US20060136030A1 - Side-top electrode - Google Patents

Side-top electrode Download PDF

Info

Publication number
US20060136030A1
US20060136030A1 US10/756,796 US75679604A US2006136030A1 US 20060136030 A1 US20060136030 A1 US 20060136030A1 US 75679604 A US75679604 A US 75679604A US 2006136030 A1 US2006136030 A1 US 2006136030A1
Authority
US
United States
Prior art keywords
laminae
implant
bio
top surface
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/756,796
Inventor
Joseph Ketterl
John Yarno
Scott Corbett
Thomas Clary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/756,796 priority Critical patent/US20060136030A1/en
Publication of US20060136030A1 publication Critical patent/US20060136030A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Definitions

  • cochlear implant Today, there are many prospective applications for a high-density multi-electrode biocompatible implant. One of the most important is for a cochlear implant.
  • the cochlea is a snail shaped organ of the inner ear that translates sound waves into bioelectrical nerve impulses.
  • a cochlear implant by directly electrically stimulating the cochlea can effect hearing restoration in persons otherwise completely deaf and for whom other methods of hearing restoration would be ineffective.
  • cochlea which includes approximately 30,000 receptive nerve endings
  • currently available cochlear implants are crude devices, capable of stimulating the cochlea with a degree of selectivity far beneath what the cochlea is capable of accommodating. Accordingly, in order to effect a more complete hearing restoration, cochlear implants having a higher density of precisely positioned electrode contact points are needed.
  • the cochlea has so many more sensing sites than an implant could possibly have electrode contact points, it is desirable to stimulate the cochlea at points between electrode contact points. This can be effected by “field shaping,” in which neighboring electrode contact points are separately controlled to form an electric field that has its maximum at a desired cochlear stimulation point.
  • field shaping in which neighboring electrode contact points are separately controlled to form an electric field that has its maximum at a desired cochlear stimulation point.
  • the cochlea is not the only site within the body where a high-density implant could be of use, however.
  • the brain, the retina and the heart are just a few other sites within the body where such an implant could be used. Some implants may have to operate for many years without failure. Unfortunately, providing such an implant proves to be quite difficult in practice.
  • This probe is made by micro-machining a silicon substrate using photolithographic techniques in order to achieve accurate positioning of closely spaced electrode contact points.
  • the materials used are stiff and brittle. Accordingly this probe is not well suited for an application that requires flexibility, such as a cochlear implant.
  • PCB printed circuit board
  • the present invention is a bio-implant having a length and a proximal and a distal end.
  • the bio-implant includes at least two laminae of dielectric material that are joined together, thereby defining a boundary and that also define a side surface that is intersected by the boundary.
  • the laminae also define a nominal top surface that meets the side surface.
  • At least one set of conductors is interposed between the laminae and extends lengthwise from the proximal end toward the distal end, each one of the set of conductors being terminated at the side surface to form a set of conductor terminations.
  • a set of electrode contacts is defined, each constructed on the side surface and extending over a portion of the nominal top surface, each of the electrode contacts contacting one of the conductor terminations.
  • the present invention is a method of constructing a bio-implant having a length and a proximal and a distal end.
  • the method uses a first and second laminae of dielectric material, each laminae defining a top surface, a laminae side surface and a bottom surface, a proximal end and a distal end.
  • At least one set of conductors is created on the top surface of the first laminae. These conductors extend lengthwise from the proximal end toward the distal end, each one of the set of conductors is terminated adjacent to the side surface to form a set of conductor terminations.
  • the top surface of the second laminae is adhered to the bottom surface of the first laminae about the set of conductors, thereby forming a work piece and defining a boundary and also defining a joined side surface that is intersected by the boundary, and a work piece top surface that is the top surface of the first laminae.
  • a set of electrode contacts is constructed on the joined side surface and also on the work piece top surface, each the electrode contact point contacting a one of the conductor terminations.
  • FIG. 1 is an exploded perspective view of a bio-implant according to the present invention.
  • FIG. 2 is a perspective view of the bio-implant of FIG. 1 .
  • FIG. 3 is a perspective view of a workpiece used for the production of a helical bio-implant according to the present invention.
  • FIG. 4 is a perspective view of a helical bio-implant produced using the workpiece of FIG. 3 .
  • FIG. 5 is a perspective view of a mold adapted to produce a helical bio-implant according to the present invention.
  • FIG. 6 is a perspective view of a helical bio-implant formed in the mold of FIG. 5 .
  • FIG. 7 is a perspective view of an alternative preferred embodiment of a bio-implant.
  • an electrode contact point bearing implant 10 having a proximal end 16 and a distal end 18 includes a set of first laminae 12 made of a dielectric material, for example, liquid crystal polymer (LCP).
  • Conductive traces 14 that extend longitudinally from proximal end 16 toward distal end 18 are constructed on each first laminae 12 .
  • a set of second laminae 13 is interspersed with the set of first laminae 12 , electrically isolating one set of traces 14 from another.
  • Second laminae 13 are made of LCP having a lower melting point than the LCP of first laminae 12 .
  • the implant 10 can be heated after being assembled to melt second laminae 13 , thereby causing the entire structure to fuse together without surrendering the structural stability provided by first laminae 12 .
  • Each of the conductive traces 14 turns toward an electrode contact point bearing side 20 of the implant 10 and extends to a position either proximal to or abutting side 20 .
  • An electrode contact point 22 in the form of a width-wise portion of a plated via is connected to each trace at side 20 .
  • traces 14 could be routed so that the implant 10 could taper inwardly toward the electrode contact point bearing side 20 as it extends from its proximal end 16 to its distal end 18 .
  • the electrode contact point bearing side 20 could taper inwardly toward the distal end 18 .
  • implant 10 could taper inwardly from top to bottom or from bottom to top as it extends distally. Tapering embodiments are of particular importance with respect to cochlear implants, because the cochlea, the prospective location of such an implant, tapers inwardly as it curls towards its center.
  • a further margin (not shown) is originally included in the workpiece from which implant 10 is made. Vias are drilled through this margin, so as to contact the termini of the traces 18 .
  • the vias are plated with conductive material and then the margin is removed either by mechanical or other means, using for example, an ND:YAG laser.
  • the plated vias are thus bisected to form electrode contact points 22 . It should be noted that the vias that are drilled need not be round. If it was found that a square sided via or an elliptical via resulted in electrode contact points 22 having superior electromagnetic properties, these could be formed.
  • side 18 is turned to face a laser, which machines a set of indents that are then plated with conductive material to form electrode contact points 22 .
  • electrode contact points 22 can be masked during the plating operation, or can be plated and then stripped of plating, for example, by laser ablation or chemical etching. With this method, the electrode contact points could be formed to have differing depths over their top-to-bottom extent.
  • the electrode contact points may be created by any of a number of well known techniques including sputter deposition, electroless or electrolytic (electroplating) deposition.
  • An inert base metalization can be applied by one of the above means, followed by deposition of a selective metal suitable for neural excitation, including iridium or iridium oxide.
  • Iridium oxide can be deposited on the base metal for example by sputter deposition, by electroplating or by activation. Iridium may be built up through cyclic voltametry. Surfaces may be plasma etched prior to sputtering, to increase adhesion.
  • laminae 12 and 13 are 12 ⁇ m (0.5 mils) thick.
  • 8 first laminae are included in implant 10 .
  • Conductive traces 14 are 125 ⁇ m (5 mils) wide and 5 ⁇ m (0.2 mils) thick. Eight traces 14 are accommodated per laminae 12 , for a total of 64 traces and 64 electrode contact points.
  • Electrode contact points 22 are made by forming vias having a diameter of 30 ⁇ m (1.2 mils) thick, electroplating these vias and bisecting them using a laser. The electrode contact points are spaced 200 ⁇ m (8 mils) apart.
  • implant 10 is sheathed at the top and bottom with a separate dielectric layer such as LCP or silicone, that is 80 ⁇ m (3 mils) thick.
  • a typical, and challenging, application for an electrode bearing implant, such as implant 10 is as a cochlear implant.
  • One of the great challenges of creating a cochlear implant is creating a structure that is helical and may be straightened for purposes of insertion but will then resume its helical shape.
  • a characteristic of laminaeted structures is that they tend to bend more easily along the plane that intersects the laminae, than along the plane that is parallel with the laminae.
  • one approach to creating a cochlear implant is to create a laminaeted structure 50 that extends far enough in two dimensions to accommodate a cochlear spiral shape 52 .
  • the structure 50 is built with traces 14 in spiral shape within structure 50 . Traces 14 terminate on the interior surface 56 of spiral shape 52 , which is cut from structure 50 , to form a helical implant 58 .
  • the electrode contact points 22 in this instance may be constructed on the side of and/or on top of helical implant 58 to make as close as contact as possible with the receptive neurons or nerve cells, located along the upper and inner side of the scala media.
  • the helical implant 58 may then be heat formed, by placing it in a helical mold 60 , either by itself or with a charge of silicone and or LCP.
  • Helical mold 60 is made of a center conical part 62 and two halves 64 that meet about part 62 .
  • implant 10 is originally made straight, as in FIG. 1 , and then placed in the helical mold 60 , curling in the plane that intersects the laminae. Mold 60 may be heated to form implant 10 into a spiral structure 66 . This structure could then be straightened for insertion, but would have shape memory to revert to a spiral or helical shape after insertion.
  • electrode contacts 122 are formed to extend along side 120 and onto nominal top surface 116 . Because bio-implant 110 can be more easily curved in dimension transverse to the laminae planes, this permits the electrode contacts 122 to be positioned so that they optimally stimulate the nerve endings, after curvature has been imparted to bio-implant 110 (if bio-implant 110 is more specifically a cochlear implant).
  • electrode contacts 122 that adhere to side 120 provide a robust means of electrical conduction to the portions on nominal top surface 116 and also may stimulate the auditory nerve endings themselves, as the auditory nerve endings are not entirely on either the inner side or the top of the scala media, but are, in part, located at the curvature between the side and the top.
  • electrode contacts on side surface 120 can be covered by dielectric material, such as silicone, in a molding process, leaving only electrode contacts on top surface 116 active.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)

Abstract

A bio-implant having a length and a proximal and a distal end. The bio-implant includes at least two laminae of dielectric material that are joined together, thereby defining a boundary and that also define a side surface that is intersected by the boundary. The laminae also define a nominal top surface that meets the side surface. At least one set of conductors is interposed between the laminae and extends lengthwise from the proximal end toward the distal end, each one of the set of conductors being terminated at the side surface to form a set of conductor terminations. Additionally, a set of electrode contacts, each is constructed on the side surface and extends over a portion of the nominal top surface, each the electrode contact contacting one of the conductor terminations.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of application Ser. No. 10/012,230 filed Dec. 6, 2001.
  • STATEMENT OF GOVERNMENT SUPPORT
  • The present invention was reduced to practice, in part, with government support under SBIR grant no. 2R44DC0461402A1 awarded by the Small Business Research Program of the Department of Health and Human Services. The United States Government has certain rights in the invention.
  • BACKGROUND OF THE INVENTION
  • Today, there are many prospective applications for a high-density multi-electrode biocompatible implant. One of the most important is for a cochlear implant. The cochlea is a snail shaped organ of the inner ear that translates sound waves into bioelectrical nerve impulses. A cochlear implant, by directly electrically stimulating the cochlea can effect hearing restoration in persons otherwise completely deaf and for whom other methods of hearing restoration would be ineffective. Compared to the cochlea, however, which includes approximately 30,000 receptive nerve endings, currently available cochlear implants are crude devices, capable of stimulating the cochlea with a degree of selectivity far beneath what the cochlea is capable of accommodating. Accordingly, in order to effect a more complete hearing restoration, cochlear implants having a higher density of precisely positioned electrode contact points are needed.
  • Because the cochlea has so many more sensing sites than an implant could possibly have electrode contact points, it is desirable to stimulate the cochlea at points between electrode contact points. This can be effected by “field shaping,” in which neighboring electrode contact points are separately controlled to form an electric field that has its maximum at a desired cochlear stimulation point. Unfortunately, in order to perform field shaping it is generally desirable to have electrode contact points that are spaced apart by no more than a few hundred um. Achieving this fine spacing of electrode contact points has proven a challenge to researchers.
  • The cochlea is not the only site within the body where a high-density implant could be of use, however. The brain, the retina and the heart are just a few other sites within the body where such an implant could be used. Some implants may have to operate for many years without failure. Unfortunately, providing such an implant proves to be quite difficult in practice.
  • Among the challenges encountered in the construction of an implant having a large number (>30) of closely spaced (<200 um) and precisely positioned electrode contact points is the problem of decomposition in the body due to attack by the body's interstitial fluid (ISF). Any seam in an implant will be attacked by ISF and may eventually come apart. Because of this, it is extremely important that biocompatible materials be used throughout an implant. Moreover, the more that an implant can take the form of a seamless, unitary whole the longer an implant can be expected to last within the body. This requirement conflicts with the greater level of complexity desired of implants.
  • Researchers at the University of Michigan have designed one type of probe that is currently under test. This probe is made by micro-machining a silicon substrate using photolithographic techniques in order to achieve accurate positioning of closely spaced electrode contact points. Unfortunately the materials used are stiff and brittle. Accordingly this probe is not well suited for an application that requires flexibility, such as a cochlear implant.
  • Additionally, multilayer printed circuit board (PCB) technology has advanced so that multilayer structures having traces on the order of microns thick are now available. There are a number of reasons, however, why this technology has, in general, not been applied to the biomedical arena. First, many of the materials used in PCB manufacture are not biocompatible, or degrade after implantation. Second, even flex circuits made from polyimide, a flexible dielectric, typically do not have the degree of flexibility necessary to facilitate the construction and placement of a cochlear implant.
  • Accordingly, there is a long-standing, unresolved need for a biocompatible, long-term implant that can precisely stimulate a sensory bodily organ, such as the cochlea.
  • SUMMARY
  • In a first separate aspect, the present invention is a bio-implant having a length and a proximal and a distal end. The bio-implant includes at least two laminae of dielectric material that are joined together, thereby defining a boundary and that also define a side surface that is intersected by the boundary. The laminae also define a nominal top surface that meets the side surface. At least one set of conductors is interposed between the laminae and extends lengthwise from the proximal end toward the distal end, each one of the set of conductors being terminated at the side surface to form a set of conductor terminations. Additionally, a set of electrode contacts is defined, each constructed on the side surface and extending over a portion of the nominal top surface, each of the electrode contacts contacting one of the conductor terminations.
  • In a second separate aspect, the present invention is a method of constructing a bio-implant having a length and a proximal and a distal end. The method uses a first and second laminae of dielectric material, each laminae defining a top surface, a laminae side surface and a bottom surface, a proximal end and a distal end. At least one set of conductors is created on the top surface of the first laminae. These conductors extend lengthwise from the proximal end toward the distal end, each one of the set of conductors is terminated adjacent to the side surface to form a set of conductor terminations. The top surface of the second laminae is adhered to the bottom surface of the first laminae about the set of conductors, thereby forming a work piece and defining a boundary and also defining a joined side surface that is intersected by the boundary, and a work piece top surface that is the top surface of the first laminae. Finally, a set of electrode contacts is constructed on the joined side surface and also on the work piece top surface, each the electrode contact point contacting a one of the conductor terminations.
  • The foregoing and other objectives, features and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view of a bio-implant according to the present invention.
  • FIG. 2 is a perspective view of the bio-implant of FIG. 1.
  • FIG. 3 is a perspective view of a workpiece used for the production of a helical bio-implant according to the present invention.
  • FIG. 4 is a perspective view of a helical bio-implant produced using the workpiece of FIG. 3.
  • FIG. 5 is a perspective view of a mold adapted to produce a helical bio-implant according to the present invention.
  • FIG. 6 is a perspective view of a helical bio-implant formed in the mold of FIG. 5.
  • FIG. 7 is a perspective view of an alternative preferred embodiment of a bio-implant.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1-3 an electrode contact point bearing implant 10 having a proximal end 16 and a distal end 18 includes a set of first laminae 12 made of a dielectric material, for example, liquid crystal polymer (LCP). Conductive traces 14 that extend longitudinally from proximal end 16 toward distal end 18 are constructed on each first laminae 12.
  • A set of second laminae 13 is interspersed with the set of first laminae 12, electrically isolating one set of traces 14 from another. Second laminae 13 are made of LCP having a lower melting point than the LCP of first laminae 12. As a result, the implant 10 can be heated after being assembled to melt second laminae 13, thereby causing the entire structure to fuse together without surrendering the structural stability provided by first laminae 12.
  • Each of the conductive traces 14, after it has extended its full longitudinal extent, turns toward an electrode contact point bearing side 20 of the implant 10 and extends to a position either proximal to or abutting side 20. An electrode contact point 22 in the form of a width-wise portion of a plated via is connected to each trace at side 20.
  • Skilled persons will readily perceive traces 14 could be routed so that the implant 10 could taper inwardly toward the electrode contact point bearing side 20 as it extends from its proximal end 16 to its distal end 18. Alternatively the electrode contact point bearing side 20 could taper inwardly toward the distal end 18. In addition as not all laminae bear traces 14 all the way to the distal end 18, implant 10 could taper inwardly from top to bottom or from bottom to top as it extends distally. Tapering embodiments are of particular importance with respect to cochlear implants, because the cochlea, the prospective location of such an implant, tapers inwardly as it curls towards its center.
  • In one preferred method of making implant 10, a further margin (not shown) is originally included in the workpiece from which implant 10 is made. Vias are drilled through this margin, so as to contact the termini of the traces 18. The vias are plated with conductive material and then the margin is removed either by mechanical or other means, using for example, an ND:YAG laser. The plated vias are thus bisected to form electrode contact points 22. It should be noted that the vias that are drilled need not be round. If it was found that a square sided via or an elliptical via resulted in electrode contact points 22 having superior electromagnetic properties, these could be formed.
  • In another preferred method of making implant 10, side 18 is turned to face a laser, which machines a set of indents that are then plated with conductive material to form electrode contact points 22. Persons skilled in the art can recognize that the areas between electrode contact points can be masked during the plating operation, or can be plated and then stripped of plating, for example, by laser ablation or chemical etching. With this method, the electrode contact points could be formed to have differing depths over their top-to-bottom extent.
  • The electrode contact points may be created by any of a number of well known techniques including sputter deposition, electroless or electrolytic (electroplating) deposition. An inert base metalization can be applied by one of the above means, followed by deposition of a selective metal suitable for neural excitation, including iridium or iridium oxide. Iridium oxide can be deposited on the base metal for example by sputter deposition, by electroplating or by activation. Iridium may be built up through cyclic voltametry. Surfaces may be plasma etched prior to sputtering, to increase adhesion.
  • In a preferred embodiment, laminae 12 and 13 are 12 μm (0.5 mils) thick. In a preferred embodiment 8 first laminae are included in implant 10. Conductive traces 14 are 125 μm (5 mils) wide and 5 μm (0.2 mils) thick. Eight traces 14 are accommodated per laminae 12, for a total of 64 traces and 64 electrode contact points. Electrode contact points 22 are made by forming vias having a diameter of 30 μm (1.2 mils) thick, electroplating these vias and bisecting them using a laser. The electrode contact points are spaced 200 μm (8 mils) apart. In one preferred embodiment, implant 10 is sheathed at the top and bottom with a separate dielectric layer such as LCP or silicone, that is 80 μm (3 mils) thick.
  • A typical, and challenging, application for an electrode bearing implant, such as implant 10, is as a cochlear implant. One of the great challenges of creating a cochlear implant is creating a structure that is helical and may be straightened for purposes of insertion but will then resume its helical shape. A characteristic of laminaeted structures is that they tend to bend more easily along the plane that intersects the laminae, than along the plane that is parallel with the laminae.
  • Referring to FIG. 3, one approach to creating a cochlear implant is to create a laminaeted structure 50 that extends far enough in two dimensions to accommodate a cochlear spiral shape 52. The structure 50 is built with traces 14 in spiral shape within structure 50. Traces 14 terminate on the interior surface 56 of spiral shape 52, which is cut from structure 50, to form a helical implant 58. The electrode contact points 22 in this instance may be constructed on the side of and/or on top of helical implant 58 to make as close as contact as possible with the receptive neurons or nerve cells, located along the upper and inner side of the scala media. The helical implant 58 may then be heat formed, by placing it in a helical mold 60, either by itself or with a charge of silicone and or LCP. Helical mold 60 is made of a center conical part 62 and two halves 64 that meet about part 62.
  • In an alternative preferred embodiment implant 10 is originally made straight, as in FIG. 1, and then placed in the helical mold 60, curling in the plane that intersects the laminae. Mold 60 may be heated to form implant 10 into a spiral structure 66. This structure could then be straightened for insertion, but would have shape memory to revert to a spiral or helical shape after insertion.
  • Referring to FIG. 7, in an alternative preferred embodiment of a bio-implant 110 (commonly referred to as “electrode” in the industry), electrode contacts 122 are formed to extend along side 120 and onto nominal top surface 116. Because bio-implant 110 can be more easily curved in dimension transverse to the laminae planes, this permits the electrode contacts 122 to be positioned so that they optimally stimulate the nerve endings, after curvature has been imparted to bio-implant 110 (if bio-implant 110 is more specifically a cochlear implant). The portions of electrode contacts 122 that adhere to side 120 provide a robust means of electrical conduction to the portions on nominal top surface 116 and also may stimulate the auditory nerve endings themselves, as the auditory nerve endings are not entirely on either the inner side or the top of the scala media, but are, in part, located at the curvature between the side and the top. If desired, electrode contacts on side surface 120 can be covered by dielectric material, such as silicone, in a molding process, leaving only electrode contacts on top surface 116 active.
  • The terms and expressions which have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims (8)

1. A bio-implant having a length and a proximal and a distal end, said bio-implant comprising:
(a) at least two laminae of dielectric material joined together, thereby defining a boundary and also defining a side surface that is intersected by said boundary, and also defining a nominal top surface that meets said side surface;
(b) at least one set of conductors interposed between said two laminae and extending lengthwise from said proximal end toward said distal end, each one of said set of conductors being terminated at said side surface to form a set of conductor terminations; and
(c) a set of electrode contacts, each constructed on said side surface and extending over a portion of said nominal top surface, each said electrode contact contacting one of said conductor terminations.
2. The bio-implant of claim 1 further being defined as helical in shape.
3. The bio-implant of claim 1 wherein said side surface includes inward recesses positioned transversely to said length of said bio-implant and wherein said electrode contact points take the form of conductive plating on said inward recesses.
4. The bio-implant of claim 1 wherein said conductor terminations abut said side surface.
5. The bio-implant of claim 1 further comprising additional laminae and additional sets of conductors interposed between said additional laminae.
6. A method of constructing a bio-implant having a length and a proximal and a distal end, said method comprising:
(a) providing a first and second laminae of dielectric material, each said laminae defining a top surface, a laminae side surface and a bottom surface, a proximal end and a distal end;
(b) providing at least one set of conductors positioned on said top surface of said first laminae, said conductors extending lengthwise from said proximal end toward said distal end, each one of said set of conductors being terminated adjacent to said side surface to form a set of conductor terminations;
(c) adhering said top surface of said second laminae to said bottom surface of said first laminae about said set of conductors, thereby forming a work piece and defining a boundary and also defining a joined side surface that is intersected by said boundary, and a work piece top surface that is said top surface of said first laminae; and
(d) forming a set of electrode contacts constructed on said joined side surface and also on said work piece top surface, each said electrode contact point contacting a one of said conductor terminations.
7. The method of claim 6, further including thermoforming said work piece into a helix defining a center line, about which said helix is substantially balanced.
8. The method of claim 7, wherein said nominal top surface forms a surface facing towards said center line of said helix.
US10/756,796 2001-12-06 2004-01-13 Side-top electrode Abandoned US20060136030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/756,796 US20060136030A1 (en) 2001-12-06 2004-01-13 Side-top electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/012,230 US6678564B2 (en) 2001-12-06 2001-12-06 Bio-implant and method of making the same
US10/756,796 US20060136030A1 (en) 2001-12-06 2004-01-13 Side-top electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/012,230 Continuation-In-Part US6678564B2 (en) 2001-12-06 2001-12-06 Bio-implant and method of making the same

Publications (1)

Publication Number Publication Date
US20060136030A1 true US20060136030A1 (en) 2006-06-22

Family

ID=21753970

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/012,230 Expired - Fee Related US6678564B2 (en) 2001-12-06 2001-12-06 Bio-implant and method of making the same
US10/756,796 Abandoned US20060136030A1 (en) 2001-12-06 2004-01-13 Side-top electrode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/012,230 Expired - Fee Related US6678564B2 (en) 2001-12-06 2001-12-06 Bio-implant and method of making the same

Country Status (3)

Country Link
US (2) US6678564B2 (en)
AU (1) AU2002364528A1 (en)
WO (1) WO2003049638A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504660B1 (en) * 2006-08-24 2008-07-15 Univ Wien Med MULTICHANNEL ELECTRODE FOR COCHLEA IMPLANTS WITH A MULTIPLE OF CONTACTS DISTRIBUTED OVER THE LENGTH OF THE ELECTRODE

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521019B2 (en) * 2001-04-11 2009-04-21 Lifescan, Inc. Sensor device and methods for manufacture
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
EP1818074B1 (en) 2006-02-10 2009-04-15 Advanced Neuromodulation Systems, Inc. Self-folding paddle lead and method of fabricating a paddle lead
US8099172B2 (en) 2006-04-28 2012-01-17 Advanced Neuromodulation Systems, Inc. Spinal cord stimulation paddle lead and method of making the same
US7583999B2 (en) 2006-07-31 2009-09-01 Cranial Medical Systems, Inc. Multi-channel connector for brain stimulation system
US8321025B2 (en) 2006-07-31 2012-11-27 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
WO2009062114A2 (en) 2007-11-08 2009-05-14 Second Sight Medical Products, Inc. Cochlear stimulation device comprising a flexible electrode array
US8250745B1 (en) 2008-01-24 2012-08-28 Advanced Bionics, Llc Process for manufacturing a microcircuit cochlear electrode array
US8359107B2 (en) 2008-10-09 2013-01-22 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
CA2758519A1 (en) 2009-04-16 2010-10-21 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US8887387B2 (en) * 2009-07-07 2014-11-18 Boston Scientific Neuromodulation Corporation Methods of manufacture of leads with a radially segmented electrode array
US8875391B2 (en) 2009-07-07 2014-11-04 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US8874232B2 (en) * 2009-11-30 2014-10-28 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US8788063B2 (en) * 2009-11-30 2014-07-22 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US8295944B2 (en) 2009-11-30 2012-10-23 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8391985B2 (en) 2009-11-30 2013-03-05 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US8332052B1 (en) 2010-03-18 2012-12-11 Advanced Bionics Microcircuit cochlear electrode array and method of manufacture
JP5750506B2 (en) * 2010-03-23 2015-07-22 ボストン サイエンティフィック ニューロモデュレイション コーポレイション A device for brain stimulation
EP2582425B1 (en) 2010-06-18 2018-04-04 Boston Scientific Neuromodulation Corporation Method of making electrode array having embedded electrodes
WO2012003297A1 (en) * 2010-06-30 2012-01-05 Med-El Elektromedizinische Geraete Gmbh Helical core ear implant electrode
WO2012009181A2 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for radial steering of electrode arrays
US8583237B2 (en) 2010-09-13 2013-11-12 Cranial Medical Systems, Inc. Devices and methods for tissue modulation and monitoring
WO2012039919A2 (en) 2010-09-21 2012-03-29 Boston Scientific Neuromodulation Corporation Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
JP5889917B2 (en) 2010-12-23 2016-03-22 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Method of manufacturing a lead having segmented electrodes for an electrical stimulation system
US8700179B2 (en) 2011-02-02 2014-04-15 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
ES2801326T3 (en) 2011-02-08 2021-01-11 Boston Scient Neuromodulation Corp Spirally arranged lead wires with segmented electrodes and lead wire manufacturing and use procedures
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
AU2013211923B2 (en) 2012-01-26 2015-04-02 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
WO2013148092A1 (en) 2012-03-30 2013-10-03 Boston Scientific Neuromodulation Corporation Leads with x-ray fluorescent capsules for electrode identification and methods of manufacture and use
WO2013181519A2 (en) 2012-06-01 2013-12-05 Boston Scientific Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
US8897891B2 (en) 2012-08-03 2014-11-25 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using
US9162048B2 (en) 2013-05-15 2015-10-20 Boston Scientific Neuromodulation Corporation Systems and methods for making and using tip electrodes for leads of electrical stimulation systems
CN105263568A (en) 2013-05-31 2016-01-20 波士顿科学神经调制公司 Leads with segmented electrodes and methods of making the leads
US9498620B2 (en) 2013-05-31 2016-11-22 Boston Scientific Neuromodulation Corporation Leads containing segmented electrodes with non-perpendicular legs and methods of making and using
JP2016519984A (en) 2013-05-31 2016-07-11 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Segment electrode lead formed from a pre-electrode having a recess or a hole, and a method for manufacturing the same
US9149630B2 (en) 2013-05-31 2015-10-06 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with alignment features and methods of making and using the leads
AU2014287516A1 (en) 2013-07-12 2016-01-21 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US9566747B2 (en) 2013-07-22 2017-02-14 Boston Scientific Neuromodulation Corporation Method of making an electrical stimulation lead
US9089689B2 (en) 2013-08-30 2015-07-28 Boston Scientific Neuromodulation Corporation Methods of making segmented electrode leads using flanged carrier
EP3077039B1 (en) 2013-12-02 2021-10-13 Boston Scientific Neuromodulation Corporation Methods for manufacture of electrical stimulation leads with helically arranged electrodes
US9962541B2 (en) 2014-06-13 2018-05-08 Boston Scientific Neuromodulation Corporation Leads with electrode carriers for segmented electrodes and methods of making and using
US9770598B2 (en) 2014-08-29 2017-09-26 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
US9561362B2 (en) 2014-11-10 2017-02-07 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
US9604068B2 (en) 2014-11-10 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
EP3229891B1 (en) 2015-02-06 2019-08-14 Boston Scientific Neuromodulation Corporation Systems with improved contact arrays for electrical stimulation systems
WO2016164361A1 (en) 2015-04-10 2016-10-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
WO2017011477A1 (en) 2015-07-16 2017-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
US9956394B2 (en) 2015-09-10 2018-05-01 Boston Scientific Neuromodulation Corporation Connectors for electrical stimulation systems and methods of making and using
US10413737B2 (en) 2015-09-25 2019-09-17 Boston Scientific Neuromodulation Corporation Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity
US10342983B2 (en) 2016-01-14 2019-07-09 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
US10201713B2 (en) 2016-06-20 2019-02-12 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
US10307602B2 (en) 2016-07-08 2019-06-04 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
US10543374B2 (en) 2016-09-30 2020-01-28 Boston Scientific Neuromodulation Corporation Connector assemblies with bending limiters for electrical stimulation systems and methods of making and using same
US10576269B2 (en) 2017-01-03 2020-03-03 Boston Scientific Neuromodulation Corporation Force-decoupled and strain relieving lead and methods of making and using
US10905871B2 (en) 2017-01-27 2021-02-02 Boston Scientific Neuromodulation Corporation Lead assemblies with arrangements to confirm alignment between terminals and contacts
WO2018160495A1 (en) 2017-02-28 2018-09-07 Boston Scientific Neuromodulation Corporation Toolless connector for latching stimulation leads and methods of making and using
US10603499B2 (en) 2017-04-07 2020-03-31 Boston Scientific Neuromodulation Corporation Tapered implantable lead and connector interface and methods of making and using
US10918873B2 (en) 2017-07-25 2021-02-16 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an enhanced connector of an electrical stimulation system
EP3681588B1 (en) 2017-09-15 2023-05-10 Boston Scientific Neuromodulation Corporation Biased lead connector for operating room cable assembly
WO2019055837A1 (en) 2017-09-15 2019-03-21 Boston Scientific Neuromodulation Corporation Actuatable lead connector for an operating room cable assembly and methods of making and using
US11139603B2 (en) 2017-10-03 2021-10-05 Boston Scientific Neuromodulation Corporation Connectors with spring contacts for electrical stimulation systems and methods of making and using same
US11103712B2 (en) 2018-01-16 2021-08-31 Boston Scientific Neuromodulation Corporation Connector assemblies with novel spacers for electrical stimulation systems and methods of making and using same
US11172959B2 (en) 2018-05-02 2021-11-16 Boston Scientific Neuromodulation Corporation Long, flexible sheath and lead blank and systems and methods of making and using
EP3790623B1 (en) 2018-05-11 2023-07-05 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system
US11167128B2 (en) 2018-11-16 2021-11-09 Boston Scientific Neuromodulation Corporation Directional electrical stimulation leads, systems and methods for spinal cord stimulation
US11357992B2 (en) 2019-05-03 2022-06-14 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system and methods of making and using

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309910A (en) * 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US6374143B1 (en) * 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK516577A (en) * 1977-11-22 1979-05-23 C C Hansen ELECTRODE FOR ADDITION IN THE SNAIL OF THE CITY (COCHLEA)
DK141034B (en) * 1977-11-22 1979-12-31 C C Hansen ELECTRODE FOR INSERTING IN THE SNAIL OF THE CITY (COCHLEA)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309910A (en) * 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US6374143B1 (en) * 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504660B1 (en) * 2006-08-24 2008-07-15 Univ Wien Med MULTICHANNEL ELECTRODE FOR COCHLEA IMPLANTS WITH A MULTIPLE OF CONTACTS DISTRIBUTED OVER THE LENGTH OF THE ELECTRODE
US20100010609A1 (en) * 2006-08-24 2010-01-14 Med-El Elektromedizinische Geraete Gmbh Multi-Channel Electrode for Cochlear Implants Having a Plurality of Contacts Distributed Over the Length of the Electrode

Also Published As

Publication number Publication date
US20030109913A1 (en) 2003-06-12
WO2003049638A2 (en) 2003-06-19
AU2002364528A1 (en) 2003-06-23
AU2002364528A8 (en) 2003-06-23
US6678564B2 (en) 2004-01-13
WO2003049638A3 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
US6678564B2 (en) Bio-implant and method of making the same
US6782619B2 (en) Method of making high contact density electrode array
CA2553424C (en) Implantable medical assembly using a corrugated film
US8489203B2 (en) Biostable neuroelectrode
US9656059B2 (en) Cochlear stimulation device
US6074422A (en) Inner ear implant device
AU2007278722B2 (en) Layered electrode array and cable
US5649970A (en) Edge-effect electrodes for inducing spatially controlled distributions of electrical potentials in volume conductive media
CN106362279B (en) The implanted device of stimulating electrode structure and artificial retina
US8460562B2 (en) Cochlear implant assembly
EP2497419A1 (en) Multi-electrode leads for brain implantation
EP3348304A1 (en) Transmodiolar electrode array and a manufacturing method
EP3946558B1 (en) Stimulating device including an electrode array
CN218187546U (en) Biological nerve regulation and control electrode
Guo et al. Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology
US11000686B1 (en) Platinum/iridium surface patterning by laser to improve neuromodulation electrode performance
WO2020263535A1 (en) Connectors for high density neural interfaces
AU2008323691B2 (en) Cochlear stimulation device comprising a flexible electrode array

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION