US20060163761A1 - Process to produce a resin-cemented optical element - Google Patents

Process to produce a resin-cemented optical element Download PDF

Info

Publication number
US20060163761A1
US20060163761A1 US11/390,307 US39030706A US2006163761A1 US 20060163761 A1 US20060163761 A1 US 20060163761A1 US 39030706 A US39030706 A US 39030706A US 2006163761 A1 US2006163761 A1 US 2006163761A1
Authority
US
United States
Prior art keywords
resin
light
optical element
produce
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/390,307
Inventor
Akiko Miyakawa
Toru Nakamura
Masahito Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US11/390,307 priority Critical patent/US20060163761A1/en
Publication of US20060163761A1 publication Critical patent/US20060163761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • Y10T428/31601Quartz or glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers
    • Y10T428/31649Ester, halide or nitrile of addition polymer

Definitions

  • This invention relates to a resin-cemented optical element having a resin layer formed on the surface of a base member, a process for its production, and an optical article having the element.
  • optical elements are used in various fields. Depending on the purpose for which they are used, it is difficult to materialize required optical characteristics and so forth in some cases in respect of conventional spherical lenses comprised only of glass. Accordingly, resin-cemented optical elements comprising a base member provided thereon with a cured resin layer having a stated shape are attracting notice.
  • Alpharic lens is a generic term for lenses the curvature of which is kept continuously different over the region extending from the lens center toward the periphery.
  • the use of aspheric lenses at some part of optical systems enables considerable reduction of the number of lenses necessary for the correction of aberrations, compared with a case in which the optical system is constituted only of spheric lenses. This can make the optical system compact and light-weight. Also, the use of aspheric lenses enables high-grade correction of aberrations which is difficult for spherical lenses, and hence can bring about an improvement in image quality.
  • Aspheric lenses having such superior characteristics have not necessarily come into wide use. The greatest reason therefor can be said to be a difficulty in working. Conventional aspheric lenses make use of base members made of glass, and have only be able to be produced by precisely polishing this glass, having involved the problem of a high cost.
  • the plastic molding is a method in which a resin is injected into a mold with the desired aspherical shape to effect molding. This method can enjoy a high productivity and a low cost. It, however, has had problems that aspheric lenses thus produced have a limit to their refractive index and moreover are inferior to glass lenses in respect of figure tolerance and reliability.
  • the glass molding is a method in which a glass blank material standing softened is shaped in a mold having the desired aspherical shape. This method enables achievement of mass productivity and high precision. It, however, has a limit to the types of glass usable therefor. Moreover, it requires a relatively high molding temperature, and may impose a great load on the mold. Accordingly, how this load be reduced comes into question.
  • the composite-type aspherical-surface molding is a method in which, using a mold having an aspherical shape, a resin layer having the aspherical shape is provided on a spheric or aspheric glass lens.
  • This method can be said to be a method having both the characteristics, i.e., the reliability the glass lens has and the mass productivity the plastic molding has.
  • a lens produced by this composite-type aspherical-surface molding is called a PAG lens.
  • Conventional PAG lenses have characteristic features that they can well be mass-produced and are relatively inexpensive.
  • the resin used in this composite-type aspherical-surface molding may include thermoplastic resins and photosensitive resins.
  • a method is especially effective in which a composition of photosensitive resin (photo-reactive resin) is made to adhere to the surface of a base member, followed by irradiation with light such as ultraviolet light to effect curing.
  • photosensitive resin photo-reactive resin
  • the shape of the mold can not exactly be transferred especially in the case of a PAG lens having a large extent of aspherical surface, i.e., having a large resin thickness. This imposes a restriction on designing.
  • PAG lenses also have a lower light transmittance than glass lenses, and hence the employment of such PAG lenses may possibly lead to a low transmittance of the whole optical system. For this reason, the number of PAG lenses usable in one optical system is usually limited to one or two.
  • Resin-cemented optical elements such as the PAG lenses also have a problem that they may so greatly change in optical performance depending on environment as to have a poor weatherability.
  • it is effective to enhance the degree of cure (degree of polymerization) of the resin, and, in order to do so, it is effective to irradiate the resin by a large amount of light so as to cure the resin further.
  • an increase in irradiation level results in a decrease in light transmittance of the resin because of its yellowing.
  • An object of the present invention is to provide a superior resin-cemented optical element having solved the above problems in conventional PAG lenses, i.e. the problems on the restrictions on optical performance and extent of designable aspherical surface, the weatherability and so forth, and having a high light transmittance (in particular, visible-light inner transmittance).
  • a method is available in which the resin is made to have a higher refractive index. Namely, by the use of a resin having a higher refractive index, the same effect of aspherical surface as that achievable by the one having a large extent of aspherical surface can be achieved in a smaller extent of aspherical surface. Also, the lens having a small extent of aspherical surface is obtainable in a better moldability than the lens having a large extent of aspherical surface. Thus, it follows that the moldability can be improved by making the refractive index higher.
  • the resin in order to make the effect of aspherical surface higher without changing the shape of aspherical surface, it is effective to make the resin have a higher refractive index.
  • a resin having a refractive index of 1.55 or more enables the aspherical surface to be designed at a higher freedom, so that an aspheric lens usable for various purposes can be obtained.
  • Resins used in resin layers of conventional PAG lenses have had a refractive index of about 1.50 on the whole.
  • the use of the resin having a refractive index of 1.55 or more enables the resin layer to have a layer thickness thinner than that in conventional cases. This not only makes the moldability higher, but also allows the resin to be used in a small quantity, enabling achievement of cost reduction.
  • the transmittance of resin may lower on account of two factors, the scattering and absorption of light in the interior of the resin. The scattering is caused when the resin does not have any uniform compositional distribution to have refractive-index distribution at some part, by minute bubbles formed in the resin, or by any dot-like defects at the surface.
  • the absorption arises from the molecular structure itself of a resin-constituting substance in some cases, but commonly in many cases it is absorption due to impurities included in the course of synthesis of the resin and a polymerization inhibitor previously added to the resin, or it is absorption due to a photopolymerization initiator and a reaction product thereof, or it is caused by any excess irradiation at the time of curing.
  • the resin layer may have an inner transmittance of 95% or more in a 100 ⁇ m thick area, where a PAG lens having optical characteristics good for practical use can be obtained.
  • the resin surface may peel from the mold during the irradiation. Such a problem may often occur. It has been ascertained that this relates closely to the rate of shrinkage on curing of resin.
  • the fact that the shape of the mold can not exactly be transferred when a photosensitive resin is used is due to the shrinkage on curing when the resin cures.
  • This shrinkage has a remarkable influence in the case of a PAG lens having a great difference in the extent of aspherical surface or the resin layer thickness.
  • the rate of shrinkage on curing is the value that depends substantially on the composition of the resin, and is an important property which determines the moldability of resin in the molding for PAG lenses.
  • Resin layers of PAG lenses have a difference of hundreds of micrometers or more between the maximum layer thickness and the minimum layer thickness. This difference in layer thickness of resin layers has a tendency of becoming larger and larger with a spread of the use of aspheric lenses hereafter.
  • the rate of shrinkage on curing can readily be determined by measuring the specific gravity of the resin before and after its curing. More specifically, where the specific gravity before curing is represented by a, and the specific gravity after curing by b, the rate of shrinkage on curing can be calculated according to ⁇ ( b ⁇ a )/ b ⁇ 100 (%).
  • the resin layer may have a greatly poor weatherability when the resin has a low degree of polymerization, and must be cured at a high rate in order to achieve superior weatherability.
  • gel percentage has been measured which is determined from the weight ratio of dissolved things of cured resin having been treated with a solvent under stated conditions. As the result, it has been ascertained that a weatherability having no problem in practical use can be achieved when this gel percentage is 95% or more, and particularly preferably 96% or more.
  • the gel percentage is determined from a change in weight observed when the component having dissolved in the solvent under stated conditions is removed. Stated in detail, it is measured under the following conditions.
  • a resin cured product is dried in a desiccator for about a day, and thereafter the mass of the dried resin obtained is precisely measured.
  • this resin is immersed in 70° C. methyl ethyl ketone for 6 hours.
  • the methyl ethyl ketone is changed for new one at intervals of 2 hours.
  • the resin having been immersed for 6 hours is heated at 100° C. for 2 hours, and then left in the desiccator for a day to make it dry. Thereafter, the mass of the resin thus dried is precisely measured.
  • the mass of the initial resin is represented by c
  • the mass after immersion in methyl ethyl ketone by d the gel percentage is calculated according to (d/c) ⁇ 100 (%).
  • the cause of deterioration of the weatherability of resin is that unreacted functional groups remain also after the molding. Such unreacted functional groups may cause various side reaction over a long period of time to cause the coloring of resin.
  • the resin having a high gel percentage has less unreacted functional groups.
  • such a resin is considered to have superior weatherability.
  • the amount of a photopolymerization initiator to be added and the conditions for irradiation are optimized to cure the resin sufficiently. It is also effective to add to components a resin having a hard skeleton such as bisphenol-A skeleton.
  • the surfaces of resin layers of PAG lenses are usually provided with anti-reflection coat.
  • a anti-reflection coat is formed by vacuum deposition or the like. If the resin has a low heat resistance, the resin may expand when heated by radiation heat at the time of this film formation, so that a coat layer harder than the resin can not follow up the latter's changes in shape to make the anti-reflection coat have cracks in some cases. Thus, the resin used in PAG lenses is required to have properties not causative of any changes even at high temperature.
  • the glass transition temperature can be determined as the point of inflection of a curve showing dimensional changes caused by heating, using TMA (thermomechanical analysis), a type of thermal analysis.
  • the present invention provides an optical element comprising a base member and a resin layer formed on the surface of the base member and comprising a cured product of a photosensitive resin composition.
  • the resin layer is a resin layer having at least one characteristic features of the following (1) to (7).
  • the present invention also provides an optical lens comprising this aspheric lens, and provides an optical article having the optical lens.
  • the resin layer in the aspheric lens of the present invention may preferably have at least two of any of these characteristic features.
  • the shape of aspherical surface may be formed on the side of convex surface, or may be formed on the side of concave surface.
  • the resin layer may be formed on either of concave and convex sides of a base member lens.
  • the resin layer in the optical element of the present invention has been found to be a resin layer comprising a cured product of a photosensitive resin composition containing:
  • (C) a photopolymerization initiator.
  • the components (A) to (C) may preferably be contained as chief components.
  • an acrylate and a methacrylate are generically termed “(meth)acrylate”.
  • the resin composition used in the optical element of the present invention may preferably have a viscosity before polymerization curing, of 50,000 cP or lower at room temperature. If the resin composition has a viscosity higher than 50,000 cP, it may have a poor operability and also may cause an increase in defectives due to inclusion of bubbles.
  • the composition of the resin in order to attain the desired refractive index after curing, the composition of the resin must be determined taking account of the changes in refractive index before and after curing. Accordingly, in respect of the above resin composition, changes in refractive index before and after curing have been studied in detail. As the result, it has been ascertained that the refractive index after curing comes to 1.55 or more when the refractive index before curing is 1.52 or more.
  • the photosensitive resin composition in the present invention may preferably have a refractive index before curing of 1.52 or more.
  • the component-(A) polyfunctional (meth)acrylate alone may be made to have a refractive index of 1.53 or more.
  • a polyfunctional (meth)acrylate having a refractive index of 1.53 or more may preferably be selected from those having two or more benzene ring structures in one molecule.
  • the polyfunctional (meth)acrylate may include bifunctional (meth)acrylates such as di(meth)acrylate of 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-propionate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, di(meth)acrylate of an ethylene oxide addition product of bisphenol A, di(meth)acrylate of a propylene oxide addition product of bisphenol A, di(meth)acrylate of 2,2′-di(hydroxypropoxyphenyl)propane, di(meth)acrylate of tricyclodecane dimethylol, and a di(meth)acrylates such as
  • trimethylolpropane tri(meth)acrylate pentaerythritol tri(meth)acrylate, pentaerythrythol tetra(meth)acrylate, dipentaerythrito
  • a di(meth)acrylate represented by the following Formula (1) is particularly preferred as the component (A).
  • the di(meth)acrylate represented by Formula (1) one having a molecular weight of 1,000 or less is more preferred because of its large refractive index.
  • R 1 and R 2 are each a hydrogen atom or a methyl group
  • R 3 and R 4 are each a hydrocarbon group having 2 to 4 carbon atoms
  • m and n are each an integer of 1 or more.
  • the component (A) may be constituted of one kind of polyfunctional (meth)acrylate, or may be constituted of two kinds or more.
  • This component (A) has the function to enhance the refractive index of the resin used in the optical element of the present invention. Accordingly, the component (A) may preferably have a refractive index before curing of 1.53 or more.
  • the polyfunctional (meth)acrylate having benzene rings tends to have a large molecular weight.
  • the one having too large a molecular weight may make the resin have too high a viscosity.
  • the resin may have a low viscosity when the structure (R 3 —O) n and/or (R 4 —O) m other than the benzene rings in Formula (1) is/are large, but may also have a low refractive index.
  • polyfunctional (meth)acrylates having various molecular weights have been compared and studied. As the result, it has been ascertained that it is suitable for the molecular weight to be 1,000 or less.
  • the component (A) may preferably be in a content of from 10 to 95% of the resin as weight percentage. If it is less than 10%, the resin may have a refractive index less than 1.55. If it is more than 95%, the resin may have a low environmental resistance.
  • the component (B) is a polyfunctional urethane-modified (meth)acrylate. This is a compound composed chiefly of a diisocyanate, a polyol and a hydroxy(meth)acrylate. Also, a polyester diol may optionally be used.
  • the component (B) may be constituted of one kind of polyfunctional urethane-modified (meth)acrylate, or may be constituted of two kinds or more.
  • the component-(B) polyfunctional urethane-modified (meth)acrylate commonly has a low refractive index.
  • the polyfunctional urethane-modified (meth)acrylate alone may preferably be made to have a refractive index of 1.48 or more. If the component (B) has a refractive index less than 1.48, the resin layer may have a low refractive index.
  • R 5 and R 6 are each a hydrogen atom or a methyl group
  • R 7 and R 8 are each a hydrocarbon group having 1 to 10 carbon atoms
  • R 9 is an isocyanate residual group
  • R 10 is a polyol residual group or a polyester residual group
  • p is o0 or an integer of 10 or less.
  • R 11 is a hydrocarbon group having 1 to 10 carbon atoms
  • R 12 is wherein R 14 , R 15 and R 18 are each a hydrogen atom or a methyl group
  • R 17 is a hydrocarbon group having 1 to 10 carbon atoms.
  • R 19 is a hydrocarbon group having 1 to 10 carbon atoms
  • R 20 and R 21 are each wherein R 24 , R 25 and R 26 are each a hydrogen atom or a methyl group
  • R 27 is a hydrocarbon group having 1 to 10 carbon atoms.
  • R 9 in Formula (2) may preferably contain an aliphatic ring or an aromatic ring, taking account of the refractive index of the component (B).
  • the (meth)acrylate may be bonded to the isocyanate cyclic trimer.
  • the (meth)acrylate in Formulas (3) and (4) may be monofunctional or may be polyfunctional.
  • the component (B) may preferably be in a content of from 5 to 80% of the resin as weight percentage. If it is less than 5%, the resin may have a low environmental resistance. If it is more than 80%, the resin may have so high a viscosity as to result in a poor operability.
  • any known compound may be used.
  • substances of an acetophenone type, a benzoin type, a benzophenone type, a thioxane type and an acylphosphine oxide type may be used.
  • the photopolymerization initiator any one selected from these may be used, or two or more of these may be used in combination. If necessary, a photopolymerization initiator auxiliary agent may further be added.
  • the component (C) may preferably be in an amount of from 0.1 to 5% of the resin as weight percentage. As long as it is within this range, the resin can be cured at an appropriate curing rate without any lowering of its properties.
  • the photosensitive resin composition used in the present invention may preferably further contain at least one additive selected from:
  • the component-(D) monofunctional (meth)acrylate commonly has a higher fluidity than other components, and hence it flows through the interior of the resin layer also in the course of polymerization reaction caused by irradiation, and has the effect of keeping any internal stress from being produced. Concurrently therewith, it has the effect of lessening unreacted functional groups and making the gel percentage higher to improve the weatherability of the optical element.
  • the addition of the component (D) enables the mold shape to be transferred in a higher precision to provide an optical element having a surface with higher precision.
  • the component (D) may include methyl(meth)acrylate, ethyl(meth)acrylate, cyclohexyl(meth)acrylate, dicyclopentyl(meth)acrylate, isobornyl(meth)acrylate, bornyl(meth)acrylate, phenyl(meth)acrylate, halogen-substituted phenyl(meth)acrylate, benzyl(meth)acrylate, ⁇ -naphthyl(meth)acrylate, ⁇ -naphthyl(meth)acrylate, and dicyclopentyloxyethyl acrylate. Any one of these substances may used alone, or two or more selected from these may be used in combination.
  • the component (D) may preferably be in an amount of from 0.1 to 30% of the resin as weight percentage. As long as it is within this range, the fluidity of resin at the time of molding can be ensured without any lowering of the properties of the resin.
  • the component-(E) release agent is used in order to weaken the release-resisting force acting when a resin cured product is released from the mold after the resin has been cured upon irradiation.
  • the addition of the component (E) enables the resin to be prevented from sticking to the mold to remain even after a large number of optical elements have been formed, and a much higher figure tolerance can be achieved.
  • any known materials may be used. As specific examples, it may include neutralizable or non-neutralizable phosphate alcohols. As to the component (E), too, any one of them may be used alone or two or more of them may be used in combination.
  • the component (F) is a silicon compound. It has the effect of smoothing the surface of the cured product to improve the mar resistance or keep any defects from occurring. Hence, the addition of the component (F) in a very small quantity makes the smoothness of resin surface higher and brings about an improvement in mar resistance, so that an optical element having a much higher durability can be obtained.
  • the silicon compound a wide range of substances are usable as the silicon compound.
  • the compound usable as the component (F) may include tetramethoxysilane, tetraethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidyloxypropyltrimethoxysilane, and (meth)acrylates having an Si—O linkage at some part of the backbone chain.
  • the component (F) may preferably be added in an amount of from 0.001% by weight to 10% by weight. Its addition in an amount less than 0.001% by weight can not be effective. Its addition in an amount more than 10% by weight not only may provide no desired refractive index, but also may cause faulty external appearance such as milky-white.
  • the component-(G) epoxy (meth)acrylate provide the resin appropriately with an adhesion attributable to the hydroxyl groups formed upon cleavage of epoxy groups to afford the effect of preventing the resin from coming off from the mold during the irradiation.
  • the addition of the component-(G) epoxy (meth)acrylate in an appropriate quantity can prevent the resin from coming off from the mold during UV irradiation. This is effective especially when the PAG lens having a large extent of aspherical surface is formed.
  • epoxy (meth)acrylate there are no particular limitations on the epoxy (meth)acrylate to be used.
  • usable are addition reaction products of an epoxy resin such as phenolic novolak epoxy resin, bisphenol-A epoxy resin, glycerol polyglycidyl ether or 1-6 hexane diglycidyl ether with a monomer having a (meth)acrylic acid or carboxylic acid group.
  • the component (G) may preferably be added in an amount of from 1% by weight to 30% by weight. Its addition in an amount less than 1% by weight can not be effective. Also, its addition in an amount more than 30% by weight may provide so strong adhesion between the mold and the resin as to make mold release difficult.
  • the photosensitive resin composition capable of curing upon exposure is used to form the resin layer.
  • the energy of light with which the resin is irradiated at the time of curing must be made higher.
  • the degree of cure is enhanced with an increase in the level of irradiation, but resulting in a decrease in light transmittance.
  • the present inventors have examined the relationship between the light transmittance of a resin and the wavelength of the light applied to cure the resin.
  • the present invention provides a process for producing a resin-cemented optical element, the process comprising:
  • the irradiation by such light may also be performed at one time, or may be done twice or more.
  • it is effective to irradiate the resin-cemented optical element additionally after mold release.
  • such an additional irradiation has been considered not preferable because an increase in irradiation level may make the degree of cure higher but results in a lowering of light transmittance.
  • the additional irradiation after mold release may also be made by light with a wavelength of 300 nm or more and this enables the resin to be further cured to a higher degree than the degree before additional irradiation and at the same time enables the resin to be more improved in light transmittance than that before such irradiation.
  • the present invention provides a process for producing a resin-cemented optical element, the process comprising:
  • a method may be employed in which, e.g., a plurality of resin-cemented optical elements having been released from the mold are put into an exposure unit having a light source which radiates light with a wavelength of 300 nm or more, and irradiate the resin-cemented optical elements additionally at one time.
  • the mechanism is unclear as to the phenomenon that the degree of cure of the resin is improved and the light transmittance of the resin is also improved by setting to 300 nm or more the wavelength of the light to which the resin is exposed. It, however, can be presumed that, probably the light with a wavelength of 300 nm or more accelerates the curing reaction of the resin, without destroying the chemical structure of the resin to cause absorption, and hence the resin is cured to a higher degree and at the same time a reaction initiator contained in the resin is thereby consumed, so that the absorption of light that is inherent in the reaction initiator may less occur.
  • a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a black light, a chemical lamp or the like may be used.
  • the metal halide lamp, the high-pressure mercury lamp and the chemical lamp are preferred because they can emit light with a wavelength of 300 nm or more in a good efficiency. It is also preferable to shield the light with a wavelength of less than 300 nm by the use of a commercially available filter or the like.
  • the exposure may be performed in air, in an atmosphere of nitrogen, in an atmosphere of an inert gas or in vacuum, depending on the properties of the photosensitive resin composition to be used.
  • the resin composition may also be heated in order to accelerate its curing.
  • it may preferably be heated at a temperature of from 40° C. to 130° C. At a temperature lower than 40° C., any sufficient effect is not obtainable in some cases. At a temperature higher than 130° C., the resin may become too soft to retain the desired shape of the resin layer.
  • the same light source may be used, or a different light source may be used each time. Also, its atmosphere may be so changed such that the first irradiation is performed in air and the second and subsequent irradiation in an atmosphere of nitrogen.
  • the base member surface may also previously be subjected to coupling treatment with a coupling agent so that the resin layer can be made to adhere strongly to the base member.
  • the step of heating the resin composition or resin cured product may preferably be provided in the steps for producing the resin-cemented optical element. This enables more improvement of the light transmittance of the resin than that in conventional cases, and also enables the resin to be cured to a higher degree to improve the weatherability.
  • This heating may be carried out at any time, and may preferably be carried out after the resin composition has been photo-cured and the cured product has been released from the mold together with the base member.
  • a plurality of resin-cemented optical elements having been released from the mold may be put into an oven in one lot and heated at one time, thus the heating can be carried out in a good productivity and at a low cost.
  • the present invention provides;
  • the mechanism is unclear as to the phenomenon that the light transmittance and degree of cure of the resin are improved by the heating. It, however, can be presumed that, the heating accelerates the post-curing (a phenomenon that the curing of photosensitive resin proceeds gradually also after exposure) of the resin to enhance the degree of cure, and also, since in the heating step the curing reaction proceeds, the chemical structure of the resin is not destroyed by light and on the contrary any slight absorption sources caused in the resin layer at the time of curing are remedied on.
  • the heating temperature may preferably be from 40° C. to 130° C. At a temperature lower than 40° C., any sufficient effect is not obtainable in some cases. At a temperature higher than 130° C., the resin may become too soft to retain the desired shape of the resin layer.
  • the second exposure step described previously may also be provided in order to accelerate the curing reaction further and improve the inner transmittance.
  • the resin-cemented optical element of the present invention may include, e.g., lenses, prisms and diffraction gratings.
  • the present invention can well be effective especially when applied to aspheric lenses, and is especially suited for still cameras such as an analog still camera and a digital still camera, and video cameras, or interchangeable lenses for these, which are used in various environments and whose optical systems are especially required to be made compact and light-weight and to have good optical characteristics.
  • any of glass, plastic and so forth may appropriately be selected as long as they do not deform or change in properties as a result of the heating in the heating step.
  • FIG. 1 is a schematic illustration of a PAG lens according to the present invention.
  • FIG. 2 is a schematic illustration of the step of feeding a resin composition in a PAG lens production process.
  • FIG. 3 is a schematic illustration of an exposure step in the PAG lens production process.
  • FIG. 4 is a schematic illustration of a heating step in the PAG lens production process.
  • FIG. 5 is a schematic illustration of an exposure step in a PAG lens production process.
  • the resin layer is irradiated by light (ultraviolet light) on the side of the base member, and a metal mold made of a metal is used as the mold.
  • a metal mold made of a metal is used as the mold.
  • the mold is by no means limited to it.
  • a mold comprised of a transparent material such as glass may also be used as the mold.
  • the resin composition can be cured by irradiation on the side of the mold, and hence the base member need not be transparent.
  • a light-transmissive material must be used as the base member because it is necessary to irradiate the photosensitive resin composition on the side of the base member. Accordingly, in the following Examples, a glass lens is used as the base member.
  • the value at a wavelength of 380 nm was used as the inner transmittance, where the order of fluctuations of the inner transmittance value did not reverse.
  • a resin composition (photosensitive resin composition) was prepared which was obtained by mixing the following components (A) to (C). Next, this composition was coated on a glass base, followed by curing to form a resin layer to produce a PAG lens.
  • Component (A) 80 parts of di(meth)acrylate of Formula (1) wherein m +n is 3.
  • Component (B) 19.5 parts of urethane-modified di(meth)acrylate of Formula (2).
  • Component (C) 0.5 part of an acetophenone type photopolymerization initiator.
  • the refractive index of this resin composition before curing was 1.535, and the viscosity thereof at room temperature was 3,500 cP.
  • This resin composition was poured into a base mold made of glass, and then irradiated by light of a high-pressure mercury lamp for 2 minutes to form a rectangular colorless transparent block of 2 mm thick. Concerning this block, its refractive index after curing was measured to find that it was 1.556. Its durometer hardness was also measured to find that it was HDD 78.
  • the glass transition temperature Tg was examined on a molded product of 2 mm thick.
  • the Tg was determined as the point of inflection of a curve showing dimensional changes caused by heating, using TMA (thermomechanical analysis), a type of thermal analysis. As the result, the Tg was 97° C.
  • the rate of hygroscopic dimensional change before and after moisture absorption was examined. More specifically, the initial dimension of the molded product was measured in an environment of 25° C./50% RH, and thereafter put into a thermo-hygrostat for 24 hours which was kept at 50° C./90% RH, to cause the molded product to absorb moisture. Thereafter, its dimensions were measured again in the environment of 25° C./50% RH to determine their change rate. As the result, the rate of hygroscopic dimensional change was 0.35%.
  • the gel percentage was determined in the following way: About 0.5 g of the resin cured product was dried in a desiccator for about a day, and thereafter the mass of the dried resin obtained was precisely measured. Next, this resin was immersed in 70° C. methyl ethyl ketone for 6 hours. Here, the methyl ethyl ketone was changed for new one at intervals of 2 hours. The resin having been immersed for 6 hours was heated at 100° C. for 2 hours, and then left in the desiccator for a day to make it dry. Thereafter, the mass of the resin thus dried was precisely measured.
  • the mass of the initial resin was represented by c
  • the mass after immersion in methyl ethyl ketone by d the gel percentage was calculated to be 97% according to the expression: (d/c) ⁇ 100 (%).
  • the rate of shrinkage on curing was calculated using measurements of specific gravity before and after curing. As the result, the rate of shrinkage on curing was 5.5%.
  • a PAG lens was produced in the following way.
  • a resin composition 21 was dropped on the concave surface of a glass base member 10 .
  • the glass base member 10 on which the resin composition was dropped was, with its upside down, pressed against a convex aspherical-surface metal mold 32 to press and spread the resin composition 21 into the desired shape.
  • the resin composition was irradiated by ultraviolet rays 33 for 2 minutes by means of a high-pressure mercury lamp (not shown) to cure the resin composition 21 .
  • the resin composition 21 was cured, the cured product was released from the mold to obtain a PAG lens 12 as shown in FIG. 1 , comprising the glass base member 10 having on its surface a resin layer 11 .
  • the glass base member 10 used in this Example was 40 mm in diameter, and its side on which the resin was to be dropped was previously subjected to silane coupling treatment to improve the adhesion of glass to the resin layer 11 .
  • the resin layer of the PAG lens 12 obtained in this Example has a greatly aspherical shape in a maximum thickness of 800 ⁇ m and a minimum thickness of 100 ⁇ m. Even though the resin layer was molded in such a greatly aspherical shape, the desired aspherical shape stood transferred exactly to the resin layer without any coming-off of the resin from the metal mold during the molding.
  • a weatherability test was also made using a carbon fadometer.
  • the change in transmittance at 380 nm after the weatherability test was 0.5% or less in terms of the inner transmittance in a 100 ⁇ m thick area. This is value not problematic at all in practical use.
  • a PAG lens was produced in the same manner as in Example 1 except that the urethane-modified hexa(meth)acrylate of Formula (3) was used as the component (B) of the resin composition.
  • a anti-reflection coat was further formed by vacuum deposition.
  • a PAG lens having both good external appearance and good performance was producible without causing any difficulties such as cracking in the anti-reflection coat.
  • a heat resistance test was made on the PAG lens having this anti-reflection coat. As the result, even though it was left in an environment of 70° C. for 24 hours, any change in external appearance was not seen at all.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a PAG lens was produced in the same manner as in Example 1 except that the urethane-modified tetra(meth)acrylate of Formula (4) was used as the component (B) of the resin composition.
  • the desired aspherical shape had exactly been transferred to the resin layer without any coming-off of the resin from the mold during the molding.
  • Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • Example 1 On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 14.5 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (D) 5 parts of methyl(meth)acrylate.
  • a PAG lens was produced.
  • the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding. Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • Example 1 On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a photosensitive resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (E) 0.5 part of a non-neutralizable phosphate alcohol.
  • a PAG lens was produced.
  • the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding.
  • Example 1 On the surface of the resin layer of the PAG lens thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a photosensitive resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (F) 0.5 part of y-methacryloxypropyltrimethoxysilane.
  • a PAG lens was produced.
  • the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding.
  • the surface was found to be very smooth. Also, though in the PAG lenses of Examples 1 to 5 microscopic defects of few ⁇ m or less in diameter were slightly present at their surfaces, such defects were not seen at all in the PAG lens of this Example.
  • Example 1 On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a photosensitive resin composition was prepared by mixing as the component (A) 70 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (G) 10.5 parts of bisphenol-A epoxyacrylate.
  • a PAG lens was produced.
  • the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding. Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • Example 1 On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • Example 1 The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • a PAG lens was produced using the same photosensitive resin composition as that in Example 1 and using a glass lens of 40 mm in diameter as the base member.
  • the same photosensitive resin composition 21 as that in Example 1 was dropped on the concave surface of a glass base member 10 subjected previously to silane coupling treatment to improve its adhesion to the resin.
  • the glass base member 10 was, with its upside down, pressed against a convex aspherical-surface metal mold 32 to press and spread the resin composition 21 into the desired shape.
  • the resin composition was irradiated by ultraviolet rays 33 by means of a high-pressure mercury lamp (not shown) to cure the resin composition 21 , and the cured product was released from the mold 32 to obtain a PAG lens.
  • the irradiation light was measured with an illuminance meter manufactured by EYEGRAPHICS CO LTD., having the sensitivity center at 365 nm, to find that the irradiation energy was 1,800 mJ/cm 2 . Also, at the time of the exposure, as shown in FIG. 4 , irradiation by infrared light 41 was performed through the glass base member 10 by means of an infrared lamp to heat the whole of the resin composition 21 and the mold 32 to 60° C.
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 1. Also, a plurality of PAG lenses having resin layers in different thickness were produced in the same manner as in this Example, and their spectral transmittances were measured. From the measurements obtained, the 100 ⁇ m thick inner transmittance was calculated to find that it was 98%. Also, the gel percentage of a resin cured product obtained by curing the resin composition in the same manner as in this Example was determined in the same manner as in Example 1 to find that it was 98%. The results are shown in Table 2.
  • a PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, after the cured product was released from the metal mold, it was put into an oven and heated at 70° C. for 24 hours.
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • a PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, at the time of the exposure, as shown in FIG. 5 an ultraviolet-transmitting filter “UV-32” ( 51 ), manufactured by HOYA Corporation, was fitted to a high-pressure mercury lamp (not shown) to shut out light 54 with a wavelength of less than 300 among light 52 from the light source so that only light 53 with a wavelength of 300 nm or more was applied as irradiation light 55 .
  • This irradiation light 55 was measured in the same manner as in Example 8 to find that the irradiation energy was 3,000 mJ/cm 2 .
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer can make the gel persentage of the resin layer higher and also can improve the light transmittance of the resin layer, even under the irradiation at a higher energy than that in conventional cases.
  • a PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, after the cured product was released from the metal mold, it was put into a large-sized ultraviolet irradiation unit to further perform additional irradiation by means of a high-pressure mercury lamp to make second-time exposure treatment.
  • an ultraviolet-transmitting filter UV-32 manufactured by HOYA Corporation, was fitted to the high-pressure mercury lamp so that only the light with a wavelength of 300 nm or more was applied.
  • the irradiation light in this additional irradiation was measured with an illuminance meter manufactured by EYEGRAPNICS CO., LTD., having the sensitivity center at 365 nm, to find that the irradiation energy was 3,000 mJ/cm 2 .
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
  • a PAG lens was produced in the same manner as in Example 11 except that in this Example, at the time of the first-time exposure, too, the ultraviolet-transmitting filter 51 was fitted to the high-pressure mercury lamp (not shown) in the same manner as in Example 10 to filter the irradiation light 55 so that only the light 53 with a wavelength of 300 nm or more was applied.
  • This irradiation light was measured in the same manner as in Example 8 to find that the irradiation energy was 1,800 mJ/ cm 2 .
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 3.
  • the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer and the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
  • the first Wavelength 300 nm 300 nm not step time of irradiation or more or more selected (before light mold Irradiation 1800 1800 1800 release): light energy (mJ/cm 2 ) Heating at no no no the time of exposure
  • the Wavelength 300 nm 300 nm not second of irradiation or more or more selected time light (after Irradiation 3000 3000 3000 mold light energy release): (mJ/cm 2 ) Heating at no no no the time of exposure
  • Heating step Heating no yes no after curing Inner transmittance (%): 98 98 91 Gel percentage (%): 98 98 98 98 98
  • a PAG lens was produced in the same manner as in Example 12 except that in this Example, after the second-time exposure, the cured product was put into an oven and heated at 70° C. for 24 hours.
  • the PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 3.
  • the introduction of the heating step in the resin-cemented optical element production steps, the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer and the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
  • a PAG lens was produced in the same manner as in Example 11 except that in this Example, after the second-time exposure, too, the wavelength of the irradiation light was not selected without fitting any ultraviolet-transmitting filter 51 to the high-pressure mercury lamp (not shown).
  • the PAG lens thus obtained had optical characteristics and weatherability of no problem in practical use like those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were as shown in Table 3. In this Example, the gel percentage of the resin layer was 98%, which did not differ from the result in Example 11, but the inner transmittance was as low as 91% because the light for the additional irradiation made after mold release comprised the light with a wavelength of less than 300 nm.
  • a resin-cemented optical element which has a resin layer having a high light transmittance and also has superior weatherability. Hence, the optical characteristics and reliability of the resin-cemented optical element can be improved. This enables resin-cemented optical elements to be mounted on one optical system in a larger number than ever.
  • the resin used in the resin layer also has a refractive index of 1.55 or more after curing, and hence the light by no means reflect greatly at the interface between the base member and the resin layer even when the base member has a high refractive index.
  • the resin layer since the resin layer has a refractive index of 1.55 or more, the resin layer may be formed in a smaller thickness than a case in which resins having low refractive index are used as in conventional cases.
  • an optical element having better optical performance than that in conventional cases can be obtained with ease.
  • the transmittance has been improved, a light optical element can be obtained.
  • the application of the present invention to the PAG lens enables formation of sharp images which have been difficult for conventional lenses to form.
  • the resin layer can also be formed in a small thickness and the difference between the maximum layer thickness value and minimum layer thickness value can be made small, the moldability for resin-cemented optical elements can be improved. Hence, it can be made to cause less defectives, bringing about an improvement in production efficiency.
  • the resin layer of the resin-cemented optical element can be formed in a smaller thickness than conventional ones and in addition thereto the resin having a low moisture absorption is used, the shape of the resin may less change with time even in an environment of high humidity, and hence an optical element can be obtained which can maintain high performance over a long period of time.
  • the present invention Since also a higher refractive index than conventional one can be achieved when the present invention is applied to PAG lenses, the number of lenses of a lens group consisting of a plurality of lenses in combination can be made smaller. This enables production of light-weight optical articles and achievement of cost reduction.
  • the resin used in the resin layer in the optical element of the present invention has a higher light transmittance than those conventionally used, and also has a small rate of hygroscopic dimensional change, a high gel percentage, a high glass transition temperature and a small rate of shrinkage on curing, the PAG lens having a large extent of aspherical surface which has ever been impossible to mold can be molded with ease.
  • an optical element can be produced which has superior optical performance even when the resin layer has a large thickness.
  • an optical element also having superior environmental properties can be provided because of the use of the resin having glass transition temperature at the specific value.
  • the optical element of the present invention is especially suited for still cameras such as an analog still camera and a digital still camera, and video cameras, or interchangeable lenses for these, which are used in various environments and whose optical systems are especially required to be made compact and light-weight and to have good optical characteristics.

Abstract

A process to produce a resin-cemented optical element having a base member and a resin layer formed on the surface of the base member and having a cured product of a photosensitive resin composition. The resin layer has (1) a refractive index of 1.55 or more, (2) a visible-light inner transmittance of 95% or more in a 100 μm thick area, (3) a rate of hygroscopic dimensional change of 0.4% or less, (4) a durometer hardness of HDD 70 or more, (5) a gel percentage of 95% or more, (6) a glass transition temperature of 95° C. or above or (7) a rate of shrinkage on curing of 7% or less.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 10/031,602, filed Jan. 23, 2002, which has been allowed. This application is based upon and claims priority from U.S. patent application Ser. No. 10/031,602, filed Jan. 23, 2002, the contents being incorporated herein by reference, and claims priority based on International Patent application no. PCT/JP00/04922 filed Jul. 24, 2000 and Japanese patent application nos. 11-209345 and 11-271738 respectfully filed Jul. 23, 1999 and Sep. 27, 1999.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a resin-cemented optical element having a resin layer formed on the surface of a base member, a process for its production, and an optical article having the element.
  • 2. Description of Related Art
  • At present, optical elements are used in various fields. Depending on the purpose for which they are used, it is difficult to materialize required optical characteristics and so forth in some cases in respect of conventional spherical lenses comprised only of glass. Accordingly, resin-cemented optical elements comprising a base member provided thereon with a cured resin layer having a stated shape are attracting notice.
  • For example, in order to make optical elements such as camera lenses compact and light-weight, it is important to lessen the number of component lenses of an optical system. In order to lessen the number of component lenses, it is effective that a component part constituted of a plurality of spheric lenses is replaced with one aspheric lens.
  • “Aspheric lens” is a generic term for lenses the curvature of which is kept continuously different over the region extending from the lens center toward the periphery. The use of aspheric lenses at some part of optical systems enables considerable reduction of the number of lenses necessary for the correction of aberrations, compared with a case in which the optical system is constituted only of spheric lenses. This can make the optical system compact and light-weight. Also, the use of aspheric lenses enables high-grade correction of aberrations which is difficult for spherical lenses, and hence can bring about an improvement in image quality.
  • Aspheric lenses having such superior characteristics have not necessarily come into wide use. The greatest reason therefor can be said to be a difficulty in working. Conventional aspheric lenses make use of base members made of glass, and have only be able to be produced by precisely polishing this glass, having involved the problem of a high cost.
  • In recent years, however, techniques for producing resin-cemented optical elements such as composite-type aspherical-surface molding, plastic molding, and glass molding have been put into practical use one after another, and it has become possible to produce aspheric lenses at a low cost by these methods. Thus, the aspheric lenses have rapidly come into wide use. Nowadays, such aspheric lenses have come into wide use in camera lenses and so forth.
  • The plastic molding is a method in which a resin is injected into a mold with the desired aspherical shape to effect molding. This method can enjoy a high productivity and a low cost. It, however, has had problems that aspheric lenses thus produced have a limit to their refractive index and moreover are inferior to glass lenses in respect of figure tolerance and reliability.
  • The glass molding is a method in which a glass blank material standing softened is shaped in a mold having the desired aspherical shape. This method enables achievement of mass productivity and high precision. It, however, has a limit to the types of glass usable therefor. Moreover, it requires a relatively high molding temperature, and may impose a great load on the mold. Accordingly, how this load be reduced comes into question.
  • The composite-type aspherical-surface molding is a method in which, using a mold having an aspherical shape, a resin layer having the aspherical shape is provided on a spheric or aspheric glass lens. This method can be said to be a method having both the characteristics, i.e., the reliability the glass lens has and the mass productivity the plastic molding has. In the present specification, a lens produced by this composite-type aspherical-surface molding is called a PAG lens. Conventional PAG lenses have characteristic features that they can well be mass-produced and are relatively inexpensive. They, however, have problems such that, compared with aspheric lenses made of glass, they have a restriction on the extent of designable aspheric surface, have a low light transmittance, and may change in optical performance depending on environment, resulting in a poor reliability.
  • As the resin used in this composite-type aspherical-surface molding, it may include thermoplastic resins and photosensitive resins. In the case when aspheric lenses are produced, a method is especially effective in which a composition of photosensitive resin (photo-reactive resin) is made to adhere to the surface of a base member, followed by irradiation with light such as ultraviolet light to effect curing. However, when such a photosensitive resin is used in the PAG lens resin layer, there is a problem that the shape of the mold can not exactly be transferred especially in the case of a PAG lens having a large extent of aspherical surface, i.e., having a large resin thickness. This imposes a restriction on designing.
  • Conventional PAG lenses also have a lower light transmittance than glass lenses, and hence the employment of such PAG lenses may possibly lead to a low transmittance of the whole optical system. For this reason, the number of PAG lenses usable in one optical system is usually limited to one or two.
  • Resin-cemented optical elements such as the PAG lenses also have a problem that they may so greatly change in optical performance depending on environment as to have a poor weatherability. In order to improve the weatherability, it is effective to enhance the degree of cure (degree of polymerization) of the resin, and, in order to do so, it is effective to irradiate the resin by a large amount of light so as to cure the resin further. However, an increase in irradiation level results in a decrease in light transmittance of the resin because of its yellowing. Thus, it is difficult for any conventional techniques to achieve both the improvement in light transmittance and the improvement in weatherability of the resin-cemented optical element.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a superior resin-cemented optical element having solved the above problems in conventional PAG lenses, i.e. the problems on the restrictions on optical performance and extent of designable aspherical surface, the weatherability and so forth, and having a high light transmittance (in particular, visible-light inner transmittance).
  • With regard to the aspheric lens having a large extent of aspherical surface, which has hitherto had insufficient optical performance in respect of, e.g., transmittance and been moldable with difficulty and producible only by costly methods, the present inventors have made extensive studies from various points of view in order to produce such an aspheric lens with ease and also to achieve superior optical performance by the use of the aspheric lens, and have discovered the following facts.
  • 1. Characteristics of Resin Layer:
  • As a method by which a resin is molded with greater ease than conventional methods without damaging any optical performance having ever been achieved, a method is available in which the resin is made to have a higher refractive index. Namely, by the use of a resin having a higher refractive index, the same effect of aspherical surface as that achievable by the one having a large extent of aspherical surface can be achieved in a smaller extent of aspherical surface. Also, the lens having a small extent of aspherical surface is obtainable in a better moldability than the lens having a large extent of aspherical surface. Thus, it follows that the moldability can be improved by making the refractive index higher. More specifically, in order to make the effect of aspherical surface higher without changing the shape of aspherical surface, it is effective to make the resin have a higher refractive index. In particular, a resin having a refractive index of 1.55 or more enables the aspherical surface to be designed at a higher freedom, so that an aspheric lens usable for various purposes can be obtained.
  • Resins used in resin layers of conventional PAG lenses have had a refractive index of about 1.50 on the whole. However, the use of the resin having a refractive index of 1.55 or more enables the resin layer to have a layer thickness thinner than that in conventional cases. This not only makes the moldability higher, but also allows the resin to be used in a small quantity, enabling achievement of cost reduction.
  • It has also been ascertained that making the resin have a larger refractive index makes the PAG lens have a higher transmittance. This is because the difference in refractive index between the resin constituting the PAG lens and the glass can be made small, so that the light may less reflect at their interface. Hence, the use of the resin having a high refractive index makes it possible to use the PAG lens even in an aspheric lens required to have a higher transmittance. Such a PAG lens having a high transmittance contributes to the improvement of transmittance of the whole optical system and to the prevention of flares.
  • What is most questioned in optical performance of resin is the transmittance. In general, resin has lower transmittance than glass, and hence PAG lenses often have a transmittance inferior to the transmittance of aspheric lenses made only of glass. The transmittance of resin may lower on account of two factors, the scattering and absorption of light in the interior of the resin. The scattering is caused when the resin does not have any uniform compositional distribution to have refractive-index distribution at some part, by minute bubbles formed in the resin, or by any dot-like defects at the surface. As for the absorption, it arises from the molecular structure itself of a resin-constituting substance in some cases, but commonly in many cases it is absorption due to impurities included in the course of synthesis of the resin and a polymerization inhibitor previously added to the resin, or it is absorption due to a photopolymerization initiator and a reaction product thereof, or it is caused by any excess irradiation at the time of curing.
  • Accordingly, in order to improve light transmittance, it is important to remove impurities by purification as far as possible, taking account of the resin's molecular structure carefully. In addition, it is effective that a composition having a polymerization inhibitor and a photopolymerization initiator in an optimum state is polymerized under proper conditions for the irradiation.
  • In consideration of the foregoing, the resin layer may have an inner transmittance of 95% or more in a 100 μm thick area, where a PAG lens having optical characteristics good for practical use can be obtained.
  • In the step of transferring the shape of aspherical surface of a mold by the use of a photosensitive resin, the resin surface may peel from the mold during the irradiation. Such a problem may often occur. It has been ascertained that this relates closely to the rate of shrinkage on curing of resin. The fact that the shape of the mold can not exactly be transferred when a photosensitive resin is used is due to the shrinkage on curing when the resin cures. This shrinkage has a remarkable influence in the case of a PAG lens having a great difference in the extent of aspherical surface or the resin layer thickness. Here, the rate of shrinkage on curing is the value that depends substantially on the composition of the resin, and is an important property which determines the moldability of resin in the molding for PAG lenses.
  • Resin layers of PAG lenses have a difference of hundreds of micrometers or more between the maximum layer thickness and the minimum layer thickness. This difference in layer thickness of resin layers has a tendency of becoming larger and larger with a spread of the use of aspheric lenses hereafter. When a resin layer having such a complicated shape is irradiated by light, a stress is produced upon any abrupt shrinkage on curing to cause a difficulty that the shape of the mold is not exactly transferred. The rate of shrinkage on curing can readily be determined by measuring the specific gravity of the resin before and after its curing. More specifically, where the specific gravity before curing is represented by a, and the specific gravity after curing by b, the rate of shrinkage on curing can be calculated according to
    {(b−a)/b}×100 (%).
  • Accordingly, resins having different rates of shrinkage on curing have been compared and studied to examine in detail the relationship between the rate of shrinkage on curing and the frequency of occurrence of faulty shape transfer for each resin. As the result, it has been ascertained that a resin having a rate of shrinkage on curing of 7% or less can be molded after the shape of aspherical surface without any problem. The use of such a resin enables production of aspheric lenses in a better moldability and in a superior production efficiency.
  • In order to control the rate of shrinkage on curing of the resin in this way, it is effective not to make up the resin from monomers, but to add also an oligomer having a relatively large molecular weight so that the number of functional groups per unit weight can be made small.
  • It has also been found that the problem of weatherability correlates with the rate of moisture absorption of resin. Resin commonly has a higher rate of moisture absorption and also a lower heat resistance than glass, and hence the former is inferior to the latter in respect of the weatherability. Accordingly, the optical performance of PAG lenses has been followed up throughout a year to reveal that it varies seasonsably. It has been ascertained that this is caused by the moisture absorption of resin according to changes in moisture in environment. In an environment of high humidity, the resin absorbs moisture to cause a volumetric change, so that the optical performance may deteriorate.
  • Accordingly, resins having different rates of moisture absorption have been compared and studied to determine resin characteristics which are tolerable in practical use. As the result, it has been discovered that the problem on the changes in humidity can be solved when the rate of hygroscopic change in layer thickness is controlled to be 0.4% or less. This enables production of an aspheric lens having a durability strong enough to be usable even in service environment which changes greatly. Also, in order to make the resin have a low rate of moisture absorption, it is effective to lower the content of hydrophilic groups such as alkyleneoxy and isocyanate groups in the molecule.
  • As a result of evaluation on the weatherability of various resins, it has also been found that the resin layer may have a greatly poor weatherability when the resin has a low degree of polymerization, and must be cured at a high rate in order to achieve superior weatherability. Accordingly, as an index of the degree of polymerization, gel percentage has been measured which is determined from the weight ratio of dissolved things of cured resin having been treated with a solvent under stated conditions. As the result, it has been ascertained that a weatherability having no problem in practical use can be achieved when this gel percentage is 95% or more, and particularly preferably 96% or more.
  • The gel percentage is determined from a change in weight observed when the component having dissolved in the solvent under stated conditions is removed. Stated in detail, it is measured under the following conditions.
  • That is, about 0.5 g of a resin cured product is dried in a desiccator for about a day, and thereafter the mass of the dried resin obtained is precisely measured. Next, this resin is immersed in 70° C. methyl ethyl ketone for 6 hours. Here, the methyl ethyl ketone is changed for new one at intervals of 2 hours. The resin having been immersed for 6 hours is heated at 100° C. for 2 hours, and then left in the desiccator for a day to make it dry. Thereafter, the mass of the resin thus dried is precisely measured. Here, where the mass of the initial resin is represented by c, and the mass after immersion in methyl ethyl ketone by d, the gel percentage is calculated according to
    (d/c)×100 (%).
  • The cause of deterioration of the weatherability of resin is that unreacted functional groups remain also after the molding. Such unreacted functional groups may cause various side reaction over a long period of time to cause the coloring of resin. In this regard, the resin having a high gel percentage has less unreacted functional groups. Hence, such a resin is considered to have superior weatherability. In actual use, in order to provide a sufficient weatherability, it is preferable for the resin to have the gel percentage of 95% or more as stated above. In order to make the gel percentage higher, it is effective to optimize the amount of a photopolymerization initiator to be added and the level of irradiation.
  • There has been an additional problem that conventional resins for PAG lenses have a lower mar resistance than aspheric lenses made of glass, and tend to be marred when handled in, e.g., the step of assembling lenses. It has been discovered that the use of a resin having a durometer hardness of HDD 70 or more makes the resin not become marred in usual handling. The use of such a resin enables production of an aspheric lens having superior mar resistance to make it possible to obtain an aspheric lens durable to its use in service environment which tends to cause mars. This broadens the scope in which the aspheric lens is applicable. Also, in order to make the resin have such a higher hardness, it is important that the amount of a photopolymerization initiator to be added and the conditions for irradiation are optimized to cure the resin sufficiently. It is also effective to add to components a resin having a hard skeleton such as bisphenol-A skeleton.
  • The surfaces of resin layers of PAG lenses are usually provided with anti-reflection coat. Such a anti-reflection coat is formed by vacuum deposition or the like. If the resin has a low heat resistance, the resin may expand when heated by radiation heat at the time of this film formation, so that a coat layer harder than the resin can not follow up the latter's changes in shape to make the anti-reflection coat have cracks in some cases. Thus, the resin used in PAG lenses is required to have properties not causative of any changes even at high temperature.
  • Accordingly, in respect of some resins having different glass transition points, how the resins cause cracks has been compared and studied. As the result, it has been ascertained that a resin having a glass transition temperature of 95° C. or above can keep cracks from occurring. Thus, the use of the resin having such a property enables production of an aspheric lens having various durabilities and, in addition thereto, having superior reflection preventive performance and durable to more various service environments. In order to make the glass transition temperature higher, it is effective to use a polyfunctional (meth)acrylate or a polyfunctional urethane (meth)acrylate as a component of the resin. Here, the glass transition temperature can be determined as the point of inflection of a curve showing dimensional changes caused by heating, using TMA (thermomechanical analysis), a type of thermal analysis.
  • On the basis of the new findings explained above, the present invention provides an optical element comprising a base member and a resin layer formed on the surface of the base member and comprising a cured product of a photosensitive resin composition. The resin layer is a resin layer having at least one characteristic features of the following (1) to (7). The present invention also provides an optical lens comprising this aspheric lens, and provides an optical article having the optical lens. Incidentally, the resin layer in the aspheric lens of the present invention may preferably have at least two of any of these characteristic features.
    • (1) It has a refractive index of 1.55 or more.
    • (2) It has a visible-light inner transmittance of 95% or more in a 100 μm thick area.
    • (3) It has a rate of hygroscopic dimensional change of 0.4% or less.
    • (4) It has a durometer hardness of HDD 70 or more.
    • (5) It has a gel percentage of 95% or more.
    • (6) It has a glass transition temperature of 95° C. or above.
    • (7) It has a rate of shrinkage on curing of 7% or less (i.e., it is a cured product of a resin composition having a rate of shrinkage on curing of 7% or less.
  • In the case when the optical element of the present invention is an aspheric lens, the shape of aspherical surface may be formed on the side of convex surface, or may be formed on the side of concave surface. In other words, the resin layer may be formed on either of concave and convex sides of a base member lens.
  • 2. Resin Composition:
  • Accordingly, studies have been made on resins preferable for satisfying the above characteristics. As the result, what is preferable as the resin layer in the optical element of the present invention has been found to be a resin layer comprising a cured product of a photosensitive resin composition containing:
  • (A) a polyfunctional (meth)acrylate;
  • (B) a polyfunctional urethane-modified (meth)acrylate; and
  • (C) a photopolymerization initiator. The components (A) to (C) may preferably be contained as chief components. Incidentally, in the present specification, an acrylate and a methacrylate are generically termed “(meth)acrylate”.
  • The resin composition used in the optical element of the present invention may preferably have a viscosity before polymerization curing, of 50,000 cP or lower at room temperature. If the resin composition has a viscosity higher than 50,000 cP, it may have a poor operability and also may cause an increase in defectives due to inclusion of bubbles.
  • In general, resins change in refractive index before and after curing. Hence, in order to attain the desired refractive index after curing, the composition of the resin must be determined taking account of the changes in refractive index before and after curing. Accordingly, in respect of the above resin composition, changes in refractive index before and after curing have been studied in detail. As the result, it has been ascertained that the refractive index after curing comes to 1.55 or more when the refractive index before curing is 1.52 or more. Thus, the photosensitive resin composition in the present invention may preferably have a refractive index before curing of 1.52 or more.
  • In order for the resin composition to have the refractive index of 1.52 or more before curing, the component-(A) polyfunctional (meth)acrylate alone may be made to have a refractive index of 1.53 or more. Such a polyfunctional (meth)acrylate having a refractive index of 1.53 or more may preferably be selected from those having two or more benzene ring structures in one molecule.
  • As specific examples of the polyfunctional (meth)acrylate, it may include bifunctional (meth)acrylates such as di(meth)acrylate of 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-propionate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, di(meth)acrylate of an ethylene oxide addition product of bisphenol A, di(meth)acrylate of a propylene oxide addition product of bisphenol A, di(meth)acrylate of 2,2′-di(hydroxypropoxyphenyl)propane, di(meth)acrylate of tricyclodecane dimethylol, and a di(meth)acrylic acid addition product of 2,2′-di(glycidyloxyphenyl)propane.
  • It may also include as compounds preferred as the component (A) in the present invention, e.g., trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythrythol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, tri(meth)acrylate of tris(hydroxyethyl)isocyanurate, tri(meth)acrylate of tris(2-hydroxyethyl)isocyanurate, tri(meth)acrylate of trimellitic acid, triallyltrimellitic acid, and triallyl isocyanurate.
  • As a result of extensive studies, the present inventors have discovered that a di(meth)acrylate represented by the following Formula (1) is particularly preferred as the component (A). Of the di(meth)acrylate represented by Formula (1), one having a molecular weight of 1,000 or less is more preferred because of its large refractive index.
    Figure US20060163761A1-20060727-C00001

    wherein R1 and R2 are each a hydrogen atom or a methyl group, R3 and R4 are each a hydrocarbon group having 2 to 4 carbon atoms, and m and n are each an integer of 1 or more.
  • The component (A) may be constituted of one kind of polyfunctional (meth)acrylate, or may be constituted of two kinds or more. This component (A) has the function to enhance the refractive index of the resin used in the optical element of the present invention. Accordingly, the component (A) may preferably have a refractive index before curing of 1.53 or more.
  • The polyfunctional (meth)acrylate having benzene rings tends to have a large molecular weight. The one having too large a molecular weight may make the resin have too high a viscosity. On the other hand, the resin may have a low viscosity when the structure (R3—O)n and/or (R4—O)m other than the benzene rings in Formula (1) is/are large, but may also have a low refractive index. Accordingly, polyfunctional (meth)acrylates having various molecular weights have been compared and studied. As the result, it has been ascertained that it is suitable for the molecular weight to be 1,000 or less.
  • The component (A) may preferably be in a content of from 10 to 95% of the resin as weight percentage. If it is less than 10%, the resin may have a refractive index less than 1.55. If it is more than 95%, the resin may have a low environmental resistance.
  • The component (B) is a polyfunctional urethane-modified (meth)acrylate. This is a compound composed chiefly of a diisocyanate, a polyol and a hydroxy(meth)acrylate. Also, a polyester diol may optionally be used. The component (B) may be constituted of one kind of polyfunctional urethane-modified (meth)acrylate, or may be constituted of two kinds or more.
  • The component-(B) polyfunctional urethane-modified (meth)acrylate commonly has a low refractive index. In order for the resin to have the refractive index of 1.52 or more after mixing, the polyfunctional urethane-modified (meth)acrylate alone may preferably be made to have a refractive index of 1.48 or more. If the component (B) has a refractive index less than 1.48, the resin layer may have a low refractive index.
  • As a result of extensive studies, the present inventors have discovered that a compound represented by any of the following Formulas (2) to (4) is particularly preferred as the component (B).
    Figure US20060163761A1-20060727-C00002

    wherein R5 and R6 are each a hydrogen atom or a methyl group, R7 and R8 are each a hydrocarbon group having 1 to 10 carbon atoms, R9 is an isocyanate residual group, R10 is a polyol residual group or a polyester residual group, and p is o0 or an integer of 10 or less.
    Figure US20060163761A1-20060727-C00003

    wherein R11 is a hydrocarbon group having 1 to 10 carbon atoms, and R12 is
    Figure US20060163761A1-20060727-C00004

    wherein R14, R15 and R18 are each a hydrogen atom or a methyl group, and R17 is a hydrocarbon group having 1 to 10 carbon atoms.
    Figure US20060163761A1-20060727-C00005

    wherein R19 is a hydrocarbon group having 1 to 10 carbon atoms, and R20 and R21 are each
    Figure US20060163761A1-20060727-C00006

    wherein R24, R25 and R26 are each a hydrogen atom or a methyl group, and R27 is a hydrocarbon group having 1 to 10 carbon atoms.
  • R9 in Formula (2) may preferably contain an aliphatic ring or an aromatic ring, taking account of the refractive index of the component (B). Also, as in Formula (3), the (meth)acrylate may be bonded to the isocyanate cyclic trimer. The (meth)acrylate in Formulas (3) and (4) may be monofunctional or may be polyfunctional.
  • The component (B) may preferably be in a content of from 5 to 80% of the resin as weight percentage. If it is less than 5%, the resin may have a low environmental resistance. If it is more than 80%, the resin may have so high a viscosity as to result in a poor operability.
  • As the component-(C) photopolymerization initiator, any known compound may be used. For example, substances of an acetophenone type, a benzoin type, a benzophenone type, a thioxane type and an acylphosphine oxide type may be used. In the present invention, as the photopolymerization initiator, any one selected from these may be used, or two or more of these may be used in combination. If necessary, a photopolymerization initiator auxiliary agent may further be added.
  • The component (C) may preferably be in an amount of from 0.1 to 5% of the resin as weight percentage. As long as it is within this range, the resin can be cured at an appropriate curing rate without any lowering of its properties.
  • In addition to the components (A) to (C) described above, the photosensitive resin composition used in the present invention may preferably further contain at least one additive selected from:
  • (D) a monofunctional (meth)acrylate;
  • (E) a release agent;
  • (F) a silicon compound; and
  • (G) an epoxy (meth)acrylate.
  • The component-(D) monofunctional (meth)acrylate commonly has a higher fluidity than other components, and hence it flows through the interior of the resin layer also in the course of polymerization reaction caused by irradiation, and has the effect of keeping any internal stress from being produced. Concurrently therewith, it has the effect of lessening unreacted functional groups and making the gel percentage higher to improve the weatherability of the optical element. Hence, the addition of the component (D) enables the mold shape to be transferred in a higher precision to provide an optical element having a surface with higher precision.
  • As specific examples of the component (D), it may include methyl(meth)acrylate, ethyl(meth)acrylate, cyclohexyl(meth)acrylate, dicyclopentyl(meth)acrylate, isobornyl(meth)acrylate, bornyl(meth)acrylate, phenyl(meth)acrylate, halogen-substituted phenyl(meth)acrylate, benzyl(meth)acrylate, α-naphthyl(meth)acrylate, β-naphthyl(meth)acrylate, and dicyclopentyloxyethyl acrylate. Any one of these substances may used alone, or two or more selected from these may be used in combination.
  • The component (D) may preferably be in an amount of from 0.1 to 30% of the resin as weight percentage. As long as it is within this range, the fluidity of resin at the time of molding can be ensured without any lowering of the properties of the resin.
  • The component-(E) release agent is used in order to weaken the release-resisting force acting when a resin cured product is released from the mold after the resin has been cured upon irradiation. The addition of the component (E) enables the resin to be prevented from sticking to the mold to remain even after a large number of optical elements have been formed, and a much higher figure tolerance can be achieved.
  • As this component (E), any known materials may be used. As specific examples, it may include neutralizable or non-neutralizable phosphate alcohols. As to the component (E), too, any one of them may be used alone or two or more of them may be used in combination.
  • The component (F) is a silicon compound. It has the effect of smoothing the surface of the cured product to improve the mar resistance or keep any defects from occurring. Hence, the addition of the component (F) in a very small quantity makes the smoothness of resin surface higher and brings about an improvement in mar resistance, so that an optical element having a much higher durability can be obtained.
  • In the present invention, a wide range of substances are usable as the silicon compound. As specific examples of the compound usable as the component (F), it may include tetramethoxysilane, tetraethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, and (meth)acrylates having an Si—O linkage at some part of the backbone chain.
  • The component (F) may preferably be added in an amount of from 0.001% by weight to 10% by weight. Its addition in an amount less than 0.001% by weight can not be effective. Its addition in an amount more than 10% by weight not only may provide no desired refractive index, but also may cause faulty external appearance such as milky-white.
  • The component-(G) epoxy (meth)acrylate provide the resin appropriately with an adhesion attributable to the hydroxyl groups formed upon cleavage of epoxy groups to afford the effect of preventing the resin from coming off from the mold during the irradiation. Hence, the addition of the component-(G) epoxy (meth)acrylate in an appropriate quantity can prevent the resin from coming off from the mold during UV irradiation. This is effective especially when the PAG lens having a large extent of aspherical surface is formed.
  • There are no particular limitations on the epoxy (meth)acrylate to be used. For example, usable are addition reaction products of an epoxy resin such as phenolic novolak epoxy resin, bisphenol-A epoxy resin, glycerol polyglycidyl ether or 1-6 hexane diglycidyl ether with a monomer having a (meth)acrylic acid or carboxylic acid group.
  • The component (G) may preferably be added in an amount of from 1% by weight to 30% by weight. Its addition in an amount less than 1% by weight can not be effective. Also, its addition in an amount more than 30% by weight may provide so strong adhesion between the mold and the resin as to make mold release difficult.
  • 3. Exposure Step:
  • In the present invention, the photosensitive resin composition capable of curing upon exposure is used to form the resin layer. In order to improve the weatherability by curing the resin to a higher degree of cure, the energy of light with which the resin is irradiated at the time of curing must be made higher. In conventional cases, the degree of cure is enhanced with an increase in the level of irradiation, but resulting in a decrease in light transmittance. The present inventors have examined the relationship between the light transmittance of a resin and the wavelength of the light applied to cure the resin. As the result, they have discovered that irradiation by light with a wavelength of 300 nm or more can make the light transmittance higher than that in conventional cases even when the level of irradiation is made higher than that in conventional cases to cure the resin to a higher degree.
  • Accordingly, the present invention provides a process for producing a resin-cemented optical element, the process comprising:
  • a first exposure step of irradiating a photosensitive resin composition held between the surface of a base member and a mold, by light with a wavelength of 300 nm or more to cure the composition to form a resin layer; and
  • a mold release step of mold-releasing the resin layer; in this order.
  • The irradiation by such light may also be performed at one time, or may be done twice or more. In order to cure the resin to a higher degree, it is effective to irradiate the resin-cemented optical element additionally after mold release. In conventional cases, however, such an additional irradiation has been considered not preferable because an increase in irradiation level may make the degree of cure higher but results in a lowering of light transmittance. However, the present inventors have discovered that the additional irradiation after mold release may also be made by light with a wavelength of 300 nm or more and this enables the resin to be further cured to a higher degree than the degree before additional irradiation and at the same time enables the resin to be more improved in light transmittance than that before such irradiation.
  • Accordingly, the present invention provides a process for producing a resin-cemented optical element, the process comprising:
  • a first exposure step of irradiating a photosensitive resin composition held between the surface of a base member and a mold, to cure the composition to form a resin layer;
  • a mold release step of mold-releasing the resin layer; and
  • a second exposure step of irradiating the resin layer by light with a wavelength of 300 nm or more; in this order.
  • To perform this additional irradiation, a method may be employed in which, e.g., a plurality of resin-cemented optical elements having been released from the mold are put into an exposure unit having a light source which radiates light with a wavelength of 300 nm or more, and irradiate the resin-cemented optical elements additionally at one time.
  • The mechanism is unclear as to the phenomenon that the degree of cure of the resin is improved and the light transmittance of the resin is also improved by setting to 300 nm or more the wavelength of the light to which the resin is exposed. It, however, can be presumed that, probably the light with a wavelength of 300 nm or more accelerates the curing reaction of the resin, without destroying the chemical structure of the resin to cause absorption, and hence the resin is cured to a higher degree and at the same time a reaction initiator contained in the resin is thereby consumed, so that the absorption of light that is inherent in the reaction initiator may less occur.
  • As the light source used to irradiate the photosensitive resin composition by light (usually, ultraviolet light is preferred) to effect exposure to cure the composition, a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a black light, a chemical lamp or the like may be used. Of these, the metal halide lamp, the high-pressure mercury lamp and the chemical lamp are preferred because they can emit light with a wavelength of 300 nm or more in a good efficiency. It is also preferable to shield the light with a wavelength of less than 300 nm by the use of a commercially available filter or the like.
  • There are no particular limitations on the atmosphere of exposure. The exposure may be performed in air, in an atmosphere of nitrogen, in an atmosphere of an inert gas or in vacuum, depending on the properties of the photosensitive resin composition to be used.
  • At the time of the exposure, the resin composition may also be heated in order to accelerate its curing. When heated, it may preferably be heated at a temperature of from 40° C. to 130° C. At a temperature lower than 40° C., any sufficient effect is not obtainable in some cases. At a temperature higher than 130° C., the resin may become too soft to retain the desired shape of the resin layer.
  • In the present invention, when the irradiation is performed a plurality of times, the same light source may be used, or a different light source may be used each time. Also, its atmosphere may be so changed such that the first irradiation is performed in air and the second and subsequent irradiation in an atmosphere of nitrogen.
  • The base member surface may also previously be subjected to coupling treatment with a coupling agent so that the resin layer can be made to adhere strongly to the base member.
  • 4. Heating Step:
  • In the present invention, the step of heating the resin composition or resin cured product may preferably be provided in the steps for producing the resin-cemented optical element. This enables more improvement of the light transmittance of the resin than that in conventional cases, and also enables the resin to be cured to a higher degree to improve the weatherability.
  • This heating may be carried out at any time, and may preferably be carried out after the resin composition has been photo-cured and the cured product has been released from the mold together with the base member. For example, a plurality of resin-cemented optical elements having been released from the mold may be put into an oven in one lot and heated at one time, thus the heating can be carried out in a good productivity and at a low cost.
  • Accordingly, the present invention provides;
  • (1) a process for producing a resin-cemented optical element, the process comprising:
  • an exposure step of irradiating a photosensitive resin composition held between the surface of a base member and a mold, to cure the composition to form a resin layer;
  • a mold release step of mold-releasing the resin layer; and
  • a heating step of heating the resin layer; in this order; and
  • (2) a process for producing a resin-cemented optical element, the process comprising:
  • an exposure step of irradiating a photosensitive resin composition held between the surface of a base member and a mold, with heating to cure the composition to form a resin layer; and
  • a mold release step of mold-releasing the resin layer; in this order.
  • Incidentally, the mechanism is unclear as to the phenomenon that the light transmittance and degree of cure of the resin are improved by the heating. It, however, can be presumed that, the heating accelerates the post-curing (a phenomenon that the curing of photosensitive resin proceeds gradually also after exposure) of the resin to enhance the degree of cure, and also, since in the heating step the curing reaction proceeds, the chemical structure of the resin is not destroyed by light and on the contrary any slight absorption sources caused in the resin layer at the time of curing are remedied on.
  • In this heating step, the heating temperature may preferably be from 40° C. to 130° C. At a temperature lower than 40° C., any sufficient effect is not obtainable in some cases. At a temperature higher than 130° C., the resin may become too soft to retain the desired shape of the resin layer.
  • Between the mold release step and the heating step, the second exposure step described previously may also be provided in order to accelerate the curing reaction further and improve the inner transmittance.
  • 5. Others:
  • The resin-cemented optical element of the present invention may include, e.g., lenses, prisms and diffraction gratings. The present invention can well be effective especially when applied to aspheric lenses, and is especially suited for still cameras such as an analog still camera and a digital still camera, and video cameras, or interchangeable lenses for these, which are used in various environments and whose optical systems are especially required to be made compact and light-weight and to have good optical characteristics.
  • As materials of the base member in the present invention, any of glass, plastic and so forth may appropriately be selected as long as they do not deform or change in properties as a result of the heating in the heating step.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of a PAG lens according to the present invention.
  • FIG. 2 is a schematic illustration of the step of feeding a resin composition in a PAG lens production process.
  • FIG. 3 is a schematic illustration of an exposure step in the PAG lens production process.
  • FIG. 4 is a schematic illustration of a heating step in the PAG lens production process.
  • FIG. 5 is a schematic illustration of an exposure step in a PAG lens production process.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention is specifically described below by giving Examples. The present invention is by no means limited to these Examples.
  • In the following Examples, the resin layer is irradiated by light (ultraviolet light) on the side of the base member, and a metal mold made of a metal is used as the mold. In the present invention, however, the mold is by no means limited to it. For example, a mold comprised of a transparent material such as glass may also be used as the mold. When such a transparent material is used as the mold, the resin composition can be cured by irradiation on the side of the mold, and hence the base member need not be transparent. On the other hand, when an opaque material such as a metal is used as the mold as in the following Examples, a light-transmissive material must be used as the base member because it is necessary to irradiate the photosensitive resin composition on the side of the base member. Accordingly, in the following Examples, a glass lens is used as the base member.
  • In the following Examples, the value at a wavelength of 380 nm was used as the inner transmittance, where the order of fluctuations of the inner transmittance value did not reverse.
  • EXAMPLE 1
  • In this Example, first a resin composition (photosensitive resin composition) was prepared which was obtained by mixing the following components (A) to (C). Next, this composition was coated on a glass base, followed by curing to form a resin layer to produce a PAG lens.
  • Component (A): 80 parts of di(meth)acrylate of Formula (1) wherein m +n is 3.
  • Component (B): 19.5 parts of urethane-modified di(meth)acrylate of Formula (2).
  • Component (C): 0.5 part of an acetophenone type photopolymerization initiator.
  • The refractive index of this resin composition before curing was 1.535, and the viscosity thereof at room temperature was 3,500 cP.
  • This resin composition was poured into a base mold made of glass, and then irradiated by light of a high-pressure mercury lamp for 2 minutes to form a rectangular colorless transparent block of 2 mm thick. Concerning this block, its refractive index after curing was measured to find that it was 1.556. Its durometer hardness was also measured to find that it was HDD 78.
  • Its inner transmittance in a 100 μm thick area was further calculated using data of spectral transmittance of a molded product different in thickness to reveal that the transmittance was 97% for the light with a wavelength of 380 nm.
  • Next, the glass transition temperature Tg was examined on a molded product of 2 mm thick. The Tg was determined as the point of inflection of a curve showing dimensional changes caused by heating, using TMA (thermomechanical analysis), a type of thermal analysis. As the result, the Tg was 97° C.
  • Next, using a molded product of 2 mm thick, the rate of hygroscopic dimensional change before and after moisture absorption was examined. More specifically, the initial dimension of the molded product was measured in an environment of 25° C./50% RH, and thereafter put into a thermo-hygrostat for 24 hours which was kept at 50° C./90% RH, to cause the molded product to absorb moisture. Thereafter, its dimensions were measured again in the environment of 25° C./50% RH to determine their change rate. As the result, the rate of hygroscopic dimensional change was 0.35%.
  • The gel percentage was determined in the following way: About 0.5 g of the resin cured product was dried in a desiccator for about a day, and thereafter the mass of the dried resin obtained was precisely measured. Next, this resin was immersed in 70° C. methyl ethyl ketone for 6 hours. Here, the methyl ethyl ketone was changed for new one at intervals of 2 hours. The resin having been immersed for 6 hours was heated at 100° C. for 2 hours, and then left in the desiccator for a day to make it dry. Thereafter, the mass of the resin thus dried was precisely measured. Here, where the mass of the initial resin was represented by c, and the mass after immersion in methyl ethyl ketone by d, the gel percentage was calculated to be 97% according to the expression: (d/c)×100 (%).
  • The rate of shrinkage on curing was calculated using measurements of specific gravity before and after curing. As the result, the rate of shrinkage on curing was 5.5%.
  • In this Example, a PAG lens was produced in the following way. First, as shown in FIG. 2, a resin composition 21 was dropped on the concave surface of a glass base member 10. As shown in FIG. 3, the glass base member 10 on which the resin composition was dropped was, with its upside down, pressed against a convex aspherical-surface metal mold 32 to press and spread the resin composition 21 into the desired shape. Thereafter, the resin composition was irradiated by ultraviolet rays 33 for 2 minutes by means of a high-pressure mercury lamp (not shown) to cure the resin composition 21. After the resin composition 21 was cured, the cured product was released from the mold to obtain a PAG lens 12 as shown in FIG. 1, comprising the glass base member 10 having on its surface a resin layer 11.
  • Here, the glass base member 10 used in this Example was 40 mm in diameter, and its side on which the resin was to be dropped was previously subjected to silane coupling treatment to improve the adhesion of glass to the resin layer 11.
  • The resin layer of the PAG lens 12 obtained in this Example has a greatly aspherical shape in a maximum thickness of 800 μm and a minimum thickness of 100 μm. Even though the resin layer was molded in such a greatly aspherical shape, the desired aspherical shape stood transferred exactly to the resin layer without any coming-off of the resin from the metal mold during the molding.
  • On the PAG lens thus obtained, a anti-reflection coat (not shown) was formed by vacuum deposition. As the result, a PAG lens having both good external appearance and good performance was producible without causing any difficulties such as cracking. A heat resistance test was made on the PAG lens having this anti-reflection coat. As the result, even though it was left in an environment of 70° C. for 24 hours, any change in external appearance was not seen at all.
  • A weatherability test was also made using a carbon fadometer. The change in transmittance at 380 nm after the weatherability test was 0.5% or less in terms of the inner transmittance in a 100 μm thick area. This is value not problematic at all in practical use.
  • EXAMPLE 2
  • In this Example, a PAG lens was produced in the same manner as in Example 1 except that the urethane-modified hexa(meth)acrylate of Formula (3) was used as the component (B) of the resin composition.
  • Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 are shown in Table 1.
    TABLE 1
    Example
    1 2 3 4 5 6 7
    Before Refractive 1.535 1.531 1.532 1.525 1.529 1.529 1.530
    curing: index
    Viscosity at 3500 4500 2000 3000 3500 3500 3500
    room
    temperature
    (cP)
    After Refractive 1.556 1.552 1.556 1.551 1.555 1.555 1.556
    curing: index
    Durometer HDD78 HDD82 HDD80 HDD80 HDD79 HDD79 HDD80
    hardness
    Transmittance 97 98 98 98 98 98 98
    (100 μm
    thickness)
    Glass 97 101 100 99 100 100 100
    transition
    temperature
    (° C.)
    Hygroscopic 0.35 0.30 0.35 0.30 0.35 0.35 0.35
    dimensional
    change (%)
    Gel 97 98 98 98 98 98 98
    percentage
    (%)
    Shrinkage on 5.5 6.0 6.0 5.0 6.0 6.0 6.0
    curing (%)
  • Next, a PAG lens was produced using an aspherical-surface metal mold in the same manner as in Example 1. As the result, the desired aspherical shape stood transferred exactly to the resin layer without any coming-off of the resin from the mold during the molding.
  • On the surface of the resin layer of the PAG lens thus obtained, a anti-reflection coat was further formed by vacuum deposition. As the result, a PAG lens having both good external appearance and good performance was producible without causing any difficulties such as cracking in the anti-reflection coat. A heat resistance test was made on the PAG lens having this anti-reflection coat. As the result, even though it was left in an environment of 70° C. for 24 hours, any change in external appearance was not seen at all.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 3
  • In this Example, a PAG lens was produced in the same manner as in Example 1 except that the urethane-modified tetra(meth)acrylate of Formula (4) was used as the component (B) of the resin composition. As the result, the desired aspherical shape had exactly been transferred to the resin layer without any coming-off of the resin from the mold during the molding. Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 4
  • In this Example, a resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 14.5 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (D) 5 parts of methyl(meth)acrylate. Using this composition, a PAG lens was produced. As the result, the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding. Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 5
  • In this Example, a photosensitive resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (E) 0.5 part of a non-neutralizable phosphate alcohol. Using this composition, a PAG lens was produced. As the result, the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding.
  • In particular, when the resin of this Example was used, much better releasability than that in Examples 1 to 4 was achievable, and the resin did not adhere to the mold even when a large number of PAG lenses were continuously formed. As the result, the time taken for cleaning the mold was reduced to half or less, bringing about an improvement in production efficiency.
  • Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • On the surface of the resin layer of the PAG lens thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 6
  • In this Example, a photosensitive resin composition was prepared by mixing as the component (A) 80 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (F) 0.5 part of y-methacryloxypropyltrimethoxysilane. Using this composition, a PAG lens was produced. As the result, the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding. As a result of microscopic observation of the resin surface of the PAG lens of this Example, the surface was found to be very smooth. Also, though in the PAG lenses of Examples 1 to 5 microscopic defects of few μm or less in diameter were slightly present at their surfaces, such defects were not seen at all in the PAG lens of this Example.
  • Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 7
  • In this Example, a photosensitive resin composition was prepared by mixing as the component (A) 70 parts of the di(meth)acrylate of Formula (1), as the component (B) 19 parts of the urethane-modified di(meth)acrylate of Formula (2), as the component (C) 0.5 part of an acetophenone type photopolymerization initiator and as the component (G) 10.5 parts of bisphenol-A epoxyacrylate. Using this composition, a PAG lens was produced. As the result, the desired aspherical shape had exactly been transferred without any coming-off of the resin from the metal mold during the molding. Physical properties of the resin composition before curing and of the resin after curing which were measured in the same manner as in Example 1 were as shown in Table 1.
  • It was also tested to form fifty PAG lenses continuously by using an aspherical-surface metal mold having a difference of as large as 900 μm between the maximum resin thickness and the minimum resin thickness. As the result, any faulty molding did not occur at all. Then, the like test was made using the resins of Examples 1 to 6. As the result, the lenses produced using the resins of Examples 1 to 6 were on the level of no problem in practical use, but faulty molding that the resin came off from the mold during the irradiation by ultraviolet light occurred at a rate of one or two lenses in the fifty lenses for each Example. Thus, the resin of this Example was found to be especially superior.
  • On the surface of the resin layer thus obtained, a anti-reflection coat was further formed in the same manner as in Example 1. As the result, like Example 1, a PAG lens having both good external appearance and good performance was obtained, and the results of its heat resistance test were also as good as those in Example 1.
  • The same good results as those in Example 1 were also obtained in the weatherability test made using a carbon fadometer.
  • EXAMPLE 8
  • In this Example, a PAG lens was produced using the same photosensitive resin composition as that in Example 1 and using a glass lens of 40 mm in diameter as the base member.
  • More specifically, the same photosensitive resin composition 21 as that in Example 1 was dropped on the concave surface of a glass base member 10 subjected previously to silane coupling treatment to improve its adhesion to the resin. The glass base member 10 was, with its upside down, pressed against a convex aspherical-surface metal mold 32 to press and spread the resin composition 21 into the desired shape. Thereafter, the resin composition was irradiated by ultraviolet rays 33 by means of a high-pressure mercury lamp (not shown) to cure the resin composition 21, and the cured product was released from the mold 32 to obtain a PAG lens.
  • At the time of the exposure, the irradiation light was measured with an illuminance meter manufactured by EYEGRAPHICS CO LTD., having the sensitivity center at 365 nm, to find that the irradiation energy was 1,800 mJ/cm2. Also, at the time of the exposure, as shown in FIG. 4, irradiation by infrared light 41 was performed through the glass base member 10 by means of an infrared lamp to heat the whole of the resin composition 21 and the mold 32 to 60° C.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 1. Also, a plurality of PAG lenses having resin layers in different thickness were produced in the same manner as in this Example, and their spectral transmittances were measured. From the measurements obtained, the 100 μm thick inner transmittance was calculated to find that it was 98%. Also, the gel percentage of a resin cured product obtained by curing the resin composition in the same manner as in this Example was determined in the same manner as in Example 1 to find that it was 98%. The results are shown in Table 2.
  • As can be seen from these results, the introduction of the heating step into the resin-cemented optical element production steps can bring about an improvement in light transmittance of the resin layer and also an improvement in its gel percentage.
    TABLE 2
    Exaple 8 Exaple 9 Exaple 10 Exaple 11
    Exposure The first Wavelength not not 300 nm or not
    step: time of irradiation selected selected more selected
    (before light
    mold Irradiation 1800 1800 3000 1800
    release): light energy
    (mJ/cm2)
    Heating at yes no no no
    the time of
    exposure
    The Wavelength undone undone undone 300 nm or
    second of irradiation more
    time light
    (after Irradiation 3000
    mold light energy
    release): (mJ/cm2)
    Heating at no
    the time of
    exposure
    Heating step: Heating no yes no no
    after curing
    Inner transmittance (%): 98 98 98 98
    Gel percentage (%): 98 98 98 98
  • EXAMPLE 9
  • A PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, after the cured product was released from the metal mold, it was put into an oven and heated at 70° C. for 24 hours.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • EXAMPLE 10
  • A PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, at the time of the exposure, as shown in FIG. 5 an ultraviolet-transmitting filter “UV-32” (51), manufactured by HOYA Corporation, was fitted to a high-pressure mercury lamp (not shown) to shut out light 54 with a wavelength of less than 300 among light 52 from the light source so that only light 53 with a wavelength of 300 nm or more was applied as irradiation light 55. This irradiation light 55 was measured in the same manner as in Example 8 to find that the irradiation energy was 3,000 mJ/cm2.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • As can be seen from these results, the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer can make the gel persentage of the resin layer higher and also can improve the light transmittance of the resin layer, even under the irradiation at a higher energy than that in conventional cases.
  • EXAMPLE 11
  • A PAG lens was produced in the same manner as in Example 8 except that in this Example the resin composition was not heated at the time of exposure and, after the cured product was released from the metal mold, it was put into a large-sized ultraviolet irradiation unit to further perform additional irradiation by means of a high-pressure mercury lamp to make second-time exposure treatment. At the time of this additional irradiation, an ultraviolet-transmitting filter UV-32, manufactured by HOYA Corporation, was fitted to the high-pressure mercury lamp so that only the light with a wavelength of 300 nm or more was applied. The irradiation light in this additional irradiation was measured with an illuminance meter manufactured by EYEGRAPNICS CO., LTD., having the sensitivity center at 365 nm, to find that the irradiation energy was 3,000 mJ/cm2.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 2.
  • As can be seen from these results, the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
  • EXAMPLE 12
  • A PAG lens was produced in the same manner as in Example 11 except that in this Example, at the time of the first-time exposure, too, the ultraviolet-transmitting filter 51 was fitted to the high-pressure mercury lamp (not shown) in the same manner as in Example 10 to filter the irradiation light 55 so that only the light 53 with a wavelength of 300 nm or more was applied. This irradiation light was measured in the same manner as in Example 8 to find that the irradiation energy was 1,800 mJ/ cm2.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 3.
  • As can be seen from these results, the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer and the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
    TABLE 3
    Exaple Exaple Exaple
    12 13 14
    Exposure The first Wavelength 300 nm 300 nm not
    step: time of irradiation or more or more selected
    (before light
    mold Irradiation 1800 1800 1800
    release): light energy
    (mJ/cm2)
    Heating at no no no
    the time of
    exposure
    The Wavelength 300 nm 300 nm not
    second of irradiation or more or more selected
    time light
    (after Irradiation 3000 3000 3000
    mold light energy
    release): (mJ/cm2)
    Heating at no no no
    the time of
    exposure
    Heating step: Heating no yes no
    after curing
    Inner transmittance (%): 98 98 91
    Gel percentage (%): 98 98 98
  • EXAMPLE 13
  • A PAG lens was produced in the same manner as in Example 12 except that in this Example, after the second-time exposure, the cured product was put into an oven and heated at 70° C. for 24 hours.
  • The PAG lens thus obtained had the same good optical characteristics and weatherability as those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were both 98%. The results are shown in Table 3.
  • As can be seen from these results, the introduction of the heating step in the resin-cemented optical element production steps, the irradiation by light with a wavelength of 300 nm or more at the time of the curing of the resin layer and the additional irradiation by light with a wavelength of 300 nm or more after the mold release can improve the light transmittance of the resin layer and also can make its gel percentage higher.
  • EXAMPLE 14
  • A PAG lens was produced in the same manner as in Example 11 except that in this Example, after the second-time exposure, too, the wavelength of the irradiation light was not selected without fitting any ultraviolet-transmitting filter 51 to the high-pressure mercury lamp (not shown).
  • The PAG lens thus obtained had optical characteristics and weatherability of no problem in practical use like those in Example 8. Also, the inner transmittance and gel percentage determined in the same manner as in Example 8 in respect of the PAG lens and resin cured product in this Example were as shown in Table 3. In this Example, the gel percentage of the resin layer was 98%, which did not differ from the result in Example 11, but the inner transmittance was as low as 91% because the light for the additional irradiation made after mold release comprised the light with a wavelength of less than 300 nm.
  • POSSIBILITY OF INDUSTRIAL APPLICATION
  • According to the production process of the present invention, a resin-cemented optical element can be provided which has a resin layer having a high light transmittance and also has superior weatherability. Hence, the optical characteristics and reliability of the resin-cemented optical element can be improved. This enables resin-cemented optical elements to be mounted on one optical system in a larger number than ever.
  • In the optical element of present invention, the resin used in the resin layer also has a refractive index of 1.55 or more after curing, and hence the light by no means reflect greatly at the interface between the base member and the resin layer even when the base member has a high refractive index. Hence, an optical element having superior optical characteristics in respect of interference fringes can be obtained. Also, since the resin layer has a refractive index of 1.55 or more, the resin layer may be formed in a smaller thickness than a case in which resins having low refractive index are used as in conventional cases. Hence, according to the present invention, an optical element having better optical performance than that in conventional cases can be obtained with ease.
  • According to the present invention, since for example the transmittance has been improved, a light optical element can be obtained. Thus, the application of the present invention to the PAG lens enables formation of sharp images which have been difficult for conventional lenses to form.
  • According to the present invention, since the resin layer can also be formed in a small thickness and the difference between the maximum layer thickness value and minimum layer thickness value can be made small, the moldability for resin-cemented optical elements can be improved. Hence, it can be made to cause less defectives, bringing about an improvement in production efficiency.
  • In the present invention, since the resin layer of the resin-cemented optical element can be formed in a smaller thickness than conventional ones and in addition thereto the resin having a low moisture absorption is used, the shape of the resin may less change with time even in an environment of high humidity, and hence an optical element can be obtained which can maintain high performance over a long period of time.
  • Since also a higher refractive index than conventional one can be achieved when the present invention is applied to PAG lenses, the number of lenses of a lens group consisting of a plurality of lenses in combination can be made smaller. This enables production of light-weight optical articles and achievement of cost reduction.
  • Moreover, since the resin used in the resin layer in the optical element of the present invention has a higher light transmittance than those conventionally used, and also has a small rate of hygroscopic dimensional change, a high gel percentage, a high glass transition temperature and a small rate of shrinkage on curing, the PAG lens having a large extent of aspherical surface which has ever been impossible to mold can be molded with ease.
  • Moreover, on account of the characteristics such as light transmittance, moisture absorption and rate of shrinkage on curing, an optical element can be produced which has superior optical performance even when the resin layer has a large thickness.
  • Furthermore, according to the present invention, an optical element also having superior environmental properties can be provided because of the use of the resin having glass transition temperature at the specific value.
  • In view of the foregoing, the optical element of the present invention is especially suited for still cameras such as an analog still camera and a digital still camera, and video cameras, or interchangeable lenses for these, which are used in various environments and whose optical systems are especially required to be made compact and light-weight and to have good optical characteristics.

Claims (19)

1. A process to produce a resin-cemented optical element, the process comprising:
a first exposure operation of irradiating a photosensitive resin composition held between the surface of a base member and a mold tool, to cure the composition to form a resin layer;
a mold release operation of mold-releasing the resin layer; and
a heating operation of heating the resin layer, in this order.
2. A process to produce a resin-cemented optical element, the process comprising:
a first exposure operation of irradiating a photosensitive resin composition held between the surface of a base member and a mold tool, with heating to cure the composition to form a resin layer; and
a mold release operation of mold-releasing the resin layer, in this order.
3. The process to produce a resin-cemented optical element according to claim 2, wherein the heating in said first exposure operation is carried out at a temperature of from 40° C. to 130° C.
4. A process to produce a resin-cemented optical element, the process comprising:
one or more exposure operations of irradiating a photosensitive resin composition held between the surface of a base member and a molding tool, to cure the composition to form a resin layer; and
at least one of said exposure operations being the operation of irradiating the resin composition by light not comprising light with a wavelength less than 300 nm.
5. The process to produce a resin-cemented optical element according to claim 4, further comprising a mold release operation of mold-releasing the resin layer;
said operation of irradiating the resin composition by the light not comprising light with a wavelength of less than 300 nm being a first exposure operation carried out before said mold release operation.
6. The process to produce a resin-cemented optical element according to claim 4, further comprising a mold release operation of mold-releasing the resin layer;
said operation of irradiating the resin composition by the light not comprising light with a wavelength of less than 300 nm being a second exposure operation carried out after said mold release operation.
7. The process to produce a resin-cemented optical element according to claim 1, further comprising, after said mold release operation, a second exposure operation of irradiating the resin layer by light not comprising light with a wavelength of less than 300 nm.
8. The process to produce a resin-cemented optical element according to claim 4, wherein the irradiation in the operation of irradiation by the light not comprising light with a wavelength of less than 300 nm is performed shutting out light with a wavelength of less than 300 nm among light emitted from a light source.
9. The process to produce a resin-cemented optical element according to claim 2, further comprising, after said mold release operation, a heating operation of heating the resin layer.
10. The process to produce a resin-cemented optical element according to claim 6, further comprising, after said second exposure operation, a heating operation of heating the resin layer.
11. The process to produce a resin-cemented optical element according to claim 1, wherein the heating in said heating operation is carried out at a temperature of from 40° C. to 130° C.
12. The process to produce a resin-cemented optical element according to claim 1, wherein said resin composition comprises:
a polyfunctional (meth) acrylate;
a polyfunctional urethane-modified (meth) acrylate; and
a photopolymerization initiator.
13. The process to produce a resin-cemented optical element according to claim 2, further comprising, after said mold release operation, a second exposure operation of irradiating the resin layer by light not comprising light with a wavelength of less than 300 nm.
14. The process to produce a resin-cemented optical element according to claim 5, further comprising, after said mold release operation, a second exposure operation of irradiating the resin layer by light not comprising light with a wavelength of less than 300 nm.
15. The process to produce a resin-cemented optical element according to claim 9, wherein the heating in said heating operation is carried out at a temperature of from 40° C. to 130 C°.
16. The process to produce a resin-cemented optical element according to claim 10, wherein the heating in said heating operation is carried out at a temperature of from 40° C. to 130 C°.
17. The process to produce a resin-cemented optical element according to claim 2, wherein said resin composition comprises:
a polyfunctional (meth) acrylate;
a polyfunctional urethane-modified (meth) acrylate; and
a photopolymerization initiator.
18. The process to produce a resin-cemented optical element according to claim 4, wherein said resin composition comprises:
a polyfunctional (meth) acrylate;
a polyfunctional urethane-modified (meth) acrylate; and
a photopolymerization initiator.
19. The process to produce a resin-cemented optical element according to claim 5, further comprising, after said mold release operation, a heating operation of heating the resin layer.
US11/390,307 1999-07-23 2006-03-28 Process to produce a resin-cemented optical element Abandoned US20060163761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/390,307 US20060163761A1 (en) 1999-07-23 2006-03-28 Process to produce a resin-cemented optical element

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP11-209345 1999-07-23
JP20934599 1999-07-23
JP11-271738 1999-09-27
JP27173899 1999-09-27
PCT/JP2000/004922 WO2001007938A1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article
US10/031,602 US7070862B1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article
US11/390,307 US20060163761A1 (en) 1999-07-23 2006-03-28 Process to produce a resin-cemented optical element

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/031,602 Division US7070862B1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article
PCT/JP2000/004922 Division WO2001007938A1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article

Publications (1)

Publication Number Publication Date
US20060163761A1 true US20060163761A1 (en) 2006-07-27

Family

ID=26517398

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/031,602 Expired - Lifetime US7070862B1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article
US11/390,307 Abandoned US20060163761A1 (en) 1999-07-23 2006-03-28 Process to produce a resin-cemented optical element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/031,602 Expired - Lifetime US7070862B1 (en) 1999-07-23 2000-07-24 Resin-bond type optical element, production method therefor and optical article

Country Status (5)

Country Link
US (2) US7070862B1 (en)
KR (2) KR20070086554A (en)
CN (1) CN1219223C (en)
TW (1) TW473615B (en)
WO (1) WO2001007938A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007675A1 (en) * 2005-07-11 2007-01-11 Sanyo Electric Co., Ltd. Method of manufacturing compound optical element and compound optical element module
US20080203276A1 (en) * 2004-09-14 2008-08-28 Dowski Edward R Low Height Imaging System And Associated Methods
US20140043484A1 (en) * 2011-02-17 2014-02-13 Ulrich Seger Method for manufacturing an optical device and optical device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070086554A (en) * 1999-07-23 2007-08-27 가부시키가이샤 니콘 Resin-bond type optical element, production method therefor and optical article
JP2003071858A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method for manufacturing composite optical element
JP4697584B2 (en) * 2004-03-30 2011-06-08 株式会社ニコン Diffractive optical element and method of manufacturing diffractive optical element
CN1715980A (en) * 2004-07-02 2006-01-04 鸿富锦精密工业(深圳)有限公司 Aspherical lens and manufacture method thereof
JPWO2009038134A1 (en) * 2007-09-19 2011-01-06 株式会社ニコン Resin composite type optical element and method for manufacturing the same
CN101970220B (en) * 2008-03-19 2014-10-29 柯尼卡美能达精密光学株式会社 Method for producing molded body or wafer lens
CN101762835B (en) * 2008-12-24 2013-04-17 新日铁化学株式会社 Heat-resistant compound type lens
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
JP4982627B2 (en) * 2009-08-13 2012-07-25 株式会社タイカ Optical gel member, method of assembling optical device using the same, and optical device
JP5693160B2 (en) * 2010-11-09 2015-04-01 キヤノン株式会社 Composite optical element manufacturing method, manufacturing apparatus, and stress relief method
EP2674793B1 (en) 2011-02-08 2020-03-25 Hamamatsu Photonics K.K. Optical element and method of manufacturing same
CN102794848B (en) * 2011-05-24 2017-08-29 Hoya株式会社 The manufacture method of glasses plastic lens
JP5431432B2 (en) * 2011-09-30 2014-03-05 シャープ株式会社 Optical element manufacturing apparatus and method, and control program
KR20150027120A (en) 2012-06-26 2015-03-11 가부시키가이샤 니콘 Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
JP6234667B2 (en) * 2012-08-06 2017-11-22 浜松ホトニクス株式会社 Optical element and manufacturing method thereof
KR101484065B1 (en) * 2013-04-29 2015-01-19 에이엠씨주식회사 Burr free dicing and die attach film, and method for manufacturing thereof
US20170002170A1 (en) 2013-12-20 2017-01-05 Essilor International (Compagine Generale D'optique) Liquid polymerizable composition comprising an amide or a thioamide derivative monomer and mineral nanoparticles dispersed therein, and its use to manufacture an optical article
CN105874016B (en) 2013-12-20 2018-12-25 依视路国际公司 Liquid polymerizable composition and its purposes for being used to manufacture optical goods comprising acid anhydride derivatives monomer and the mineral nano particle being dispersed therein
WO2016181857A1 (en) 2015-05-08 2016-11-17 バンドー化学株式会社 Optical transparent adhesive sheet, method for producing optical transparent adhesive sheet, laminate and display device with touch panel
JP6163272B1 (en) 2015-09-29 2017-07-12 バンドー化学株式会社 Optically transparent adhesive sheet, laminate, laminate production method, and display device with touch panel
CN108292178B (en) 2015-11-26 2022-03-22 阪东化学株式会社 Optically transparent adhesive sheet, method for producing optically transparent adhesive sheet, laminate, and display device with touch panel
EP3390542B1 (en) 2015-12-18 2021-10-06 Essilor International Liquid polymerizable composition comprising chain-growth and step-growth polymerization monomers and inorganic nanoparticles dispersed therein, and its use to manufacture an optical article
JP6664347B2 (en) * 2017-03-31 2020-03-13 富士フイルム株式会社 Manufacturing method of lens
CN108761595B (en) * 2018-06-22 2020-07-07 泉州市同兴反光材料有限公司 Reflective film UV production facility
JP7268344B2 (en) * 2018-12-17 2023-05-08 東亞合成株式会社 Optical molding kit and method for manufacturing molded member

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948871A (en) * 1972-04-21 1976-04-06 George H. Butterfield And Son Composition for hard type contact lens with wettable surface
US4306780A (en) * 1978-07-17 1981-12-22 Hoya Lens Corporation Highly refractive copolymer of an ethylinically unsaturated alkylene oxide of bis-phenol-A and an ethylinically unsaturated aromatic compound for lens and a lens prepared therefrom
US4650845A (en) * 1984-07-10 1987-03-17 Minnesota Mining And Manufacturing Company Ultra-violet light curable compositions for abrasion resistant articles
US4728469A (en) * 1986-01-28 1988-03-01 Sperti Drug Products, Inc. Method and apparatus for making a plastic lens
US5329402A (en) * 1992-03-05 1994-07-12 Nikon Corporation Wide-angle zoom lens
US5516468A (en) * 1986-01-28 1996-05-14 Q2100, Inc. Method for the production of plastic lenses
US5529728A (en) * 1986-01-28 1996-06-25 Q2100, Inc. Process for lens curing and coating
US5566027A (en) * 1993-01-18 1996-10-15 Canon Kabushiki Kaisha Photocurable resin composition and optical lens produced therefrom
US5670287A (en) * 1994-07-28 1997-09-23 Mita Industrial Co., Ltd. Magnetic carrier for electrophotographic developing agent and method of producing the same
US5679756A (en) * 1995-12-22 1997-10-21 Optima Inc. Optical thermoplastic thiourethane-urethane copolymers
US5683628A (en) * 1994-10-17 1997-11-04 Seiko Epson Corp. Photochromic composition and photochromic resin obtainable by using the same
US5719705A (en) * 1995-06-07 1998-02-17 Sola International, Inc. Anti-static anti-reflection coating
US5792822A (en) * 1994-06-24 1998-08-11 Seiko Epson Corporation Transparent plastic material, optical article based on the material, and production method thereof
US5932501A (en) * 1995-10-18 1999-08-03 Corning Incorporated High-index glasses that absorb UV radiation
US5932626A (en) * 1997-05-09 1999-08-03 Minnesota Mining And Manufacturing Company Optical product prepared from high index of refraction brominated monomers
US6630242B1 (en) * 1999-07-30 2003-10-07 Dsm N.V. Radiation-curable composition with simultaneous color formation during cure
US7070862B1 (en) * 1999-07-23 2006-07-04 Nikon Corporation Resin-bond type optical element, production method therefor and optical article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693043B2 (en) * 1986-05-02 1994-11-16 キヤノン株式会社 Aspherical lens
JPH0782121B2 (en) 1986-08-15 1995-09-06 キヤノン株式会社 Optical element manufacturing method
JP3083836B2 (en) * 1990-10-12 2000-09-04 オリンパス光学工業株式会社 Equipment for manufacturing composite optical elements
JPH04294302A (en) * 1991-03-22 1992-10-19 Olympus Optical Co Ltd Composite type optical part
JPH10309726A (en) * 1997-05-13 1998-11-24 Olympus Optical Co Ltd Manufacture of composite type optical element

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948871A (en) * 1972-04-21 1976-04-06 George H. Butterfield And Son Composition for hard type contact lens with wettable surface
US4306780A (en) * 1978-07-17 1981-12-22 Hoya Lens Corporation Highly refractive copolymer of an ethylinically unsaturated alkylene oxide of bis-phenol-A and an ethylinically unsaturated aromatic compound for lens and a lens prepared therefrom
US4650845A (en) * 1984-07-10 1987-03-17 Minnesota Mining And Manufacturing Company Ultra-violet light curable compositions for abrasion resistant articles
US4728469A (en) * 1986-01-28 1988-03-01 Sperti Drug Products, Inc. Method and apparatus for making a plastic lens
US5516468A (en) * 1986-01-28 1996-05-14 Q2100, Inc. Method for the production of plastic lenses
US5529728A (en) * 1986-01-28 1996-06-25 Q2100, Inc. Process for lens curing and coating
US5329402A (en) * 1992-03-05 1994-07-12 Nikon Corporation Wide-angle zoom lens
US5566027A (en) * 1993-01-18 1996-10-15 Canon Kabushiki Kaisha Photocurable resin composition and optical lens produced therefrom
US5792822A (en) * 1994-06-24 1998-08-11 Seiko Epson Corporation Transparent plastic material, optical article based on the material, and production method thereof
US5670287A (en) * 1994-07-28 1997-09-23 Mita Industrial Co., Ltd. Magnetic carrier for electrophotographic developing agent and method of producing the same
US5683628A (en) * 1994-10-17 1997-11-04 Seiko Epson Corp. Photochromic composition and photochromic resin obtainable by using the same
US5719705A (en) * 1995-06-07 1998-02-17 Sola International, Inc. Anti-static anti-reflection coating
US5932501A (en) * 1995-10-18 1999-08-03 Corning Incorporated High-index glasses that absorb UV radiation
US5679756A (en) * 1995-12-22 1997-10-21 Optima Inc. Optical thermoplastic thiourethane-urethane copolymers
US5932626A (en) * 1997-05-09 1999-08-03 Minnesota Mining And Manufacturing Company Optical product prepared from high index of refraction brominated monomers
US7070862B1 (en) * 1999-07-23 2006-07-04 Nikon Corporation Resin-bond type optical element, production method therefor and optical article
US6630242B1 (en) * 1999-07-30 2003-10-07 Dsm N.V. Radiation-curable composition with simultaneous color formation during cure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203276A1 (en) * 2004-09-14 2008-08-28 Dowski Edward R Low Height Imaging System And Associated Methods
US20110268868A1 (en) * 2004-09-14 2011-11-03 Dowski Jr Edward R Imaging Systems Having Ray Corrector, And Associated Methods
US8426789B2 (en) * 2004-09-14 2013-04-23 Omnivision Technologies, Inc. Aspheric lens forming methods
US8563913B2 (en) 2004-09-14 2013-10-22 Omnivision Technologies, Inc. Imaging systems having ray corrector, and associated methods
US20070007675A1 (en) * 2005-07-11 2007-01-11 Sanyo Electric Co., Ltd. Method of manufacturing compound optical element and compound optical element module
US20140043484A1 (en) * 2011-02-17 2014-02-13 Ulrich Seger Method for manufacturing an optical device and optical device

Also Published As

Publication number Publication date
CN1219223C (en) 2005-09-14
US7070862B1 (en) 2006-07-04
CN1367879A (en) 2002-09-04
KR20070086554A (en) 2007-08-27
KR100853132B1 (en) 2008-08-20
TW473615B (en) 2002-01-21
KR20020033157A (en) 2002-05-04
WO2001007938A1 (en) 2001-02-01

Similar Documents

Publication Publication Date Title
US20060163761A1 (en) Process to produce a resin-cemented optical element
US7821719B2 (en) Monomers and polymers for optical elements
US5531940A (en) Method for manufacturing photochromic lenses
US8344094B2 (en) Optical material and optical element
JPS60201301A (en) Laminated optical part
EP0732988A1 (en) Photochromic lenses and method for manufacturing
JP2010037470A (en) Optical material composition and optical element using the same
US4536267A (en) Plastic lens of neopentyl glycol dimethacrylate copolymerized with methoxy diethylene glycol methacrylate or diethylene glycol dimethacrylate
CA2520771A1 (en) Resin composition for hybrid lens, manufacturing method for hybrid lens, hybrid lens, and lens system
JP2010169708A (en) Composite optical element
JP3051241B2 (en) UV curable transmissive screen resin composition and cured product thereof
JP2796331B2 (en) Plastic molded lens
JP4249634B2 (en) Radiation curable resin composition and method for producing radiation curable resin composition
JPS62258401A (en) Aspherical lens
JP2005036184A (en) Radiation hardenable resin composition and its hardened product
JPH06166731A (en) Ultraviolet curing resin composition for transmission type screen and its cured material
JPH07316245A (en) Ultraviolet-curing resin composition for transmission screen and cured product thereof
JPH0578507A (en) Ultraviolet-curing resin composition for transmitting screen and cured object obtained therefrom
JP2005240014A (en) Radiation-curable resin composition, method for producing the radiation-curable resin composition, cured product, laminated product, and optical recording medium
JP7204363B2 (en) Diffractive optical element, manufacturing method thereof, and optical apparatus
JP7451298B2 (en) Diffractive optical elements, optical instruments and imaging devices
US20220239809A1 (en) Polymerizable composition, optical element and method for producing the same, optical device, and image capturing apparatus
JP2009133883A (en) Resin composition
JPH04294302A (en) Composite type optical part
JP2023055538A (en) Optical element, optical element production method, resin composition, optical equipment, and imaging device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION