US20060134330A1 - Cluster tool architecture for processing a substrate - Google Patents

Cluster tool architecture for processing a substrate Download PDF

Info

Publication number
US20060134330A1
US20060134330A1 US11/112,932 US11293205A US2006134330A1 US 20060134330 A1 US20060134330 A1 US 20060134330A1 US 11293205 A US11293205 A US 11293205A US 2006134330 A1 US2006134330 A1 US 2006134330A1
Authority
US
United States
Prior art keywords
substrate
processing
robot
chamber
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/112,932
Inventor
Tetsuya Ishikawa
Rick Roberts
Helen Armer
Leon Volfovski
Jay Pinson
Michael Rice
David Quach
Mohsen Salek
Robert Lowrance
William Weaver
Charles Carlson
Chongyang Wang
Jeffrey Hudgens
Harald Herchen
Brian Lue
John Backer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Semiconductor Solutions Co Ltd
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US63910904P priority Critical
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US11/112,932 priority patent/US20060134330A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, CHONGYANG, ROBERTS, RICK J., HERCHEN, HARALD, PINSON, JAY D., LUE, BRIAN, ARMER, HELEN R., ISHIKAWA, TETSUYA, QUACH, DAVID H., SALEK, MOHSEN S., VOLFOVSKI, LEON, HUDGENS, JEFFREY, LOWRANCE, ROBERT, RICE, MIKE, BACKER, JOHN A., CARLSON, CHARLES, WEAVER, WILLIAM TYLER
Priority claimed from EP20050855441 external-priority patent/EP1842225A2/en
Priority claimed from US11/315,984 external-priority patent/US7651306B2/en
Priority claimed from US11/315,778 external-priority patent/US20060182535A1/en
Publication of US20060134330A1 publication Critical patent/US20060134330A1/en
Assigned to SOKUDO CO., LTD. reassignment SOKUDO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APPLIED MATERIALS, INC.
Priority claimed from US13/305,539 external-priority patent/US8911193B2/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D13/00Processing apparatus or accessories therefor, not covered by groups G11B3/00 - G11B11/00
    • G03D13/006Temperature control of the developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/41825Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell machine tools and manipulators only, machining centre
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40476Collision, planning for collision free path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49137Store working envelop, limit, allowed zone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • Y02P90/08Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS] characterised by the cooperation between machine tools, manipulators or work piece supply systems
    • Y02P90/087Manipulators cooperating with machine tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/136Associated with semiconductor wafer handling including wafer orienting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53187Multiple station assembly apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • Y10T29/53213Assembled to wire-type conductor
    • Y10T29/53222Means comprising hand-manipulatable implement
    • Y10T29/5323Fastening by elastic joining

Abstract

Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool. In track lithography type cluster tools, since the chamber processing times tend to be rather short, and the number of processing steps required to complete a typical track system process is large, a significant portion of the time it takes to process a substrate is taken up by the processes of transferring the substrates in a cluster tool between the various processing chambers. In one embodiment of the cluster tool, the cost of ownership is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. In one aspect of the invention, the substrate processing sequence and cluster tool are designed so that the substrate transferring steps performed during the processing sequence are only made to chambers that will perform the next processing step in the processing sequence. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of U.S. provisional patent application Ser. No. 60/639,109 filed Dec. 22, 2004, which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • Embodiments of the invention generally relate to an integrated processing system containing multiple processing stations and robots that are capable of processing multiple substrates in parallel.
  • 2. Description of the Related Art
  • The process of forming electronic devices is commonly done in a multi-chamber processing system (e.g., a cluster tool) that has the capability to sequentially process substrates, (e.g., semiconductor wafers) in a controlled processing environment. A typical cluster tool used to deposit (i.e., coat) and develop a photoresist material, commonly known as a track lithography tool, will include a mainframe that houses at least one substrate transfer robot which transports substrates between a pod/cassette mounting device and multiple processing chambers that are connected to the mainframe. Cluster tools are often used so that substrates can be processed in a repeatable way in a controlled processing environment. A controlled processing environment has many benefits which include minimizing contamination of the substrate surfaces during transfer and during completion of the various substrate processing steps. Processing in a controlled environment thus reduces the number of generated defects and improves device yield.
  • The effectiveness of a substrate fabrication process is often measured by two related and important factors, which are device yield and the cost of ownership (CoO). These factors are important since they directly affect the cost to produce an electronic device and thus a device manufacturer's competitiveness in the market place. The CoO, while affected by a number of factors, is greatly affected by the system and chamber throughput, or simply the number of substrates per hour processed using a desired processing sequence. A process sequence is generally defined as the sequence of device fabrication steps, or process recipe steps, completed in one or more processing chambers in the cluster tool. A process sequence may generally contain various substrate (or wafer) electronic device fabrication processing steps. In an effort to reduce CoO, electronic device manufacturers often spend a large amount of time trying to optimize the process sequence and chamber processing time to achieve the greatest substrate throughput possible given the cluster tool architecture limitations and the chamber processing times. In track lithography type cluster tools, since the chamber processing times tend to be rather short, (e.g., about a minute to complete the process) and the number of processing steps required to complete a typical process sequence is large, a significant portion of the time it takes to complete the processing sequence is taken up transferring the substrates between the various processing chambers. A typical track lithography process sequence will generally include the following steps: depositing one or more uniform photoresist (or resist) layers on the surface of a substrate, then transferring the substrate out of the cluster tool to a separate stepper or scanner tool to pattern the substrate surface by exposing the photoresist layer to a photoresist modifying electromagnetic radiation, and then developing the patterned photoresist layer. If the substrate throughput in a cluster tool is not robot limited, the longest process recipe step will generally limit the throughput of the processing sequence. This is usually not the case in track lithography process sequences, due to the short processing times and large number of processing steps. Typical system throughput for the conventional fabrication processes, such as a track lithography tool running a typical process, will generally be between 100-120 substrates per hour.
  • Other important factors in the CoO calculation are the system reliability and system uptime. These factors are very important to a cluster tool's profitability and/or usefulness, since the longer the system is unable to process substrates the more money is lost by the user due to the lost opportunity to process substrates in the cluster tool. Therefore, cluster tool users and manufacturers spend a large amount of time trying to develop reliable processes, reliable hardware and reliable systems that have increased uptime.
  • The push in the industry to shrink the size of semiconductor devices to improve device processing speed and reduce the generation of heat by the device, has caused the industry's tolerance to process variability to diminish. Due to the shrinking size of semiconductor devices and the ever increasing device performance requirements, the allowable variability of the device fabrication process uniformity and repeatability has greatly decreased. To minimize process variability an important factor in the track lithography processing sequences is the issue of assuring that every substrate run through a cluster tool has the same “wafer history.” A substrate's wafer history is generally monitored and controlled by process engineers to assure that all of the device fabrication processing variables that may later affect a device's performance are controlled, so that all substrates in the same batch are always processed the same way. To assure that each substrate has the same “wafer history” requires that each substrate experiences the same repeatable substrate processing steps (e.g., consistent coating process, consistent hard bake process, consistent chill process, etc.) and the timing between the various processing steps is the same for each substrate. Lithography type device fabrication processes can be especially sensitive to variations in process recipe variables and the timing between the recipe steps, which directly affects process variability and ultimately device performance. Therefore, a cluster tool and supporting apparatus capable of performing a process sequence that minimizes process variability and the variability in the timing between process steps is needed. Also, a cluster tool and supporting apparatus that is capable of performing a device fabrication process that delivers a uniform and repeatable process result, while achieving a desired substrate throughput is also needed.
  • Therefore, there is a need for a system, a method and an apparatus that can process a substrate so that it can meet the required device performance goals and increase the system throughput and thus reduce the process sequence CoO.
  • SUMMARY OF THE INVENTION
  • 1. The present invention generally provides a method processing substrates in a cluster tool that contains multiple processing stations and robots that are capable of processing multiple substrates in parallel. The method of processing a substrate in a cluster tool comprising: inserting at least one substrate into each of two or more vertically stacked processing chambers in a first processing rack using a first robot; processing the substrates in the two or more processing chambers in the first processing rack; removing the substrates from the two or more vertically stacked processing chambers in the first rack substantially simultaneously using a second robot; simultaneously transferring the substrates to two or more vertically stacked processing chambers in a second processing rack using the second robot; and depositing the substrates in the two or more vertically stacked processing chambers in the second processing rack using the second robot.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: inserting at least one substrate in two or more vertically stacked processing chambers in a first processing rack using a first robot; processing the substrates in the two or more processing chambers in the first processing rack; removing the substrates from the two or more vertically stacked processing chambers in the first processing rack substantially simultaneously using a second robot, wherein removing the substrates further comprises: repositioning a robot blade connected to a support attached to the second robot to prevent the blade from accessing a first vertically stacked processing chamber; positioning a robot blade that is separately connected to the support in a second vertically stacked processing chamber; positioning a substrate positioned in the second vertically stacked processing chamber on the robot blade; and removing the robot blade from the second vertically stacked processing chamber; and transferring the substrate to a second set of two or more vertically stacked processing chambers using the second robot.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: inserting at least one substrate through a first side of two or more vertically stacked processing chambers positioned in a cluster tool using a first robot; processing the substrates in the processing chambers; removing two or more substrates through a second side of the two or more vertically stacked processing chambers substantially simultaneously using a second robot; simultaneously transferring the two or more substrates to a desired position using the second robot.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: removing a substrate from a cassette using a robot; inserting a first substrate in a first processing chamber adjacently positioned to a second processing chamber; isolating the first processing chamber from the second processing chamber by positioning a shutter between the first processing chamber and the second processing chamber; dispensing a processing fluid on the surface of the substrate positioned in the first processing chamber using a nozzle connected to a fluid dispensing system; inserting a second substrate in the second processing chamber; and dispensing a processing fluid on the surface of the second substrate positioned in the second processing chamber using the nozzle connected to the fluid dispensing system.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: positioning a substrate on a substrate exchanging device in a first processing chamber that is adjacently positioned to a second processing chamber; transferring the substrate from the substrate exchanging device in the first processing chamber to a substrate receiving surface of a chilled robot blade, wherein the substrate receiving surface is adapted to control the temperature of the substrate retained thereon; transferring the substrate to the second processing chamber using the chilled robot blade; and transferring the substrate to a third processing chamber using the chilled robot blade, wherein the third processing chamber is adjacent to the second processing chamber.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: positioning a substrate on a substrate exchanging device in a first processing chamber that is adjacently positioned to a second processing chamber; transferring the substrate from the substrate exchanging device in the first processing chamber to a substrate receiving surface of a chilled robot blade, wherein the substrate receiving surface is adapted to control the temperature of the substrate retained thereon; transferring the substrate to the second processing chamber using the chilled robot blade; heating the substrate in the second processing chamber to a desired temperature; transferring the substrate to a third processing chamber using the chilled robot blade, wherein the third processing chamber is adjacent to the second processing chamber; and cooling the substrate in the third processing chamber to a desired temperature.
  • Embodiments of the invention further provide a method of processing a substrate in a cluster tool comprising: transferring a substrate from a cassette containing two or more substrates, wherein the cassette is retained in the cluster tool; completing a final processing step on a substrate in a processing chamber; transferring the substrate from the processing chamber to a chill chamber that is adapted to perform a chill process; and transferring the substrate from the chill chamber to the cassette.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
  • FIG. 1A is an isometric view illustrating a cluster tool according to an embodiment of the invention.
  • FIG. 1B is a plan view of the processing system illustrated in FIG. 1A wherein the present invention may be used to advantage.
  • FIG. 1C is another isometric view illustrating a view from the opposite side shown in FIG. 1A.
  • FIG. 2A is a plan view that illustrates another embodiment of cluster tool that only contains a front end module, which is adapted to communicate with a stepper/scanner tool.
  • FIG. 2B is a plan view that illustrates another embodiment of cluster tool that only contains a stand-alone front end module.
  • FIG. 2C is a plan view that illustrates another embodiment of cluster tool that contains a front end module and a central module, wherein the central module is adapted to communicate with a stepper/scanner tool.
  • FIG. 2D is a plan view that illustrates another embodiment of cluster tool that contains a front end module, a central module and a rear module, wherein the rear module contains a first rear processing rack and a second rear processing rack and the rear robot is adapted to communicate with a stepper/scanner tool.
  • FIG. 2E is a plan view of a processing system illustrated in FIG. 1A, that contains a twin coater/developer chamber 350 and integrated bake/chill chamber 800 wherein the present invention may be used to advantage.
  • FIG. 2F is a plan view that illustrates another embodiment of cluster tool that contains a front end module and a central processing module, which each contain two processing racks.
  • FIG. 2G is a plan view that illustrates another embodiment of cluster tool that contains a front end module, central processing module and a rear processing module, which each contain two processing racks.
  • FIG. 2H is a plan view that illustrates another embodiment of cluster tool that contains a front end module and a central processing module, which each contain two processing racks and a slide assembly to allow the base of the front end and central robots to translate.
  • FIG. 2I is a plan view that illustrates another embodiment of cluster tool that contains a front end module, central processing module and a rear processing module, which each contain two processing racks and two slide assemblies to allow the base of the front end, central robot and rear robots to translate.
  • FIG. 3A illustrates one embodiment of a process sequence containing various process recipe steps that may be used in conjunction with the various embodiments of the cluster tool described herein.
  • FIG. 3B illustrates another embodiment of a process sequence containing various process recipe steps that may be used in conjunction with the various embodiments of the cluster tool described herein.
  • FIG. 3C illustrates another embodiment of a process sequence containing various process recipe steps that may be used in conjunction with the various embodiments of the cluster tool described herein.
  • FIG. 4A is a side view that illustrates one embodiment of the front end processing rack 52 according to the present invention.
  • FIG. 4B is a side view that illustrates one embodiment of the first processing rack 152 according to the present invention.
  • FIG. 4C is a side view that illustrates one embodiment of the second processing rack 154 according to the present invention.
  • FIG. 4D is a side view that illustrates one embodiment of the rear processing rack 202 according to the present invention.
  • FIG. 4E is a side view that illustrates one embodiment of the first rear processing rack 302 according to the present invention.
  • FIG. 4F is a side view that illustrates one embodiment of the second rear processing rack 304 according to the present invention.
  • FIG. 4G is a side view that illustrates one embodiment of the first processing rack 308 according to the present invention.
  • FIG. 4H is a side view that illustrates one embodiment of the second processing rack 309 according to the present invention.
  • FIG. 4I is a side view that illustrates one embodiment of the first central processing rack 312 and the first rear processing rack 318, according to the present invention.
  • FIG. 4J is a side view that illustrates one embodiment of the second central processing rack 314 and the second rear processing rack 319, according to the present invention.
  • FIG. 4K is a side view that illustrates one embodiment of the first processing rack 322 according to the present invention.
  • FIG. 5A is a side view that illustrates one embodiment of a coater chamber wherein the present invention may be used to advantage.
  • FIG. 5B is a side view that illustrates one embodiment of a coater chamber wherein the present invention may be used to advantage.
  • FIG. 5C is a side view that illustrates one embodiment of a coater/developer chamber that contains a showerhead assembly wherein the present invention may be used to advantage
  • FIG. 5D is a side view that illustrates one embodiment of a developer chamber wherein the present invention may be used to advantage.
  • FIG. 6A is an exploded isometric view of one embodiment of the fluid source assembly.
  • FIG. 6B is an exploded isometric view of one embodiment of the fluid source assembly.
  • FIG. 7A illustrates a plan view of one embodiment of a coater chamber that contains a fluid dispense arm that has a single degree of freedom.
  • FIG. 7B illustrates a plan view of one embodiment of a coater chamber that contains a fluid dispense arm that has a two degrees of freedom.
  • FIG. 8A is a side view of one embodiment of the developer chamber 60B that contains a developer endpoint detector assembly 1400.
  • FIG. 8B is process method step used to improve the endpoint detection process described in conjunction with FIG. 8A.
  • FIG. 8C is a side view of one embodiment of the developer chamber 60B that contains a developer endpoint detector assembly 1400.
  • FIG. 9A is a plan view of a twin coater/developer chamber 350 according to the present invention.
  • FIG. 9B is a plan view of a twin coater/developer chamber 350 according to the present invention.
  • FIG. 10A is a side view that illustrates one embodiment of a chill chamber wherein the present invention may be used to advantage.
  • FIG. 10B is a side view that illustrates one embodiment of a bake chamber wherein the present invention may be used to advantage.
  • FIG. 10C is a side view that illustrates one embodiment of a HMDS process chamber wherein the present invention may be used to advantage.
  • FIG. 10D is a side view that illustrates one embodiment of a Post Exposure Bake (PEB) chamber wherein the present invention may be used to advantage.
  • FIG. 11A is side view that illustrates one embodiment of a plate assembly that may be used to rapidly heat and cool a substrate.
  • FIG. 12A is a side view of a bake chamber, PEB chamber or HMDS process chamber that contains one embodiment of a process endpoint detection system.
  • FIG. 12B is a side view of a bake chamber, PEB chamber or HMDS process chamber that contains another embodiment of the process endpoint detection system.
  • FIG. 12C is process method step used to improve the endpoint detection process described in conjunction with FIGS. 12A-B.
  • FIG. 13A is a side view of a processing chamber that illustrates one embodiment of a plate assembly that has improved thermal coupling and reduced contact with the substrate surface.
  • FIG. 13B is a plan view of the top of the plate assembly shown in FIG. 13A.
  • FIG. 13C is a cross-sectional view of a seed crystal imbedded in the surface of the plate assembly shown in FIG. 13A.
  • FIG. 13D is a cross-sectional view of a seed crystal imbedded in the surface of the plate assembly shown in FIG. 13A, that has a selectively deposited layer on its surface.
  • FIG. 14A is a plan view of a processing system illustrated in FIG. 1B that illustrates a transfer path of a substrate through the cluster tool following the process sequence illustrated in FIG. 3A.
  • FIG. 14B is a plan view of a processing system illustrated in FIG. 2F that illustrates a transfer path of a substrate through the cluster tool following the process sequence illustrated in FIG. 3A.
  • FIG. 15A is an isometric view illustrating one embodiment of a cluster tool of the invention that contains a frog-leg robot.
  • FIG. 15B is a plan view of a processing system illustrated in FIG. 15A, according to the present invention.
  • FIG. 15C is an isometric view illustrating one embodiment of a frog-leg robot assembly according to the present invention.
  • FIG. 15D is a plan view of a frog-leg robot assembly of the invention.
  • FIG. 16A is an isometric view illustrating one embodiment of a dual blade 6-axis articulated robot assembly according to the present invention.
  • FIG. 16B is an isometric view illustrating one embodiment of the dual blade assembly shown in FIG. 16A.
  • FIG. 16C is an isometric view illustrating one embodiment of the dual blade assembly shown in FIG. 16A.
  • FIG. 16D is an isometric view illustrating one embodiment of the dual blade assembly shown in FIG. 16A that allows a variable pitch between robot blades.
  • FIG. 16E illustrates a cross-sectional view of an over/under type dual blade assembly where a single blade has been extended to access a substrate in a cassette in a pod assembly.
  • FIG. 16F is an isometric view illustrating one embodiment of a single blade 6-axis articulated robot assembly wherein the present invention may be used to advantage.
  • FIG. 16G is an isometric view illustrating one embodiment of the single blade assembly shown in FIG. 16F.
  • FIG. 16H is an isometric view illustrating one embodiment of a dual blade 6-axis articulated robot assembly and slide assembly according to the present invention.
  • FIG. 16I illustrates a cross-sectional view of a dual blade assembly where the blades are positioned to transfer substrates from in a pair of cassettes.
  • FIG. 17A is an isometric view of one embodiment of a bake chamber, a chill chamber and a robot adapted to transfer the substrate between the chambers.
  • FIG. 17B is an isometric view of one embodiment of a bake chamber, a chill chamber and a robot adapted to transfer the substrate between the chambers.
  • FIG. 17C is an isometric view showing the opposing side of the view shown in FIG. 17A which illustrates the robot adapted to transfer the substrate between the chambers.
  • FIG. 18A is an isometric view of one embodiment of a bake/chill chamber 800.
  • FIG. 18B is an isometric view showing the opposing side of the view shown in FIG. 18A which illustrates the robot adapted to transfer the substrate between the chambers.
  • FIG. 19A is a plan view that illustrates another embodiment of cluster tool and stepper/scanner tool, where the stepper/scanner is separated from the cluster tool. The stepper/scanner has at least one PEB chamber integrated into the stepper/scanner.
  • FIG. 19B illustrates one embodiment of a process sequence containing various process recipe steps that may be used in conjunction with the various embodiments of the cluster tool shown in FIG. 19A.
  • FIG. 20A is a side view of the robot illustrated in FIG. 16A which is used in a processing rack configuration that is configured to conform to the robot's reach.
  • FIG. 20B is an isometric view another embodiment of a processing rack configuration that is adapted to conform to the reach of a robot having a central mounting point.
  • FIG. 21A is an isometric view illustrating another embodiment of a cluster tool of the invention.
  • FIG. 21B is a plan view of the processing system illustrated in FIG. 21A, according to the present invention.
  • FIG. 21C is a side view of the processing system illustrated in FIG. 21A, according to the present invention.
  • FIG. 21D is a side view that illustrates one embodiment of the first processing rack 460 of the cluster tool illustrated in FIG. 21A.
  • FIG. 21E is a side view that illustrates one embodiment of the second processing rack 480 according to the present invention.
  • FIG. 21F illustrates one embodiment of a process sequence containing various process recipe steps that may be used in conjunction with the various embodiments of the cluster tool described herein.
  • FIG. 21G is an isometric view illustrating one embodiment of a robot that may be adapted to transfer substrates in various embodiments of the cluster tool.
  • FIG. 21H is an isometric view illustrating one embodiment of a robot shown in FIG. 21G that utilizes a single arm robot. In this view the enclosure components have been removed.
  • FIG. 21I is an isometric view illustrating one embodiment of a horizontal motion assembly shown in FIGS. 21G and 21H.
  • FIG. 22A illustrates an isometric view of processing chambers retained in a processing rack that have a substrate position error detection and correction systems mounted outside each of their openings.
  • DETAILED DESCRIPTION
  • The present invention generally provides an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, more repeatable wafer processing history (or wafer history) within the cluster tool, and also a reduced footprint of the cluster tool. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, and then certain portions of the photosensitive material are removed in a developing process completed in the cluster tool.
  • FIGS. 1A and 1C are isometric views of one embodiment of a cluster tool 10 that illustrates a number of the aspects of the present invention that may be used to advantage. One embodiment of the cluster tool 10, as illustrated in FIGS. 1A and 1C, contains a front end module 50, a central module 150, and a rear module 200. The front end module 50 generally contains one or more pod assemblies 105 (e.g., items 105A-D), a front end robot 108 (FIG. 1B), and a front end processing rack 52. The central module 150 will generally contain a first central processing rack 152, a second central processing rack 154, and a central robot 107 (FIG. 1B). The rear module 200 will generally contain a rear processing rack 202 and a rear robot 109 (FIG. 1B). In one embodiment, the cluster tool 10 contains: a front end robot 108 adapted to access processing chambers in the front end processing rack 52; a central robot 107 that is adapted to access processing chambers in the front end processing rack 52, the first central processing rack 152, the second central processing rack 154 and/or the rear processing rack 202; and a rear robot 109 that is adapted to access processing chambers in the rear processing rack 202 and in some cases exchange substrates with a stepper/scanner 5 (FIG. 1B). In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., front end processing rack 52, first central processing rack 152, etc.). In one embodiment, a front end enclosure 104 is used to control the environment around the front end robot 108 and between the pod assemblies 105 and front end processing rack 52.
  • FIG. 1B illustrates a plan view of one embodiment illustrated in FIG. 1A, which contains more detail of possible process chamber configurations found in aspects of the invention. Referring to FIG. 1B, the front end module 50 generally contains one or more pod assemblies 105, a front end robot 108 and a front end processing rack 52. The one or more pod assemblies 105, or front-end opening unified pods (FOUPs), are generally adapted to accept one or more cassettes 106 that may contain one or more substrates “W”, or wafers, that are to be processed in the cluster tool 10. The front end processing rack 52 contains multiple processing chambers (e.g., bake chamber 90, chill chamber 80, etc.) that are adapted to perform the various processing steps found in the substrate processing sequence. In one embodiment, the front end robot 108 is adapted to transfer substrates between a cassette mounted in a pod assembly 105 and between the one or more processing chambers retained in the front end processing rack 52.
  • The central module 150 generally contains a central robot 107, a first central processing rack 152 and a second central processing rack 154. The first central processing rack 152 and a second central processing rack 154 contain various processing chambers (e.g., coater/developer chamber 60, bake chamber 90, chill chamber 80, etc.) that are adapted to perform the various processing steps found in the substrate processing sequence. In one embodiment, the central robot 107 is adapted to transfer substrates between the front end processing rack 52, the first central processing rack 152, the second central processing rack 154 and/or the rear processing rack 202. In one aspect, the central robot 107 is positioned in a central location between the first central processing rack 152 and a second central processing rack 154 of the central module 150.
  • The rear module 200 generally contains a rear robot 109 and a rear processing rack 202. The rear processing rack 202 generally contains processing chambers (e.g., coater/developer chamber 60, bake chamber 90, chill chamber 80, etc.) that are adapted to perform the various processing steps found in the substrate processing sequence. In one embodiment, the rear robot 109 is adapted to transfer substrates between the rear processing rack 202 and a stepper/scanner 5. The stepper/scanner 5, which may be purchased from Canon USA, Inc. of San Jose, Calif., Nikon Precision Inc. of Belmont, Calif., or ASML US, Inc. of Tempe, Ariz., is a lithographic projection apparatus used, for example, in the manufacture of integrated circuits (ICs). The scanner/stepper tool 5 exposes a photosensitive material (photoresist), deposited on the substrate in the cluster tool, to some form of electromagnetic radiation to generate a circuit pattern corresponding to an individual layer of the integrated circuit (IC) device to be formed on the substrate surface.
  • In one embodiment, a system controller 101 is used to control all of the components and processes performed in the cluster tool 10. The system controller 101 is generally adapted to communicate with the stepper/scanner 5, monitor and control aspects of the processes performed in the cluster tool 10, and is adapted to control all aspects of the complete substrate processing sequence. The system controller 101, which is typically a microprocessor-based controller, is configured to receive inputs from a user and/or various sensors in one of the processing chambers and appropriately control the processing chamber components in accordance with the various inputs and software instructions retained in the controller's memory. The system controller 101 generally contains memory and a CPU (not shown) which are utilized by the controller to retain various programs, process the programs, and execute the programs when necessary. The memory (not shown) is connected to the CPU, and may be one or more of a readily available memory, such as random access memory (RAM), read only memory (ROM), floppy disk, hard disk, or any other form of digital storage, local or remote. Software instructions and data can be coded and stored within the memory for instructing the CPU. The support circuits (not shown) are also connected to the CPU for supporting the processor in a conventional manner. The support circuits may include cache, power supplies, clock circuits, input/output circuitry, subsystems, and the like all well known in the art. A program (or computer instructions) readable by the system controller 101 determines which tasks are performable in the processing chamber(s). Preferably, the program is software readable by the system controller 101 and includes instructions to monitor and control the process based on defined rules and input data.
  • FIG. 2A is a plan view that illustrates another embodiment of cluster tool 10 that contains a front end module 50 that is attached to the stepper/scanner 5. The front end module 50 in this configuration may contain a front end robot 108, a front end processing rack 52, and a rear robot 109A, which is in communication with the stepper/scanner 5. In this configuration the front end processing rack 52 contains multiple processing chambers (e.g., coater/developer chamber 60, bake chamber 90, chill chamber 80, etc.) that are adapted to perform the various processing steps found in the substrate processing sequence. In this configuration the front end robot 108 is adapted to transfer substrates between a cassette 106 mounted in a pod assembly 105 and the one or more processing chambers retained in the front end processing rack 52. Also, in this configuration the rear robot 109A is adapted to transfer substrates between the front end processing rack 52 and a stepper/scanner 5. In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., front end processing rack 52, first central processing rack 152 (FIG. 1B), etc.). In one embodiment, the cluster tool 10 contains the front end module 50, but does not contain a rear robot 109A and does not interface with the stepper/scanner 5.
  • FIG. 2B is a plan view that illustrates another embodiment of cluster 10 shown in FIG. 2A, that is not adapted to communicate with the stepper/scanner 5. In this configuration, the cluster tool 10 may be used as a stand alone tool to perform a desired process sequence utilizing the process chambers contained in the front end processing rack 52.
  • FIG. 2C is a plan view that illustrates yet another embodiment of the cluster tool 10 that contains a front end module 50 and a central module 150 that are attached to the stepper/scanner 5 and serviced by the front end robot 108 and the central robot 107. In one embodiment, the central robot 107 is adapted to transfer substrates between the front end processing rack 52, the first central processing rack 152, the second central processing rack 154 and/or the stepper/scanner 5. In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., front end processing rack 52, first central processing rack 152, etc.).
  • FIG. 2D is a plan view of yet another embodiment of the cluster tool 10 that contains front end module 50, a central module 150, and a rear module 300, where the rear processing rack 302 is configured to contain a first rear processing rack 302 and a second rear processing rack 304. In this configuration the rear robot 109 may be adapted to transfer substrates from the first central processing rack 152, the second central processing rack 154, the first rear processing rack 302, the second rear processing rack 304, the central robot 107, and/or the stepper/scanner 5. Also, in this configuration the central robot 107 may be adapted to transfer substrates from the first central processing rack 152, the second central processing rack 154, the first rear processing rack 302, the second rear processing rack 304, and/or the rear robot 109. In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., front end processing rack 52, first central processing rack 152, etc.).
  • FIG. 2E illustrates a plan view of one embodiment illustrated in FIG. 1B, which contains a twin coater/developer chamber 350 (FIGS. 9A-B) mounted in the second central processing rack 314 (FIG. 4J), that may adapted to perform a photoresist coat step 520 (FIGS. 3A-C) or a develop step 550 (FIGS. 3A-C) in both of the process chambers 370. This configuration is advantageous since it allows some of the common components found in the two process chambers 370 to be shared thus reducing the system cost, complexity and footprint of the tool. FIGS. 9A-B, described below, illustrates the various aspects of the twin coater/developer chamber 350. FIG. 2E also contains a bake/chill chamber 800 mounted in a first central processing rack 322 (FIG. 4K), that may be adapted to perform the various bake steps (e.g., post BARC bake step 512, PEB step 540, etc. (FIGS. 3A-C)) and chill steps (e.g., post BARC chill step 514, post PEB chill step 542, etc. (FIGS. 3A-C)) in the desired processing sequence. The bake/chill chamber 800 is described below in conjunction with FIGS. 18A-B.
  • FIG. 2F is a plan view of yet another embodiment of the cluster tool 10, which contains a front end module 306, and a central module 310. In this embodiment the front end module 306 may contain a first processing rack 308 and a second processing rack 309, and the central module 310 may contain a first central processing rack 312 and a second central processing rack 314. The front end robot 108 is adapted to transfer substrates between a cassette 106 mounted in a pod assembly 105, the first processing rack 308, the second processing rack 309, the first central processing rack 312, the second central processing rack 314, and/or the central robot 107. The central robot 107 is adapted to transfer substrates between the first processing rack 308, the second processing rack 309, the first central processing rack 312, the second central processing rack 314, the front end robot 108, and/or the stepper/scanner 5. In one embodiment, the front end robot 108, and the central robot 107 are articulated robots (described below). In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., first processing rack 308, first central processing rack 312, etc.). In one aspect, the front end robot 108 is positioned in a central location between the first processing rack 308 and a second processing rack 309 of the front end module 306. In another aspect, the central robot 107 is positioned in a central location between the first central processing rack 312 and a second central processing rack 314 of the central module 310.
  • FIG. 2G is a plan view of yet another embodiment of the cluster tool 10, which is similar to the embodiment shown in FIG. 2F, with the addition of a rear module 316 which may be attached to a stepper/scanner 5. In this embodiment the front end module 306 may contain a first processing rack 308 and a second processing rack 309, the central module 310 may contain a first central processing rack 312 and a second central processing rack 314, and the rear module 316 may contain a first rear processing rack 318 and a second rear processing rack 319. The front end robot 108 is adapted to transfer substrates between a cassette 106 mounted in a pod assembly 105, the first processing rack 308, the second processing rack 309, the first central processing rack 312, the second central processing rack 314, and/or the central robot 107. The central robot 107 is adapted to transfer substrates between the first processing rack 308, the second processing rack 309, the first central processing rack 312, the second central processing rack 314, the first rear processing rack 318, the second rear processing rack 319, the front end robot 108, and/or the rear robot 109. The rear robot 109 is adapted to transfer substrates between the first central processing rack 312, the second central processing rack 314, the first rear processing rack 318, the second rear processing rack 319, the central robot 107, and/or the stepper/scanner 5. In one embodiment, one or more of the front end robot 108, the central robot 107, and the rear robot 109 are articulated robots (described below). In one embodiment, a shuttle robot 110 is adapted to transfer substrates between two or more adjacent processing chambers retained in one or more processing racks (e.g., first processing rack 308, first central processing rack 312, etc.). In one aspect, the rear robot 109 is positioned in a central location between the first rear processing rack 318 and a second rear processing rack 319 of the rear module 316.
  • The embodiments illustrated in FIGS. 2F and 2G may be advantageous since the gap formed between the processing racks forms a relatively open space that will allow maintenance personnel access to cluster tool components that have become inoperable. As shown in FIGS. 2F and 2G, in one aspect of the invention, the gap is as wide as the space between the processing racks and as high the height of the processing racks. Since system down-time and system availability are important components in determining the CoO for a given tool, the ability to easily access and maintain the cluster tool components have an advantage over other prior art configurations.
  • FIG. 2H is a plan view of yet another embodiment of the cluster tool 10, which is similar to the embodiment shown in FIG. 2F, with the addition of a slide assembly 714 (FIG. 16H) which allows the base of the front end robot 108 and the central robot 107 to translate along the length (items A1 and A2, respectively) of the cluster tool. This configuration extends the reach of each of the robots and improves the “robot overlap.” Robot overlap is the ability of a robot to access processing chambers in the processing rack of other modules. While FIG. 2H illustrates the front end robot 108 and the central robot 107 on a single slide assembly 714 other embodiments may include having each of the robots (Items 107 and 108) on their own slide assembly or only one of the robots mounted on a slide assembly and the other mounted to the floor or system frame, without varying from the scope of the invention.
  • FIG. 2I is a plan view of yet another embodiment of the cluster tool 10, which is similar to the embodiment shown in FIG. 2G, with the addition of two slide assemblies 714A-B (described in FIG. 16H) which allows the base of the front end robot 108 and the base of the central robot 107 and rear robot 109 to translate along the length (items A1, A2 and A3, respectively) of the cluster tool 10. While FIG. 2I illustrates the front end robot 108 on one slide assembly 714A and the central robot 107 and the rear robot 109 on a single slide assembly 714B, other embodiments may include having one or more of the robots (Items 107, 108 and 109) on their own slide assembly (not shown), on a shared slide assembly or all three on a single slide assembly (not shown), without varying from the scope of the invention.
  • Photolithography Process Sequence
  • FIG. 3A illustrates one embodiment of a series of method steps 501 that may be used to deposit, expose and develop a photoresist material layer formed on a substrate surface. The lithographic process may generally contain the following: a remove substrate from pod 508A step, a BARC coat step 510, a post BARC bake step 512, a post BARC chill step 514, a photoresist coat step 520, a post photoresist coat bake step 522, a post photoresist chill step 524, an optical edge bead removal (OEBR) step 536, an exposure step 538, a post exposure bake (PEB) step 540, a post PEB chill step 542, a develop step 550, and a place in pod step 508B. In other embodiments, the sequence of the method steps 501 may be rearranged, altered, one or more steps may be removed, or two or more steps may be combined into a single step without varying from the basic scope of the invention.
  • The remove substrate from pod 508A step is generally defined as the process of having the front end robot 108 remove a substrate from a cassette 106 resting in one of the pod assemblies 105. A cassette 106, containing one or more substrates “W”, is placed on the pod assembly 105 by the user or some external device (not shown) so that the substrates can be processed in the cluster tool 10 by a user-defined substrate processing sequence controlled by software retained in the system controller 101.
  • The BARC coat step 510, or bottom anti-reflective coating process (hereafter BARC), is a step used to deposit an organic material over a surface of the substrate. The BARC layer is typically an organic coating that is applied onto the substrate prior to the photoresist layer to absorb light that otherwise would be reflected from the surface of the substrate back into the photoresist during the exposure step 538 performed in the stepper/scanner 5. If these reflections are not prevented, optical standing waves will be established in the photoresist layer, which cause feature size(s) to vary from one location to another depending on the local thickness of the photoresist layer. The BARC layer may also be used to level (or planarize) the substrate surface topography, since surface topography variations are invariably present after completing multiple electronic device fabrication steps. The BARC material fills around and over the features to create a flatter surface for photoresist application and reduces local variations in photoresist thickness. The BARC coat step 510 is typically performed using a conventional spin-on photoresist dispense process in which an amount of the BARC material is deposited on the surface of the substrate while the substrate is being rotated, which causes a solvent in the BARC material to evaporate and thus causes the material properties of the deposited BARC material to change. The air flow and exhaust flow rate in the BARC processing chamber is often controlled to control the solvent vaporization process and the properties of the layer formed on the substrate surface.
  • The post BARC bake step 512, is a step used to assure that all of the solvent is removed from the deposited BARC layer in the BARC coat step 510, and in some cases to promote adhesion of the BARC layer to the surface of the substrate. The temperature of the post BARC bake step 512 is dependent on the type of BARC material deposited on the surface of the substrate, but will generally be less than about 250° C. The time required to complete the post BARC bake step 512 will depend on the temperature of the substrate during the post BARC bake step, but will generally be less than about 60 seconds.
  • The post BARC chill step 514, is a step used to assure that the time the substrate is at a temperature above ambient temperature is controlled so that every substrate sees the same time-temperature profile; thus process variability is minimized. Variations in the BARC process time-temperature profile, which is a component of a substrate's wafer history, can have an effect on the properties of the deposited film layer and thus is often controlled to minimize process variability. The post BARC chill step 514, is typically used to cool the substrate after the post BARC bake step 512 to a temperature at or near ambient temperature. The time required to complete the post BARC chill step 514 will depend on the temperature of the substrate exiting the post BARC bake step, but will generally be less than about 30 seconds.
  • The photoresist coat step 520 is a step used to deposit a photoresist layer over a surface of the substrate. The photoresist layer deposited during the photoresist coat step 520 is typically a light sensitive organic coating that is applied onto the substrate and is later exposed in the stepper/scanner 5 to form the patterned features on the surface of the substrate. The photoresist coat step 520 is a typically performed using conventional spin-on photoresist dispense process in which an amount of the photoresist material is deposited on the surface of the substrate while the substrate is being rotated, thus causing a solvent in the photoresist material to evaporate and the material properties of the deposited photoresist layer to change. The air flow and exhaust flow rate in the photoresist processing chamber is controlled to control the solvent vaporization process and the properties of the layer formed on the substrate surface. In some cases it may be necessary to control the partial pressure of the solvent over the substrate surface to control the vaporization of the solvent from the photoresist during the photoresist coat step by controlling the exhaust flow rate and/or by injecting a solvent near the substrate surface. Referring to FIG. 5A, to complete the photoresist coat step 520 the substrate is first positioned on a spin chuck 1033 in a coater chamber 60A. A motor rotates the spin chuck 1033 and substrate while the photoresist is dispensed onto the center of the substrate. The rotation imparts an angular torque onto the photoresist, which forces the photoresist out in a radial direction, ultimately covering the substrate.
  • The post photoresist coat bake step 522 is a step used to assure that most, if not all, of the solvent is removed from the deposited photoresist layer in the photoresist coat step 520, and in some cases to promote adhesion of the photoresist layer to the BARC layer. The temperature of the post photoresist coat bake step 522 is dependent on the type of photoresist material deposited on the surface of the substrate, but will generally be less than about 250° C. The time required to complete the post photoresist coat bake step 522 will depend on the temperature of the substrate during the post photoresist bake step, but will generally be less than about 60 seconds.
  • The post photoresist chill step 524, is a step used to control the time the substrate is at a temperature above ambient temperature so that every substrate sees the same time-temperature profile and thus process variability is minimized. Variations in the time-temperature profile can have an affect on properties of the deposited film layer and thus is often controlled to minimize process variability. The temperature of the post photoresist chill step 524, is thus used to cool the substrate after the post photoresist coat bake step 522 to a temperature at or near ambient temperature. The time required to complete the post photoresist chill step 524 will depend on the temperature of the substrate exiting the post photoresist bake step, but will generally be less than about 30 seconds.
  • The optical edge bead removal (OEBR) step 536, is a process used to expose the deposited light sensitive photoresist layer(s), such as the layers formed during the photoresist coat step 520 and the BARC layer formed during the BARC coat step 510, to a radiation source (not shown) so that either or both layers can be removed from the edge of the substrate and the edge exclusion of the deposited layers can be more uniformly controlled. The wavelength and intensity of the radiation used to expose the surface of the substrate will depend on the type of BARC and photoresist layers deposited on the surface of the substrate. An OEBR tool can be purchased, for example, from USHIO America, Inc. Cypress, Calif.
  • The exposure step 538 is a lithographic projection step applied by a lithographic projection apparatus (e.g., stepper scanner 5) to form a pattern which is used to manufacture integrated circuits (ICs). The exposure step 538 forms a circuit pattern corresponding to an individual layer of the integrated circuit (IC) device on the substrate surface, by exposing the photosensitive materials, such as, the photoresist layer formed during the photoresist coat step 520 and the BARC layer formed during the BARC coat step 510 (photoresist) of some form of electromagnetic radiation. The stepper/scanner 5, which may be purchased from Cannon, Nikon, or ASML.
  • The post exposure bake (PEB) step 540 is a step used to heat a substrate immediately after the exposure step 538 in order to stimulate diffusion of the photoactive compound(s) and reduce the effects of standing waves in the photoresist layer. For a chemically amplified photoresist, the PEB step also causes a catalyzed chemical reaction that changes the solubility of the photoresist. The control of the temperature during the PEB is critical to critical dimension (CD) control. The temperature of the PEB step 540 is dependent on the type of photoresist material deposited on the surface of the substrate, but will generally be less than about 250° C. The time required to complete the PEB step 540 will depend on the temperature of the substrate during the PEB step, but will generally be less than about 60 seconds.
  • The post exposure bake (PEB) chill step 542 is a step used to assure that the time the substrate is at a temperature above ambient temperature is controlled, so that every substrate sees the same time-temperature profile and thus process variability is minimized. Variation in the PEB process time-temperature profile can have an effect on properties of the deposited film layer and thus is often controlled to minimize process variability. The temperature of the post PEB chill step 542 is thus used to cool the substrate after the PEB step 540 to a temperature at or near ambient temperature. The time required to complete the post PEB chill step 542 will depend on the temperature of the substrate exiting the PEB step, but will generally be less than about 30 seconds.
  • The develop step 550 is a process in which a solvent is used to cause a chemical or physical change to the exposed or unexposed photoresist and BARC layers to expose the pattern formed during the exposure step 538. The develop process may be a spray or immersion or puddle type process that is used to dispense the developer solvent. In one embodiment of the develop step 550, after the solvent has been dispensed on the surface of the substrate a rinse step may be performed to rinse the solvent material from the surface of the substrate. The rinse solution dispensed on the surface of the substrate may contain deionized water and/or a surfactant.
  • The insert the substrate in pod step 508B is generally defined as the process of having the front end robot 108 return the substrate to a cassette 106 resting in one of the pod assemblies 105.
  • FIG. 3B illustrates another embodiment in which a series of method steps 502 that may be used to perform a track lithographic process on the substrate surface. The lithographic process in the method steps 502 contains all of the steps found in FIG. 3A, but replaces the BARC coat step 510 and post BARC bake step 512 with a hexamethyldisilazane (hereafter HMDS) processing step 511 and a post HMDS chill step 513. In other embodiments, the series of the method steps 502 may be rearranged, altered, one or more steps may be removed or two or more steps may be combined into a single step with out varying from the basic scope of the invention.
  • The HMDS processing step 511 generally contains the steps of heating the substrate to a temperature greater than about 125° C. and exposing the substrate to a process gas containing an amount of HMDS vapor for a short period of time (e.g., <120 seconds) to prepare and dry the surface of the substrate to promote adhesion of the photoresist layer deposited later in the processing sequence. While the use of HMDS vapor is specifically described above as the chemical used in conjunction with the HMDS processing step 511, the HMDS processing step 511 is meant to more generally describe a class of similar processes that may be utilized to prepare and dry the surface of the substrate to promote adhesion of the photoresist layer. Thus the use of the term HMDS in this specification is not intended to be limiting of the scope of the invention. In some cases the HMDS step is called a “vapor prime” steps.
  • The post HMDS chill step 513 controls the temperature of the substrate so that all substrates entering the photoresist processing step are at the same initial processing temperature. Variations in the temperature of the substrate entering the photoresist coat step 520, can have a dramatic affect on properties of the deposited film layer and thus is often controlled to minimize process variability. The temperature of the post HMDS chill step 513, is thus used to cool the substrate after the HMDS processing step 511 to a temperature at or near ambient temperature. The time required to complete the post HMDS chill step 513 will depend on the temperature of the substrate exiting the HMDS processing step 511, but will generally be less than about 30 seconds.
  • FIG. 3C illustrates another embodiment of a process sequence, or method steps 503, that may be used to perform a track lithographic process on the substrate. The lithographic process may generally contain a remove from pod 508A step, a pre-BARC chill step 509, a BARC coat step 510, a post BARC bake step 512, a post BARC chill step 514, a photoresist coat step 520, a post photoresist coat bake step 522, a post photoresist chill step 524, an anti-reflective top coat step 530, a post top coat bake step 532, a post top coat chill step 534, an optical edge bead removal (OEBR) step 536, an exposure step 538, a post exposure bake (PEB) step 540, a post PEB chill step 542, a develop step 550, a SAFIER™ (Shrink Assist Film for Enhanced Resolution) coat step 551, a post develop bake step 552, a post develop chill step 554, and a place in pod step 508B. The lithographic process in the method steps 503 contains all of the steps found in FIG. 3A, and adds the anti-reflective top coat step 530, the post top coat bake step 532, the post top coat chill step 534, a post develop bake step 552, a post develop chill step 554 and the SAFIER™ coat step 551. In other embodiments, the sequence of the method steps 503 may be re-arranged, altered, one or more steps may be removed or two or more steps may be combined into a single step with out varying from the basic scope of the invention.
  • The pre-BARC chill step 509 controls the temperature of the substrate so that all substrates entering the BARC processing step are at the same initial processing temperature. Variations in the temperature of the substrate entering the BARC coat step 510, can have a dramatic affect on properties of the deposited film layer and thus is often controlled to minimize process variability. The temperature of the pre-BARC step 509, is thus used to cool or warm the substrate transferred from the POD to a temperature at or near ambient temperature. The time required to complete the pre-BARC chill step 509 will depend on the temperature of the substrates in the cassette 106, but will generally be less than about 30 seconds.
  • The anti-reflective top coat step 530 or top anti-reflective coating process (hereafter TARC), is a step used to deposit an organic material over the photoresist layer deposited during the photoresist coat step 520. The TARC layer is typically used to absorb light that otherwise would be reflected from the surface of the substrate back into the photoresist during the exposure step 538 performed in the stepper/scanner 5. If these reflections are not prevented, optical standing waves will be established in the photoresist layer, which cause feature size to vary from one location to another on the circuit depending on the local thickness of the photoresist layer. The TARC layer may also be used to level (or planarizing) the substrate surface topography, which is invariably present on the device substrate. The anti-reflective top coat step 530 is a typically performed using conventional spin-on photoresist dispense process in which an amount of the TARC material is deposited on the surface of the substrate while the substrate is being rotated which causes a solvent in the TARC material to evaporate and thus densify the TARC layer. The air flow and exhaust flow rate in the coater chamber 60A is controlled to control the solvent vaporization process and the properties of the layer formed on the substrate surface.
  • The post top coat bake step 532 is a step used to assure that all of the solvent is removed from the deposited TARC layer in the anti-reflective top coat step 530. The temperature of the post top coat bake step 532 is dependent on the type of TARC material deposited on the surface of the substrate, but will generally be less than about 250° C. The time required to complete the post top coat bake step 532 will depend on the temperature of the process run during the post top coat bake step, but will generally be less than about 60 seconds.
  • The post top coat chill step 534 is a step used to control the time the substrate is at a temperature above ambient temperature is controlled so that every substrate sees the same time-temperature profile and thus process variability is minimized. Variations in the TARC process time-temperature profile, which is a component of a substrates wafer history, can have an affect on the properties of the deposited film layer and thus is often controlled to minimize process variability. The post top coat chill step 534, is typically used to cool the substrate after the post top coat bake step 532 to a temperature at or near ambient temperature. The time required to complete the post top coat chill step 534 will depend on the temperature of the substrate exiting the post top coat bake step 532, but will generally be less than about 30 seconds.
  • The post develop bake step 552 is a step used to assure that all of the developer solvent is removed from the remaining photoresist layer after the develop step 550. The temperature of the post develop bake step 552 is dependent on the type of photoresist material deposited on the surface of the substrate, but will generally be less than about 250° C. The time required to complete the post develop bake step 552 will depend on the temperature of the substrate during the post photoresist bake step, but will generally be less than about 60 seconds.
  • The post develop chill step 554 is a step used to control and assure that the time the substrate is at a temperature above ambient temperature is controlled so that every substrate sees the same time-temperature profile and thus process variability is minimized. Variations in the develop process time-temperature profile, can have an effect on properties of the deposited film layer and thus is often controlled to minimize process variability. The temperature of the post develop chill step 554, is thus used to cool the substrate after the post develop bake step 552 to a temperature at or near ambient temperature. The time required to complete the post develop chill step 554 will depend on the temperature of the substrate exiting the post develop bake step 552, but will generally be less than about 30 seconds.
  • The SAFIER™ (Shrink assist film for enhanced resolution) coat step 551, is a process in which a material is deposited over the remaining photoresist layer after the develop step 550 and then baked in the post develop bake step 552. The SAFIER™ process is typically used to cause physical shrinkage of IC trench patterns, vias and contact holes with very little deterioration of the profile and also improve line edge roughness (LER). The SAFIER™ coat step 551 is typically performed using conventional spin-on photoresist dispense process in which an amount of the SAFIER™ material is deposited on the surface of the substrate while the substrate is being rotated.
  • Processing Racks
  • FIGS. 4A-J illustrate side views of one embodiment of a front end processing rack 52, a first central processing rack 152, a second central processing rack 154, a rear processing rack 202, a first rear processing rack 302, a second rear processing rack 304, a first processing rack 308, a second processing rack 309, a first central processing rack 312, a second central processing rack 314, a first rear processing rack 318 and a second rear processing rack 319, that contain multiple substrate processing chambers to perform various aspects of the substrate processing sequence. In general, the processing racks illustrated in FIGS. 4A-J may contain one or more process chambers, such as, one or more coater chambers 60A, one or more developer chambers 60B, one or more chill chambers 80, one or more bake chambers 90, one or more PEB chambers 130, one or more support chambers 65, one or more OEBR chambers 62, one or more twin coater/developer chambers 350, one or more bake/chill chambers 800, and/or one or more HMDS chambers 70, which are further described below. The orientation, type, positioning and number of process chambers shown in the FIGS. 4A-J are not intended to be limiting as to the scope of the invention, but are intended to illustrate the various embodiments of the invention. In one embodiment, as shown in FIGS. 4A-J, the process chambers are stacked vertically, or one chamber is positioned substantially above another chamber, to reduce the footprint of the cluster tool 10. In another embodiment, the chambers stacked vertically so that the processing chambers are positioned in a horizontally staggered pattern, one chamber is positioned partially above another chamber, to help make more efficient use of the processing rack space when one or more chambers are different physical sizes. In yet another embodiment, the process chambers may be staggered vertically, the base of the process chambers do not share a common plane, and/or are horizontally staggered, where a side of a process chamber does not share a common plane with another process chamber. Minimizing the cluster tool footprint is often an important factor in developing a cluster tool, since the clean room space, where the cluster tool may be installed, is often limited and very expensive to build and maintain.
  • FIG. 4A illustrates a side view of the front end processing rack 52 as viewed from outside the cluster tool 10 and in front of the pod assemblies 105 when facing the central robot 107 and thus will coincide with the view shown in FIGS. 1A-B and FIGS. 2A-C. In one embodiment, as shown in FIG. 4A, the front end processing rack 52 contains four coater/developer chambers 60 (labeled CD1-4), twelve chill chambers 80 (labeled C1-12), six bake chambers 90 (labeled B1-6) and/or six HMDS process chambers 70 (labeled P1-6).
  • FIG. 4B illustrates a side view of the first central processing rack 152 as viewed from outside the cluster tool 10 while facing the central robot 107 and thus will coincide with the view shown in FIGS. 1A-B and FIGS. 2A-C. In one embodiment, as shown in FIG. 4B, the first central processing rack 152 contains twelve chill chambers 80 (labeled C1-12) and twenty four bake chambers 90 (labeled B1-24).
  • FIG. 4C illustrates a side view of the second central processing rack 154 as viewed from outside the cluster tool 10 while facing the central robot 107 and thus will coincide with the view shown in FIGS. 1A-B and FIGS. 2A-C. In one embodiment, as shown in FIG. 4C, the second central processing rack 154 contains four coater/developer chambers 60 (labeled CD1-4) and four support chambers 65 (labeled S1-4). In one embodiment, the four support chambers 65 are replaced with four coater/developer chambers 60.
  • FIG. 4D illustrates a side view of the rear processing rack 202 as viewed from outside the cluster tool 10 while facing the central robot 107 and thus coincides with the views shown in FIGS. 1A-B and FIG. 2B. In one embodiment, as shown in FIG. 4D, the rear processing rack 202 contains four coater/developer chambers 60 (labeled CD1-4), eight chill chambers 80 (labeled C1-8), two bake chambers 90 (labeled B1-24), four OEBR chambers 62 (labeled OEBR1-4), and six PEB chambers 130 (labeled PEB1-6).
  • FIG. 4E illustrates a side view of the first rear processing rack 302 as viewed from outside the cluster tool 10 while facing the rear robot 109 and thus will coincide with the view shown in FIG. 2C. In one embodiment, as shown in FIG. 4E, the first rear processing rack 302 contains four coater/developer chambers 60 (labeled CD1-4), eight chill chambers 80 (labeled C1-8), two bake chambers 90 (labeled B1-24), four OEBR chambers 62 (labeled OEBR1-4), and six PEB chambers 130 (labeled PEB1-6).
  • FIG. 4F illustrates a side view of the second rear processing rack 304 as viewed from outside the cluster tool 10 while facing the rear robot 109 and thus will coincide with the view shown in FIG. 2C. In one embodiment, as shown in FIG. 4F, the second rear processing rack 304 contains four coater/developer chambers 60 (labeled CD1-4) and four support chambers 65 (labeled S1-4). In one embodiment, the four support chambers 65 are replaced with four coater/developer chambers 60.
  • FIG. 4G illustrates a side view of the first processing rack 308 as viewed from outside the cluster tool 10 while facing the front end robot 108 and thus will coincide with the views shown in FIGS. 2F-G. In one embodiment, as shown in FIG. 4G, the first processing rack 308 contains twelve bake/chill chambers 800 (labeled BC1-12) which are described below in conjunction with FIG. 18.
  • FIG. 4H illustrates a side view of the second processing rack 309 as viewed from outside the cluster tool 10 while facing the front end robot 108 and thus will coincide with the view shown in FIGS. 2F-G. In one embodiment, as shown in FIG. 4H, the second processing rack 309 contains four coater/developer chambers 60 (labeled CD1-4) and four support chambers 65 (labeled S1-4). In one embodiment, the four support chambers 65 are replaced with four coater/developer chambers 60.
  • FIG. 4I illustrates a side view of the first central processing rack 312, or the first rear processing rack 318, as viewed from outside the cluster tool 10 while facing the central robot 107, or rear robot 109, and thus will coincide with the views shown in FIGS. 2F-G. In one embodiment, as shown in FIG. 4I, the first central processing rack 312, or the first rear processing rack 318, contains eight chill chambers 80 (labeled C1-8), fourteen bake chambers 90 (labeled B1, B2, B3, B5, B6, B7, etc.), four OEBR chambers 62 (labeled OEBR1-4), and six PEB chambers 130 (labeled PEB1-6). In another embodiment, the first central processing rack 312, or the first rear processing rack 318, may be arranged like the configuration illustrated in FIG. 4G, which contains twelve chill chambers 80 and twenty four bake chambers 90.
  • FIG. 4J illustrates a side view of the second central processing rack 314, or the second rear processing rack 319, as viewed from outside the cluster tool 10 while facing the central robot 107 (or rear robot 109) and thus will coincide with the views shown in FIGS. 2F-G. In one embodiment, as shown in FIG. 4J, the second central processing rack 314, or the second rear processing rack 319, contains four twin coater/developer chambers 350, which contain four pairs of process chambers 370 that may be configured as coater chambers 60A, as developer chambers 60B or combinations thereof.
  • FIG. 4K illustrates a side view of the first processing rack 322 as viewed from outside the cluster tool 10 while facing the front end robot 108 and thus will coincide with the views shown in FIG. 2E. In one embodiment, as shown in FIG. 4K, the first processing rack 322 contains twelve bake/chill chambers 800 (labeled BC1-12) which are described below in conjunction with FIGS. 18A-B.
  • Coater/Developer Chamber
  • The coater/developer chamber 60 is a processing chamber that may be adapted to perform, for example, the BARC coat step 510, the photoresist coat step 520, the anti-reflective top coat step 530, the develop step 550, and/or the SAFIER™ coat step 551, which are shown in FIGS. 3A-C. The coater/developer chamber 60 may generally be configured into two major types of chambers, a coater chamber 60A, shown in FIG. 5A, and a developer chamber 60B, shown in FIG. 5D (discussed below).
  • FIG. 5A, is a vertical sectional view of one embodiment of the coater chamber 60A, that may be adapted to perform the BARC coat step 510, the photoresist coat step and the anti-reflective top coat step 530. The coater chamber 60A may contain an enclosure 1001, a gas flow distribution system 1040, a coater cup assembly 1003, and a fluid dispense system 1025. The enclosure 1001 generally contains side walls 1001A, a base wall 1001B, and a top wall 1001C. The coater cup assembly 1003, which contains the processing region 1004 in which the substrate “W” is processed, also contains a cup 1005, a rotatable spin chuck 1034 and a lift assembly 1030. The rotatable spin chuck 1034 generally contains a spin chuck 1033, a shaft 1032 and a rotation motor 1031, and a vacuum source 1015. The spin chuck 1033, which is attached to the rotation motor 1031 through the shaft 1032, contains a sealing surface 1033A that is adapted to hold the substrate while the substrate is being rotated. The substrate may be held to the sealing surface 1033A by use of a vacuum generated by the vacuum source 1015. The cup 1005 manufactured from a material, such as, a plastic material (e.g., PTFE, PFA, polypropylene, PVDF, etc), a ceramic material, a metal coated with a plastic material (e.g., aluminum or SST coated with either PVDF, Halar, etc.), or other materials that is compatible with the processing fluids delivered from the fluid dispense system 1025. In one embodiment, the rotation motor 1031 is adapted to rotate a 300 mm semiconductor substrate between about 1 revolution per minute (RPM) and about 4000 RPM.
  • The lift assembly 1030 generally contains an actuator (not shown), such as an air cylinder or servomotor, and a guide (not shown), such as a linear ball bearing slide, which are adapted to raise and lower the rotatable spin chuck 1034 to a desired position. The lift assembly 1030 is thus adapted to position the substrate mounted on the rotatable spin chuck 1034 in the cup 1005 during processing and also lift the substrate above the top of the cup 1005A to exchange the substrate with an external robot (e.g., front end robot 108, central robot 107, rear robot 109, etc. which is not shown) positioned outside the enclosure 1001. A robot blade 611, which is attached to the external robot, enters the enclosure 1001 through the access port 1002 formed in the side wall 1001A.
  • The gas flow distribution system 1040 is adapted to deliver a uniform flow of a gas through the enclosure 1001 and coater cup assembly 1003 to the exhaust system 1012. In one embodiment the gas flow distribution system 1040 is a HEPA filter assembly which generally contains a HEPA filter 1041 and a filter enclosure 1044. The HEPA filter 1041 and filter enclosure 1044 form a plenum 1042 that allows the gas entering from the gas source 1043 to uniformly flow through the HEPA filter 1041, the enclosure 1001 and the coater cup assembly 1003. In one embodiment, the gas source 1043 is adapted to deliver a gas (e.g., air) at a desired temperature and humidity to the processing region 1004.
  • The fluid dispense system 1025 generally contains one or more fluid source assemblies 1023 which deliver one or more solution to the surface of a substrate mounted on the spin chuck 1033. FIG. 5A illustrates a single fluid source assembly 1023 which contains a discharge nozzle 1024, a supply tube 1026, a pump 1022, a filter 1021, a suck back valve 1020 and a fluid source 1019. The support arm actuator 1028 is adapted to move the discharge nozzle 1024 and the dispense arm 1027 to a desired position so that a processing fluid can be dispensed from the discharge nozzle 1024 onto a desired position on the surface of the substrate. The processing fluid may be delivered to the discharge nozzle 1024 by use of a pump 1022. The pump 1022 removes a processing fluid from the fluid source 1019 and discharges the processing fluid through the filter 1021, suck back valve 1020 and discharge nozzle 1024 and onto the surface of the substrate. The processing solution discharged from the discharge nozzle 1024 may be dispensed onto the substrate “W” while it is rotated by the spin chuck 1033. The suck back valve 1020 is adapted to draw back an amount of solution from the discharge nozzle 1024 after a desired amount of processing fluid is dispensed on the substrate to prevent dripping of unwanted material on the surface of the substrate. The dispensed processing solution is spun off the edge of the substrate, collected by inner walls of the cup 1005 and diverted to a drain 1011 and ultimately a waste collection system 1010.
  • Photoresist Thickness Control Chamber
  • FIG. 5B is a side view of another embodiment of the coater chamber 60A, that may be adapted to perform, for example, the BARC coat step 510, the photoresist coat step and the anti-reflective top coat step 530. The embodiment shown in FIG. 5B is adapted to form an enclosure around a substrate during one or more phases of the deposition steps to control the evaporation of the solvent from the surface of the material deposited on the substrate surface to improve the thickness uniformity process results. Traditionally, thickness uniformity control in a typical spin-on type coating process relies on the control of the rotation speed of the substrate and exhaust flow rate to control the vaporization of the uniformity of the final deposited layer. The control of thickness uniformity is dependent on the air flow across the substrate surface during the processing step. The rotation speed during processing is commonly lowered as the diameter of the substrate processed in the coater chamber 60A is increased due to the increased likelihood of aerodynamic variations across the surface of the substrate (e.g., transition from laminar to turbulent flow). It is believed that the aerodynamic variations arise due to the variation in air velocity as a function of substrate radius due to the “pumping effect” caused by the momentum imparted to the air from its interaction with the substrate surface. One issue that arises is that the time it takes to complete the coat step depends on the ability to spread out and remove the required amount of solvent from the thinning photoresist layer, which is a function of the rotation speed of the substrate. The higher the rotation speed the shorter the processing time. Therefore, in one embodiment, an enclosure is placed around the substrate to control the environment around the surface of the substrate to improve the thickness uniformity control for larger substrate sizes. The improved uniformity control is believed to be due to the control of the vaporization of the solvent, since the enclosure formed around the substrate tends to prevent of gas flow across the surface of the substrate, and thus allows the photoresist to spread out before an appreciable amount of solvent has evaporated from the photoresist.
  • The coater chamber 60A in this embodiment generally contains an enclosure 1001, a gas flow distribution system 1040, a coater cup assembly 1003, an processing enclosure assembly 1050, and a fluid dispense system 1025. The embodiment illustrated in FIG. 5B contains a number of components described above in reference to the coater chamber 60A described in FIG. 5A and thus the reference numbers for the same or similar components have been reused in FIG. 5B for clarity. It should be noted that the spin chuck 1033 illustrated in FIG. 5A is replaced, in this embodiment, by the enclosure coater chuck 1056 that has an enclosure coater chuck sealing surface 1056A on which the substrate rests and a chuck base region 1056B.
  • FIG. 5B illustrates the processing enclosure assembly 1050 in the processing position. It should be noted that in the “exchange position” (not shown) the enclosure lid 1052 is separated from the chuck base region 1056B so that a substrate can be transferred to the enclosure coater chuck 1056 by use of a robot blade 611 attached to an external robot (e.g., front end robot 108, central robot 107, etc.). The processing enclosure assembly 1050 which contains an enclosure lid 1052 and the chuck base region 1056B which form a processing region 1051 around the substrate so that the processing environment can be controlled during different phases of the coating process. The processing enclosure assembly 1050 generally contains an enclosure lid 1052, the spin chuck 1033, a rotation assembly 1055, and a lift assembly 1054. The lift assembly 1054 generally contains a lift actuator 1054A and lift mounting bracket 1053 which may be attached to a rotation assembly 1055 and a surface of the enclosure 1001. The lift actuator 1054A generally contains an actuator (not shown), such as an air cylinder or DC servomotor, and a guide (not shown), such as a linear ball bearing slide, that are adapted to raise and lower all of the components contained in the processing enclosure assembly 1050, except the spin chuck 1033.
  • The rotation assembly 1055 generally contains one or more rotation bearings (not shown) and a housing 1055A that are adapted to allow the enclosure lid 1052 to be rotated as the enclosure coater chuck 1056 is rotated. In one embodiment, the housing 1055A is rotated as the spin chuck 1033 is rotated by the rotation motor 1031, due to friction created by the contact between the enclosure lid 1052 and the chuck base region 1056B. The enclosure lid 1052 is attached to the rotation bearings through the lid shaft 1052A. In one embodiment, the contact between the enclosure lid 1052 and the chuck base region 1056B is initiated by the movement of the lift assembly 1030, the lift assembly 1054 or both lift assemblies moving together.
  • In one embodiment, when the enclosure lid 1052 and the chuck base region 1056B are in contact, a seal is formed, thus creating an enclosed processing environment around the substrate. In one embodiment, the volume of the processing region 1051 is intended to be rather small to control the vaporization of a solvent from the photoresist on the surface of the substrate, for example, the gap between the enclosure lid 1052 and/or the chuck base region 1056B to the substrate may be about 3 mm.
  • In one embodiment, a photoresist material is delivered to the processing region 1051 through a tube (not shown) in a clearance hole (not shown) in the lid shaft 1052A, while the enclosure lid 1052 and chuck base region 1056B are in contact and the substrate is being rotated at a first rotational speed. In this step the photoresist will tend to spread out due to the centrifugal force effects caused by the rotation, but the photoresist's ability to change properties is restricted due to the formation of a solvent rich vapor over the surface of the substrate. After dispensing the photoresist the enclosure lid 1052 and enclosure coater chuck 1056 may then be rotated at a second rotational speed until the photoresist is thinned to a desired thickness at which time the enclosure lid 1052 is lifted from the surface of the enclosure coater chuck 1056, to allow the solvent remaining in the photoresist to escape and thus complete the final solvent vaporization process.
  • In another embodiment, the photoresist is dispensed using a conventional extrusion dispense process (e.g., sweep a photoresist dispensing arm (not shown) across a stationary substrate), after which the substrate is enclosed in the processing enclosure assembly 1050 and rotated at a desired speed to achieve a uniform layer of a desired thickness. After the desired thickness has been achieved the enclosure lid 1052 is separated from the enclosure coater chuck 1056 to allow the complete vaporization of the solvent from the photoresist.
  • In one embodiment of the enclosure lid 1052, a plurality of holes 1052B are formed in the outer wall of the enclosure lid 1052 to allow the excess photoresist to exit the processing region 1051 during processing. In this configuration air flow across the surface of the substrate is still prevented or minimized due to lack of an entry and/or exit points for the flowing air. In this configuration, due to the centrifugal force acting on the air and photoresist which will cause them to flow out of the holes 1052B, the pressure in the processing region 1051 will drop below ambient pressure. In one embodiment, the pressure in the processing region may be varied during different phases of the process to control the vaporization of the photoresist, by varying the rotation speed of the substrate, enclosure lid 1052 and enclosure coater chuck 1056.
  • In one embodiment, a solvent rich vapor is injected into the processing region 1051 through a hole in the lid shaft 1052A during processing to control the final thickness and uniformity of the photoresist layer.
  • Showerhead Fluid Dispensing System for Solvent/Developer Dispense
  • In an effort to achieve a uniform and repeatable photoresist layer on the surface of a substrate, prior art designs have emphasized the design of the coater chamber cup geometry, method of spinning the substrate, varying the air flow through the processing region of the chamber, and designing photoresist dispensing hardware that improves process of dispensing the photoresist layer. These designs achieve one level of uniformity at varying levels of complexity and cost. Due to the need to reduce CoO and the ever increasing process uniformity requirements further improvement is needed.
  • FIG. 5C illustrates one embodiment of the coater/developer chamber 60, which contains a fluid distribution device 1070 that is adapted to deliver a fluid to the surface of the substrate during the coating process, to enhance the process uniformity results. In one aspect of the invention, the fluid is a solvent found in the photoresist layer so that the evaporation process can be controlled. In this configuration the fluid distribution device 1070 may be raised and lowered relative to the substrate surface by use of a lift assembly 1074 so that an optimum gap between the fluid distribution device 1070 and the surface of the substrate can be achieved so that the surface of the deposited layer can be uniformly saturated with the dispensed fluid. In one embodiment, the gap is between about 0.5 mm and about 15 mm. The lift assembly 1074 generally contains a lift actuator 1074A and lift mounting bracket 1073 which may be attached to a showerhead assembly 1075 and a surface of the enclosure 1001. The lift actuator 1074A generally contains an actuator (not shown), such as an air cylinder or DC servomotor, and a guide (not shown), such as a linear ball bearing slide, that are adapted to raise and lower all of the components contained in the fluid distribution device 1070.
  • FIG. 5C illustrates the fluid distribution device 1070 in the processing position. The fluid distribution device 1070 contains a showerhead assembly 1075 which forms a processing region 1071 between the substrate and the fluid distribution device 1070 so that the processing environment can be controlled during different phases of the coating process. The fluid distribution device 1070 generally contains a showerhead assembly 1075, a fluid source 1077 and a lift assembly 1074.
  • The showerhead assembly 1075 generally contains a showerhead base 1072, a shaft 1072A and a showerhead plate 1072D. The shaft 1072A is attached to the showerhead base 1072 and has a center hole 1072B formed in the shaft to allow fluid delivered from the fluid source 1077 to flow into a plenum 1072C formed within the showerhead base 1072. The showerhead plate 1072D, which is attached to the showerhead base 1072, contains a plurality of holes 1072F formed therein that connect the plenum 1072C, and thus the fluid source 1077, to the lower surface 1072E of the showerhead plate 1072D. During processing, a processing fluid is dispensed from the fluid source 1077 into the center hole 1072B, where it enters the plenum 1072C and then flows through the plurality of holes 1072F and into the processing region 1071 formed between the substrate and the lower surface 1072E. In one embodiment, the hole size, number of holes and distribution of the plurality of holes 1072F across the showerhead plate 1072D are designed to uniformly deliver the processing fluid to the processing region 1071. In another embodiment, the hole size, number of holes and distribution of the plurality of holes 1072F across the showerhead plate 1072D are unevenly spaced across the showerhead plate 1072D to deliver a desired non-uniform distribution of a processing fluid to the processing region 1071. A non-uniform pattern may be useful to correct the thickness variations caused by aerodynamic or other effects that may cause thickness variations in the deposited photoresist layer.
  • In one embodiment, the showerhead assembly 1075 contains a motor 1072G and a rotary seal 1072H that are adapted to rotate and deliver a processing fluid to the showerhead assembly 1075 during processing. The rotary seal 1072H may be a dynamic lip seal, or other similar device that are well known in the art.
  • Photoresist Nozzle Rinse System
  • FIGS. 6A-B are isometric views that illustrate one embodiment of a fluid source assembly 1023, described above, that also contains an encapsulating vessel assembly 1096. To reduce the possibility of contamination of the discharge nozzle 1024, to try to prevent the processing fluid in the supply tube 1026 from drying out, and/or to clean various components of the fluid source assembly 1023 (e.g., discharge nozzle 1024, supply tube outlet 1026A, etc.), during idle times or between processing steps the discharge nozzle 1024 is positioned over the vessel opening 1095A (see FIG. 6A) to form a controlled region in the environment region 1099. This configuration may be advantageous where the processing fluid, such as photoresist, is used, since it can easily dry and flake causing particle problems as the discharge nozzle 1024 is brought over the substrate surface in subsequent processing steps. In one embodiment, the discharge nozzle 1024, as shown in FIGS. 6A-B, contains a nozzle body 1024A that is configured to hold and support the supply tube 1026 so that the processing fluid can be cleanly and repeatably dispensed through the supply tube outlet 1026A.
  • FIG. 6A illustrates a configuration where the discharge nozzle 1024 is separated from the encapsulating vessel assembly 1096 so that it can be rotated to dispense the processing fluid on the surface of the substrate. The encapsulating vessel assembly 1096 generally contains one or more rinse nozzles 1090, a vessel 1095, a drain 1094, and a vessel opening 1095A. The rinse nozzles 1090, which are connected to the tubing 1090A, are in communication with one or more fluid delivery sources 1093 (two are shown in FIGS. 6A-B see items 1093A-B). The drain 1094 is generally connected to a waste collection system 1094A
  • Referring to FIG. 6B, in an effort to reduce contamination of the substrate during processing the discharge nozzle 1024 and supply tube outlet 1026A are cleaned by use of one or more rinse nozzles 1090 that are attached to the fluid delivery sources 1093 which can deliver one or more cleaning solutions to the nozzles. In one embodiment, the cleaning solution is a solvent that can remove leftover photoresist leftover after completing a dispense process. The number and orientation of the nozzles may be arranged so that all sides and surfaces of the discharge nozzle 1024 and supply tube outlet 1026A are cleaned. After cleaning the remaining vapors retained in the environment region 1099 of the vessel 1095 may also be useful to prevent the processing fluid(s) retained in the supply tube 1026 from drying out.
  • Point of Use Photo Resists Temperature Control
  • To assure a uniform and repeatable coating process the dispensed photoresist temperature is often tightly controlled since the properties and process results can be greatly affected by the temperature of dispensed photoresist. The optimum dispense temperature may vary from one photoresist to another. Therefore, since the coater chamber 60A may contain multiple fluid source assemblies 1023 to run different process recipes containing different photoresist materials, the temperature of the fluid source assemblies 1023 will each need to be independently controlled to assure desirable process results are consistently achieved. Embodiments of the invention provide various hardware and methods for controlling the temperature of a photoresist before it is dispensed on the surface of a substrate during a coat or develop process.
  • In one embodiment, as shown in FIGS. 6A and 6B, the discharge nozzle 1024 contains a heat exchanging device 1097 that is adapted to heat and/or cool the nozzle body 1024A, the supply tube 1026 and the processing fluid contained in the supply tube 1026. In one embodiment, the heat exchanging device is a resistive heater that is adapted to control the temperature of the processing fluid. In another embodiment, the heat exchanging device 1097 is a fluid heat exchanger that is adapted to control the temperature of the processing fluid by use of a fluid temperature controlling device (not shown) that causes a working fluid to flow through the fluid heat exchanger to control the temperature of the processing fluid. In another embodiment, the heat exchanging device is a thermoelectric device that is adapted to heat or cool the processing fluid. While FIGS. 6A and 6B show the heat exchanging device 1097 in communication with the nozzle body 1024A, other embodiments of the invention may include configurations where the heat exchanging device 1097 is in contact with the supply tube 1026 and/or the nozzle body 1024A to effectively control the temperature of the processing fluid. In one embodiment, a length of the supply tube 1026 is temperature controlled by use of a second heat exchanger 1097A to assure that all of the volume of the dispensed processing fluid retained in the supply tube inner volume 1026B will be dispensed on the surface of the substrate during the next process step is at a desired temperature. The second heat exchanger 1097A may be an electric heater, a thermoelectric device and/or a fluid heat exchanging device, as described above.
  • In one embodiment, the encapsulating vessel assembly 1096 is temperature controlled to assure that the temperature of the nozzle body 1024A and processing fluid in the supply tube 1026 are maintained at a consistent temperature when the discharge nozzle 1024 is positioned over the vessel opening 1095A (see FIG. 6B). Referring to FIGS. 6A-B, the vessel 1095 can be heated or cooled by use of a vessel heat exchanging device 1098 that is attached to the walls of the vessel 1095. The vessel heat exchanging device 1098 may be an electric heater, a thermoelectric device and/or a fluid heat exchanging device, as described above, which in conjunction with the system controller 101 is used to thus control the temperature of the vessel 1095.
  • In one embodiment, the temperature of the rinse nozzles 1090 and connected to the tubing 1090A are temperature controlled to assure that the cleaning solution sprayed on the discharge nozzle 1024 and supply tube outlet 1026A are at desired temperature so the processing fluid in the supply tube 1026 is not heated or cooled during the clean process.
  • Coater Nozzle Placement System
  • To assure uniform and repeatable process results the position where the photoresist material is dispensed on the substrate surface is preferably tightly controlled. The uniformity of the deposited photoresist layer can be affected by the position on the substrate surface at which the photoresist is dispensed. Therefore, it is common for the dispense arm 1027 position to be accurately controlled by use of an often expensive support arm actuator 1028 that is capable of precisely positioning the discharge nozzle 1024. An issue arises in that it is common for coater chambers 60A to have multiple discharge nozzles 1024 to dispense multiple different photoresist materials, which greatly increases the cost and complexity of the coater chamber 60A, due to the need to accurately or precisely control many dispense arms 1027. Therefore, various embodiments of the invention provide an apparatus and method that utilizes a single dispense arm 1027 that can be easily calibrated since there is only one arm to calibrate and also accurately control. In this configuration the multiple discharge nozzles 1024 found in the various fluid source assemblies 1023 are exchanged with the single dispense arm 1192 by use of shuttle assembly 1180 (FIG. 7A). In one embodiment, a dispense arm 1192 is adapted so that only one degree of freedom (e.g., a single linear direction (z-direction)) needs to be controlled. This configuration thus allows a more accurate and a repeatable control of the discharge nozzle 1024 position and reduces arm complexity, system cost, possible substrate scrap, and the need for calibration.
  • FIG. 7A is a plan view of one embodiment of a dispense arm system 1170 found in a coater chamber 60A, that utilizes a dispense arm 1192 that has a single degree of freedom. In this configuration the dispense arm system 1170 will generally contain a dispense arm assembly 1190, a shuttle assembly 1180, and a carrier assembly 1160. The dispense arm assembly 1190 generally contains a dispense arm 1192, a nozzle mounting position 1193 formed in or on the dispense arm 1192, and an actuator 1191. In one embodiment, a nozzle retaining feature 1194 is adapted to grasp the discharge nozzle 1024 when it is deposited on the nozzle mounting position 1193 by the shuttle assembly 1180. The nozzle retaining feature 1194 may be a spring loaded or pneumatically actuated device which grasps or interlocks with features on the discharge nozzle. The actuator 1191 is, for example, an air cylinder or other device that is able to raise and lower the dispense arm 1192. In one embodiment, the actuator 1191 also contains a linear guide (not shown) which helps to control the placement or movement of the dispense arm 1192 as it is moved from one position to the other.
  • The carrier assembly 1160 generally contains a nozzle support 1161, two or more fluid source assembly 1023 that contains a discharge nozzle 1024 and supply tube 1026 (six discharge nozzle 1024 and fluid source assemblies 1023 are shown) and a rotary actuator (not shown). The rotary actuator is adapted to rotate the nozzle support 1161 and all of the discharge nozzles 1024 and their associated supply tube 1026 to a desired position by use of commands from the system controller 101.
  • The shuttle assembly 1180 is adapted to pick up a discharge nozzle 1024 from the carrier assembly 1160 and then rotate to transfer the discharge nozzle 1024 to the nozzle mounting position 1193 on the dispense arm 1192. The shuttle assembly 1180 generally contains an actuator assembly 1181, a shuttle arm 1182 and a nozzle transfer feature 1183. The nozzle transfer feature 1183 is adapted to engage with or grasp the discharge nozzle 1024 so that it can be removed from the carrier assembly 1160 and transferred to nozzle mounting position 1193 and then returned from the nozzle mounting position 1193 to the carrier assembly 1160 after the process is complete. The actuator assembly 1181 generally contains one or more actuators that are adapted to raise and lower the shuttle assembly 1180 and rotate the shuttle arm 1182 to a desired position. The actuator assembly 1181 may contain, for example, one or more of the following devices to complete the lifting task tasks: an air cylinder, DC servo motor attached to a lead screw, a DC servo linear motor. The actuator assembly 1181 may also contain, for example, one or more of the following devices to complete the rotational tasks: an air cylinder, a stepper motor or a DC servo motor.
  • In operation the shuttle arm 1182 rotates from its home position (see item “A” in FIG. 7A) to a position over the carrier assembly 1160 and then moves vertically until it reaches a nozzle pickup position (not shown). The carrier assembly 1160 then rotates (see item “B”) so that the discharge nozzle 1024 engages with the nozzle transfer feature 1183. The shuttle arm 1182 then moves vertically to separate the discharge nozzle 1024 from the carrier assembly 1160 and then rotates until the discharge nozzle 1024 is positioned over the nozzle mounting position 1193 in dispense arm 1192. The shuttle arm 1182 moves vertically until it deposits the discharge nozzle 1024 on the nozzle mounting position 1193. The shuttle arm 1182 then moves vertically and then rotates back to the home position (see item “A”). The actuator 1191 in the dispense arm assembly 1190 then moves the discharge nozzle to a desired position over the surface of the substrate (see item “W”), so that the substrate processing step can begin. To remove the discharge nozzle 1024 the steps are followed in reverse.
  • FIG. 7B illustrates another embodiment of the dispense arm system 1170, where the dispense arm assembly 1190 has two degrees of freedom, such as, a rotational degree of freedom, or a single linear degree of freedom (x-direction), and a vertical degree of freedom (z-direction). The dispense arm assembly 1190, which was a part of the embodiment shown in FIG. 7A, is not a part of the dispense arm system 1170 illustrated in FIG. 7B, thus reducing the complexity of the coater chamber 60A. In one embodiment, a nozzle retaining feature 1184 is adapted to grasp or retain the discharge nozzle 1024 when it is positioned in the nozzle transfer feature 1183. FIG. 7B also illustrates another possible configuration of the nozzle retaining feature 1184 that may be useful for holding and transferring the discharge nozzle 1024. In operation the shuttle arm 1182 rotates from its home position (see item “A” in FIG. 7B) to a position over the carrier assembly 1160 and then moves vertically until it reaches a nozzle pickup position (not shown). The carrier assembly 1160 then rotates (see item “B”) so that the discharge nozzle 1024 engages with the nozzle transfer feature 1183. The shuttle arm 1182 then moves vertically to separate the discharge nozzle 1024 from the carrier assembly 1160 and then rotates until the discharge nozzle 1024 is positioned over a desired position over the surface of the substrate. The shuttle arm 1182 moves vertically until it reaches a desired position over the surface of the substrate (se item “W”), so that the substrate processing step can begin. To remove the discharge nozzle 1024 the steps are followed in reverse.
  • In one embodiment, the carrier assembly 1160 may contain a plurality of encapsulating vessel assemblies 1096 (not shown in FIGS. 7A-B (see FIGS. 6A-B)) which are temperature controlled to assure that the temperature of the nozzle body 1024A and processing fluid in the supply tube 1026 are maintained at a consistent temperature while they are waiting to be transferred to the shuttle assembly 1180 and brought over the surface of the substrate.
  • Developer Chamber
  • Referring to FIG. 5D, which is a side view of one embodiment of the developer chamber 60B, that may be adapted to perform, for example, the develop step 550, and the SAFIER™ coat step 551. In one embodiment, the developer chamber 60B generally contains all of the components contained in the coater chamber 60A and thus some components of the developer chamber 60B that are the same or similar to those described with reference to the developer chamber 60B, have the same numbers. Accordingly, like numbers have been used where appropriate.
  • In one embodiment, the developer chamber 60B contains a fluid distribution device 1070, described above, is adapted to deliver a uniform flow of a developer processing fluid to the surface of the substrate during the developing process. In one embodiment, the hole size, number of holes and distribution of the plurality of holes 1072F are designed to uniformly deliver the developer processing fluid to the processing region 1071 formed between the substrate and the bottom surface of the fluid distribution device 1070. In another embodiment, the hole size, number of holes and distribution of the plurality of holes 1072F are designed to deliver a non-uniform distribution of a developer processing fluid to the processing region 1071 formed between the substrate and the bottom surface of the fluid distribution device 1070.
  • Developer Endpoint Detection Mechanism
  • FIG. 8A is a side view of one embodiment of the developer chamber 60B that contains a developer endpoint detector assembly 1400. The developer endpoint detector assembly 1400 uses a laser and one or more detectors to perform a scatterometry type technique to determine the endpoint of the develop step 550. In one embodiment, a single wavelength of emitted radiation, or beam, (see item “A”) from a laser 1401 impinges on the surface of the substrate, having an exposed photoresist layer thereon, at an angle that is less than normal to the surface of the substrate. The beam “A” is reflected from the surface of the substrate and the intensity of the reflected radiation “B” is detected by a detector 1410. In one embodiment, the detector 1410 is oriented to receive the primary reflection from the surface and thus is aligned with the incident beam (e.g., same angle relative to the surface and the same direction). Due to the interference between the impinging beam and the pattern formed in the photoresist during the exposure step 538, the intensity of the detected radiation will vary as the develop step 550 progresses. The variation in the intensity of the reflected radiation is created when the developer dissolves the soluble portions of the photoresist during the develop step 550, thus causing a “grating” type pattern to emerge which thus increasingly interferes with the impinging beam. Therefore, the interference with the photoresist pattern causes scattering of the impinging beam, which causes a reduction in the main reflection that is detected. In one embodiment, the endpoint is detected when the change in the reflected intensity measured by the detector 1410 asymptotically approaches zero.
  • The area on the surface of the substrate, on which the beam emitted from the laser 1401 is projected, is defined as the detection area. In one embodiment, the size of the detection area is varied or controlled so that the amount of noise contained in the detected signal is minimized. Noise in the detected signal can be generated due to the variation in the pattern topology seen by the detection area during processing.
  • In one embodiment, a tunable laser is used in place of a single wavelength laser to more easily detect the change in the sharpness of the photoresist pattern as the develop process progresses. The amount of interference will depend on the size of the formed “grating” and the wavelength of the incident radiation. In another embodiment, a plurality of detectors (see items 1410-1412) that are able to detect the primary reflection and the amount of scattered radiation to help determine the develop endpoint. In another embodiment a CCD (charge coupled device) array is used to monitor the scattering and shift in intensity of the reflected radiation. In one embodiment, to prevent noise generated from the reflection of emitted radiation from the processing fluid retained on the substrate surface during processing, a slit may be used to prevent the reflection from reaching the detector.
  • For product substrates, where typically there is already a pattern on the surface of the substrate, the steps shown in FIG. 8B may be used. The process steps include measuring the initial intensity of the scattered radiation prior to performing the develop step 550 (item # 1480). The intensity is then measured during the develop process and compared to the initial data so that the contribution from the pattern present on the substrate surface (item # 1482). This method may only be needed if the photoresist profile is desired. If noting that the intensity changes over the develop processing period are all that is desired, then the use of a single wavelength is all that is needed and the information regarding the underlying scattering generally is not needed.
  • If detailed knowledge of the pattern is required, then active correction (item# 1484 in FIG. 8C) for the possibly variable refraction at the developer surface is needed. The active correction adjusts for the variation in the developer fluid surface due to external vibrations, and works by having multiple small mirrors (items 1425-27) that adjust in position to compensate for the change in angle. FIG. 8C illustrates one such mirror, with knowledge of the change in the refraction of the incident beam “A” obtained via input from a perpendicular beam (item “C”), also shown. In particular, as the surface of the developer fluid momentarily deviates from flat and level, the normal reflection of the laser beam (item “C”) from laser 1451 is detected in detector 1453, by use of beam splitter 1452. In this configuration the detector 1453 can be a CCD array that is able to sense the change in angle of the reflected beam due to the change in the angle with which the beam “C” strikes the surface of the developer fluid. The system controller 101 in conjunction with the CCD array is able to detect a change in the position of the peak intensity on the CCD array and thus know how much the reflection angle has changed so that the angle of the active mirrors 1425-1427 can be adjusted and thus the position of the reflected beam “B” can be sent to one or more of the detectors 1410-1412. Momentary deviation in the spatial position of this reflection should correlate well with deviations in the developer fluid surface. Therefore, by use of a suitable control system the detected variation in position of the reflected beam, through the use of actively positioned mirrors (items 1425-1427), a spatial correction to the reflected beams can be made.
  • The active mirrors 1425-1427 can be small and compact, such as used on the micromirror chip available from TI in Dallas, Tex. They are shown more widely separated in FIG. 8C for clarity. The active mirrors are designed to compensate for variation the developer surface leading to beam deflection as described above.
  • Twin Coater and Developer Chambers
  • FIGS. 9A-B are plan views of one embodiment of a twin coater/developer chamber 350 that contains two separate process chambers 370 and a central region 395. This configuration is advantageous since it allows some common components in the two chambers to be shared, thus increasing system reliability and reducing the system cost, complexity and footprint of the cluster tool. In one embodiment, the process chamber 370 generally contains all of the processing components described above in conjunction with the coater chamber 60A or developer chamber 60B, except the two chambers are adapted to share a fluid dispense system 1025. The central region 395 contains a shutter 380 and a plurality of nozzles 391 that are contained in a nozzle holder assembly 390. As noted above the fluid dispense system 1025 used in the coater or developer chambers may contain one or more fluid source assemblies 1023 which deliver one or more processing fluid to the surface of a substrate mounted on the spin chuck 1033. Each nozzle 391, contained in the fluid source assemblies 1023, is typically connected to a supply tube 1026, a pump 1022, a filter 1021, a suck back valve 1020 and a fluid source 1019, and is adapted to dispense a single type of processing fluid. Therefore, each fluid source assembly 1023 can be used in either the left or right process chambers 370, thus reducing the redundancy required to in each processing chamber. While FIGS. 9A-B illustrates a configuration where the nozzle holder assembly 390 contains five nozzles 391, in other embodiments the nozzle holder assembly 390 may contain a lesser number of nozzles or a greater number of nozzles without varying form the basic scope of the invention.
  • FIG. 9A is a plan view of the twin coater/developer chamber 350 where the nozzle arm assembly 360 is positioned over the right process chamber 370 to dispense a processing fluid on a substrate “W” retained on the spin chuck 1033. The nozzle arm assembly 360 may contain an arm 362 and nozzle holding mechanism 364. The nozzle arm assembly 360 is attached to an actuator 363 that is adapted to transfer and position the nozzle arm assembly 360 in any position along the guide mechanism 361. In one embodiment, the actuator is adapted to move the nozzle arm assembly 360 vertically to correctly position the nozzle 391 over the substrate during processing and also enable the nozzle holding mechanism 364 to pick-up and drop-off the nozzles 391 from the nozzle holder assembly 390. The system controller 101 is adapted to control the position of the nozzle arm assembly 360 so that the nozzle holding mechanism 364 can pick-up and drop-off nozzles 391 from the nozzle holder assembly 390. A shutter 380 is adapted to move vertically to close and isolate one process chamber 370 from the central region 395 and thus the other process chamber 370 during processing to prevent cross contamination of the substrates during processing. In one aspect, the shutter 380 is adapted to sealably isolate one process chamber 370 from the central region 395 and thus the other process chamber 370 during processing. Conventional o-ring and/or other lip seals may be used to allow the shutter to sealably isolate the two processing chambers.
  • FIG. 9B is a plan view of the twin coater/developer chamber 350 where the nozzle arm assembly 360 is positioned over the left process chamber 370 to dispense a processing fluid on a substrate retained on the spin chuck 1033.
  • In one embodiment, not