 916 .
  • the sampling results (Q 0 , Q 1 and Q 2 ) of the timing comparators 1014 of the first to third stages are “L” and the sampling results (Q 3 , Q 4 , Q 5 , Q 6 . . . ) of the timing comparators 1014 of the fourth stage and later are “H”
  • the operation result (EDG 3 ) of the EOR circuit l 200 of the third stage which performs exclusive OR operation on the sampling result (Q 2 ) of the timing comparator 1014 of the third stage and the sampling result (Q 3 ) of the timing comparator 1014 of the fourth stage, is “H”, i.e. the pair of sampling results are different from each other.
  • the signal characteristic detecting unit 912 of this embodiment detects the timing of the strobe signal (C 3 ) taken by the timing comparator 1014 of the fourth stage as the edge of the data signal. According to the testing apparatus 700 related to this embodiment, since the edge of the data signal outputted from the device under test 916 can be detected by a hardware circuit, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 14 shows an example of the configuration of the signal characteristic detecting unit 912 .
  • the signal characteristic detecting unit 912 includes a counter 1400 , a plurality of counters 1402 , a plurality of buffers 1404 , a plurality of AND circuits 1406 , and a counter control circuit 1408 in addition to the configuration elements of FIGS. 10 and 12 .
  • the counter 1400 counts the strobe signal (C 0 ) generated by the timing generator 910 and supplies the count value to the counter control circuit 1408 .
  • each of the plurality of counters 1402 counts the number of times each of the plurality of EOR circuits 1200 outputs the logic value that indicates the pair of sampling results are different from each other, if each of the plurality of timing comparators 1014 performs sampling operation a plurality of times on each of the plurality of data signals at the timing of each of the plurality of strobe signals so that each of the plurality of EOR circuits 1200 performs exclusive OR operation a plurality of times.
  • the signal characteristic detecting unit 912 measures the jitter of the data signal outputted by the device under test 916 based on the count value of the plurality of the counter 1402 .
  • each of the plurality of buffers 1404 delays each of the plurality of strobe signals (C 1 , C 2 , C 3 , . . . Cn ⁇ 1 , Cn) outputted from each of the plural stages of variable delay elements 1016 and supplies it to the plurality of AND circuits 1406 .
  • Each of the plurality of buffers 1404 preferably delays each of the plurality of strobe signals (C 1 , C 2 , C 3 , . . . Cn ⁇ 1 , Cn) more than the set-up time of each of the plurality of counters 1402 . Accordingly, the plurality of timing comparators 101 and the plurality of counters 1402 can operate as a delay line.
  • Each of the plurality of AND circuits 1406 performs exclusive OR operation on the plurality of operation results (EDG 1 , EDG 2 , EDG 3 , . . . EDGn ⁇ 1 , EDGn) respectively outputted by the plurality of EOR circuits 1200 and the plurality of strobe signals (C 1 , C 2 , C 3 , . . . Cn ⁇ 1 , Cn) respectively delayed by the plurality of buffers 1404 and supplies the operation result to the plurality of counters 1402 .
  • Each of the plurality of counters 1402 increases the count value in order that the count value corresponds to each of the plurality of strobe signals, which indicates the timing of the edge of the data signal outputted from the device under test 916 , based on the operation result outputted from each of the plurality of AND circuits 1406 .
  • the counter control circuit 1408 supplies a counter control signal to force the plurality of counters 1402 to count to the plurality of counters 1402 , and if the counter 1400 has counted the strobe signal (C 0 ) such that the count value amounts to a predetermined parameter, it supplies a counter control signal to force the plurality of counters 1402 to stop counting to the plurality of counters 1402 .
  • FIGS. 15 and l 6 show an example of the jitter measurement operation by the signal characteristic detecting unit 912 .
  • FIG. 16 ( a ) shows the relation between each of the plurality of counters 1402 and the count value of the plurality of counters 1402 .
  • FIG. 16 ( b ) shows the relation between the timing of the plurality of strobe signals and the frequency of the occurrence of the edge of the data signal.
  • the plurality of timing comparators 1014 sample each of the plurality of data signals outputted from the device under test 916 by the plurality of strobe signals, while the plurality of EOR circuits 1200 perform exclusive OR operation on the sampling results of the timing comparators 1014 and detect and output the edge of the data signal outputted from the device under test 916 .
  • the plurality of counters 1402 count the operation results of the plurality of EOR circuits 1200 in response to the plurality of data signals, e.g. M pieces of data signals based on the counter control signal outputted by the counter control circuit 1408 .
  • the graph as shown in FIG. 16 ( a ) can be obtained.
  • the plurality of counters 1402 correspond to the plurality of strobe signals respectively. Accordingly, in the graph shown in FIG. 16 , by replacing each of the plurality of counters 1402 with the timing of the plurality of strobe signals and replacing the count value of each of the plurality of counters 1402 with the frequency of the occurrence of the edge, a histogram graph of the phase of the data signal in response to the strobe signal can be obtained as shown in FIG. 16 ( b ). Accordingly,the jitter of the data signal outputted from the device under test 916 can be measured.
  • the edge of the data signal generated at the timing of each of the plurality of strobe signals whose phases are different can be counted at the timing of each of the plurality of strobe signals.
  • the testing apparatus 700 related to this embodiment since the jitter of the data signal outputted from the device under test 916 can be measured by a hardware circuit, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 17 shows an example of the configuration of communication devices 1700 and 1702 according to a third exemplary embodiment of this invention.
  • the communication device 1700 is an LSI of a transmission terminal (TX) for performing high speed data transmission.
  • the communication device 1702 is an LSI of a reception terminal (RX) for performing high speed data transmission.
  • the communication device l 700 transmits data to the communication device 1702 via the transmission line 1704 , whereas the communication device 1702 receives the data from the communication device 1700 via the transmission line 1704 .
  • the communication device 1700 includes a transmission terminal logic circuit 1706 , a transmission terminal PLL circuit 1708 , and a flip-flop circuit 1710 .
  • the transmission terminal logic circuit 1706 generates a data signal and supplies it to the flip-flop circuit 1710 .
  • the transmission terminal PLL circuit 1708 generates a clock signal and supplies it to the flip-flop circuit 1710 .
  • the flip-flop circuit 1710 synchronously transmits the data signal generated by the transmission terminal logic circuit 1706 to the communication device 1702 with the clock signal generated by the transmission terminal PLL circuit 1708 .
  • the communication device 1702 includes a flip-flop circuit 1712 , a reception terminal logic circuit 1714 , a clock recovery circuit 1716 , and a reception terminal PLL circuit 1718 .
  • the reception terminal PLL circuit 1718 is an example of the reference clock generating circuit of this invention.
  • the reception terminal PLL circuit 1718 generates a clock signal and supplies it to the clock recovery circuit 1716 .
  • the clock recovery circuit 1716 receives the data signal transmitted from the communication device 1700 , adjusts the timing of the clock signal generated by the reception terminal PLL circuit 1718 in response to the data signal and supplies it to the flip-flop circuit 1712 .
  • the flip-flop circuit 1712 synchronizes the data signal transmitted from the communication device 1700 with the clock signal generated by the clock recovery circuit 1716 and supplies it to the reception terminal logic circuit 1714 .
  • the reception terminal logic circuit 1714 synchronously deals with the data signal transmitted from the communication device 1700 with the clock signal generated by the clock recovery circuit 1716 .
  • FIGS. 18 and 19 show an example of the configuration of the clock recovery circuit 1716 .
  • the clock recovery circuit 1716 includes plural stages of variable delay elements 1800 , a selector 1802 , a variable delay element 1804 , a phase comparator 1806 , a delay amount control unit 1808 , plural stages of variable delay elements 1814 , a plurality of timing comparators 1816 , plural stages of variable delay elements 1818 , plural stages of variable delay elements 1820 , a selector 1822 , a variable delay element 1824 , a phase comparator 1826 , and a delay amount control unit 1828 .
  • the delay amount control unit 1808 includes a counter 1810 and a DAC 1812
  • the delay amount control unit 1828 includes a counter 1830 and a DAC 1832 .
  • the plural stages of variable delay elements 1814 which are coupled in series sequentially delay a data signal transmitted from the communication device 1700 by a delay amount T.
  • the plural stages of variable delay elements 1818 which are coupled in series sequentially delay a clock signal generated by a reception terminal PLL circuit 1718 and delayed by a recovery variable delay circuit 1900 as much as a delay amount T+ ⁇ t which is larger than the delay amount T.
  • the plurality of timing comparators 1816 sample each of the plurality of data signals delayed by each of the plural stages of variable delay elements 1814 by the clock signal delayed by the variable delay element 1818 whose stage is the same as each of the plural stages of variable delay elements 1814 .
  • each of the plurality of timing comparators 1816 which has the same configuration and function of the timing comparator 100 , samples each of the plurality of data signals (D 0 , D 1 , D 2 , . . . Dn ⁇ 1 , Dn) whose delay amounts are different by each of the plurality of clock signals (C 0 , C 1 , C 2 , . . . Cn ⁇ 1 , Cn) whose delay amounts are different and outputs the sampling results (Q 0 , Q 1 , Q 2 , . . . Qn ⁇ 1 , Qn).
  • variable delay elements 1800 which are coupled in series sequentially delay the clock signal generated by the reception terminal PLL circuit 1718 and supply it to the selector 1802 . Further, the plural stages of variable delay elements 1800 have approximately the same delay characteristics as the plural stages of variable delay elements 1814 . And the selector 1802 selects one of the clock signals outputted by the plural stages of variable delay elements 1800 and supplies it to the phase comparator 1806 . And the variable delay element 1804 which is coupled in parallel to the plural stages of variable delay elements 1800 delays the clock signal generated by the reception terminal PLL circuit 1718 as much as a predetermined delay amount and supplies it to the phase comparator 1806 .
  • the phase comparator 1806 compares the phase of the clock signal delayed by the plural stages of variable delay elements 1800 , supplied from the selector 1802 , with the phase of the clock signal delayed by the variable delay element 1804 .
  • the delay amount control unit 1808 controls the delay amounts of the plural stages of variable delay elements 1800 and the delay amounts of the plural stages of variable delay elements 1814 based on the comparison result of the phase comparator 1806 in order that the phase of the clock signal delayed by the plural stages of variable delay elements 1800 , supplied from the selector 1802 , and the phase of the data signal delayed by the plural stages of variable delay elements 1814 are approximately equal to the phase of the clock signal delayed by the variable delay element 1804 after predetermined cycles.
  • variable delay elements 1820 which are coupled in series sequentially delay the clock signal generated by the reception terminal PLL circuit 1718 and supply it to the selector 1822 . Further, the plural stages of variable delay elements 1820 have approximately the same delay characteristics as the plural stages of variable delay elements 1818 .
  • the selector 1822 selects one of the clock signals outputted by the plural stages of variable delay elements 1820 and supplies it to the phase comparator 1826 .
  • the variable delay element 1824 which is coupled in parallel to the plural stages of variable delay elements 1820 delays the clock signal generated by the reception terminal PLL circuit 1718 as much as a predetermined delay amount and supplies it to the phase comparator 1826 .
  • the phase comparator 1826 compares the phase of the clock signal delayed by the plural stages of variable delay elements 1818 supplied from the selector 1822 with the phase of the clock signal delayed by the variable delay element 1824 .
  • the delay amount control unit 1828 controls the delay amounts of the plural stages of variable delay elements 1818 and the delay amounts of the plural stages of variable delay elements 1820 based on the comparison result of the phase comparator 1826 in order that the phase of the clock signal delayed by the plural stages of variable delay elements 1818 , supplied from the selector 1822 , and the phase of the data signal delayed by the plural stages of variable delay elements 1820 are approximately equal to the phase of the clock signal delayed by the variable delay element 1824 after predetermined cycles.
  • each of the variable delay elements 1800 , the selector 1802 , the variable delay element 1804 , the phase comparator 1806 , the delay amount control unit 1808 , the counter 1810 , the DAC 1812 , and the variable delay elements 1814 has the same configuration and function as the variable delay elements 402 , the selector 403 , the variable delay element 404 , the phase comparator 406 , the delay amount control unit 408 , the counter 410 , the DAC 412 , and the variable delay elements 502 shown in FIG. 5 .
  • the clock recovery circuit 1716 includes a recovery variable delay circuit 1900 , a plurality of EOR circuits 1902 , and a timing judging unit 1903 .
  • the plurality of EOR circuits 1902 take a set of two sampling results of each of pairs of the sequential timing comparators 1816 and perform exclusive OR operation on the sets of sampling results respectively.
  • the timing judging unit 1903 judges the timing of the clock signal generated by the reception terminal PLL circuit 1718 and delayed by the recovery variable delay circuit 1900 in response to the data signal based on the operation result of each of the plurality of EOR circuits 1902 .
  • the timing judging unit 1903 judges the timing of the clock signal generated by the reception terminal PLL circuit 1718 delayed by the recovery variable delay circuit 1900 in response to the data signal by detecting the timing of the clock signal, when the timing comparators 1816 sample the pair of sampling results used by the EOR circuit 1902 , which outputs the logic value indicating that the pair of sampling results are different from each other, to perform exclusive OR operation, as the edge of the data signal.
  • the recovery variable delay circuit 1900 delays the clock signal generated by the reception terminal PLL circuit 1718 and supplies it to the flip-flop circuit 1712 based on the judgment result of the timing judging unit 1903 .
  • the plurality of EOR circuits 1902 have the same configuration and function as the plurality of EOR circuits 1200 shown in FIG. 12 .
  • the timing judging unit 1903 includes a plurality of flip-flop circuits 1904 , a buffer 1906 , a first OR circuit 1908 , a third OR circuit 1910 , a FIFO circuit 1914 , a second OR circuit 1912 , and a counter 1916 .
  • the buffer 1906 delays the clock signal outputted by the variable delay element 1814 of the last stage and supplies it to each of the plurality of flip-flop circuits 1904 .
  • the flip-flop circuit l 904 supplies the operation results of the plurality of EOR circuits 1902 to the first OR circuit 1908 , the third OR circuit 1910 , or the second OR circuit 1912 .
  • the plurality of timing comparators 1816 include a first timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is a first delay time or less, a second timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is a second delay time or more, and a third timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is larger than the first delay time and smaller than the second delay time.
  • the plurality of EOR circuits 1902 include a first EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the first timing comparator group, a second EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the second timing comparator group, and a third EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the third timing comparator group.
  • the first OR circuit 1908 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the first EOR circuit group and supplies the result to the FIFO circuit 1914 .
  • the third OR circuit 1910 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the second EOR circuit group and supplies the result to the FIFO circuit 1914 .
  • the second OR circuit 1912 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the third EOR circuit group and supplies the result to the FIFO circuit 1914 .
  • the first OR circuit 1908 if the edge of the data signal in response to the clock signal is earlier than the first timing, the first OR circuit 1908 outputs a logic value “1”, the third OR circuit 1910 outputs a logic value “0”, and the second OR circuit 1912 outputs a logic value “0”. And if the edge of the data signal in response to the clock signal is later than the first timing and earlier than the second timing, the first OR circuit 1908 outputs the logic value “0”, the third OR circuit 1910 outputs the logic value “1”, and the second OR circuit 1912 outputs the logic value “0”.
  • the first OR circuit 1908 outputs the logic value “0”
  • the third OR circuit 1910 outputs the logic value “0”
  • the second OR circuit 1912 outputs the logic value “1”.
  • the FIFO circuit 1914 synchronously enters the logic values outputted the first, third and second OR circuits 1908 , 1910 and 1912 with the clock signal delayed by the buffer 1906 , whereas synchronously retrieving them with the clock signal generated by the reception terminal PLL circuit 1718 and supplying them to the counter 1916 .
  • the counter 1916 synchronously counts the number of times each of the first, third and second OR circuits 1908 , 1910 and 1912 outputs the logic value “1” with the clock signal generated by the reception terminal PLL circuit 1718 , if each of the plurality of timing comparators 1816 performs sampling operation a plurality of times on each of the plurality of data signals by each of the plurality of clock signals and each of the plurality of EOR circuits 1902 performs exclusive OR operation so that each of the first, third and second OR circuits 1908 , 1910 and 1912 performs OR operation a plurality of times.
  • the recovery variable delay circuit 1900 changes the delay amount of the clock signal generated by the reception terminal PLL circuit 1718 based on the outputs of the first, third and second OR circuits 1908 , 1910 and 1912 , i.e. the count value of the counter 1916 .
  • the recovery variable delay circuit 1900 makes the delay amount of the clock signal large if the first OR circuit 1908 outputs the logic value “1” more than the third OR circuit 1910 and the second OR circuit 1912 , does not change the delay amount of the clock signal if the third OR circuit 1910 outputs the logic value “1” more than the first OR circuit 1908 and the second OR circuit 1912 , and makes the delay amount of the clock signal small if the second OR circuit 1912 outputs the logic value “1” more than the first OR circuit 1908 and the third OR circuit 1910 .
  • the recovery variable delay circuit 1900 may make the delay amount of the clock signal large if the first OR circuit 1908 outputs the logic value “1”, not change the delay amount of the clock signal if the third OR circuit 1910 outputs the logic value “1”, and make the delay amount of the clock signal small if the second OR circuit 1912 outputs the logic value “1”.
  • the recovery variable delay circuit 1900 adjusts the phase of the clock signal in response to the data signal in the above way and performs calibration by BIST (Built In Self Test) or automatic follow-up in order that the phase of the clock signal is near the center of the eye-opening of the data signal.
  • the phase of the clock signal in response to the data signal can be accurately detected, and further the phase of the clock signal in response to the data signal is followed up, so that the phase of the clock signal can be adjusted in real time. Therefore, according to the communication device 1702 related to this embodiment, even if the phase of the clock signal is changed by the noise or the change of the environmental conditions and further the eye-opening of the data signal becomes small by such cause as the high frequency loss of the transmission line 1704 , the phase of the clock signal can be automatically regulated near the center of the eye-opening of the data signal, and thereby extremely stable data transmission can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A variable delay circuit includes plural stages of first variable delay elements coupled in series for sequentially delaying a reference clock signal or a data signal, a second variable delay element coupled in parallel to the plural stages of first variable delay elements for delaying the reference clock signal, a phase comparator for comparing the phase of the reference clock signal delayed by the plural stages of first variable delay elements with the phase of the reference clock signal delayed by the second variable delay element, and a delay amount control unit for controlling the delay amount of each of the plural stages of first variable delay elements based on the comparison result of the phase comparator in order that the phase of the reference clock signal delayed by the plural stages of first variable delay elements is substantially the same as the phase of the reference clock signal delayed by the second variable delay element after predetermined cycles.

Description

  • This patent application claims priority from a Japanese patent application No. 2003-391455 filed on Nov. 20, 2003, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a variable delay circuit. More particularly, the present invention relates to a variable delay circuit using a DLL circuit.
  • 2. Description of the Related Art
  • A conventional variable delay circuit is configured with a rough delay circuit whose resolution is low and variable amount is large and a fine delay circuit whose resolution is high and variable amount is the same as the rough delay circuit. The rough delay circuit which takes the propagation delay time of a delay element as its resolution, and the fine delay circuit changes the delay amount by varying the load capacity of the delay element using a variable capacity element. And in order to prevent the delay precision from deteriorating due to the change of the propagation delay time caused by the noise or the change of the environmental conditions, it is proposed to configure the rough delay circuit with a DLL circuit (cf. International Publication Pamphlet No. 03/036769).
  • However, in the variable delay circuit using the conventional DLL circuit, the fine delay circuit is provided out of the feed-back system of the DLL, so the delay precision deteriorates as it is impossible to comply with the effect of the noise of the DLL circuit or the change of its environment such as the voltage or temperature.
  • SUMMARY OF THE INVENTION
  • Therefore, it is an object of the present invention to provide a variable delay circuit, which is capable of overcoming the above drawbacks accompanying the conventional art. The above and other objects can be achieved by combinations described in the independent claims. The dependent claims define further advantageous and exemplary combinations of the present invention.
  • According to the first aspect of the present invention, a variable delay circuit for delaying and outputting a reference clock signal or a data signal includes plural stages of first variable delay elements coupled in series for sequentially delaying the reference clock signal or data signal, a second variable delay element coupled in parallel to the plural stages of first variable delay elements for delaying the reference clock signal, a phase comparator for comparing a phase of the reference clock signal delayed by the plural stages of first variable delay elements with a phase of the reference clock signal delayed by the second variable delay element, and a delay amount control unit for controlling a delay amount of each of the plural stages of first variable delay elements based on a comparison result of the phase comparator in order that the phase of the reference clock signal delayed by the plural stages of first variable delay elements is substantially the same as the phase of the reference clock signal delayed by the second variable delay element after predetermined cycles.
  • The variable delay circuit may further include a selector for selecting one reference clock signal among a plurality of the reference clock signals or data signals outputted by each of the plural stages of first variable delay elements and supplying the one reference clock signal to the phase comparator, while selecting one reference clock signal among a plurality of the reference clock signals or data signals outputted by each of the plural stages of first variable delay elements in a reciprocally independent manner and outputting the one reference clock signal out of the variable delay circuit.
  • The variable delay circuit may further include plural stages of third variable delay elements, which are coupled in series, with substantially the same delay characteristics as the plural stages of first variable delay elements for sequentially delaying the data signal, wherein the delay amount control unit may control the delay amount by supplying a first control signal to each of the plural stages of first variable delay elements, while controlling the delay amount by supplying a second control signal, which is uniquely determined from the first control signal, to the plural stages of third variable delay elements.
  • The delay amount control unit may control the plural stages of first and third variable delay elements to have substantially a same delay amount by supplying the first control signal to each of the plural stages of first variable delay elements while supplying the second control signal, which is the same as the first control signal, to each of the plural stages of third variable delay elements.
  • The phase comparator may include a dynamic D flip-flop circuit for latching and outputting the reference clock signal delayed by the plural stages of first variable delay elements with parasitic capacitance thereof based on the reference clock signal delayed by the second variable delay element and a D flip-flop circuit for latching and outputting an output signal outputted by the dynamic D flip-flop circuit based on the reference clock signal delayed by the second variable delay element.
  • The dynamic D flip-flop circuit may include a first analog switch for performing an on/off control based on the reference clock signal delayed by the second variable delay element, a first inverter for inverting a signal passing through the first analog switch, a second analog switch coupled to a next stage of the first inverter for performing an on/off control inverse to the on/off control of the first analog switch based on the clock signal delayed by the second variable delay element, and a second inverter for inverting a signal passing through the second analog switch.
  • The D flip-flop circuit may include a third analog switch for performing an on/off control based on the clock signal delayed by the second variable delay element, a third inverter for inverting a signal passing through the third analog switch, a fourth analog switch coupled to a next stage of the third inverter for performing an on/off control inverse to the on/off control of the third analog switch based on the clock signal delayed by the second variable delay element, a fourth inverter for inverting a signal passing through the fourth analog switch, a fifth inverter for inverting a signal outputted from the third inverter, a fifth analog switch coupled to a next stage of the fifth inverter for performing an on/off control inverse to the on/off control of the third analog switch based on the clock signal delayed by the second variable delay element and supplying the passing signal to the third inverter, a sixth inverter for inverting a signal outputted from the fourth inverter, and a sixth analog switch coupled to a next stage of the sixth inverter for performing an on/off control inverse to the on/off control of the fourth analog switch based on the clock signal delayed by the second variable delay element and supplying the passing signal to the fourth inverter.
  • The phase comparator may output a flag signal indicating whether the phase of the clock signal delayed by the plural stages of first variable delay elements is early or later relatively to the phase of the clock signal delayed by the second variable delay element, and the delay amount control unit may include a counter for increasing a count value if the flag signal indicates that the phase of the clock signal delayed by the plural stages of first variable delay elements is early, whereas decreasing the count value if the flag signal indicates that the phase is late and a DAC for supplying a bias signal to control the delay amount for at least one of the plural stages of first variable delay elements based on the count value of the counter.
  • The summary of the invention does not necessarily describe all necessary features of the present invention. The present invention may also be a sub-combination of the features described above. The above and other features and advantages of the present invention will become more apparent from the following description of the embodiments taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an example of the configuration of a timing comparator 100.
  • FIG. 2 shows an example of the configuration of a dynamic D flip-flop circuit 102.
  • FIG. 3 shows an example of the configuration of a positive feed-back D flip-flop circuit 106.
  • FIG. 4 shows an example of the configuration of a variable delay circuit 400.
  • FIG. 5 shows an example of the configuration of a variable delay circuit 500.
  • FIG. 6 shows an example of the configuration of a phase comparator 406.
  • FIG. 7 shows an example of the configuration of a testing apparatus 700.
  • FIG. 8 shows an example of the configuration of a comparing unit 712.
  • FIG. 9 shows an example of the configuration of a testing apparatus 900.
  • FIG. 10 shows an example of the configuration of a signal characteristic detecting unit 912.
  • FIG. 11 shows an example of the phase detection operation by a signal characteristic detecting unit 912.
  • FIG. 12 shows an example of the configuration of the signal characteristic detecting unit 912.
  • FIG. 13 shows an example of the edge detection operation by the signal characteristic detecting unit 912.
  • FIG. 14 shows an example of the configuration of the signal characteristic detecting unit 912.
  • FIG. 15 shows an example of the jitter measurement operation by the signal characteristic detecting unit 912.
  • FIG. 16 shows an example of the jitter measurement operation by the signal characteristic detecting unit 912.
  • FIG. 17 shows an example of the configuration of communication devices 1700 and 1702.
  • FIG. 18 shows an example of the configuration of a clock recovery circuit 1716.
  • FIG. 19 shows an example of the configuration of the clock recovery circuit 1716.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
  • FIG. 1 shows an example of the configuration of a timing comparator 100 according to the present invention. The timing comparator 100 includes a dynamic D flip-flop circuit 102, a buffer 104 and a positive feed-back D flip-flop circuit 106, and samples and outputs a data signal (D) by a clock signal (CK). The dynamic D flip-flop circuit 102 latches and outputs the data signal (D) with its parasitic capacitance based on the clock signal (CK) received by the timing comparator 100 and supplies it to the positive feed-back D flip-flop circuit 106. The buffer 104 delays the clock signal (CK) received by the timing comparator 100 by a predetermined time and supplies it to the positive feed-back D flip-flop circuit 106. The positive feed-back D flip-flop circuit 106 latches and outputs the output signal outputted by the dynamic D flip-flop circuit 102 based on the clock signal (CK) delayed by the buffer 104 using its positive feed-back circuit. The buffer 104 preferably delays the clock signal (CK) more than the set-up time of the positive feed-back D flip-flop circuit 106. Further, the positive feed-back D flip-flop circuit 106 is an example of the D flip-flop circuit of this invention.
  • The timing comparator 100 includes the buffer 104, whereby it can allow the dynamic D flip-flop circuit 102 and the positive feed-back D flip-flop circuit 106 not to perform a pipeline process but to operate as a delay line. In other words, the dynamic D flip-flop circuit 102 and the positive feed-back D flip-flop circuit 106 can operate with the same clock signal.
  • FIG. 2 shows an example of the configuration of the dynamic D flip-flop circuit 102. The dynamic D flip-flop circuit 102 includes a first analog switch 200, a first inverter 202, a second analog switch 204, and a second inverter 206. The first analog switch 200 performs an on/off control based on the clock signal (CK) received by the timing comparator 100. The first inverter 202 inverts and outputs the signal passing through the first analog switch 200. The second analog switch 204 is coupled to the next stage of the first inverter 202 and performs the on/off control inverse to the on/off control of the first analog switch 200 based on the clock signal (CK) received by the timing comparator 100. The second inverter 206 inverts and outputs the signal passing through the second analog switch 204.
  • The first and second analog switches 200 and 204 are analog switches using P-channel/N-channel transistors and preform switching operation by CKP whose phase is the same as CK and CKN whose phase is inverse to it. And, the first and second inverters 202 and 206 are CMOS inverters. And the dynamic D flip-flop circuit 102 configures a sample-and-hold circuit by the analog switches, the first and second analog switches 200 and 204, and the parasitic capacitance such as the gate capacitance and the wiring capacitance of the first and second inverters 202 and 206.
  • Since the dynamic D flip-flop circuit 102 does not include a loop circuit, its logic output becomes an intermediate level between “H” and “L” levels unless the electric charge is sufficient. However, there is an advantage that the phase width to output the intermediate level is extremely small, and the width of the hysteresis is extremely small.
  • FIG. 3 shows an example of the configuration of the positive feed-back D flip-flop circuit 106. The positive feed-back D flip-flop circuit 106 includes a third analog switch 300, a third inverter 302, a fourth analog switch 304, a fourth inverter 306, a fifth inverter 308, a fifth analog switch 310, a sixth inverter 312, and a sixth analog switch 314.
  • The third analog switch 300 performs an on/off control based on the clock signal (CK) delayed by the buffer 104. The third inverter 302 inverts and outputs the signal passing through the third analog switch 300. The fourth analog switch 304 is coupled to the next stage of the third inverter 302, and performs the on/off control inverse to the on/off control of the third analog switch 300 based on the clock signal (CK) delayed by the buffer 104. The fourth inverter 306 inverts and outputs the signal passing through the fourth analog switch 304. The fifth inverter 308 inverts and outputs the signal passing through the third analog switch 302. The fifth analog switch 310, which is coupled to the next stage of the fifth inverter 308, performs the on/off control inverse to the on/off control of the third analog switch 300 based on the clock signal (CK) delayed by the buffer 104 and supplies the passing signal to the third inverter 302. The sixth inverter 312 inverts and outputs the signal passing through the fourth analog switch 306. The sixth analog switch 314, which is coupled to the next stage of the sixth inverter 312, performs the on/off control inverse to the on/off control of the fourth analog switch 304 based on the clock signal (CK) delayed by the buffer 104 and supplies the passing signal to the fourth inverter 306.
  • The third, fourth, fifth and sixth analog switches 300, 304, 310 and 314 are analog switches using P-channel/N-channel transistors and preform switching operation by CKP whose phase is the same as CK and CKN whose phase is inverse to it. And the third, fourth, fifth and sixth inverters 302, 306, 308 and 312 are CMOS inverters. And the positive feed-back D flip-flop circuit 106 holds the output of the third analog switch 300 by the loop circuit which consists of the third and fifth inverters 302 and 308 and the fifth analog switch 310, while holding the output of the fourth analog switch 304 which consists of the fourth and sixth inverters 306 and 312 and the sixth analog switch 314.
  • The positive feed-back D flip-flop circuit 106 amplifies and outputs the signal by its positive feed-back circuit. Accordingly, if the data signal (D) of an intermediate level is inputted from the dynamic D flip-flop circuit 102, hysteresis occurs. However, the width of the hysteresis is such that the logic output of the dynamic D flip-flop circuit 102 becomes the intermediate level, so it is extremely small. Therefore, according to the timing comparator 100 related to this invention, the logic output of an intermediate level is not outputted, and thus the time required until the phase is locked can be reduced, so it is possible to correspond to a higher frequency band.
  • FIG. 4 shows an example of the configuration of a variable delay circuit 400 according to this invention. The variable delay circuit 400 is a DLL (Delay Lock Loop) circuit and delays and outputs a reference clock signal by a designated time. The variable delay circuit 400 includes plural stages of variable delay elements 402, a selector 403, a variable delay element 404, a phase comparator 406, and a delay amount control unit 408. The delay amount control unit 408 includes a counter 410 and a DAC 412.
  • The plural stages of variable delay elements 402 which are coupled in series sequentially delay the reference clock signal or the data signal and supply it to the selector 403. The selector 403 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 402 in a reciprocally independent manner and supplies it to the phase comparator 406, while selecting one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 402 and supplying it out of the variable delay circuit 400. The variable delay element 404 which is coupled in parallel to the plural stages of variable delay elements 402 delays the reference clock signal. And the phase comparator 406 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 402, supplied from the selector 403, with the phase of the reference clock signal delayed by the variable delay element 404. The delay amount control unit 408 controls the delay amount of each of the plural stages of variable delay elements 402 based on the comparison result of the phase comparator 406 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402, supplied from the selector 403, is approximately the same as the phase of the reference clock signal delayed by the variable delay element 404 for each of predetermined cycles.
  • Particularly, the phase comparator 406 outputs a flag signal that indicates whether the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is early or late relatively to the phase of the reference clock signal delayed by the variable delay element 404. And the counter 410 increases the count value if the flag signal outputted from the phase comparator 406 indicates that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is early, whereas decreasing the count value if the flag signal indicates that it is late. And the DAC 412 supplies a bias signal to control the delay amounts for the plural stages of variable delay elements 402 based on the count value of the counter 410. Here, the delay time per one stage of the variable delay elements 402 is determined by the following equation:
  • (the delay amount of one stage of the variable delay elements 402)=((the period of the reference clock signal)−(the delay amount of the variable delay element 404))/(the number of the stages of the variable delay elements 402 used in the DLL).
  • According to the variable delay circuit 400 related to this invention, since the variable amounts of the propagation delay time of the plural stages of variable delay elements 402 caused by the change of processes or the environmental change such as voltage or temperature can be assigned to the lock range of the DLL, each of the variable delay elements 402 has its variable amount as much as (the delay amount of the variable delay element 404))/(the number of the stages of the variable delay elements 402 used in the DLL), and thus it is possible to absorb the deviation of the propagation delay time of the plural stages of variable delay elements 402 caused by the change of processes or the environmental change such as voltage or temperature. Further, the width of the period of the reference clock signal which can be delayed can be increased, and even if the period of the reference clock signal changes, it is possible to easily correspond to such situation simply by the process of software without correcting any circuits.
  • FIG. 5 shows an example of the configuration of a variable delay circuit 500 according to this invention. The variable delay circuit 500 includes a DLL circuit which is an example of the variable delay circuit 400 shown in FIG. 4 and delays the data signal by a predetermined time and outputs it. The variable delay circuit 500 includes plural stages of variable delay elements 502 and a selector 504 in addition to the configuration elements of the variable delay circuit 400 shown in FIG. 4.
  • The plural stages of variable delay elements 502 which have approximately the same delay characteristics as the plural stages of variable delay elements 402 are coupled in series and sequentially delay the data signal. By decreasing the number of the stages of the variable delay elements 402 to such a limit as the number of the stages required for the delay time as much as the period of the reference clock signal, the circuit size can be reduced. And the selector 504 selects one of the data signals outputted by the plural stages of variable delay elements 502 and outputs it out of the variable delay circuit 500.
  • The delay amount control unit 408 controls the delay amount of each of the plural stages of variable delay elements 402 based on the comparison result of the phase comparator 406 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 402 is approximately equal to the phase of the reference clock signal delayed by the variable delay element 404 after predetermined cycles, while controlling the delay amount of each of the plural stages of variable delay elements 402 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 502 is approximately equal to the phase of the reference clock signal delayed by the variable delay element 404 after predetermined cycles. For example, the delay amount control unit 408 controls the delay amount by supplying a first control signal to each of the plural stages of variable delay elements 402, whereas controlling the delay amount by supplying a second control signal uniquely determined from the first control signal to each of the plural stages of variable delay elements 502. Moreover, if the plural stages of variable delay elements 502 and the plural stages of variable delay elements 402 are the same in the number of stages, the delay amount control unit 408 may control the plural stages of variable delay elements 402 and the plural stages of variable delay elements 502 to have approximately the same delay amount by supplying the first control signal to each of the plural stages of variable delay elements 402 whereas supplying the second control signal which is the same as the first control signal to each of the plural stages of variable delay elements 502.
  • FIG. 6 shows an example of the configuration of a phase comparator 406. The phase comparator 406 includes a dynamic D flip-flop circuit 600 and a positive feed-back D flip-flop circuit 602. The dynamic D flip-flop circuit 600 latches and outputs the reference clock signal delayed by the plural stages of variable delay elements 402 with its parasitic capacitance based on the reference clock signal delayed by the variable delay element 404. The positive feed-back D flip-flop circuit 602 latches and outputs the output signal outputted by the dynamic D flip-flop circuit 600 by its positive feed-back circuit based on the reference clock signal delayed by the variable delay element 404.
  • The dynamic D flip-flop circuit 600 has the same configuration and function as the dynamic D flip-flop circuit 102 shown in FIG. 2, and the positive feed-back D flip-flop circuit 602 has the same configuration and function as the positive feed-back D flip-flop circuit 106 shown in FIG. 3, so they will not be described.
  • FIG. 7 shows an example of the configuration of the testing apparatus 700 according to a first exemplary embodiment of this invention. The testing apparatus 700 includes a pattern generator 702, a waveform formatting unit 704, a timing generator 706, a reference clock generator 708, a timing generator 710, a comparing unit 712, and a judging unit 714. The pattern generator 702 generates the data signal to be supplied to the device under test 716 and supplies it to the waveform formatting unit 704. And the reference clock generator 708 generates an expected value signal required to judge the quality of the device under test 716 and supplies it to the judging unit 714. The timing generator 706 generates a strobe signal that indicates the timing at which the waveform formatting unit 704 should supply the data signal to the device under test 716 based on the reference clock signal generated by the reference clock generator 708. And the timing generator 710 generates a strobe signal that indicates the timing at which the comparing unit 712 should sample the data signal outputted from the device under test 716 based on the reference clock signal generated by the reference clock generator 708.
  • The waveform formatting unit 704 formats the waveform of the data signal generated by the pattern generator 702 and supplies the data signal to the device under test 716 based on the strobe signal generated by the timing generator 706. The device under test 716 outputs the data signal in response to the data signal supplied. And the comparing unit 712 samples the data signal outputted from the device under test 716 by the strobe signal generated by the timing generator 710. And the judging unit 714 judges the quality of the device under test 716 by comparing the sampling result of the comparing unit 712 with the expected value signal generated by the pattern generator 702.
  • FIG. 8 shows an example of the configuration of the comparing unit 712. The comparing unit 712 includes an H-side level comparator 800, an H-side timing comparator 802, an L-side level comparator 804, and an L-side timing comparator 806. The H-side level comparator 800 compares the data signal outputted from the device under test 716 with an H-side threshold value (VOH) and outputs the comparison result (SH). For example, the H-side level comparator 800 outputs a logic value “0” if the data signal outputted from the device under test 716 is larger than the H-side threshold value (VOH) , whereas outputting a logic value “1” if the data signal outputted from the device under test 716 is smaller than the H-side threshold value (VOH). And the L-side level comparator 804 compares the data signal outputted from the device under test 716 with an L-side threshold value (VOL) and outputs the comparison result (SL). For example, the L-side level comparator 804 outputs the logic value “0” if the data signal outputted from the device under test 716 is smaller than the L-side threshold value (VOL), whereas outputting the logic value “1” if the data signal outputted from the device under test 716 is larger than the L-side threshold value (VOL).
  • The H-side timing comparator 802 samples the comparison result (SH) of the H-side level comparator 800 with an H-side strobe signal (STRBH) generated by the timing generator 710 and outputs the sampling result to the judging unit 714. The L-side timing comparator 80 samples the comparison result (SL) of the L-side level comparator 804 with an L-side strobe signal (STRBL) generated by the timing generator 710 and outputs the sampling result to the judging unit 714.
  • The H-side and L- side timing comparators 802 and 806 have the same configuration and function as the timing comparator 100 shown in FIG. 1, so they will be described. Since the H-side and L- side timing comparators 802 and 806 have the same configuration and function as the timing comparator 100 shown in FIG. 1, it is possible to sample the data signal outputted from the device under test 716 with high precision, and thus the device under test 716 can be accurately tested.
  • FIG. 9 shows an example of the configuration of a testing apparatus 900 according to a second exemplary embodiment of this invention. The testing apparatus 900 includes a pattern generator 902, a waveform formatting unit 904, a timing generator 906, a reference clock generator 908, a timing generator 910, a signal characteristic detecting unit 912, and a judging unit 914. The pattern generator 902 generates a data signal to be supplied to a device under test 916 and supplies it to the waveform formatting unit 904. And the reference clock generator 908 generates an expected value signal required to judge the quality of the device under test 916 and supplies it to the judging unit 914. The reference clock generator 908 generates the reference clock signal and supplies it to the timing generator 906, the timing generator 910 and the signal characteristic detecting unit 912. The timing generator 906 generates a strobe signal that indicates the timing at which the waveform formatting unit 904 should supply the data signal to the device under test 916 based on the reference clock signal generated by the reference clock generator 908. And the timing generator 910 generates a strobe signal that indicates the timing at which the signal characteristic detecting unit 912 should sample the data signal outputted from the device under test 916 based on the reference clock signal generated by the reference clock generator 908.
  • The waveform formatting unit 904 formats the waveform of the data signal generated by the pattern generator 902 and supplies the data signal to the device under test 916 based on the strobe signal generated by the timing generator 906. The device under test 916 outputs the data signal in response to the data signal supplied. And the signal characteristic detecting unit 912 samples the data signal outputted from the device under test 916 by the strobe signal generated by the timing generator 910 and detects the signal characteristics of the data signal outputted from the device under test 916. And the judging unit 914 judges the quality of the device under test 916 by comparing the detection result of the signal characteristic detecting unit 912 with the expected value signal generated by the pattern generator 902.
  • FIG. 10 shows an example of the configuration of the signal characteristic detecting unit 912. The signal characteristic detecting unit 912 includes plural stages of variable delay elements 1000, a selector 1002, a variable delay element 1004, a phase comparator 1006, a delay amount control unit 1007, plural stages of variable delay elements 1012, a plurality of timing comparators 1014, plural stages of variable delay elements 1016, plural stages of variable delay elements 1018, a selector 1020, a variable delay element 1022, a phase comparator 1024, and a delay amount control unit 1025. The delay amount control unit 1007 includes a counter 1008 and a DAC 1010, and the delay amount control unit 1025 includes a counter 1026 and a DAC 1028. And the signal characteristic detecting unit 912 is an example of the data sampling apparatus of this invention.
  • The plural stages of variable delay elements 1012 which are coupled in series sequentially delay the data signal outputted from the device under test 916 by a delay amount T. And the plural stages of variable delay elements 1016 which are coupled in series sequentially delay the strobe signal outputted from the timing generator 910 by a delay amount T+Δt which is larger than the delay amount T. And the plurality of timing comparators 1014 sample each of a plurality of the data signals, whose delay amounts are different, delayed by each of the plural stages of variable delay elements 1012 by the strobe signal delayed by the variable delay elements 1016 whose stage is the same as each of the plural stages of variable delay elements 1012. And the signal characteristic detecting unit 912 detects the phase of the data signal outputted from the device under test 916 based on the sampling result by each of the plurality of timing comparators 1014.
  • Further, each of the plurality of timing comparators 1014, which has the same configuration and function as the timing comparator 100 shown in FIG. 1, samples each of the plurality of data signals (D0, D1, D2, . . . Dn−1, Dn), whose delay amounts are different, by each of the plurality of strobe signals C0, C1, C2, . . . Cn−1, Cn), whose delay amounts are different, and outputs the sampling result (Q0, Q1, Q2, . . . Qn−1, Qn). In this way, by using the timing comparators 1014 with the same proofreading and function as the timing comparator 100 shown in FIG. 1, it is possible to correspond to a higher frequency band and to reduce the skew at the rising or falling edge of the sampling signal.
  • And the plural stages of variable delay elements 1000 which are coupled in series sequentially delay the reference clock signal outputted by the reference clock generator 908 and supply it to the selector 1002. In addition, the plural stages of variable delay elements 1000 have approximately the same characteristics as the plural stages of variable delay elements 1012. And the selector 1002 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 1000 and supplies it to the phase comparator 1006. And the variable delay element 1004 which is coupled in series to the plural stages of variable delay elements 1000 delays the reference clock signal outputted by the reference clock generator 908 as much as the delay amount predetermined and supplies it to the phase comparator 1006.
  • The phase comparator 1006 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 1000, supplied from the selector 1002, with the phase of the reference clock signal delayed by the variable delay element 1004. And the delay amount control unit 1007 controls the delay amounts of the plural stages of variable delay elements 1000 and the delay amounts of the plural stages of variable delay elements 1012 based on the comparison result of the phase comparator 1006 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 1000, supplied from the selector 1002, and the phase of the data signal delayed by the plural stages of variable delay elements 1012 are approximately equal to the phase of the reference clock signal delayed by the variable delay element 1004 after predetermined cycles.
  • And the plural stages of variable delay elements 1018 which are coupled in series sequentially delay the reference clock signal outputted by the reference clock generator 908 and supply it to the selector 1020. Further, the plural stages of variable delay elements 1018 have the same delay characteristics as the plural stages of variable delay elements 1016. And the selector 1020 selects one reference clock signal among a plurality of the reference clock signals or the data signals outputted by the plural stages of variable delay elements 1018 and supplies it to the phase comparator 1024. And the variable delay element 1022 which is coupled in parallel to the plural stages of variable delay elements 1018 delays the reference clock signal outputted by the reference clock generator 908 as much as the delay amount predetermined and supplies it to the phase comparator 1024.
  • The phase comparator 1024 compares the phase of the reference clock signal delayed by the plural stages of variable delay elements 1018, supplied from the selector 1020, with the phase of the reference clock signal delayed by the variable delay element 1022. And the delay amount control unit 1025 controls the delay amounts of the plural stages of variable delay elements 1018 and the delay amounts of the plural stages of variable delay elements 1016 based on the comparison result of the phase comparator 1024 in order that the phase of the reference clock signal delayed by the plural stages of variable delay elements 1018, supplied from the selector 1020, and the phase of the data signal delayed by the plural stages of variable delay elements 1016 are approximately equal to the phase of the reference clock signal delayed by the variable delay element 1022 after predetermined cycles.
  • Further, each of the variable delay elements 1000, the selector 1002, the variable delay element 1004, the phase comparator 1006, the delay amount control unit 1007, the counter 1008, the DAC 1010, and the variable delay elements 1012 has the same configuration and function as each of the variable delay elements 402, the selector 403, the variable delay element 404, the phase comparator 406, the delay amount control unit 408, the counter 410, the DAC 412, and the variable delay elements 502 shown in FIG. 5. And each of the variable delay elements 1018, the selector 1020, the variable delay element 1022, the phase comparator 1024, the delay amount control unit 1025, the counter 1026, the DAC 1028, and the variable delay elements 1016 has the same configuration and function as each of the variable delay elements 402, the selector 403, the variable delay element 404, the phase comparator 406, the delay amount control unit 408, the counter 410, the DAC 412, and the variable delay elements 502 shown in FIG. 5 and functions as a multi-strobe generating circuit for generating a plurality of strobe signals whose delay times are different.
  • FIG. 11 shows an example of the phase detection operation by the signal characteristic detecting unit 912. FIG. 11(a) shows the input and output signals of a plurality of timing comparators 1014. FIG. 11(b) shows the outline of the phase detection operation.
  • The timing comparator 1014 of the first stage samples the data signal (D0) outputted from the device under test 916 by the strobe signal (C0), whose phase is earlier than the change point of the data signal (D0) as much as Tofs, generated by the timing generator 910 and outputs the sampling result (Q0). In this embodiment, since the data signal (D0) at the timing of the strobe signal (C0) is “L”, the sampling result (Q0) is “L”.
  • The timing comparator 1014 of the second stage samples the data signal (D1), which results from delaying the data signal (D0) as much as the delay amount T by the variable delay element 1012 of the first stage, by the strobe signal (C1), which results from delaying the strobe signal (C0) as much as the delay amount T+Δt by the variable delay element 1016 of the first stage, and outputs the sampling result (Q1). In this embodiment, since the data signal (D1) at the timing of the strobe signal (C1) is “L”, the sampling result (Q1) is “L”.
  • The timing comparator 1014 of the third stage samples the data signal (D2), which results from further delaying the data signal (D1) as much as the delay amount T by the variable delay element 1012 of the second stage, by the strobe signal (C2), which results from further delaying the strobe signal (C1) as much as the delay amount T+Δt by the variable delay element 1016 of the second stage, and outputs the sampling result (Q2). In this embodiment, since the data signal (D2) at the timing of the strobe signal (C2) is “L”, the sampling result (Q2) is “L”.
  • In this way, the plurality of timing comparators 1014 sample the plurality of data signals (D0, D1, D2, . . . Dn−1, Dn) by the plurality of strobe signal (C0, C1, C2, . . . Cn−1, Cn) respectively and output the sampling results (Q0, Q1, Q2, . . . Qn−1, Qn). The timing comparator 1014 of the n-th stage samples the data signal (Dn), which results from delaying the data signal (Dn−1) as much as the delay amount T by the variable delay element 1012 of the n-th stage, by the strobe signal (Cn), which results from delaying the strobe signal (Cn−1) as much as the delay amount T+Δt by the variable delay element 1016 of the n-th stage, and outputs the sampling result (Qn). In this embodiment, since the data signal (Dn) at the timing of the strobe signal (Cn) is “H”, the sampling result (Q2) is “H”.
  • In other words, the judging unit 914 retrieves the sampling results (Q0, Q1, Q2, . . . Qn−1, Qn) of the plurality of timing comparators 1014 and plots them, so that it can realize the same function of detecting the change point of the data signal by supplying a plurality of strobe signals (C0, C1, C2, . . . Cn−1, Cn) over the change point of the data signal outputted from the device under test 916 and sampling the data signal by each of the plurality of strobe signals (C0, C1, C2, . . . Cn−1, Cn) as shown in FIG. 11(b). Further, according to the testing apparatus 700 related to this embodiment, since the phase of the data signal can be detected by the test process of one pass, i.e. simply by outputting the data signal to the device under test 916 once, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 12 shows an example of the configuration of the signal characteristic detecting unit 912. The signal characteristic detecting unit 912 includes a plurality of EOR circuits 1200 in addition to the configuration elements shown in FIG. 10. The plurality of EOR circuits 1200 take a set of two sampling results of each of pairs of the sequential timing comparators 1014 and perform exclusive OR operation on the sets of sampling results respectively.
  • Particularly, the EOR circuit 1200 of the first stage performs exclusive OR operation on the sampling result (Q0) of the timing comparator 1014 of the first stage and the sampling result (Q1) of the timing comparator 1014 of the second stage and outputs the operation result (EDG1). And the EOR circuit 1200 of the second stage performs exclusive OR operation on the sampling result (Q1) of the timing comparator 1014 of the second stage and the sampling result (Q2) of the timing comparator 1014 of the third stage and outputs the operation result (EDG2). And the EOR circuit 1200 of the third stage performs exclusive OR operation on the sampling result (Q2) of the timing comparator 1014 of the third stage and the sampling result (Q3) of the timing comparator 1014 of the fourth stage and outputs the operation result (EDG3). And the EOR circuit l200 of the n-th stage performs exclusive OR operation on the sampling result (Qn−1) of the timing comparator 1014 of the n-th stage and the sampling result (Qn) of the timing comparator 1014 of the n+1-th stage and outputs the operation result (EDGn). Further, the plurality of EOR circuits 1200 may be other circuits except the EOR circuits if they are to output a logic value that indicates whether the pair of sampling results are different from each other or not.
  • FIG. 13 shows an example of the edge detection operation by the signal characteristic detecting unit 912. The signal characteristic detecting unit 912 detects the timing of the strobe signal in response to one of the EOR circuits 1200, which outputs the logic value indicating that a pair of sampling results are different from each other among the plurality of EOR circuits 1200, as the edge of the data signal. In other words, it detects the timing of the strobe signal, when the timing comparators 1014 sample the pair of sampling results used by the EOR circuit 1200, which outputs the logic value indicating that the pair of sampling results are different from each other, to perform exclusive OR operation, as the edge of the data signal outputted from the device under test 916.
  • For example, as shown in FIG. 13, if the sampling results (Q0, Q1 and Q2) of the timing comparators 1014 of the first to third stages are “L” and the sampling results (Q3, Q4, Q5, Q6 . . . ) of the timing comparators 1014 of the fourth stage and later are “H”, it is shown that the operation result (EDG3) of the EOR circuit l200 of the third stage, which performs exclusive OR operation on the sampling result (Q2) of the timing comparator 1014 of the third stage and the sampling result (Q3) of the timing comparator 1014 of the fourth stage, is “H”, i.e. the pair of sampling results are different from each other. Accordingly, the signal characteristic detecting unit 912 of this embodiment detects the timing of the strobe signal (C3) taken by the timing comparator 1014 of the fourth stage as the edge of the data signal. According to the testing apparatus 700 related to this embodiment, since the edge of the data signal outputted from the device under test 916 can be detected by a hardware circuit, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 14 shows an example of the configuration of the signal characteristic detecting unit 912. The signal characteristic detecting unit 912 includes a counter 1400, a plurality of counters 1402, a plurality of buffers 1404, a plurality of AND circuits 1406, and a counter control circuit 1408 in addition to the configuration elements of FIGS. 10 and 12.
  • The counter 1400 counts the strobe signal (C0) generated by the timing generator 910 and supplies the count value to the counter control circuit 1408. And each of the plurality of counters 1402 counts the number of times each of the plurality of EOR circuits 1200 outputs the logic value that indicates the pair of sampling results are different from each other, if each of the plurality of timing comparators 1014 performs sampling operation a plurality of times on each of the plurality of data signals at the timing of each of the plurality of strobe signals so that each of the plurality of EOR circuits 1200 performs exclusive OR operation a plurality of times. And the signal characteristic detecting unit 912 measures the jitter of the data signal outputted by the device under test 916 based on the count value of the plurality of the counter 1402.
  • Particularly, each of the plurality of buffers 1404 delays each of the plurality of strobe signals (C1, C2, C3, . . . Cn−1, Cn) outputted from each of the plural stages of variable delay elements 1016 and supplies it to the plurality of AND circuits 1406. Each of the plurality of buffers 1404 preferably delays each of the plurality of strobe signals (C1, C2, C3, . . . Cn−1, Cn) more than the set-up time of each of the plurality of counters 1402. Accordingly, the plurality of timing comparators 101 and the plurality of counters 1402 can operate as a delay line. Each of the plurality of AND circuits 1406 performs exclusive OR operation on the plurality of operation results (EDG1, EDG2, EDG3, . . . EDGn−1, EDGn) respectively outputted by the plurality of EOR circuits 1200 and the plurality of strobe signals (C1, C2, C3, . . . Cn−1, Cn) respectively delayed by the plurality of buffers 1404 and supplies the operation result to the plurality of counters 1402.
  • Each of the plurality of counters 1402 increases the count value in order that the count value corresponds to each of the plurality of strobe signals, which indicates the timing of the edge of the data signal outputted from the device under test 916, based on the operation result outputted from each of the plurality of AND circuits 1406. The counter control circuit 1408 supplies a counter control signal to force the plurality of counters 1402 to count to the plurality of counters 1402, and if the counter 1400 has counted the strobe signal (C0) such that the count value amounts to a predetermined parameter, it supplies a counter control signal to force the plurality of counters 1402 to stop counting to the plurality of counters 1402.
  • FIGS. 15 and l6 show an example of the jitter measurement operation by the signal characteristic detecting unit 912. FIG. 16(a) shows the relation between each of the plurality of counters 1402 and the count value of the plurality of counters 1402. FIG. 16(b) shows the relation between the timing of the plurality of strobe signals and the frequency of the occurrence of the edge of the data signal.
  • As shown in FIG. 15, the plurality of timing comparators 1014 sample each of the plurality of data signals outputted from the device under test 916 by the plurality of strobe signals, while the plurality of EOR circuits 1200 perform exclusive OR operation on the sampling results of the timing comparators 1014 and detect and output the edge of the data signal outputted from the device under test 916. And the plurality of counters 1402 count the operation results of the plurality of EOR circuits 1200 in response to the plurality of data signals, e.g. M pieces of data signals based on the counter control signal outputted by the counter control circuit 1408.
  • And by retrieving and plotting the count value of each of the plurality of counters 1402, the graph as shown in FIG. 16(a) can be obtained. The plurality of counters 1402 correspond to the plurality of strobe signals respectively. Accordingly, in the graph shown in FIG. 16, by replacing each of the plurality of counters 1402 with the timing of the plurality of strobe signals and replacing the count value of each of the plurality of counters 1402 with the frequency of the occurrence of the edge, a histogram graph of the phase of the data signal in response to the strobe signal can be obtained as shown in FIG. 16(b). Accordingly,the jitter of the data signal outputted from the device under test 916 can be measured.
  • As above, by using the plurality of counters 1402, the edge of the data signal generated at the timing of each of the plurality of strobe signals whose phases are different can be counted at the timing of each of the plurality of strobe signals. According to the testing apparatus 700 related to this embodiment, since the jitter of the data signal outputted from the device under test 916 can be measured by a hardware circuit, it is possible to perform the test of the device under test 916 in extremely short time.
  • FIG. 17 shows an example of the configuration of communication devices 1700 and 1702 according to a third exemplary embodiment of this invention. The communication device 1700 is an LSI of a transmission terminal (TX) for performing high speed data transmission. And the communication device 1702 is an LSI of a reception terminal (RX) for performing high speed data transmission. The communication device l700 transmits data to the communication device 1702 via the transmission line 1704, whereas the communication device 1702 receives the data from the communication device 1700 via the transmission line 1704.
  • The communication device 1700 includes a transmission terminal logic circuit 1706, a transmission terminal PLL circuit 1708, and a flip-flop circuit 1710. The transmission terminal logic circuit 1706 generates a data signal and supplies it to the flip-flop circuit 1710. And the transmission terminal PLL circuit 1708 generates a clock signal and supplies it to the flip-flop circuit 1710. And the flip-flop circuit 1710 synchronously transmits the data signal generated by the transmission terminal logic circuit 1706 to the communication device 1702 with the clock signal generated by the transmission terminal PLL circuit 1708.
  • The communication device 1702 includes a flip-flop circuit 1712, a reception terminal logic circuit 1714, a clock recovery circuit 1716, and a reception terminal PLL circuit 1718. The reception terminal PLL circuit 1718 is an example of the reference clock generating circuit of this invention. The reception terminal PLL circuit 1718 generates a clock signal and supplies it to the clock recovery circuit 1716. The clock recovery circuit 1716 receives the data signal transmitted from the communication device 1700, adjusts the timing of the clock signal generated by the reception terminal PLL circuit 1718 in response to the data signal and supplies it to the flip-flop circuit 1712. And the flip-flop circuit 1712 synchronizes the data signal transmitted from the communication device 1700 with the clock signal generated by the clock recovery circuit 1716 and supplies it to the reception terminal logic circuit 1714. And the reception terminal logic circuit 1714 synchronously deals with the data signal transmitted from the communication device 1700 with the clock signal generated by the clock recovery circuit 1716.
  • FIGS. 18 and 19 show an example of the configuration of the clock recovery circuit 1716. As shown in FIG. 18, the clock recovery circuit 1716 includes plural stages of variable delay elements 1800, a selector 1802, a variable delay element 1804, a phase comparator 1806, a delay amount control unit 1808, plural stages of variable delay elements 1814, a plurality of timing comparators 1816, plural stages of variable delay elements 1818, plural stages of variable delay elements 1820, a selector 1822, a variable delay element 1824, a phase comparator 1826, and a delay amount control unit 1828. The delay amount control unit 1808 includes a counter 1810 and a DAC 1812, and the delay amount control unit 1828 includes a counter 1830 and a DAC 1832.
  • The plural stages of variable delay elements 1814 which are coupled in series sequentially delay a data signal transmitted from the communication device 1700 by a delay amount T. And the plural stages of variable delay elements 1818 which are coupled in series sequentially delay a clock signal generated by a reception terminal PLL circuit 1718 and delayed by a recovery variable delay circuit 1900 as much as a delay amount T+Δt which is larger than the delay amount T. And the plurality of timing comparators 1816 sample each of the plurality of data signals delayed by each of the plural stages of variable delay elements 1814 by the clock signal delayed by the variable delay element 1818 whose stage is the same as each of the plural stages of variable delay elements 1814.
  • Further, each of the plurality of timing comparators 1816, which has the same configuration and function of the timing comparator 100, samples each of the plurality of data signals (D0, D1, D2, . . . Dn−1, Dn) whose delay amounts are different by each of the plurality of clock signals (C0, C1, C2, . . . Cn−1, Cn) whose delay amounts are different and outputs the sampling results (Q0, Q1, Q2, . . . Qn−1, Qn).
  • And the plural stages of variable delay elements 1800 which are coupled in series sequentially delay the clock signal generated by the reception terminal PLL circuit 1718 and supply it to the selector 1802. Further, the plural stages of variable delay elements 1800 have approximately the same delay characteristics as the plural stages of variable delay elements 1814. And the selector 1802 selects one of the clock signals outputted by the plural stages of variable delay elements 1800 and supplies it to the phase comparator 1806. And the variable delay element 1804 which is coupled in parallel to the plural stages of variable delay elements 1800 delays the clock signal generated by the reception terminal PLL circuit 1718 as much as a predetermined delay amount and supplies it to the phase comparator 1806.
  • The phase comparator 1806 compares the phase of the clock signal delayed by the plural stages of variable delay elements 1800, supplied from the selector 1802, with the phase of the clock signal delayed by the variable delay element 1804. And the delay amount control unit 1808 controls the delay amounts of the plural stages of variable delay elements 1800 and the delay amounts of the plural stages of variable delay elements 1814 based on the comparison result of the phase comparator 1806 in order that the phase of the clock signal delayed by the plural stages of variable delay elements 1800, supplied from the selector 1802, and the phase of the data signal delayed by the plural stages of variable delay elements 1814 are approximately equal to the phase of the clock signal delayed by the variable delay element 1804 after predetermined cycles.
  • And the plural stages of variable delay elements 1820 which are coupled in series sequentially delay the clock signal generated by the reception terminal PLL circuit 1718 and supply it to the selector 1822. Further, the plural stages of variable delay elements 1820 have approximately the same delay characteristics as the plural stages of variable delay elements 1818. And the selector 1822 selects one of the clock signals outputted by the plural stages of variable delay elements 1820 and supplies it to the phase comparator 1826. And the variable delay element 1824 which is coupled in parallel to the plural stages of variable delay elements 1820 delays the clock signal generated by the reception terminal PLL circuit 1718 as much as a predetermined delay amount and supplies it to the phase comparator 1826.
  • The phase comparator 1826 compares the phase of the clock signal delayed by the plural stages of variable delay elements 1818 supplied from the selector 1822 with the phase of the clock signal delayed by the variable delay element 1824. And the delay amount control unit 1828 controls the delay amounts of the plural stages of variable delay elements 1818 and the delay amounts of the plural stages of variable delay elements 1820 based on the comparison result of the phase comparator 1826 in order that the phase of the clock signal delayed by the plural stages of variable delay elements 1818, supplied from the selector 1822, and the phase of the data signal delayed by the plural stages of variable delay elements 1820 are approximately equal to the phase of the clock signal delayed by the variable delay element 1824 after predetermined cycles.
  • Further, each of the variable delay elements 1800, the selector 1802, the variable delay element 1804, the phase comparator 1806, the delay amount control unit 1808, the counter 1810, the DAC 1812, and the variable delay elements 1814 has the same configuration and function as the variable delay elements 402, the selector 403, the variable delay element 404, the phase comparator 406, the delay amount control unit 408, the counter 410, the DAC 412, and the variable delay elements 502 shown in FIG. 5.
  • And as shown in FIG. 19, the clock recovery circuit 1716 includes a recovery variable delay circuit 1900, a plurality of EOR circuits 1902, and a timing judging unit 1903. The plurality of EOR circuits 1902 take a set of two sampling results of each of pairs of the sequential timing comparators 1816 and perform exclusive OR operation on the sets of sampling results respectively. And the timing judging unit 1903 judges the timing of the clock signal generated by the reception terminal PLL circuit 1718 and delayed by the recovery variable delay circuit 1900 in response to the data signal based on the operation result of each of the plurality of EOR circuits 1902. Particularly, the timing judging unit 1903 judges the timing of the clock signal generated by the reception terminal PLL circuit 1718 delayed by the recovery variable delay circuit 1900 in response to the data signal by detecting the timing of the clock signal, when the timing comparators 1816 sample the pair of sampling results used by the EOR circuit 1902, which outputs the logic value indicating that the pair of sampling results are different from each other, to perform exclusive OR operation, as the edge of the data signal. And the recovery variable delay circuit 1900 delays the clock signal generated by the reception terminal PLL circuit 1718 and supplies it to the flip-flop circuit 1712 based on the judgment result of the timing judging unit 1903. In addition, the plurality of EOR circuits 1902 have the same configuration and function as the plurality of EOR circuits 1200 shown in FIG. 12.
  • And the timing judging unit 1903 includes a plurality of flip-flop circuits 1904, a buffer 1906, a first OR circuit 1908, a third OR circuit 1910, a FIFO circuit 1914, a second OR circuit 1912, and a counter 1916. The buffer 1906 delays the clock signal outputted by the variable delay element 1814 of the last stage and supplies it to each of the plurality of flip-flop circuits 1904. And the flip-flop circuit l904 supplies the operation results of the plurality of EOR circuits 1902 to the first OR circuit 1908, the third OR circuit 1910, or the second OR circuit 1912.
  • Here, the plurality of timing comparators 1816 include a first timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is a first delay time or less, a second timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is a second delay time or more, and a third timing comparator group which is a set of the plurality of timing comparators 1816 for sampling the data signal based on the clock signal where the time delayed by the variable delay elements 1818 is larger than the first delay time and smaller than the second delay time.
  • And the plurality of EOR circuits 1902 include a first EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the first timing comparator group, a second EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the second timing comparator group, and a third EOR circuit group which is a set of the plurality of EOR circuits 1902 used for exclusive OR operation on the sampling results of the plurality of timing comparators 1816 included in the third timing comparator group.
  • And the first OR circuit 1908 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the first EOR circuit group and supplies the result to the FIFO circuit 1914. And the third OR circuit 1910 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the second EOR circuit group and supplies the result to the FIFO circuit 1914. And the second OR circuit 1912 performs OR operation on the operation results of the plurality of EOR circuits 1902 included in the third EOR circuit group and supplies the result to the FIFO circuit 1914. In other words, if the edge of the data signal in response to the clock signal is earlier than the first timing, the first OR circuit 1908 outputs a logic value “1”, the third OR circuit 1910 outputs a logic value “0”, and the second OR circuit 1912 outputs a logic value “0”. And if the edge of the data signal in response to the clock signal is later than the first timing and earlier than the second timing, the first OR circuit 1908 outputs the logic value “0”, the third OR circuit 1910 outputs the logic value “1”, and the second OR circuit 1912 outputs the logic value “0”. And if the edge of the data signal in response to the clock signal is later than the second timing, the first OR circuit 1908 outputs the logic value “0”, the third OR circuit 1910 outputs the logic value “0”, and the second OR circuit 1912 outputs the logic value “1”.
  • The FIFO circuit 1914 synchronously enters the logic values outputted the first, third and second OR circuits 1908, 1910 and 1912 with the clock signal delayed by the buffer 1906, whereas synchronously retrieving them with the clock signal generated by the reception terminal PLL circuit 1718 and supplying them to the counter 1916. The counter 1916 synchronously counts the number of times each of the first, third and second OR circuits 1908, 1910 and 1912 outputs the logic value “1” with the clock signal generated by the reception terminal PLL circuit 1718, if each of the plurality of timing comparators 1816 performs sampling operation a plurality of times on each of the plurality of data signals by each of the plurality of clock signals and each of the plurality of EOR circuits 1902 performs exclusive OR operation so that each of the first, third and second OR circuits 1908, 1910 and 1912 performs OR operation a plurality of times.
  • The recovery variable delay circuit 1900 changes the delay amount of the clock signal generated by the reception terminal PLL circuit 1718 based on the outputs of the first, third and second OR circuits 1908, 1910 and 1912, i.e. the count value of the counter 1916. Particularly, the recovery variable delay circuit 1900 makes the delay amount of the clock signal large if the first OR circuit 1908 outputs the logic value “1” more than the third OR circuit 1910 and the second OR circuit 1912, does not change the delay amount of the clock signal if the third OR circuit 1910 outputs the logic value “1” more than the first OR circuit 1908 and the second OR circuit 1912, and makes the delay amount of the clock signal small if the second OR circuit 1912 outputs the logic value “1” more than the first OR circuit 1908 and the third OR circuit 1910. Further, without using the counter 1916, the recovery variable delay circuit 1900 may make the delay amount of the clock signal large if the first OR circuit 1908 outputs the logic value “1”, not change the delay amount of the clock signal if the third OR circuit 1910 outputs the logic value “1”, and make the delay amount of the clock signal small if the second OR circuit 1912 outputs the logic value “1”. The recovery variable delay circuit 1900 adjusts the phase of the clock signal in response to the data signal in the above way and performs calibration by BIST (Built In Self Test) or automatic follow-up in order that the phase of the clock signal is near the center of the eye-opening of the data signal.
  • As above, according to the clock recovery circuit 1716 related to this embodiment, by using the plurality of timing comparators 1816, the phase of the clock signal in response to the data signal can be accurately detected, and further the phase of the clock signal in response to the data signal is followed up, so that the phase of the clock signal can be adjusted in real time. Therefore, according to the communication device 1702 related to this embodiment, even if the phase of the clock signal is changed by the noise or the change of the environmental conditions and further the eye-opening of the data signal becomes small by such cause as the high frequency loss of the transmission line 1704, the phase of the clock signal can be automatically regulated near the center of the eye-opening of the data signal, and thereby extremely stable data transmission can be realized.
  • Although the present invention has been described by way of exemplary embodiments, it should be understood that those skilled in the art might make many changes and substitutions without departing from the spirit and the scope of the present invention which is defined only by the appended claims.

Claims (4)

1.-7. (canceled)
8. A timing comparator comprising:
a dynamic D flip-flop circuit for latching and outputting a data signal with parasitic capacitance thereof based on a clock signal;
a D flip-flop circuit for latching and outputting the data signal outputted by said dynamic D flip-flop circuit based on a delayed clock signal; and
a buffer for delaying the clock signal received by the dynamic D flip-flop circuit by a predetermined time and supplying the delayed clock signal to the D flip-flop circuit.
9. The timing comparator as claimed in claim 1, wherein the D flip-flop circuit comprises a positive feed-back circuit and the D flip-flop circuit latches the data signal using the positive feed-back circuit.
10. The timing comparator as claimed in claim 2, wherein the predetermined time by which the buffer delays the clock signal is greater than a set-up time of the D flip-flop circuit.
US11/367,566 2003-11-20 2006-03-03 Variable delay circuit Abandoned US20060170472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/367,566 US20060170472A1 (en) 2003-11-20 2006-03-03 Variable delay circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003391455 2003-11-20
JP2003-391455 2003-11-20
US10/835,098 US7071746B2 (en) 2003-11-20 2004-04-29 Variable delay circuit
US11/367,566 US20060170472A1 (en) 2003-11-20 2006-03-03 Variable delay circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/835,098 Continuation US7071746B2 (en) 2003-11-20 2004-04-29 Variable delay circuit

Publications (1)

Publication Number Publication Date
US20060170472A1 true US20060170472A1 (en) 2006-08-03

Family

ID=34587482

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/835,098 Expired - Fee Related US7071746B2 (en) 2003-11-20 2004-04-29 Variable delay circuit
US11/367,566 Abandoned US20060170472A1 (en) 2003-11-20 2006-03-03 Variable delay circuit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/835,098 Expired - Fee Related US7071746B2 (en) 2003-11-20 2004-04-29 Variable delay circuit

Country Status (6)

Country Link
US (2) US7071746B2 (en)
EP (1) EP1696564A1 (en)
JP (1) JPWO2005050844A1 (en)
KR (1) KR20060131788A (en)
CN (1) CN1883116A (en)
WO (1) WO2005050844A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297228A1 (en) * 2007-06-01 2008-12-04 Samsung Electronics Co., Ltd. Temperature sensing circuit and method using dll
US20090184741A1 (en) * 2004-09-21 2009-07-23 Masakatsu Suda Delay lock loop circuit, phase lock loop circuit, timing generator, semiconductor tester and semiconductor integrated circuit
US20100141328A1 (en) * 2008-09-19 2010-06-10 Scott Meninger DLL-based temperature sensor
US20110018601A1 (en) * 2008-04-11 2011-01-27 Fujitsu Limited Phase control device, phase-control printed board, and control method
US20110121814A1 (en) * 2008-08-01 2011-05-26 Advantest Corporation Test apparatus
US11023176B2 (en) 2017-04-14 2021-06-01 Huawei Technologies Co., Ltd. Storage interface, timing control method, and storage system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220137B1 (en) * 2004-08-30 2013-01-11 주식회사 아도반테스토 Variable delay circuit, recording media of macro cell data, logic verifying method, testing method, and electronic device
TWI256539B (en) * 2004-11-09 2006-06-11 Realtek Semiconductor Corp Apparatus and method for generating a clock signal
US7634039B2 (en) 2005-02-04 2009-12-15 True Circuits, Inc. Delay-locked loop with dynamically biased charge pump
KR100709475B1 (en) * 2005-05-30 2007-04-18 주식회사 하이닉스반도체 Duty cycle correcting circuit for delay locked loop
KR100649881B1 (en) * 2005-06-02 2006-11-27 삼성전자주식회사 Semiconductor device and method for synchronizing clock signals
JP2007017158A (en) * 2005-07-05 2007-01-25 Sharp Corp Test circuit, delay circuit, clock generating circuit, and image sensor
US8447902B2 (en) * 2005-08-05 2013-05-21 Integrated Device Technology, Inc. Method and apparatus for predictive switching
JP2007124363A (en) * 2005-10-28 2007-05-17 Nec Electronics Corp Delay lock loop circuit
JP5023605B2 (en) * 2006-08-09 2012-09-12 富士通セミコンダクター株式会社 Delay adjustment circuit and control method thereof
KR100791637B1 (en) 2006-11-21 2008-01-04 고려대학교 산학협력단 Apparatus for recovering data based on semi-digital and multi-phase data sampling, interface uint and transmitter-receiver using this
CN101627538B (en) * 2007-03-30 2012-06-27 富士通株式会社 Delay time determining method, delay time adjusting method and variable delay circuit
US8390352B2 (en) * 2009-04-06 2013-03-05 Honeywell International Inc. Apparatus and method for compensating for process, voltage, and temperature variation of the time delay of a digital delay line
US8847641B2 (en) * 2011-07-19 2014-09-30 Megachips Corporation Phase comparison device and DLL circuit
JP5915105B2 (en) * 2011-11-14 2016-05-11 株式会社ソシオネクスト Data transfer system, receiving circuit, and receiving method
US20150109034A1 (en) * 2013-10-17 2015-04-23 Qualcomm Incorporated Delay architecture for reducing downtime during frequency switching
US9490821B2 (en) 2014-09-26 2016-11-08 Apple Inc. Glitch less delay circuit for real-time delay adjustments
CN106026992B (en) * 2016-05-06 2018-11-06 武汉航空仪表有限责任公司 A kind of Variable delay pulse train output circuit
KR102469133B1 (en) * 2018-03-07 2022-11-22 에스케이하이닉스 주식회사 Delay circuit
RU2696331C1 (en) * 2018-05-21 2019-08-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Adjustable delay circuit
CA3098955C (en) 2018-06-25 2024-02-13 Canaan Creative Co., Ltd. Dynamic d flip-flop, data operation unit, chip, hash board and computing device
CN110727618B (en) * 2018-07-16 2023-04-25 创意电子股份有限公司 Integrated circuit, multichannel transmission device and signal transmission method thereof
CN109032023B (en) * 2018-08-08 2021-03-09 上海精密计量测试研究所 Built-in self-test method for DCM and PLL in FPGA
CN111398775B (en) * 2019-01-03 2024-02-06 瑞昱半导体股份有限公司 Circuit operation speed detection circuit
WO2020255371A1 (en) * 2019-06-21 2020-12-24 株式会社ソシオネクスト Variable delay circuit and semiconductor integrated circuit
KR20210141120A (en) * 2020-05-15 2021-11-23 에스케이하이닉스 주식회사 System for performing phase control operation
US11456749B2 (en) * 2020-07-02 2022-09-27 Novatek Microelectronics Corp. Timing margin detecting circuit, timing margin detecting method and clock and data recovery system
CN113114175B (en) * 2021-04-29 2023-06-02 福建师范大学 VCDL delay unit circuit and application thereof
US20220407506A1 (en) * 2021-06-10 2022-12-22 Microsoft Technology Licensing, Llc Clock monitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821791A (en) * 1995-10-12 1998-10-13 Sgs-Thomson Microelectronics S.R.L. Low-consumption and high-density D flip-flop circuit implementation particularly for standard cell libraries
US6060927A (en) * 1997-11-19 2000-05-09 Lg Semicon Co., Ltd. High-speed D flip-flop
US6404248B1 (en) * 2000-09-26 2002-06-11 Nec Corporation Delay locked loop circuit for synchronizing internal supply clock with reference clock
US20020097592A1 (en) * 2001-01-24 2002-07-25 Hiroshi Komurasaki Frequency voltage converter
US20030062941A1 (en) * 2001-09-24 2003-04-03 Samsung Electronics Co., Ltd. High-speed discharge-suppressed D flip-flop

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227422A (en) * 1985-03-30 1986-10-09 Toshiba Corp Phase comparator circuit
JPH01215113A (en) * 1988-02-23 1989-08-29 Nec Corp Pulse signal detection circuit
JP2659594B2 (en) * 1989-10-11 1997-09-30 株式会社日本自動車部品総合研究所 Physical quantity detector
JPH07142997A (en) * 1990-11-29 1995-06-02 Internatl Business Mach Corp <Ibm> Delay line calibration circuit
JPH04290303A (en) * 1991-03-19 1992-10-14 Nec Corp Latch circuit
JP3170961B2 (en) * 1993-07-06 2001-05-28 株式会社デンソー Pulse phase difference encoding circuit
JP3553639B2 (en) * 1994-05-12 2004-08-11 アジレント・テクノロジーズ・インク Timing adjustment circuit
JPH08256044A (en) * 1995-03-16 1996-10-01 Nippon Telegr & Teleph Corp <Ntt> Storage circuit and flip-flop circuit
JP3513994B2 (en) * 1995-07-28 2004-03-31 安藤電気株式会社 Variable delay circuit
JPH0946197A (en) * 1995-07-28 1997-02-14 Ando Electric Co Ltd Variable delay circuit
JP3584651B2 (en) * 1996-12-26 2004-11-04 ソニー株式会社 Delay circuit
JP3739525B2 (en) * 1996-12-27 2006-01-25 富士通株式会社 Variable delay circuit and semiconductor integrated circuit device
JP4443728B2 (en) * 2000-06-09 2010-03-31 株式会社ルネサステクノロジ Clock generation circuit
US6429693B1 (en) * 2000-06-30 2002-08-06 Texas Instruments Incorporated Digital fractional phase detector
JP3807593B2 (en) * 2000-07-24 2006-08-09 株式会社ルネサステクノロジ Clock generation circuit, control method, and semiconductor memory device
JP3605033B2 (en) * 2000-11-21 2004-12-22 Necエレクトロニクス株式会社 Fixed-length delay generation circuit
JP3575430B2 (en) * 2001-02-01 2004-10-13 日本電気株式会社 Two-stage variable length delay circuit
WO2003036796A1 (en) 2001-10-19 2003-05-01 Advantest Corporation Phase-locked loop circuit, delay locked loop circuit, timing generator, semiconductor test instrument, and semiconductor integrated circuit
JP4457074B2 (en) * 2003-11-20 2010-04-28 株式会社アドバンテスト Timing comparator, data sampling device, and test device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821791A (en) * 1995-10-12 1998-10-13 Sgs-Thomson Microelectronics S.R.L. Low-consumption and high-density D flip-flop circuit implementation particularly for standard cell libraries
US6060927A (en) * 1997-11-19 2000-05-09 Lg Semicon Co., Ltd. High-speed D flip-flop
US6404248B1 (en) * 2000-09-26 2002-06-11 Nec Corporation Delay locked loop circuit for synchronizing internal supply clock with reference clock
US20020097592A1 (en) * 2001-01-24 2002-07-25 Hiroshi Komurasaki Frequency voltage converter
US20030062941A1 (en) * 2001-09-24 2003-04-03 Samsung Electronics Co., Ltd. High-speed discharge-suppressed D flip-flop

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090184741A1 (en) * 2004-09-21 2009-07-23 Masakatsu Suda Delay lock loop circuit, phase lock loop circuit, timing generator, semiconductor tester and semiconductor integrated circuit
US20080297228A1 (en) * 2007-06-01 2008-12-04 Samsung Electronics Co., Ltd. Temperature sensing circuit and method using dll
US7772915B2 (en) * 2007-06-01 2010-08-10 Samsung Electronics Co., Ltd. Temperature sensing circuit and method using DLL
US20110018601A1 (en) * 2008-04-11 2011-01-27 Fujitsu Limited Phase control device, phase-control printed board, and control method
US8149033B2 (en) * 2008-04-11 2012-04-03 Fujitsu Limited Phase control device, phase-control printed board, and control method
US20110121814A1 (en) * 2008-08-01 2011-05-26 Advantest Corporation Test apparatus
US8542003B2 (en) * 2008-08-01 2013-09-24 Advantest Corporation Test apparatus to test a data signal and a clock signal output from a device under test
US20100141328A1 (en) * 2008-09-19 2010-06-10 Scott Meninger DLL-based temperature sensor
US7961033B2 (en) * 2008-09-19 2011-06-14 Cavium Networks, Inc. DLL-based temperature sensor
US11023176B2 (en) 2017-04-14 2021-06-01 Huawei Technologies Co., Ltd. Storage interface, timing control method, and storage system

Also Published As

Publication number Publication date
JPWO2005050844A1 (en) 2007-06-14
KR20060131788A (en) 2006-12-20
US20050110548A1 (en) 2005-05-26
WO2005050844A1 (en) 2005-06-02
CN1883116A (en) 2006-12-20
US7071746B2 (en) 2006-07-04
EP1696564A1 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US7071746B2 (en) Variable delay circuit
US7034723B2 (en) Timing comparator, data sampling apparatus, and testing apparatus
US6987410B2 (en) Clock recovery circuit and communication device
US7978109B1 (en) Output apparatus and test apparatus
US20070096785A1 (en) DLL circuit and test method thereof
US7940072B2 (en) Timing generator and semiconductor test apparatus
US8270225B2 (en) Data receiving circuit
US7945404B2 (en) Clock jitter measurement circuit and integrated circuit having the same
US20040250180A1 (en) Input/output circuit and semiconductor integrated circuit
US20110169501A1 (en) Delay circuit
US20080234961A1 (en) Test apparatus and measurement circuit
US10983164B2 (en) Test apparatus
US6470483B1 (en) Method and apparatus for measuring internal clock skew
US6282680B1 (en) Semiconductor device
CN114441860B (en) Digital pulse width capturing system and method
US8055969B2 (en) Multi-strobe circuit
US20100060323A1 (en) Test circuit and test method
US7855582B2 (en) Device and method for detecting a timing of an edge of a signal with respect to a predefined edge of a periodic signal
WO2023033103A1 (en) Successive-approximation register based a/d converter

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION