US20060161931A1 - Optical disc drive which can firmly fix its tray module within its housing - Google Patents

Optical disc drive which can firmly fix its tray module within its housing Download PDF

Info

Publication number
US20060161931A1
US20060161931A1 US11/308,114 US30811406A US2006161931A1 US 20060161931 A1 US20060161931 A1 US 20060161931A1 US 30811406 A US30811406 A US 30811406A US 2006161931 A1 US2006161931 A1 US 2006161931A1
Authority
US
United States
Prior art keywords
tray
optical disc
disc drive
push rod
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/308,114
Inventor
Ming-Yu Chen
Chih-Liang Chen
Chien-Yueh Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOpen Inc
Original Assignee
AOpen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOpen Inc filed Critical AOpen Inc
Priority to US11/308,114 priority Critical patent/US20060161931A1/en
Assigned to AOPEN INC. reassignment AOPEN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHIEN-YUEH, CHEN, CHIH-LIANG, CHEN, MING-YU
Publication of US20060161931A1 publication Critical patent/US20060161931A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/04Feeding or guiding single record carrier to or from transducer unit
    • G11B17/05Feeding or guiding single record carrier to or from transducer unit specially adapted for discs not contained within cartridges
    • G11B17/051Direct insertion, i.e. without external loading means

Definitions

  • the present invention relates to an optical disc drive, and more specifically, to an optical disc drive which fixes the tray module within its housing.
  • the tray-in and tray-out modules of the tray module in a thin optical disc drive are operated by a dc motor or suction solenoid.
  • the method used by the dc motor collocates the gear module with either the light sensor or the limitation switch.
  • the dc motor mechanism is quite complete, so the cost cannot be reduced.
  • the volume of the suction solenoid mechanism is quite large.
  • a consequence of the large size is that a suction solenoid mechanism may not be employed in an optical disc drive due to limited space in the optical disc drive unless drastic changes are made to the appearance of the product.
  • the suction solenoid is not supplied with the power, the elasticity of the spring on the solenoid does not easily hold the tray-in module in a stable position.
  • the following describes an optical disc drive that uses a suction solenoid.
  • FIG. 1 is a schematic diagram of the tray module 14 of the optical disc drive 10 that is in the tray-in location
  • FIG. 2 is a schematic diagram of the tray module 14 of the optical disc drive 10 that is in the completely tray-out location.
  • FIG. 3 is a schematic diagram of the tray-out module 15 of the optical disc drive 10 in FIG. 1 .
  • FIG. 4 is a location diagram of each component when the tray module 14 of the optical disc drive 10 in FIG. 1 is in the tray-in location.
  • FIG. 5 is a location diagram of the tray-in module 21 of optical disc drive 10 in FIG. 1 that is in the tray-out location.
  • the optical disc drive 10 comprises a housing 12 , a tray module 14 comprising a tray 16 , a tray-out module 15 set on the tray 16 for pushing the tray module 14 out of the housing 12 with respect to the bottom of the housing 12 , and a tray-in module set 21 on the tray 16 for locking the tray module 14 within the housing.
  • the tray-out module 15 comprises a pusher 18 movably set on the tray 16 , an extension spring 20 with one end fixed on the tray 16 and the other end fixed on the pusher 18 .
  • the tray-in module 21 comprises a solenoid 22 fixed on the tray 16 , a shaft 24 fixed on the front end of the solenoid 22 , a solenoid spring 26 set on the shaft 24 , a hook 28 set on the front end via the shaft 24 , and a positioning point 29 set on the tray 16 .
  • the extension spring 20 is compressed according to how far tray 16 is within the housing 12 . During that time, the extension spring is capable of pushing the tray module 14 out of the housing 12 .
  • the solenoid 22 is not supplied with power, the solenoid spring 26 pushes the hook 28 to lock onto the positioning point 29 thereby preventing the pusher 18 from pushing the tray module 14 out of the housing 12 .
  • the tray-out process is operated via the key 27 on the panel of the optical disc drive 10 .
  • the optical disc drive 10 sends a control signal to a CPU to notify the CPU; then the CPU sends another control signal to supply the solenoid 22 with power.
  • the solenoid 22 When the solenoid is supplied with power, the solenoid 22 generates a difference in magnetic force to attract the shaft 24 .
  • the magnetic force of solenoid 22 is larger than the thrust of the solenoid spring 26 , so the hook 28 will depart from the positioning point 29 .
  • the pusher 18 pushes the tray module 14 out of the housing 12 15-25 mm.
  • the pushing force from the solenoid spring 26 is not enough to hold the tray-in module.
  • the hook 28 and the positioning point 29 may be separated by an external force, causing the tray module 14 to come out of the housing 12 .
  • an optical disc drive comprises a housing having at least one track, a positioning part fixed on the housing, and a tray module.
  • the tray module comprises a tray installed within the housing in with the ability to slide along the track, a solenoid fixed on the tray for providing a magnetic force, a latch installed beside the solenoid for moving according to changes in the magnetic force, a push rod fixed on the tray and able to rotate with respect to a pivot with one end of the push rod connected to the latch and the other end forming a space, a hook fixed on the tray with one end for engaging the positioning part and another end connected to the push rod, a first elastic body fixed on the pivot of the push rod, and a second elastic body installed on the tray and having one end fixed in the space of the push rod.
  • FIG. 1 is a schematic diagram of an optical disc drive when a tray module is in a tray-in location according to the prior art.
  • FIG. 2 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in a tray-out location.
  • FIG. 3 is a schematic diagram of the tray module of the optical disc drive in FIG. 1 .
  • FIG. 4 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in tray-in location.
  • FIG. 5 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in tray-out location.
  • FIG. 6 is a schematic diagram of an optical disc drive according to the present invention when a tray module is in the tray-in location.
  • FIG. 7 is a schematic diagram of the optical disc drive in FIG. 6 when the tray module is in complete tray-out location.
  • FIG. 8 is a location diagram of each component when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 9 is a schematic diagram of each component in the optical disc drive in FIG. 6 .
  • FIG. 10 is a reverse schematic diagram of the optical disc drive in FIG. 6 when the tray module is in the tray-in location.
  • FIG. 11 is a front schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the tray-in location.
  • FIG. 12 is a schematic diagram of a solenoid and a latch in the optical disc drive in FIG. 6 .
  • FIG. 13 is a schematic diagram of a push rod in the optical disc drive in FIG. 6 .
  • FIG. 14 is a reverse schematic diagram of some components at the time that the tray module of the optical disc drive in FIG. 6 is starting to be pushed out of the housing.
  • FIG. 15 is a front schematic diagram of some components at the time that the tray module of the optical disc drive in FIG. 6 is starting to be pushed out of the housing.
  • FIG. 16 is a reverse schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 17 is a front schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 18 is a reverse schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is pushed within the housing.
  • FIG. 19 is a front schematic diagram when the tray module of the optical disc drive in FIG. 6 is pushed within the housing.
  • FIG. 20 is reverse schematic diagram of some components of the tray module of the optical disc drive in FIG. 6 when the tray module is in manual tray-out mode.
  • FIG. 21 is a front diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the manual tray-out mode.
  • FIG. 6 is a schematic diagram of an optical disc drive with the tray module in the tray-in location according to the present invention.
  • FIG. 7 is a schematic diagram of the optical disc drive in FIG. 6 when the tray module is in complete tray-out location.
  • FIG. 8 is a location diagram of each component when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 9 is a schematic diagram of each component in the optical disc drive in FIG. 6 .
  • FIG. 10 is a reverse schematic diagram of the optical disc drive in FIG. 6 when the tray module is in the tray-in location.
  • FIG. 11 is a front schematic diagram of some components when a tray module of the optical disc drive in FIG. 6 is in the tray-in location.
  • FIG. 12 is a schematic diagram of a solenoid and a latch in the optical disc drive in FIG. 6 .
  • FIG. 13 is a schematic diagram of a push rod in the optical disc drive in FIG. 6 .
  • the optical disc drive 30 comprises a housing 32 having two tracks 34 and 36 , a tray module 38 movably installed within the housing 32 along the two tracks 34 and 36 .
  • the tray module 38 comprises a read/write module 40 for reading and writing data in the optical disc, a tray 44 movably installed within the housing 32 along the tracks 34 and 36 , a positioning shaft 50 fixed on the housing 32 , a push rod 52 fixed in a rotatable manner on the tray 44 with respect to the pivot 51 with a first end of the push rod 52 connected to latch 48 , a second end of the push rod 52 forming a slot 53 (it is shown in FIG.
  • the push rod 52 comprising a protruding shaft 61 , a hook 54 fixed in a rotatable manner on the tray 44 with a first end locked onto the positioning shaft 50 and a second end having a hole connected to the protruding shaft 61 , a torsion spring 56 fixed on the pivot 51 of the push rod 52 with a first end 55 of the torsion spring 56 fixed on the push rod 52 and a second end 57 of the torsion spring 56 for pushing the hook 54 , and a compression spring 58 installed on the tray 44 with one end fixed in the slot 53 of the push rod 52 .
  • the tray module 38 further comprises a solenoid 46 fixed on the tray 44 for providing magnetic force and a latch 48 installed beside the solenoid 46 moving in response to changes in the magnetic force.
  • the solenoid 46 comprises a coil 60 and a magnet 62 .
  • the coil 60 of the solenoid 46 When the coil 60 of the solenoid 46 is supplied with power, the coil 60 generates a magnetic force to counteract the magnetic force of the magnet 62 . Countering the force from the magnet 62 frees the latch 48 allowing it to move in response to an external force.
  • the solenoid 46 is not supplied with power, the coil 60 does not generate a magnetic force to counteract the force from the magnet 62 meaning that the magnet 62 is capable of attracting the latch 48 .
  • FIG. 10 and FIG. 11 Please refer to FIG. 10 and FIG. 11 .
  • the solenoid 46 can attract the latch 48 . Attracting the latch 48 to the solenoid pulls the first end of the push rod 52 closer to the solenoid 46 . This causes the second end 57 of the torsion spring 56 to first push the first end of the hook 54 away from the push rod 52 and then to lock the push rod 52 onto the positioning shaft, thereby counteracting the pushing force of compression spring 58 when the tray module 38 is within the housing 32 .
  • FIG. 14 is a reverse schematic diagram of some components at the time the tray module 38 of the optical disc drive 30 in FIG. 6 is starting to be pushed out of the housing 32 .
  • FIG. 15 is a front schematic diagram of some components at the time that the tray module of the optical disc drive 30 in FIG. 6 is starting to be pushed out of the housing 32 .
  • the tray-out operation of the tray module 38 is operated via pressing the key 39 on the panel of the optical disc drive 30 .
  • the optical disc drive 30 sends a control signal to notify the CPU to send another control signal to supply the solenoid 46 with power.
  • the coil 60 of the solenoid 46 When the coil 60 of the solenoid 46 is supplied with power, the coil 60 generates a magnetic force to counteract the magnetic force of the magnet 62 . As a result, the solenoid 46 does not attract the latch 48 allowing the compression spring 58 to push the push rod 52 , which in turn makes the protruding shaft 61 push the hook 54 . In response to the push, the first end of the hook 54 rotates away from the positioning shaft 50 . At that moment, the compression spring 58 starts to push the tray 44 out of the housing 32 .
  • FIG. 16 is a reverse schematic diagram of some components when a tray module 38 of the optical disc drive 30 in FIG. 6 is in the complete tray-out location.
  • FIG. 17 is a front schematic diagram of some components when a tray module 38 of the optical disc drive 30 in FIG. 6 is in the complete tray-out location.
  • the charging-time period of the solenoid 46 is can be determined by the design demand of the optical disc drive 30 . In the preferred embodiment, the time-period of supplying power is very short. When the solenoid 46 is supplied with power, the solenoid 46 generates a magnetic force to counteract the magnetic force of the magnet 62 .
  • the solenoid 46 does not attract the latch 48 allowing the compression spring 58 to push the push rod 52 , which in turn makes the push rod rotate with respect to the pivot 51 by a small angle.
  • the protruding shaft 61 is links to the hook 54 causing the hook 54 to rotate by a small angle.
  • the first end of the hook 54 departs from the positioning shaft 50 , and the compressing spring 58 pushes the tray module 38 out of the housing 32 .
  • the solenoid 46 attracts the latch 48 to fix the push rod 52 .
  • the protruding shaft 61 does not move the push the hook 54 .
  • the hook 54 is pushed by the second end 57 of the torsion spring 56 to the location shown in FIG. 15 .
  • FIG. 18 is a reverse schematic diagram of some components when the tray module 38 of the optical disc drive 30 in FIG. 6 is pushed within the housing 32 .
  • FIG. 19 is a front schematic diagram of the optical disc drive 30 in FIG. 6 when the tray module 38 is pushed within the housing 32 .
  • the solenoid 46 can attract the latch 48 to fix the push rod 50 .
  • the edge of the first end of the hook 54 is edging makes contact with the positioning shaft 50 (as shown in FIG. 18 and FIG. 19 ).
  • the hook 54 is pushed to rotate by a small angle until the first end of the hook 54 exceeds the positioning shaft 50 thereby locking the hook 54 onto the positioning shaft 50 .
  • the compressing spring 58 is compressed continuously until the tray module 38 is completely pushed within the housing 32 . At this time, the compression spring has maximum elongation and continuously pushes the tray module 38 .
  • FIG. 20 is reverse schematic diagram of some components of the tray module 38 of the optical disc drive 30 in FIG. 6 when the tray module 38 of the optical disc drive 30 is in manual tray-out mode.
  • FIG. 21 is a front diagram of some components when the tray module 38 of the optical disc drive 30 in FIG. 6 is in the manual tray-out mode.
  • the manual tray-out operation of the tray module is operated via a hole 31 (as displayed in FIG. 6 ).
  • the solenoid 46 attracts the latch 48 to fix the push rod 50 .
  • the hook 54 rotates by a small angle.
  • the first end of the hook 54 departs from the positioning shaft 50 , so the compression spring 58 pushes the tray module 38 out of the housing 32 15-25 mm.
  • the character of the solenoid in the optical disc drive 30 in the invention along with a push rod, hook, and tray-out module is used to stably fix the tray module 38 of the optical disc drive 30 in the tray-in location and to solve the problem in the prior art of the tray module 14 not being stably fixed within the housing 12 .
  • the components in the invention are not highly dependent, the precisions of the components are not necessarily high. As a result, the assembling inaccuracy can be reduced so that the quality and the cost can be improved.
  • the final result is the optical disc drive in the invention is a simple-mechanism with stable-operation and artistic-design.

Abstract

An optical disc drive includes a housing, a positioning part fixed on the housing, and a tray module. The tray module includes a tray installed inside the housing with the ability to slide, a solenoid fixed on the tray for providing magnetic force, a latch installed beside the solenoid moving in response to changes in magnetic force, a push pod fixed on the tray in a rotatable manner with one end connected to the latch and the other end forming a space, a hook rotatably fixed on the tray with one end for engaging the positioning part and the other end connected to the push pod, a first elastic body fixed on the pivot of the push pod, and a second elastic body installed in a track of the housing. One end of the second elastic body is fixed in the space of the push pod.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 10/707,584, filed Dec. 22, 2003.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an optical disc drive, and more specifically, to an optical disc drive which fixes the tray module within its housing.
  • 2. Description of the Prior Art
  • In general, the tray-in and tray-out modules of the tray module in a thin optical disc drive are operated by a dc motor or suction solenoid. Usually, the method used by the dc motor collocates the gear module with either the light sensor or the limitation switch. The dc motor mechanism is quite complete, so the cost cannot be reduced.
  • In the method used by a suction solenoid, the volume of the suction solenoid mechanism is quite large. A consequence of the large size is that a suction solenoid mechanism may not be employed in an optical disc drive due to limited space in the optical disc drive unless drastic changes are made to the appearance of the product. Additionally, when the suction solenoid is not supplied with the power, the elasticity of the spring on the solenoid does not easily hold the tray-in module in a stable position. The following describes an optical disc drive that uses a suction solenoid.
  • Please refer FIG. 1-FIG. 5. FIG. 1 is a schematic diagram of the tray module 14 of the optical disc drive 10 that is in the tray-in location FIG. 2 is a schematic diagram of the tray module 14 of the optical disc drive 10 that is in the completely tray-out location. FIG. 3 is a schematic diagram of the tray-out module 15 of the optical disc drive 10 in FIG. 1. FIG. 4 is a location diagram of each component when the tray module 14 of the optical disc drive 10 in FIG. 1 is in the tray-in location. FIG. 5 is a location diagram of the tray-in module 21 of optical disc drive 10 in FIG. 1 that is in the tray-out location.
  • The optical disc drive 10 comprises a housing 12, a tray module 14 comprising a tray 16, a tray-out module 15 set on the tray 16 for pushing the tray module 14 out of the housing 12 with respect to the bottom of the housing 12, and a tray-in module set 21 on the tray 16 for locking the tray module 14 within the housing. The tray-out module 15 comprises a pusher 18 movably set on the tray 16, an extension spring 20 with one end fixed on the tray 16 and the other end fixed on the pusher 18. The tray-in module 21 comprises a solenoid 22 fixed on the tray 16, a shaft 24 fixed on the front end of the solenoid 22, a solenoid spring 26 set on the shaft 24, a hook 28 set on the front end via the shaft 24, and a positioning point 29 set on the tray 16.
  • Please refer to FIG. 3 and FIG. 4. When the tray module 14 of the optical disc drive 10 is in the tray-in location, the extension spring 20 is compressed according to how far tray 16 is within the housing 12. During that time, the extension spring is capable of pushing the tray module 14 out of the housing 12. When the solenoid 22 is not supplied with power, the solenoid spring 26 pushes the hook 28 to lock onto the positioning point 29 thereby preventing the pusher 18 from pushing the tray module 14 out of the housing 12.
  • Please refer to FIG. 1, FIG. 3, and FIG. 5. The tray-out process is operated via the key 27 on the panel of the optical disc drive 10. When the key 27 is pressed, the optical disc drive 10 sends a control signal to a CPU to notify the CPU; then the CPU sends another control signal to supply the solenoid 22 with power. When the solenoid is supplied with power, the solenoid 22 generates a difference in magnetic force to attract the shaft 24. The magnetic force of solenoid 22 is larger than the thrust of the solenoid spring 26, so the hook 28 will depart from the positioning point 29. When the hook 28 departs from the positioning point 29, the pusher 18 pushes the tray module 14 out of the housing 12 15-25 mm.
  • However, when the suction solenoid as shown in FIG. 1 is not supplied with power, the pushing force from the solenoid spring 26 is not enough to hold the tray-in module. The hook 28 and the positioning point 29 may be separated by an external force, causing the tray module 14 to come out of the housing 12.
  • SUMMARY OF THE INVENTION
  • It is therefore a primary objective of the claimed invention to provide an optical disc drive that is stably capable of fixing tray module within the housing.
  • According to the claimed invention, an optical disc drive comprises a housing having at least one track, a positioning part fixed on the housing, and a tray module. The tray module comprises a tray installed within the housing in with the ability to slide along the track, a solenoid fixed on the tray for providing a magnetic force, a latch installed beside the solenoid for moving according to changes in the magnetic force, a push rod fixed on the tray and able to rotate with respect to a pivot with one end of the push rod connected to the latch and the other end forming a space, a hook fixed on the tray with one end for engaging the positioning part and another end connected to the push rod, a first elastic body fixed on the pivot of the push rod, and a second elastic body installed on the tray and having one end fixed in the space of the push rod.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an optical disc drive when a tray module is in a tray-in location according to the prior art.
  • FIG. 2 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in a tray-out location.
  • FIG. 3 is a schematic diagram of the tray module of the optical disc drive in FIG. 1.
  • FIG. 4 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in tray-in location.
  • FIG. 5 is a schematic diagram of the optical disc drive in FIG. 1 when the tray module is in tray-out location.
  • FIG. 6 is a schematic diagram of an optical disc drive according to the present invention when a tray module is in the tray-in location.
  • FIG. 7 is a schematic diagram of the optical disc drive in FIG. 6 when the tray module is in complete tray-out location.
  • FIG. 8 is a location diagram of each component when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 9 is a schematic diagram of each component in the optical disc drive in FIG. 6.
  • FIG. 10 is a reverse schematic diagram of the optical disc drive in FIG. 6 when the tray module is in the tray-in location.
  • FIG. 11 is a front schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the tray-in location.
  • FIG. 12 is a schematic diagram of a solenoid and a latch in the optical disc drive in FIG. 6.
  • FIG. 13 is a schematic diagram of a push rod in the optical disc drive in FIG. 6.
  • FIG. 14 is a reverse schematic diagram of some components at the time that the tray module of the optical disc drive in FIG. 6 is starting to be pushed out of the housing.
  • FIG. 15 is a front schematic diagram of some components at the time that the tray module of the optical disc drive in FIG. 6 is starting to be pushed out of the housing.
  • FIG. 16 is a reverse schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 17 is a front schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location.
  • FIG. 18 is a reverse schematic diagram of some components when the tray module of the optical disc drive in FIG. 6 is pushed within the housing.
  • FIG. 19 is a front schematic diagram when the tray module of the optical disc drive in FIG. 6 is pushed within the housing.
  • FIG. 20 is reverse schematic diagram of some components of the tray module of the optical disc drive in FIG. 6 when the tray module is in manual tray-out mode.
  • FIG. 21 is a front diagram of some components when the tray module of the optical disc drive in FIG. 6 is in the manual tray-out mode.
  • DETAILED DESCRIPTION
  • Please refer to FIG. 6-FIG. 13. FIG. 6 is a schematic diagram of an optical disc drive with the tray module in the tray-in location according to the present invention. FIG. 7 is a schematic diagram of the optical disc drive in FIG. 6 when the tray module is in complete tray-out location. FIG. 8 is a location diagram of each component when the tray module of the optical disc drive in FIG. 6 is in the complete tray-out location. FIG. 9 is a schematic diagram of each component in the optical disc drive in FIG. 6. FIG. 10 is a reverse schematic diagram of the optical disc drive in FIG. 6 when the tray module is in the tray-in location. FIG. 11 is a front schematic diagram of some components when a tray module of the optical disc drive in FIG. 6 is in the tray-in location. FIG. 12 is a schematic diagram of a solenoid and a latch in the optical disc drive in FIG. 6. FIG. 13 is a schematic diagram of a push rod in the optical disc drive in FIG. 6.
  • The optical disc drive 30 comprises a housing 32 having two tracks 34 and 36, a tray module 38 movably installed within the housing 32 along the two tracks 34 and 36. The tray module 38 comprises a read/write module 40 for reading and writing data in the optical disc, a tray 44 movably installed within the housing 32 along the tracks 34 and 36, a positioning shaft 50 fixed on the housing 32, a push rod 52 fixed in a rotatable manner on the tray 44 with respect to the pivot 51 with a first end of the push rod 52 connected to latch 48, a second end of the push rod 52 forming a slot 53 (it is shown in FIG. 13) and a third end of the push rod 52 comprising a protruding shaft 61, a hook 54 fixed in a rotatable manner on the tray 44 with a first end locked onto the positioning shaft 50 and a second end having a hole connected to the protruding shaft 61, a torsion spring 56 fixed on the pivot 51 of the push rod 52 with a first end 55 of the torsion spring 56 fixed on the push rod 52 and a second end 57 of the torsion spring 56 for pushing the hook 54, and a compression spring 58 installed on the tray 44 with one end fixed in the slot 53 of the push rod 52.
  • As shown in FIG. 9 and FIG. 11, the tray module 38 further comprises a solenoid 46 fixed on the tray 44 for providing magnetic force and a latch 48 installed beside the solenoid 46 moving in response to changes in the magnetic force. The solenoid 46 comprises a coil 60 and a magnet 62. When the coil 60 of the solenoid 46 is supplied with power, the coil 60 generates a magnetic force to counteract the magnetic force of the magnet 62. Countering the force from the magnet 62 frees the latch 48 allowing it to move in response to an external force. When the solenoid 46 is not supplied with power, the coil 60 does not generate a magnetic force to counteract the force from the magnet 62 meaning that the magnet 62 is capable of attracting the latch 48.
  • Please refer to FIG. 10 and FIG. 11. When the tray module 38 of the optical disc drive 30 is within the housing 32 and the coil 60 of the solenoid 46 is not supplied with power, the solenoid 46 can attract the latch 48. Attracting the latch 48 to the solenoid pulls the first end of the push rod 52 closer to the solenoid 46. This causes the second end 57 of the torsion spring 56 to first push the first end of the hook 54 away from the push rod 52 and then to lock the push rod 52 onto the positioning shaft, thereby counteracting the pushing force of compression spring 58 when the tray module 38 is within the housing 32.
  • Please refer to FIG. 14 and FIG. 15. FIG. 14 is a reverse schematic diagram of some components at the time the tray module 38 of the optical disc drive 30 in FIG. 6 is starting to be pushed out of the housing 32. FIG. 15 is a front schematic diagram of some components at the time that the tray module of the optical disc drive 30 in FIG. 6 is starting to be pushed out of the housing 32. The tray-out operation of the tray module 38 is operated via pressing the key 39 on the panel of the optical disc drive 30. When the key 39 is pressed, the optical disc drive 30 sends a control signal to notify the CPU to send another control signal to supply the solenoid 46 with power. When the coil 60 of the solenoid 46 is supplied with power, the coil 60 generates a magnetic force to counteract the magnetic force of the magnet 62. As a result, the solenoid 46 does not attract the latch 48 allowing the compression spring 58 to push the push rod 52, which in turn makes the protruding shaft 61 push the hook 54. In response to the push, the first end of the hook 54 rotates away from the positioning shaft 50. At that moment, the compression spring 58 starts to push the tray 44 out of the housing 32.
  • Please refer to FIG. 16 and FIG. 17. FIG. 16 is a reverse schematic diagram of some components when a tray module 38 of the optical disc drive 30 in FIG. 6 is in the complete tray-out location. FIG. 17 is a front schematic diagram of some components when a tray module 38 of the optical disc drive 30 in FIG. 6 is in the complete tray-out location. The charging-time period of the solenoid 46 is can be determined by the design demand of the optical disc drive 30. In the preferred embodiment, the time-period of supplying power is very short. When the solenoid 46 is supplied with power, the solenoid 46 generates a magnetic force to counteract the magnetic force of the magnet 62. As a result, the solenoid 46 does not attract the latch 48 allowing the compression spring 58 to push the push rod 52, which in turn makes the push rod rotate with respect to the pivot 51 by a small angle. At that moment, the protruding shaft 61 is links to the hook 54 causing the hook 54 to rotate by a small angle. As a result, the first end of the hook 54 departs from the positioning shaft 50, and the compressing spring 58 pushes the tray module 38 out of the housing 32. When the tray module 38 is pushed out of the housing 32 a little distance and the solenoid 46 is not supplied with power, the solenoid 46 attracts the latch 48 to fix the push rod 52. During this time, the protruding shaft 61 does not move the push the hook 54. The hook 54 is pushed by the second end 57 of the torsion spring 56 to the location shown in FIG. 15.
  • Please refer to FIG. 16 and FIG. 17 again. The moment the tray module 38 is out of the housing 32, the compression spring 58 pushes the tray module 38 until the tray module 38 is completely out of the housing 32, and then the compression spring 58 gradually returns to the original length. When the tray module 38 is in complete tray-out location, the compression spring 58 returns to the original length.
  • Please refer to FIG. 16-FIG. 19. FIG. 18 is a reverse schematic diagram of some components when the tray module 38 of the optical disc drive 30 in FIG. 6 is pushed within the housing 32. FIG. 19 is a front schematic diagram of the optical disc drive 30 in FIG. 6 when the tray module 38 is pushed within the housing 32. When the tray module 38 is pushed within the housing 32 from the complete tray-out location and the solenoid 46 is not supplied with power, the solenoid 46 can attract the latch 48 to fix the push rod 50. When the tray module 38 is pushed into the housing 32 a little distance, the edge of the first end of the hook 54 is edging makes contact with the positioning shaft 50 (as shown in FIG. 18 and FIG. 19). When the tray module 38 is pushed within the housing 32, the hook 54 is pushed to rotate by a small angle until the first end of the hook 54 exceeds the positioning shaft 50 thereby locking the hook 54 onto the positioning shaft 50. The compressing spring 58 is compressed continuously until the tray module 38 is completely pushed within the housing 32. At this time, the compression spring has maximum elongation and continuously pushes the tray module 38.
  • Please refer to FIG. 20 and FIG. 21. FIG. 20 is reverse schematic diagram of some components of the tray module 38 of the optical disc drive 30 in FIG. 6 when the tray module 38 of the optical disc drive 30 is in manual tray-out mode. FIG. 21 is a front diagram of some components when the tray module 38 of the optical disc drive 30 in FIG. 6 is in the manual tray-out mode. The manual tray-out operation of the tray module is operated via a hole 31 (as displayed in FIG. 6). At the time the solenoid 46 is not supplied with power, the solenoid 46 attracts the latch 48 to fix the push rod 50. When a needle-shaped object moves the hook 54 via the hole 31, the hook 54 rotates by a small angle. The first end of the hook 54 departs from the positioning shaft 50, so the compression spring 58 pushes the tray module 38 out of the housing 32 15-25 mm.
  • Compared to the prior art, the character of the solenoid in the optical disc drive 30 in the invention along with a push rod, hook, and tray-out module is used to stably fix the tray module 38 of the optical disc drive 30 in the tray-in location and to solve the problem in the prior art of the tray module 14 not being stably fixed within the housing 12. Because the components in the invention are not highly dependent, the precisions of the components are not necessarily high. As a result, the assembling inaccuracy can be reduced so that the quality and the cost can be improved. The final result is the optical disc drive in the invention is a simple-mechanism with stable-operation and artistic-design.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (9)

1. An optical disc drive comprising:
a housing having at least a track;
a positioning part fixed on the housing; and
a tray module comprising:
a tray installed within the housing in a slidable manner along the track;
a solenoid fixed on the tray for providing a magnetic force;
a latch installed beside the solenoid for moving according to changes of the magnetic force;
a push rod rotatably fixed on the tray with respect to a pivot, the push rod having one end connected to the latch and having a space formed at another end;
a hook rotatably fixed on the tray with one end for engaging with the positioning part and another end connected to the push rod;
a first elastic body fixed on the pivot of the push rod; and
a second elastic body installed on the tray and having one end fixed in the space of the push rod.
2. The optical disc drive of claim 1 wherein the solenoid comprises a magnet and a coil and the solenoid is capable of attracting the latch to make the first end of the push rod move close to the solenoid, and second end of the first elastic body push the first end of the hook away from the push rod; when the coil is supplied, the coil is capable of generating the magnetic force to counteract the magnetic force of the magnet to make the solenoid not attract the latch so that the second elastic body is capable of moving the push rod, and then the push rod is capable of moving the first end of the rod to rotate away from the positioning part so that the second elastic body pushes the tray away from the housing.
3. The optical disc drive of claim 1 wherein the first end of the push rod is connected to the latch in locking manner and the second end of the push rod is connected to the hook in the locking manner.
4. The optical disc drive of the claim 3 wherein the second end of the push rod has a protruding part connected to the hook in the locking manner.
5. The optical disc drive of claim 1 wherein the hook is an L-shaped hook and the first end of the hook has a tongue-shaped extension part for locking the positioning part.
6. The optical disc drive of claim 1 wherein the positioning part is a shaft.
7. The optical disc drive of claim 1 wherein the space is a slot.
8. The optical disc drive of claim 1 wherein the first elastic body is a torsion spring.
9. The optical disc drive of claim 1 wherein the second elastic body is a compression spring.
US11/308,114 2003-09-29 2006-03-07 Optical disc drive which can firmly fix its tray module within its housing Abandoned US20060161931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/308,114 US20060161931A1 (en) 2003-09-29 2006-03-07 Optical disc drive which can firmly fix its tray module within its housing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW092126899 2003-09-29
TW092126899A TWI226614B (en) 2003-09-29 2003-09-29 Optical disc drive which can firmly fix its tray module within its housing
US10/707,584 US7043740B2 (en) 2003-09-29 2003-12-22 Optical disc drive which can firmly fix its tray module within its housing
US11/308,114 US20060161931A1 (en) 2003-09-29 2006-03-07 Optical disc drive which can firmly fix its tray module within its housing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/707,584 Continuation US7043740B2 (en) 2003-09-29 2003-12-22 Optical disc drive which can firmly fix its tray module within its housing

Publications (1)

Publication Number Publication Date
US20060161931A1 true US20060161931A1 (en) 2006-07-20

Family

ID=34374613

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/707,584 Expired - Fee Related US7043740B2 (en) 2003-09-29 2003-12-22 Optical disc drive which can firmly fix its tray module within its housing
US11/308,114 Abandoned US20060161931A1 (en) 2003-09-29 2006-03-07 Optical disc drive which can firmly fix its tray module within its housing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/707,584 Expired - Fee Related US7043740B2 (en) 2003-09-29 2003-12-22 Optical disc drive which can firmly fix its tray module within its housing

Country Status (2)

Country Link
US (2) US7043740B2 (en)
TW (1) TWI226614B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040210917A1 (en) * 2003-04-15 2004-10-21 Benq Corporation Disc drive
US20070067782A1 (en) * 2005-09-16 2007-03-22 Lite-On It Corporation Slim-type recording and reproducing apparatus having positioning structure for positioning a tray therein
US20120174133A1 (en) * 2010-12-31 2012-07-05 Kim Hag-Ryeol Disk drive
US20120174134A1 (en) * 2010-12-31 2012-07-05 Kim Hag-Ryeol Disk drive having a tray lock releasing unit and a method of releasing a tray lock using the tray lock releasing unit
US20120260270A1 (en) * 2011-04-08 2012-10-11 Haq-Ryeol Kim Disk drive with enhanced lead screw
US8424027B1 (en) * 2012-03-26 2013-04-16 Lite-On It Corporation Optical disc drive and tray locking device thereof
US8589958B2 (en) * 2011-04-08 2013-11-19 Toshiba Samsung Storage Technology Korea Corporation Disc drive with lock release unit

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636364Y (en) * 2003-06-03 2004-08-25 鸿富锦精密工业(深圳)有限公司 Optical disc driver
TWI226614B (en) * 2003-09-29 2005-01-11 Aopen Inc Optical disc drive which can firmly fix its tray module within its housing
CN2770041Y (en) * 2004-12-22 2006-04-05 鸿富锦精密工业(深圳)有限公司 Optical disc driver
TWI293171B (en) * 2005-06-12 2008-02-01 Quanta Storage Inc A latch mechanism of an optical disk player
JP2007012227A (en) * 2005-07-04 2007-01-18 Hitachi Ltd Optical disk apparatus
CN100424559C (en) * 2006-11-22 2008-10-08 友达光电股份有限公司 Supporting structure and backlight mould with the same
JP2010009678A (en) * 2008-06-27 2010-01-14 Funai Electric Co Ltd Disk tray and attachment structure for tray trim
US10117504B2 (en) 2014-08-09 2018-11-06 Apple Inc. Wearable band including magnets
WO2016025348A1 (en) 2014-08-11 2016-02-18 Apple Inc. Magnetic buckle
US10123608B2 (en) 2014-08-11 2018-11-13 Apple Inc. Wearable band including magnets
US9141086B1 (en) 2014-08-11 2015-09-22 Apple Inc. Magnetic actuated attachment mechanisms for wearable devices
US10172426B2 (en) 2015-09-16 2019-01-08 Apple Inc. Magnetic band clasp
CN114261050B (en) * 2021-12-13 2023-10-20 浙江汇锋智造科技有限公司 Foaming decorative film material and processing device thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563865A (en) * 1994-01-06 1996-10-08 International Business Machines Corporation Compact disk transport tray moved by a disk reading mechanism
US5585978A (en) * 1993-08-30 1996-12-17 Conner Peripherals, Inc. Arcuate scan tape drive
US6181663B1 (en) * 1995-12-28 2001-01-30 Matsushita Electric Industrial Co., Ltd. Disk apparatus with sliding tray and lock arm for preventing sliding tray movement
US6246540B1 (en) * 1998-02-26 2001-06-12 Teac Corporation Damping and latch mechanism for a recording medium recording/reproducing device
US20010055178A1 (en) * 1997-06-03 2001-12-27 Joe Stabile Mini-cartridge adapter for adapting a mini-cartridge to an industry standard tape cartridge format
US20020018426A1 (en) * 2000-07-28 2002-02-14 Minoru Minase Recording medium loading device
US20030043720A1 (en) * 2001-09-04 2003-03-06 Shinichi Fujisawa Disc device
US6665253B2 (en) * 2001-05-23 2003-12-16 Industrial Technology Research Institute Optical disk control mechanism
US6775093B1 (en) * 1997-05-09 2004-08-10 Hewlett-Packard Development Company, L.P. Data cartridge-to-caddy referencing system for a data cartridge handling mechanism within an autochanger
US20040205787A1 (en) * 2003-01-27 2004-10-14 Micro-Star Int'l Co., Ltd. Plunger-latch mechanism for optical disk drive
US7043740B2 (en) * 2003-09-29 2006-05-09 Aopen Inc. Optical disc drive which can firmly fix its tray module within its housing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326824B2 (en) * 1992-08-24 2002-09-24 ソニー株式会社 Eject mechanism for disk unit
JP3835340B2 (en) * 2002-05-10 2006-10-18 日本電気株式会社 Optical disk device
JP2004185762A (en) * 2002-12-05 2004-07-02 Citizen Watch Co Ltd Disk driver
JP4054703B2 (en) * 2003-03-28 2008-03-05 株式会社日立エルジーデータストレージ Optical disk device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585978A (en) * 1993-08-30 1996-12-17 Conner Peripherals, Inc. Arcuate scan tape drive
US5563865A (en) * 1994-01-06 1996-10-08 International Business Machines Corporation Compact disk transport tray moved by a disk reading mechanism
US6181663B1 (en) * 1995-12-28 2001-01-30 Matsushita Electric Industrial Co., Ltd. Disk apparatus with sliding tray and lock arm for preventing sliding tray movement
US6775093B1 (en) * 1997-05-09 2004-08-10 Hewlett-Packard Development Company, L.P. Data cartridge-to-caddy referencing system for a data cartridge handling mechanism within an autochanger
US20010055178A1 (en) * 1997-06-03 2001-12-27 Joe Stabile Mini-cartridge adapter for adapting a mini-cartridge to an industry standard tape cartridge format
US6246540B1 (en) * 1998-02-26 2001-06-12 Teac Corporation Damping and latch mechanism for a recording medium recording/reproducing device
US20020018426A1 (en) * 2000-07-28 2002-02-14 Minoru Minase Recording medium loading device
US6665253B2 (en) * 2001-05-23 2003-12-16 Industrial Technology Research Institute Optical disk control mechanism
US20030043720A1 (en) * 2001-09-04 2003-03-06 Shinichi Fujisawa Disc device
US20040205787A1 (en) * 2003-01-27 2004-10-14 Micro-Star Int'l Co., Ltd. Plunger-latch mechanism for optical disk drive
US7043740B2 (en) * 2003-09-29 2006-05-09 Aopen Inc. Optical disc drive which can firmly fix its tray module within its housing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040210917A1 (en) * 2003-04-15 2004-10-21 Benq Corporation Disc drive
US20070067782A1 (en) * 2005-09-16 2007-03-22 Lite-On It Corporation Slim-type recording and reproducing apparatus having positioning structure for positioning a tray therein
US20120174133A1 (en) * 2010-12-31 2012-07-05 Kim Hag-Ryeol Disk drive
US20120174134A1 (en) * 2010-12-31 2012-07-05 Kim Hag-Ryeol Disk drive having a tray lock releasing unit and a method of releasing a tray lock using the tray lock releasing unit
US8453168B2 (en) * 2010-12-31 2013-05-28 Toshiba Samsung Storage Technology Korea Corporation Disk drive having a tray lock releasing unit and a method of releasing a tray lock using the tray lock releasing unit
US8479224B2 (en) * 2010-12-31 2013-07-02 Toshiba Samsung Storage Technology Korea Corporation Disk drive
US20120260270A1 (en) * 2011-04-08 2012-10-11 Haq-Ryeol Kim Disk drive with enhanced lead screw
US8589958B2 (en) * 2011-04-08 2013-11-19 Toshiba Samsung Storage Technology Korea Corporation Disc drive with lock release unit
US8589959B2 (en) * 2011-04-08 2013-11-19 Toshiba Samsung Storage Technology Korea Corporation Disk drive with enhanced lead screw
US8424027B1 (en) * 2012-03-26 2013-04-16 Lite-On It Corporation Optical disc drive and tray locking device thereof

Also Published As

Publication number Publication date
US20050071858A1 (en) 2005-03-31
TWI226614B (en) 2005-01-11
TW200512737A (en) 2005-04-01
US7043740B2 (en) 2006-05-09

Similar Documents

Publication Publication Date Title
US20060161931A1 (en) Optical disc drive which can firmly fix its tray module within its housing
US7134128B2 (en) Disk drive with protection from static electricity
US8553419B2 (en) Card tray ejection mechanism and electronic device using the same
US20090268386A1 (en) Computer device capable of containing an external module
US7089569B2 (en) Disk drive having means for pressing disk tray by using chassis case as a reaction point
US20050066342A1 (en) Optical disc drive which can firmly fix the tray within the housing
JP4298734B2 (en) Optical disk device
CN111682882A (en) Card holds in palm subassembly and includes its mobile terminal
US20050088828A1 (en) Electronic apparatus with module-locking device
US8826755B2 (en) Adjustment mechanism for an optical module
JP2007184018A (en) Slot-in type disk device
US8208247B2 (en) Unloading mechanism for unloading an electronic component and computer device thereof
US20050076348A1 (en) Optical disc drive having a disc transport tray moved by a spindle motor
JP2008305522A (en) Optical disk device
JP4331171B2 (en) Slot-in type disk unit
US20070002002A1 (en) Pushing assembly for data storage device
JPH05151753A (en) Magneto-optical disk device
US6239946B1 (en) Magnetic disk drive
US8793711B2 (en) Tray locking device for optical disc drive
JP4331163B2 (en) Slot-in type disk unit
JP2004152436A (en) Disk drive
JPH07235415A (en) Locking mechanism with plunger
JP2007207373A5 (en)
JP2004152438A (en) Eject/lock mechanism of disk unit
US20060185213A1 (en) Recording-medium-mounting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AOPEN INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, MING-YU;CHEN, CHIH-LIANG;CHEN, CHIEN-YUEH;REEL/FRAME:017269/0200

Effective date: 20031222

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION