Connect public, paid and private patent data with Google Patents Public Datasets

Systems and methods for de-blurring motion blurred images

Download PDF

Info

Publication number
US20060125938A1
US20060125938A1 US11207342 US20734205A US2006125938A1 US 20060125938 A1 US20060125938 A1 US 20060125938A1 US 11207342 US11207342 US 11207342 US 20734205 A US20734205 A US 20734205A US 2006125938 A1 US2006125938 A1 US 2006125938A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
image
motion
point
blurred
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11207342
Inventor
Moshe Ben-Ezra
Shree Nayar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University of New York
Original Assignee
Columbia University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
    • H04N5/23248Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles for stable pick-up of the scene in spite of camera body vibration
    • H04N5/23264Vibration or motion blur correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/003Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/50Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image by the use of more than one image, e.g. averaging, subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
    • H04N5/23248Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles for stable pick-up of the scene in spite of camera body vibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
    • H04N5/23248Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles for stable pick-up of the scene in spite of camera body vibration
    • H04N5/23251Motion detection
    • H04N5/23254Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
    • H04N5/23248Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles for stable pick-up of the scene in spite of camera body vibration
    • H04N5/23251Motion detection
    • H04N5/23258Motion detection based on additional sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
    • H04N5/23248Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles for stable pick-up of the scene in spite of camera body vibration
    • H04N5/23264Vibration or motion blur correction
    • H04N5/2327Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time
    • H04N5/23277Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time by combination of a plurality of images sequentially taken
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20201Motion blur correction

Abstract

Systems and methods for providing a substantially de-blurred image of a scene from a motion blurred image of the scene are disclosed. An exemplary system includes a primary detector for sensing the motion blurred image and generating primary image information representing the blurred image, a secondary detector for sensing two or more secondary images of the scene and for generating secondary image information representing the two or more secondary images, and a processor for determining motion information from the secondary image information, estimating a point spread function for the motion blurred image from the motion information, and applying the estimated point spread function to the primary image information to generate information representing the substantially de-blurred image.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is based on U.S. provisional patent application Ser. No. 60/390,336, filed Jun. 21, 2002, which is incorporated herein by reference for all purposes and from which priority is claimed.
  • NOTICE OF GOVERNMENT RIGHTS
  • [0002]
    The United States government has certain rights in the present invention pursuant to National Science Foundation ITR Award IIS-00-85864.
  • BACKGROUND OF THE INVENTION
  • [0003]
    1. Technical Field
  • [0004]
    The present invention relates to techniques for digitally capturing and processing still images of a scene using an image detector, and more particularly, to techniques for correcting blurring introduced into such images due to motion of the image detector.
  • [0005]
    2. Background Art
  • [0006]
    Motion blur due to camera shake is a common problem in photography, especially in conditions involving zoom and low light. Merely pressing a shutter release button on the camera can in and of itself cause the camera to shake, and unfortunately cause blurred images. This problem is especially prevalent in digital photography, where lightweight cameras with automated exposure times are not easily stabilized are common, and where automated exposure times often necessitate relatively long stabilization to ensure a non blurred image. The compact form and small lenses of many of these cameras only serves to increase this problem.
  • [0007]
    The sensor of a digital camera creates an image by integrating energy over a period of time. If during this time—the exposure time—the image moves, either due to camera or object motion, the resulting image will exhibit motion blur. The problem of motion blur is increased when a long focal length (zoom) is employed, since a small angular change of the camera creates a large displacement of the image, and in situations when long exposure is needed, either due to lighting conditions, or due to the use of small aperture.
  • [0008]
    There have been several attempts to provide a solution to this problem. One group of solutions focus on the reduction or elimination of relative movement between the camera and the scene during the integration time. Such solutions include the use of a tripod, flash photography, the use of increased sensor sensitivity, the use of an increased aperture, and dynamic image stabilization.
  • [0009]
    A stable tripod that can resist wind, and a shutter release cable that does not transmit hand vibration to a camera mounted on such a tripod, eliminates the problem of camera shake where both the mounted camera and scene are static. One limitation is that only professionals are likely to use a tripod and shutter release cable on a regular basis. Moreover, the use of a tripod does not solve the problem of shooting from a moving platform, such as car, train, helicopter or balloon.
  • [0010]
    A photographic flash produces a strong light flux that sustained for a fraction of a section (less than 1/1000). The exposure time is set to bracket the flash time (usually 1/60 sec), and the aperture of the camera is set to match the flash flux. Therefore, blur caused by motion during the bracket time has very low intensity. In essence, the flash “freezes” motion of both camera and moving objects. However, objects in bright daylight may still have motion blur and, of course, flash photography is useful only if the distance between the flash and the object is small.
  • [0011]
    Increasing the sensor sensitivity, and therefore reducing the exposure time, can decrease the problem of motion blur. However, it cannot eliminate blur completely. Moreover, Sensitive sensors (both film and CCD) produce noisy and grainy images.
  • [0012]
    Increasing the aperture size greatly decreases the required exposure time, and thus reduces motion blur. Unfortunately, cost and weight also significantly increase with an increased lens aperture, and a tripod may be required to comfortably handle such weight. Also, the use of a larger aperture lens is applicable only for more expensive cameras where it is possible to replace the lens.
  • [0013]
    In addition, the use of dynamic image stabilization involves the incorporation of inertial sensors, such as gyroscopes, to sense and compensate for camera shake in real time by moving an optical element. While this technology is used in stabilized zoom lens for Single Lens Reflex (“SLR”) cameras, it is costly, and its effectiveness is limited to approximately 1/60 of a second for typical 400 mm zoom lens. The sensitivity of such system to very slow motion may also be limited, and may suffer from drift. In addition, such system cannot compensate for constant speed motion, such as occurs when taking images from a moving train.
  • [0014]
    Accordingly, while addressing the problem of motion of the camera itself is useful in certain applications, it does not provide an adequate solution to the problem of motion blur as such systems are either limited, very costly, or both. An alternative approach is to correct blur after the image has been taken by using a de-blurring algorithm.
  • [0015]
    However, while approaches which either assume that the point spread function is known or can be modeled by a simple function and found automatically from the image itself, no satisfactory solutions have thus far been provided. In particular, it has been difficult to obtain a useful point spread function useful in a de-blurring algorithm since inaccurate point spread functions tends to create strong artifacts, making them unpleasant for the eye. Accordingly, there remains a need for a technique for correcting blurring introduced into an image due to camera motion by finding an accurate point spread function.
  • SUMMARY OF THE INVENTION
  • [0016]
    An object of the present invention is to provide a technique for correcting blurring introduced into an image due to camera motion.
  • [0017]
    A further object of the present invention is to provide a technique for correcting blurring introduced into an image due to camera motion by using associated motion information.
  • [0018]
    Another object of the present invention is to provide an apparatus able to capture all information required to correct blurring introduced into an image due to camera motion.
  • [0019]
    Still another object of the present invention is to provide an apparatus for capturing a motion blurred image, de-blurring the image, and providing a user with a de-blurred image.
  • [0020]
    In order to meet these and other objects of the present invention which will become apparent with reference to further disclosure set forth below, the present invention discloses a system for providing a substantially de-blurred image of a scene from a motion blurred image of the scene. The system includes a primary detector for sensing the motion blurred image at a first predetermined resolution and generating primary image information representing the blurred image, a secondary detector for sensing two or more secondary images of the scene and for generating secondary image information representing the two or more secondary images, and a processor. The processor is advantageously adapted to determine motion information from the secondary image information, estimate a point spread function for the motion blurred image from the motion information, and apply the estimated point spread function to the primary image information to generate information representing the substantially de-blurred image.
  • [0021]
    In one arrangement, the system includes a first camera housing the primary detector, a second camera housing the secondary detector, and a rigid member connecting the cameras. Alternatively, a single camera may house both the primary and secondary detectors.
  • [0022]
    In another preferred arrangement, a beam splitter having one input area and first and second output areas is provided. The beam splitter is optically coupled to the scene at the input area, to the primary detector at the first output area, and to the secondary detector at the second output area. Advantageously, the beam splitter may be an asymmetric beam splitter adapted to output greater than 50% of an input image energy through the first output area, and preferably approximately 90% of an input image energy through the first output area.
  • [0023]
    In still another preferred arrangement, the primary detector is a first portion of a dual-resolution sensor and the secondary detector a second portion of the dual-resolution sensor. The ratio of the first predetermined resolution to said second predetermined resolution is preferably 9:1 in terms of the scene energy incident on the sensor. The two portions may advantageously be formed on a single chip, to ensure a low cost and compact system.
  • [0024]
    The present invention also provides methods for providing a substantially de-blurred image of a scene from a motion blurred image of said scene. In one method, the motion blurred image of the scene and two or more secondary images are sensed. Next, primary image information representing the blurred image and secondary image information representing the two or more secondary images are generated, and motion information from the secondary image information is determined. A point spread function for said motion blurred image from said motion information; and the estimated point spread function is applied to the primary image information to generate information representing the substantially de-blurred image
  • [0025]
    Advantageously, fifteen or more secondary images of the scene should be sensed at the second predetermined resolution. It is preferred that global motion information is determined from the secondary image information, and a continues point spread function estimated from the global motion information.
  • [0026]
    The accompanying drawings, which are incorporated and constitute part of this disclosure, illustrate preferred embodiments of the invention and serve to explain the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0027]
    FIGS. 1(a)-(c) are block diagrams of exemplary systems in accordance with the present invention;
  • [0028]
    FIG. 2 is a graph showing the relationship between temporal resolution and spatial resolution;
  • [0029]
    FIG. 3 is a graph showing an illustrative point spread function;
  • [0030]
    FIGS. 4(a)-(d) are graphs illustrating the computation of a continuos point spread function from discrete motion vectors in accordance with an embodiment of the present invention;
  • [0031]
    FIGS. 5(a) and (b) are a flow diagrams of a method for de-blurring a motion blurred image including deriving a point spread function in accordance with the present invention;
  • [0032]
    FIGS. 6(a)-(d) are illustrative diagrams showing exemplary tools that may be used to model a point spread function in accordance with an alternative embodiment of the present invention;
  • [0033]
    FIG. 7 is a flow diagram of a method for determining a point spread function in accordance with the embodiment of FIGS. 6(a)-(d);
  • [0034]
    FIGS. 8 (a)-(b) are illustrative diagrams showing exemplary method for measuring a point spread function in accordance with another alternative embodiment of the present invention;
  • [0035]
    FIG. 9 is a graph of an exemplary estimated point spread function; and
  • [0036]
    FIGS. 10(a)-(c) are exemplary images of a scene.
  • [0037]
    Throughout the Figs., the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the Figs., it is done so in connection with the illustrative embodiments.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0038]
    Referring to FIGS. 1(a)-(c), exemplary hybrid camera systems in accordance with the present invention are shown. Each system includes a primary image detector for capturing an image of the scene, as well as a secondary detectors for capturing information useful for correcting blurring introduced into the image due to camera motion.
  • [0039]
    The embodiment shown in FIG. 1(a) uses two cameras 101, 103 connected by a rigid member 105. Camera 101 is preferably a high-resolution still camera, and includes the primary detector 102 to capture an image of a scene. Camera 103 is preferably a low-resolution video camera which includes a secondary detector 104.
  • [0040]
    The secondary detector 104 is used for obtaining motion information, and therefore must capture a minimum of two frames of digital video information in order to provide such motion information. Preferably, fifteen or more frames are captured during the integration time of camera 101. While the embodiment shown with reference to FIG. 1(a) depicts a camera mounted on a camera, other two camera arrangements, such as a camera within a camera, may be utilized to achieve the same results.
  • [0041]
    The detector 102 may be traditional film, a CCD sensor, or CMOS sensor. Secondary detector 104 may likewise be a CCD or CMOS sensor. It is advantageous for the secondary detector 104 to be a black and white sensor, since such a detector collects more light energy (broader spectrum) and therefore can have higher temporal resolution. In addition, since the secondary detector is used only as a motion sensor; it can be of low spatial resolution to increase the temporal resolution and have high gain.
  • [0042]
    An alternative embodiment, shown in FIG. 1(b), employs a single camera 110 and a beam splitter 111 to generate two image paths leading to primary 112 and secondary 113 detectors. This system requires less calibration than the system of FIG. 1(a) since the same camera lens is shared, and hence results in identical image projection models.
  • [0043]
    Those skilled in the art will recognize that a tradeoff exists between the spatial resolution of the primary detector 112 and the ability to accurately provide motion information by the secondary detector 113 as the beam splitter 111 divides the available energy between the two detectors 112, 113. Therefore, while a beam splitter which divides the energy 50/50 between the two detectors may be utilized, it is preferred that the division be greater than 80/20, for example, an approximately 90/10 split, with more energy going to the primary 112 detector.
  • [0044]
    In a highly preferred arrangement, the beam splitter 111 is an asymmetric beam splitter that passes most of the visible light to the primary detector 112 and reflects non-visible wavelengths toward the secondary detector 111. For example a “hot mirror” beam splitter which is commercially available from Edmund Industrial Optics may be employed.
  • [0045]
    Another alternative embodiment, shown in FIG. 1(c), uses a special chip 121 that includes both primary and secondary detectors. The chip 121 includes both a high-resolution central area 125, which functions as the primary detector, and a low resolution peripheral areas 126, 127, which function as the secondary detector.
  • [0046]
    The chip 121 may be implemented using binning technology now commonly found in CMOS and CCD sensors. Binning allows the charge of a group of adjacent pixels to be combined before digitization. This enables the chip to switch between a normal full-resolution mode, when binning is not used, and a hybrid primary-secondary detector mode, when binning is activated. In the hybrid mode, the primary detector portion 125 captures a high resolution image, while the secondary detector portions 126, 127 capture a sequence of low resolution images from which motion information can be derived.
  • [0047]
    Given sufficient light, CCD and CMOS sensors can detect a scene at very fast rates and thereby avoid camera blur. However, motion blur will occur when there is not sufficient light for fast imaging, since the amount of energy reaching each pixel is ψ fov · k n t ,
    where: ψfov is the flux though the field of view, k is the fill factor, n is the number of pixels, and the integral is taken over exposure time. Reducing the number of pixels while keeping the same field of view equates into lowering resolution, and thereby increasing the energy per pixel.
  • [0048]
    Lower resolutions may be achieved either by using a low-resolution chip, or through binning, as discussed above. Examples for the image dimension of the hi-resolution and low-resolution sensors for example ratios of 1/36 and 1/64 pixels at common resolutions are given in Table 1.
    TABLE 1
    Hi res
    1024 × 768 1280 × 960 1600 × 1200 2048 × 1536 2560 × 1920
    1/36 ratio 170 × 128 213 × 160 266 × 200 341 × 256 426 × 320
    1/64 ratio 128 × 96  160 × 120 200 × 150 256 × 192 320 × 240
  • [0049]
    Also as shown in FIG. 1(c), the camera 120 preferably includes a circuit card or area which includes memory 121 for storing both the primary and secondary images sensed by detector portions 125-127. The camera also preferably includes processor 122 for computing motion from the sequence of low resolution images, estimating a point spread function for the primary image from such motion information, and de-blurring the primary image with the estimated point spread function by applying a deconvolution algorithm, each of which are described below. The processor and memory should be sufficiently small to be implemented within the camera. Exemplary software that may be stored in memory 121 and executed on processor 122 is included herein as Appendix A. The de-blurred image may then be displayed to the operator of camera 120 threw a standard display (not shown), or stored for later use.
  • [0050]
    Alternatively, the motion computation, point spread function estimation, and de-blurring functions may be performed by a separate computer, such as personal computer running the software of Appendix A. In addition, while the foregoing description has been with respect to the embodiment shown in FIG. 1(c), it equally applies to the embodiments shown in FIGS. 1(a) and (b), as each may be readily modified to include suitable memory and processing capacity. Likewise, the software of Appendix A is exemplary, and alternative software arrangements in a variety of programming languages may be utilized for performing such functionality.
  • [0051]
    Referring next to FIG. 2, a graph illustrating the fundamental tradeoff between spatial resolution and temporal resolution in an imaging system is shown. An image is formed when light energy is integrated by an image detector over a time interval. Assuming that the total light energy received by a pixel during integration must be above a minimum level for the light to be detected, the minimum level is determined by the signal-to-noise characteristics of the detector. Therefore, given such a minimum level and an incident flux level, the exposure time required to ensure detection of the incident light is inversely proportional to the area of the pixel. In other words, exposure time is proportional to spatial resolution. When the detector is linear in its response, the above relationship between exposure and resolution is also linear.
  • [0052]
    The parameters of the line shown in FIG. 2 are determined by the characteristics of the materials used by the detector and the incident flux. Different points on the line represent cameras with different spatio-temporal characteristics. For instance, a conventional video camera 210 has a typical temporal resolution 30 fps and a spatial resolution of 720×480 pixels. Instead of relying on a single point, two very different operating points on the line may be used to simultaneously obtain very high spatial resolution with low temporal resolution 220 and very high temporal resolution with low spatial resolution 230. This type of hybrid imaging provides the missing information needed to de-blur images with minimal additional resources.
  • [0053]
    Referring next to FIG. 3, an exemplary point spread function is shown. The complete point spread function of a motion-blurred image consists of two parts. First and most importantly, there is a point spread function due to motion. The derivation of such a point spread function is addressed in detail below. However, it should be noted that there may be a second component to a complete point spread function, that of the imaging system itself, and may either be measured or modeled using a-priori knowledge of the imaging system. Those skilled in the art will appreciate that various techniques exist to conduct such measurement or modeling.
  • [0054]
    In order to determine the point spread function due to motion, a secondary detector provides a sequence of images (frames) that are taken at fixed intervals during the exposure time. By computing the global motion between these frames, samples of the continuous motion path during the integration time may be obtained. The motion between successive frames is limited to a global rigid transformation model. However, the path, which is the concatenation of the motions between successive frames, is not restricted and can be very complex. Accordingly, the motion between successive frames may be determined using a multi-resolution iterative algorithm that minimizes the following optical flow based error function: arg min u , υ ( u I x + v I y + I t ) 2 ( 1 )
    where the partial derivatives are the spatial and temporal partial derivatives of the image, and (u, v) is the instantaneous motion at time t. This motion between the two frames is defined by the following global rigid motion model: [ u v ] = [ cos θ sin θ tx - sin θ cos θ ty ] [ x y 1 ] ( 2 )
    where (tx, ty) is the translation vector and θ is the rotation angle about the optical axis.
  • [0055]
    Note that the secondary detector, which has a short but nonzero integration time, may also experience some motion blur. This motion blur can violate the constant brightness assumption, which is used in the motion computation. However, under certain symmetry conditions, the computed motion between two motion blurred frames is the center of gravity of the instantaneous displacements between these frames during their integration time.
  • [0056]
    The discrete motion samples that are obtained by the motion computation need to be converted into a continuous point spread function. For this purpose, the constraints that a motion blur point spread function must satisfy are defined and then used in order to estimate the appropriate point spread function.
  • [0057]
    Any point spread function is an energy distribution function, which can be represented by a convolution kernel k: (x, y)=>w, where (x, y) is a location and w is the energy level at that location. The kernel k must satisfy the following energy conservation constraint:
    ∫∫k(x,y)dxdy=1   (3)
    which states that energy is neither lost nor gained by the blurring operation (k is a normalized kernel). In order to define additional constraints that apply to motion blur point spread functions, a time parameterization of the point spread function is used as a path function f:t=>(x, y) and an energy function h:t=>w. Due to physical speed and acceleration constraints, f(t) should be continuous and at least twice differentiable, where f′(t) is the speed and f″(t) is the acceleration at time t.
  • [0058]
    By assuming that the scene radiance does not change during image integration, an additional constraint is determined: t t + δ t h ( t ) t = δ t t end - t start , δ t 0 , t start t t end - δ t , ( 4 )
    where [t—START, t—END] is the image integration interval. This constraint states that the amount of energy which is integrated at any time interval is proportional to the length of the interval. Given these constraints and the motion centroid assumption, a continuous motion blur point spread function may be estimated from discrete motion samples, as illustrated in FIGS. 4(a)-(d).
  • [0059]
    First, the path f(t) may be estimated by Spline interpolation, as shown in FIGS. 4(a) and (b). Spline curves are preferably used because of their smoothness and twice differentiability properties, which satisfy the speed and acceleration constraints.
  • [0060]
    In order to estimate the energy function h(t), the extent of each frame along the interpolated path must be determined. This may be accomplished using the motion centroid assumption by splitting the path f(t) into frames with a Voronoi Tessellation, as shown in FIG. 4(b).
  • [0061]
    Since the constant radiance assumption implies that frames with equal exposure times integrate equal amount of energy, h(t) may be computed, up to scale, for each frame as shown in FIG. 4(c). Note that all the rectangles in this figure have equal areas.
  • [0062]
    Finally, h(t) is normalized in order to satisfy the energy conservation constraint and smooth it. The resulting point spread function is shown in FIG. 4(d). The end result of the above procedure is a continuous motion blur point spread function that can now be used for motion de-blurring.
  • [0063]
    Given the estimated point spread function, the high-resolution image that was captured by the primary detector may be de-blurred using well known image deconvolution algorithms, such as the Richardson Lucy algorithm. Since this is the only step that involves high-resolution images, it dominates the time complexity of the method, which is usually the complexity of a Fast Fourier Transform (“FFT”).
  • [0064]
    Referring next to FIG. 5(a), the foregoing techniques are implemented in a methodology as follows. First, primary image information representing the blurred image sensed by the primary detector 510, and secondary image information representing a sequence of images sensed by the secondary detector 511, are obtained. A standard motion analysis algorithm is used to determine discrete motion information 520 of the primary detector. Next, the point spread function for the motion blurred image is estimated 530 using the discrete motion information. That point spread function 535 may optionally be convolved with an estimated or measured point spread function for the optical system itself 540. The point spread function is then applied to the primary image information in a standard de-blurring algorithm, 550, and a de-blurred image is output 560.
  • [0065]
    FIG. 5(b) shows the preferred details of the point spread function estimation step 530. Two-dimensional Spline interpolation is used to provide a continuous two-dimensional path 531. Voronoi Tessellation is then used to provide frame partitioning of the interpolated two-dimensional path 532. Equal area rectangles are constructed within each partitioned frame to determine the mean energy at each frame 533. Finally, the determined mean energy values are smoothed and normalized 534.
  • [0066]
    Referring next to FIGS. 6(a)-(d), exemplary tools that may be used to model a point spread function in accordance with an alternative embodiment of the present invention are shown. In some cases, a point spread function can be estimated directly from an image itself, without the need for additional motion information. For example, a small bright point light source on a dark background, such as dark night, which happen to be at the right depth, if the camera was translating, or if the point light source was at arbitrary depth (bright star in clear sky) and camera was rotating with no translation—then the image of this point light source provide point spread function which is good enough for de-blurring, as long as the dynamic range of the camera is sufficient.
  • [0067]
    It is unlikely to expect such luck to happen, especially if the camera motion included translation about the optical axis, since at least two such points are needed. Instead, a set of primitives may be created that, if found in the image, can help estimating the point spread function. The greatest advantage of this approach is that it does not require any additions to the imaging process itself and it can be used for existing pictures as well. The disadvantage is that this method relies on user skills to estimate the real shape of an object from a blurred image—or from a different image that may not be blurred that was taken at a different time or different angle.
  • [0068]
    FIG. 6(a) illustrates an exemplary point tool 610 that may be used to define an object point. Since object points may not be perfect small white points over a black background, the tool provides means to define point size, eccentricity, orientation and color. Point size 611 is selected by a slider or by entering size in pixels of a fraction of a pixel. Point eccentricity 612 is selected by a slider or entered as a number as the ratio between main axes. Regarding orientation 613, if point eccentricity is not 1, then the orientation can be entered using a dial or as a number (angle). Point color 614 is selected using color tool, or sampled from the image itself and optionally modified. In addition, a background color may be selected using color tool, or sampled from the image itself and optionally modified.
  • [0069]
    FIG. 6(b) illustrates an exemplary line tool 620 that may be used to define an object line. The line attributes may include thickness, orientation, and color. Line thickness 621 is selected by a slider, or by entering thickness in pixels (can be fraction of a pixel). Line orientation 622 can is entered using a dial or as a number (angle). Line color 623 is selected using color tool—or sampled from the image itself and optionally modified. Again, a background color may be selected using color tool, or sampled from the image itself and optionally modified.
  • [0070]
    FIG. 6(c) illustrates an exemplary ramp tool 630 that may be used to define a ramp or edge. The attributes may include orientation and color. Ramp orientation 631 can is entered using a dial or as a number (angle). Ramp color 63 may be selected using color tool, or sampled from the image itself and optionally modified. A background color may be selected using color tool, or sampled from the image itself and optionally modified.
  • [0071]
    FIG. 6(d) illustrates an exemplary corner tool 640 that may be used to define an object corner. Corner attributes include angle, orientation, and color. The angle 641 may be entered using a dial or as a number (angle). Corner orientation 642 can is entered using a dial or as a number (angle). Corner color 643 may be selected using color tool, or sampled from the image itself and optionally modified. A background color may be selected using color tool, or sampled from the image itself and optionally modified.
  • [0072]
    For example, a user may download a motion-blurred image from the Internet, and desire to de-blur that image. Using the corner tool of FIG. 6(d), the user may examine a small region in the blurred image, e.g., 30×30 pixels, and create a model 30×30 pixel image of what that region should look like when de-blurred. That model image, convolved by an unknown point spread function, will equal the original region of the blurred image.
  • [0073]
    One approach to finding this block is by using a Fourier transform. The Fourier transform of the model image region multiplied by the Fourier transform of the point spread function is equal to the Fourier transform of the captured image region. Therefore, the Fourier transform of the point spread function is determined by dividing the Fourier transform of the captured image region by the Fourier transform of the model image region, and an inverse Fourier transform may be used to obtain an estimated point spread function of the blurred image. Once obtained, the user may de-convolve the blurred image with the estimated point spread function to obtain an estimate of the captured imaged. The user then can then compare the estimated captured image with the original captured image, and visually determine whether the further refinements are necessary.
  • [0074]
    Referring next to FIG. 7, a method for interactively estimating a point spread function using the tools of FIGS. 6(a)-(d) is shown. A user selects and classifies features within the blurred image 720, e.g., using the tools of FIGS. 6(a)-(b). A common point spread function is then determined using de-convolution, where the function is the unknown variable 730. The motion blurred image is de-blurred using the recovered point spread function 740, and the user is permitted to view the de-blurred image and refine his or her classifications as appropriate 750, 755. Finally, the de-blurred image is output 760.
  • [0075]
    Referring next to FIGS. 8(a)-(b), an exemplary method for measuring a point spread function in accordance with another alternative embodiment of the present invention will be described. Laser guides are common in adaptive optics to provide a reference point for wavefront measurements. Similar techniques may be useful for motion de-blurring by projecting a reference point on the object using a laser beam as seen in FIG. 8(a). An alternative approach is to attach a (limited) stabilized laser to the camera itself as shown in FIG. 8(b).
  • [0076]
    As shown in FIGS. 8(a) and (b), a laser guide is attached to a camera. The laser is mounted on rings (gimbals), which are stabilized using gyroscopes. The laser emits one or more reference points to the scene. The image of these points is then utilized, after normalization to satisfy an energy constraint, to determine the point spread function that is sought. It should be noted that other light beam sources, such as columnated light beam sources, may be used in place of a laser.
  • [0077]
    It should be noted that the practical use of this embodiment is limited, as transmitting a laser beam into living objects may not be practical. However, the technique is useful for natural or commercial photography.
  • [0078]
    FIG. 9 is a graph of an exemplary estimated point spread function derived using the apparatus of FIG. 1(a) and the method described in connection with FIG. 8. FIGS. 10(a)-(c) are exemplary images of the corresponding scene, which FIG. 10(a) showing an image of the scene taken from a tripod-mounted camera, FIG. 10(b) showing the blurred image, and FIG. 10(c) showing the image after de-blurring. While the de-blurred image reveals some artifacts from the de-blurring process, it is a vast improvement over the blurred image. Accordingly, techniques for correcting blurring introduced into an image due to camera motion have been provided.
  • [0079]
    The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the foregoing techniques may be applied to video sequences taken by a moving camera, using an assumption of symmetrical distribution to recover the average motion vectors from the motion blurred images. It will thus be appreciated that those skilled in the art will be able to devise numerous systems and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the invention.

Claims (31)

1. A system for providing a substantially de-blurred image of a scene from a motion blurred image of said scene, comprising: (a) a primary detector for sensing said motion blurred image of said scene at a first predetermined resolution and generating primary image information representing said blurred image; (b) a secondary detector, coupled to said primary detector, for sensing two or more secondary images of said scene at a second predetermined resolution which is less than or equal to said first predetermined resolution, and for generating secondary image information representing said two or more secondary images; and (c) a processor, coupled to said primary detector and receiving said primary image information therefrom, and coupled to said secondary detector and receiving said secondary image information therefrom, adapted to determine motion information from said secondary image information, estimate a point spread function for said motion blurred image from said motion information, and apply said estimated point spread function to said primary image information to thereby generate information representing said substantially de-blurred image.
2. The system of claim 1, further comprising a first camera housing said primary detector, a second camera housing said secondary detector, and a rigid member connecting said first camera to said second camera.
3. The system of claim 1, further comprising a camera housing said primary and said secondary detectors.
4. The system of claim 3, further comprising a beam splitter having one input area and first and second output areas, said beam splitter being optically coupled to said scene at said input area, optically coupled to said primary detector at said first output area, and optically coupled to said secondary detector at said second output area.
5. The system of claim 4, wherein said beam splitter comprises an asymmetric beam splitter adapted to output greater than 50% of an input image through said first output area.
6. The system of claim 5, wherein said beam splitter is adapted to output greater than 80% of an input image through said first output area.
7. The system of claim 4, wherein said beam splitter is adapted to output substantially all visible light corresponding to an input image through said first output area, and at least some non-visible electromagnetic radiation corresponding to an input image through said second output area.
8. The system of claim 3, wherein said primary detector comprises a first portion of a dual-resolution sensor, and said secondary detector comprises a second portion of said dual-resolution sensor.
9. The system of claim 1, wherein said first predetermined resolution is at least twice as great as said second predetermined.
10. A method for providing a substantially de-blurred image of a scene from a motion blurred image of said scene, comprising the steps of: (a) sensing said motion blurred image of said scene at a first predetermined resolution; (b) sensing two or more secondary images of said scene at a second predetermined resolution which is less than or equal to said first predetermined resolution while said motion blurred image is sensed; (c) generating primary image information representing said blurred image and secondary image information representing said two or more secondary images; (d) determining motion information from said secondary imageS information; (e) estimating a point spread function for said motion blurred image from said motion information; and (f) applying said estimated point spread function to said primary image information to thereby generate information representing said substantially de-blurred image.
11. The method of claim 10, wherein said step (b) comprises sensing five or more secondary images of said scene at said second predetermined resolution, and said step (c) comprises generating primary image information representing said blurred image and secondary image information representing said five or more secondary images.
12. The method of claim 10, wherein step (d) comprises the step of determining global motion information from said secondary image information.
13. The method of claim 12, wherein step (e) comprises the step of estimating a continues point spread function for said motion blurred image from said global motion information.
14. The method of claim 13, wherein step (f) comprises the step of deconvolving said primary image information with estimated point spread function to thereby generate information representing said substantially de-blurred image.
15. A method for providing a substantially de-blurred image of a scene from primary image information representing a motion blurred image of said scene captured at a first predetermined resolution, and secondary image information representing two or more secondary images of said scene captured at a second predetermined resolution which is less than or equal to said first predetermined resolution, comprising the steps of: (a) determining motion information from said secondary image information; (b) estimating a point spread function for said motion blurred image from said motion information; and (c) applying said estimated point spread function to said primary image information to thereby generate information representing said substantially de-blurred image.
16. The method of claim 15, wherein step (a) comprises the step of determining global motion information from said secondary image information.
17. The method of claim 16, wherein step (b) comprises the step of estimating a continuous point spread function for said motion blurred image from said global motion information.
18. The method of claim 17, wherein step (c) comprises the step of deconvolving said primary image information with estimated point spread function to thereby generate information representing said substantially de-blurred image.
19. A method for estimating a point spread function for an image which was blurred due to motion of an image sensor which captured said image, comprising the steps of: (a) receiving discrete motion information indicative of said motion of said image sensor; (b) determining a continuous two-dimensional path corresponding to said discrete motion points by interpolating missing data; (c) partitioning said determined continuous two-dimensional path into a plurality of frames; and (d) constructing equal-area regions within each of said partitioned frames to determine a mean energy value for each of said frames.
20. The method of claim 19, wherein step (b) comprises the step of determining said continuous two-dimensional path corresponding to said discrete motion points by Spline interpolation.
21. The method of claim 19, wherein step (c) comprises the step of partitioning said determined continuous two-dimensional path into said plurality of frames by Voronoi Tessellation.
22. The method of claim 19, further comprising the step of normalizing said determined mean energy values.
23. A method for interactively determining a de-blurred image corresponding to a motion blurred image of a scene, comprising the steps of: (a) selecting one or more features within said motion blurred image; (b) forming one or more de-blurred image feature models, each of which corresponds to one of said one or more selected features; (c) estimating a point spread function using said selected one or more features and said corresponding one or more de-blurred image feature models; and (d) determining said de-blurred image using said estimated point spread function and said motion blurred image.
24. The method of claim 23, wherein at least one of said one of said one or more selected features comprises a point, and said step (b) comprises the step of using a point tool to form at least one of said one or more de-blurred image feature models.
25. The method of claim 23, wherein at least one of said one of said one or more selected features comprises a line, and said step (b) comprises the step of using a line tool to form at least one of said one or more de-blurred image feature models.
26. The method of claim 23, wherein at least one of said one of said one or more selected features comprises a ramp, and said step (b) comprises the step of using a ramp tool to form at least one of said one or more de-blurred image feature models.
27. The method of claim 23, wherein at least one of said one of said one or more selected features comprises a corner, and said step (b) comprises the step of using a corner tool to form at least one of said one or more de-blurred image feature models.
28. A method for measuring a point spread function for an image of a scene which was blurred due to motion of an image sensor which captured said image, comprising the steps of: (a) aiming a stabilized light beam at said scene to thereby form a light point in said scene; (b) capturing a blurred image of said scene, including a blurred image of said light point, using a non-stabilized image sensor; and (c) determining said point spread function from said blurred image of said light point.
29. The method of claim 28, wherein said stabilized light beam originates from a laser attached to said non-stabilized image sensor.
30. The method of claim 28, wherein said stabilized light beam originates from a laser positioned independently from said non-stabilized image sensor.
31. The method of claim 28, further comprising the step of generating a de-blurred image corresponding to said blurred image of said scene.
US11207342 2002-06-21 2005-08-19 Systems and methods for de-blurring motion blurred images Abandoned US20060125938A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US39033602 true 2002-06-21 2002-06-21
PCT/US2003/019446 WO2004001667A3 (en) 2002-06-21 2003-06-18 Systems and methods for de-blurring motion blurred images
US10980559 US7619656B2 (en) 2002-06-21 2004-11-03 Systems and methods for de-blurring motion blurred images
US11207342 US20060125938A1 (en) 2002-06-21 2005-08-19 Systems and methods for de-blurring motion blurred images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11207342 US20060125938A1 (en) 2002-06-21 2005-08-19 Systems and methods for de-blurring motion blurred images

Publications (1)

Publication Number Publication Date
US20060125938A1 true true US20060125938A1 (en) 2006-06-15

Family

ID=30000538

Family Applications (4)

Application Number Title Priority Date Filing Date
US10980559 Active 2025-12-19 US7619656B2 (en) 2002-06-21 2004-11-03 Systems and methods for de-blurring motion blurred images
US11207342 Abandoned US20060125938A1 (en) 2002-06-21 2005-08-19 Systems and methods for de-blurring motion blurred images
US12341195 Active 2024-04-17 US8009197B2 (en) 2002-06-21 2008-12-22 Systems and method for de-blurring motion blurred images
US13194643 Active US8547441B2 (en) 2002-06-21 2011-07-29 System and methods for de-blurring motion blurred images

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10980559 Active 2025-12-19 US7619656B2 (en) 2002-06-21 2004-11-03 Systems and methods for de-blurring motion blurred images

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12341195 Active 2024-04-17 US8009197B2 (en) 2002-06-21 2008-12-22 Systems and method for de-blurring motion blurred images
US13194643 Active US8547441B2 (en) 2002-06-21 2011-07-29 System and methods for de-blurring motion blurred images

Country Status (2)

Country Link
US (4) US7619656B2 (en)
WO (1) WO2004001667A3 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098890A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of determining PSF using multiple instances of a nominally similar scene
US20060098237A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US20060098891A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of notifying users regarding motion artifacts based on image analysis
US20070242142A1 (en) * 2006-04-14 2007-10-18 Nikon Corporation Image restoration apparatus, camera and program
US20070296833A1 (en) * 2006-06-05 2007-12-27 Fotonation Vision Limited Image Acquisition Method and Apparatus
US20080004073A1 (en) * 2006-06-30 2008-01-03 Motorola, Inc. Methods and devices for video correction of still camera motion
US20080100716A1 (en) * 2006-11-01 2008-05-01 Guoyi Fu Estimating A Point Spread Function Of A Blurred Digital Image Using Gyro Data
US20080136932A1 (en) * 2003-02-25 2008-06-12 Matsushita Electric Industrial Co., Ltd. Image Pickup Processing Method and Image Pickup Apparatus
US20080166063A1 (en) * 2007-01-09 2008-07-10 Gengsheng Lawrence Zeng Systems And Methods For Deblurring Data Corrupted By Shift Variant Blurring
US20080219581A1 (en) * 2007-03-05 2008-09-11 Fotonation Vision Limited Image Processing Method and Apparatus
US20080231713A1 (en) * 2007-03-25 2008-09-25 Fotonation Vision Limited Handheld Article with Movement Discrimination
US20080309769A1 (en) * 2007-06-14 2008-12-18 Fotonation Ireland Limited Fast Motion Estimation Method
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure
US20090135264A1 (en) * 2007-11-28 2009-05-28 Motorola, Inc. Motion blur detection using metadata fields
US20090179999A1 (en) * 2007-09-18 2009-07-16 Fotonation Ireland Limited Image Processing Method and Apparatus
US20090190851A1 (en) * 2008-01-24 2009-07-30 Asustek Computer Inc. Blur image adjusting method
US20090303343A1 (en) * 2007-03-05 2009-12-10 Fotonation Ireland Limited Low-light video frame enhancement
US20090316995A1 (en) * 2008-06-23 2009-12-24 Microsoft Corporation Blur estimation
US20100119171A1 (en) * 2005-07-12 2010-05-13 Nxp B.V. Method and device for removing motion blur effects
US20100119146A1 (en) * 2008-11-07 2010-05-13 Seiko Epson Corporation Robot system, robot control device and method for controlling robot
WO2008131438A3 (en) * 2007-04-23 2010-11-25 Fotonation Ireland Limited Detection and estimation of camera movement
US20110063459A1 (en) * 2009-09-14 2011-03-17 Cognex Corporation System and method for acquiring a still image from a moving image
US20110102638A1 (en) * 2007-03-05 2011-05-05 Tessera Technologies Ireland Limited Rgbw sensor array
US20110122266A1 (en) * 2009-11-20 2011-05-26 Samsung Electronics Co., Ltd. Method and apparatus for estimating point spread function
US20110142369A1 (en) * 2009-12-16 2011-06-16 Nvidia Corporation System and Method for Constructing a Motion-Compensated Composite Image
US20110199492A1 (en) * 2010-02-18 2011-08-18 Sony Corporation Method and system for obtaining a point spread function using motion information
US20110205381A1 (en) * 2007-03-05 2011-08-25 Tessera Technologies Ireland Limited Tone mapping for low-light video frame enhancement
US8090212B1 (en) 2007-12-21 2012-01-03 Zoran Corporation Method, apparatus, and system for reducing blurring of an image using multiple filtered images
US8180173B2 (en) 2007-09-21 2012-05-15 DigitalOptics Corporation Europe Limited Flash artifact eye defect correction in blurred images using anisotropic blurring
US8743220B2 (en) 2009-09-14 2014-06-03 Cognex Corporation System and method for acquiring a still image from a moving image
US8781250B2 (en) 2008-06-26 2014-07-15 Microsoft Corporation Image deconvolution using color priors
US9307212B2 (en) 2007-03-05 2016-04-05 Fotonation Limited Tone mapping for low-light video frame enhancement
US9529803B2 (en) 2014-07-15 2016-12-27 Google Inc. Image modification
WO2017164716A1 (en) * 2016-03-25 2017-09-28 Samsung Electronics Co., Ltd. Method and device for processing multimedia information

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001667A3 (en) 2002-06-21 2004-04-22 Univ Columbia Systems and methods for de-blurring motion blurred images
US7440634B2 (en) 2003-06-17 2008-10-21 The Trustees Of Columbia University In The City Of New York Method for de-blurring images of moving objects
JP4148041B2 (en) * 2003-06-27 2008-09-10 ソニー株式会社 Signal processing device and signal processing method, and program and recording medium
US20090262074A1 (en) * 2007-01-05 2009-10-22 Invensense Inc. Controlling and accessing content using motion processing on mobile devices
US8462109B2 (en) 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
US7561186B2 (en) 2004-04-19 2009-07-14 Seiko Epson Corporation Motion blur correction
US8289399B2 (en) * 2004-08-09 2012-10-16 Hewlett-Packard Development Company, L.P. System and method for image capture device
JP4527152B2 (en) * 2004-11-10 2010-08-18 フォトネーション ビジョン リミテッドFotonation Vision Limited Digital image acquisition system having a means for determining the motion blur function of the camera
US8194168B2 (en) 2005-06-03 2012-06-05 Mediapod Llc Multi-dimensional imaging system and method
US7643062B2 (en) * 2005-06-08 2010-01-05 Hewlett-Packard Development Company, L.P. Method and system for deblurring an image based on motion tracking
US8274715B2 (en) 2005-07-28 2012-09-25 Omnivision Technologies, Inc. Processing color and panchromatic pixels
US8139130B2 (en) 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US20070127909A1 (en) * 2005-08-25 2007-06-07 Craig Mowry System and apparatus for increasing quality and efficiency of film capture and methods of use thereof
US7598979B2 (en) * 2005-09-21 2009-10-06 Aptina Imaging Corporation Imaging device with blur reduction system including a primary array and at least one navigation array
US7864211B2 (en) * 2005-10-16 2011-01-04 Mowry Craig P Apparatus, system and method for increasing quality of digital image capture
US8571346B2 (en) * 2005-10-26 2013-10-29 Nvidia Corporation Methods and devices for defective pixel detection
US8064717B2 (en) * 2005-10-28 2011-11-22 Texas Instruments Incorporated Digital camera and method
US8588542B1 (en) 2005-12-13 2013-11-19 Nvidia Corporation Configurable and compact pixel processing apparatus
US8737832B1 (en) 2006-02-10 2014-05-27 Nvidia Corporation Flicker band automated detection system and method
US7639289B2 (en) * 2006-05-08 2009-12-29 Mitsubishi Electric Research Laboratories, Inc. Increasing object resolutions from a motion-blurred image
US7756407B2 (en) * 2006-05-08 2010-07-13 Mitsubishi Electric Research Laboratories, Inc. Method and apparatus for deblurring images
US7580620B2 (en) * 2006-05-08 2009-08-25 Mitsubishi Electric Research Laboratories, Inc. Method for deblurring images using optimized temporal coding patterns
US7755672B2 (en) * 2006-05-15 2010-07-13 Zoran Corporation Techniques for modifying image field data obtained using illumination sources
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US7667762B2 (en) * 2006-08-01 2010-02-23 Lifesize Communications, Inc. Dual sensor video camera
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
US9235573B2 (en) 2006-10-10 2016-01-12 Abbyy Infopoisk Llc Universal difference measure
US9633005B2 (en) 2006-10-10 2017-04-25 Abbyy Infopoisk Llc Exhaustive automatic processing of textual information
US9495358B2 (en) 2006-10-10 2016-11-15 Abbyy Infopoisk Llc Cross-language text clustering
JP2008129088A (en) * 2006-11-16 2008-06-05 Eastman Kodak Co Method for eliminating error of camera equipped with angular velocity detection system
US7796872B2 (en) * 2007-01-05 2010-09-14 Invensense, Inc. Method and apparatus for producing a sharp image from a handheld device containing a gyroscope
US20080166114A1 (en) * 2007-01-09 2008-07-10 Sony Ericsson Mobile Communications Ab Image deblurring system
JP4799428B2 (en) * 2007-01-22 2011-10-26 株式会社東芝 Image processing apparatus and method
US7924316B2 (en) * 2007-03-14 2011-04-12 Aptina Imaging Corporation Image feature identification and motion compensation apparatus, systems, and methods
US9349153B2 (en) * 2007-04-25 2016-05-24 Digimarc Corporation Correcting image capture distortion
US20080309770A1 (en) * 2007-06-18 2008-12-18 Fotonation Vision Limited Method and apparatus for simulating a camera panning effect
US8047075B2 (en) 2007-06-21 2011-11-01 Invensense, Inc. Vertically integrated 3-axis MEMS accelerometer with electronics
US7817187B2 (en) * 2007-06-27 2010-10-19 Aptina Imaging Corporation Image blur correction using a secondary camera
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US8724895B2 (en) 2007-07-23 2014-05-13 Nvidia Corporation Techniques for reducing color artifacts in digital images
US7934423B2 (en) 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US20090153690A1 (en) * 2007-12-14 2009-06-18 Yun-Chin Li Method for determining imaging quality of a camera via a motion sensor and ISO settings
JP2009164859A (en) * 2008-01-04 2009-07-23 Fujifilm Corp Imaging apparatus and imaging control method
US8952832B2 (en) 2008-01-18 2015-02-10 Invensense, Inc. Interfacing application programs and motion sensors of a device
US8020441B2 (en) 2008-02-05 2011-09-20 Invensense, Inc. Dual mode sensing for vibratory gyroscope
US8698908B2 (en) * 2008-02-11 2014-04-15 Nvidia Corporation Efficient method for reducing noise and blur in a composite still image from a rolling shutter camera
FR2927448B1 (en) * 2008-02-12 2011-03-04 Sagem Defense Securite Fixed captured images and Stabilized
US9379156B2 (en) 2008-04-10 2016-06-28 Nvidia Corporation Per-channel image intensity correction
US8508039B1 (en) 2008-05-08 2013-08-13 Invensense, Inc. Wafer scale chip scale packaging of vertically integrated MEMS sensors with electronics
US7859033B2 (en) 2008-07-09 2010-12-28 Eastman Kodak Company Wafer level processing for backside illuminated sensors
US7915067B2 (en) * 2008-07-09 2011-03-29 Eastman Kodak Company Backside illuminated image sensor with reduced dark current
US8130278B2 (en) * 2008-08-01 2012-03-06 Omnivision Technologies, Inc. Method for forming an improved image using images with different resolutions
US8141424B2 (en) 2008-09-12 2012-03-27 Invensense, Inc. Low inertia frame for detecting coriolis acceleration
US8098303B2 (en) * 2008-12-09 2012-01-17 Abbyy Software Ltd. Method and system for restoring a motion-blurred image
US8928763B2 (en) 2008-12-09 2015-01-06 Abbyy Development Llc Detecting and correcting blur and defocusing
US8675091B2 (en) * 2008-12-15 2014-03-18 Nvidia Corporation Image data processing with multiple cameras
CN102106150A (en) * 2009-02-05 2011-06-22 松下电器产业株式会社 Imaging processor
US8224082B2 (en) * 2009-03-10 2012-07-17 Omnivision Technologies, Inc. CFA image with synthetic panchromatic image
US8068153B2 (en) * 2009-03-27 2011-11-29 Omnivision Technologies, Inc. Producing full-color image using CFA image
US8045024B2 (en) * 2009-04-15 2011-10-25 Omnivision Technologies, Inc. Producing full-color image with reduced motion blur
US8749662B2 (en) 2009-04-16 2014-06-10 Nvidia Corporation System and method for lens shading image correction
US8203633B2 (en) * 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
US8237831B2 (en) * 2009-05-28 2012-08-07 Omnivision Technologies, Inc. Four-channel color filter array interpolation
US8125546B2 (en) * 2009-06-05 2012-02-28 Omnivision Technologies, Inc. Color filter array pattern having four-channels
US8253832B2 (en) * 2009-06-09 2012-08-28 Omnivision Technologies, Inc. Interpolation for four-channel color filter array
WO2010151262A1 (en) * 2009-06-25 2010-12-29 Nikon Corporation Image apparatus with motion control
US20110025830A1 (en) 2009-07-31 2011-02-03 3Dmedia Corporation Methods, systems, and computer-readable storage media for generating stereoscopic content via depth map creation
US9344701B2 (en) 2010-07-23 2016-05-17 3Dmedia Corporation Methods, systems, and computer-readable storage media for identifying a rough depth map in a scene and for determining a stereo-base distance for three-dimensional (3D) content creation
US9380292B2 (en) 2009-07-31 2016-06-28 3Dmedia Corporation Methods, systems, and computer-readable storage media for generating three-dimensional (3D) images of a scene
WO2011014419A1 (en) 2009-07-31 2011-02-03 3Dmedia Corporation Methods, systems, and computer-readable storage media for creating three-dimensional (3d) images of a scene
US8698918B2 (en) 2009-10-27 2014-04-15 Nvidia Corporation Automatic white balancing for photography
US8537272B2 (en) * 2010-03-02 2013-09-17 Honeywell International Inc. Method and system for designing optimal flutter shutter sequence
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
US20110242355A1 (en) * 2010-04-05 2011-10-06 Qualcomm Incorporated Combining data from multiple image sensors
US8180208B2 (en) 2010-05-19 2012-05-15 Eastman Kodak Company Identifying a photographer
US8200076B2 (en) 2010-05-19 2012-06-12 Eastman Kodak Company Estimating gender or age of a photographer
US8180209B2 (en) 2010-05-19 2012-05-15 Eastman Kodak Company Determining camera activity from a steadiness signal
US8428390B2 (en) 2010-06-14 2013-04-23 Microsoft Corporation Generating sharp images, panoramas, and videos from motion-blurred videos
US8860824B2 (en) * 2010-08-06 2014-10-14 Honeywell International Inc. Motion blur modeling for image formation
WO2012061549A3 (en) 2010-11-03 2012-07-12 3Dmedia Corporation Methods, systems, and computer program products for creating three-dimensional video sequences
US8994837B2 (en) * 2010-11-26 2015-03-31 Intel Mobile Communications GmbH Image processing devices and image processing methods of moving objects
US8274552B2 (en) 2010-12-27 2012-09-25 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
EP2521091B1 (en) * 2011-05-03 2016-04-20 ST-Ericsson SA Estimation of motion blur in a picture
KR101804215B1 (en) 2012-03-06 2017-12-05 삼성전자주식회사 A method and an apparatus for estimating a non-uniform motion blur robustly
US9063344B1 (en) * 2012-03-21 2015-06-23 The Boeing Company Method and apparatus for deblurring an image
US20130247663A1 (en) * 2012-03-26 2013-09-26 Parin Patel Multichannel Gyroscopic Sensor
US8989447B2 (en) * 2012-08-13 2015-03-24 Texas Instruments Incorporated Dynamic focus for computational imaging
US9798698B2 (en) 2012-08-13 2017-10-24 Nvidia Corporation System and method for multi-color dilu preconditioner
US9508318B2 (en) 2012-09-13 2016-11-29 Nvidia Corporation Dynamic color profile management for electronic devices
US9307213B2 (en) 2012-11-05 2016-04-05 Nvidia Corporation Robust selection and weighting for gray patch automatic white balancing
WO2014096502A1 (en) * 2012-12-18 2014-06-26 Nokia Corporation Method and apparatus for forming a video sequence
US20140333782A1 (en) * 2013-05-07 2014-11-13 Texas Instruments Incorporated View-assisted image stabilization system and method
US9826208B2 (en) 2013-06-26 2017-11-21 Nvidia Corporation Method and system for generating weights for use in white balancing an image
US9756222B2 (en) 2013-06-26 2017-09-05 Nvidia Corporation Method and system for performing white balancing operations on captured images
CN103471715B (en) * 2013-09-02 2015-09-09 北京航空航天大学 A co optical path combined light field spectral imaging method and apparatus
US9443335B2 (en) * 2013-09-18 2016-09-13 Blackberry Limited Using narrow field of view monochrome camera for producing a zoomed image
US9706116B2 (en) * 2013-10-31 2017-07-11 Ricoh Co., Ltd. Plenoptic color imaging system with enhanced resolution
US9087405B2 (en) * 2013-12-16 2015-07-21 Google Inc. Depth map generation using bokeh detection
US9626358B2 (en) 2014-11-26 2017-04-18 Abbyy Infopoisk Llc Creating ontologies by analyzing natural language texts
RU2592395C2 (en) 2013-12-19 2016-07-20 Общество с ограниченной ответственностью "Аби ИнфоПоиск" Resolution semantic ambiguity by statistical analysis
RU2586577C2 (en) 2014-01-15 2016-06-10 Общество с ограниченной ответственностью "Аби ИнфоПоиск" Filtering arcs parser graph
RU2014101665A (en) 2014-01-21 2015-07-27 Общество с ограниченной ответственностью "Аби Девелопмент" Detection of the highlight scene in the image data
FR3018147B1 (en) * 2014-03-03 2016-03-04 Sagem Defense Securite Denoising video optimized for heterogeneous multi-sensor system
CN103986876B (en) * 2014-05-29 2017-06-06 宇龙计算机通信科技(深圳)有限公司 An image acquisition method for acquiring the terminal and image
WO2016097468A1 (en) * 2014-12-19 2016-06-23 Nokia Corporation Method, apparatus and computer program product for blur estimation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400266A (en) * 1964-12-02 1968-09-03 Barnes Eng Co Infrared radiometric microscope
US4854669A (en) * 1987-02-27 1989-08-08 Quantum Diagnostics Ltd. Optical image processor with highly selectable modulation transfer function
US5206717A (en) * 1988-08-08 1993-04-27 Canon Kabushiki Kaisha Image sensing apparatus having horizontal shielding masks
US5638461A (en) * 1994-06-09 1997-06-10 Kollmorgen Instrument Corporation Stereoscopic electro-optical system for automated inspection and/or alignment of imaging devices on a production assembly line
US5696848A (en) * 1995-03-09 1997-12-09 Eastman Kodak Company System for creating a high resolution image from a sequence of lower resolution motion images
US5737456A (en) * 1995-06-09 1998-04-07 University Of Massachusetts Medical Center Method for image reconstruction
US5949914A (en) * 1997-03-17 1999-09-07 Space Imaging Lp Enhancing the resolution of multi-spectral image data with panchromatic image data using super resolution pan-sharpening
US5974272A (en) * 1997-10-29 1999-10-26 Eastman Kodak Company Parallax corrected image capture system
US20030002746A1 (en) * 2000-09-28 2003-01-02 Yosuke Kusaka Image creating device and image creating method
US6734903B1 (en) * 1994-02-28 2004-05-11 Canon Kabushiki Kaisha Image sensing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843637B2 (en) * 1990-03-20 1999-01-06 オリンパス光学工業株式会社 The camera device
US5448053A (en) * 1993-03-01 1995-09-05 Rhoads; Geoffrey B. Method and apparatus for wide field distortion-compensated imaging
US6075905A (en) * 1996-07-17 2000-06-13 Sarnoff Corporation Method and apparatus for mosaic image construction
US6181376B1 (en) * 1997-10-14 2001-01-30 Intel Corporation Method of determining missing color values for pixels in a color filter array
KR100247938B1 (en) * 1997-11-19 2000-03-15 윤종용 Digital focusing apparatus and method of image processing system
US6639926B1 (en) * 1998-03-25 2003-10-28 Mitsubishi Chemical Corporation Semiconductor light-emitting device
US6639626B1 (en) * 1998-06-18 2003-10-28 Minolta Co., Ltd. Photographing apparatus with two image sensors of different size
US7054482B2 (en) * 2001-09-28 2006-05-30 Arcsoft, Inc. Smart masking tool for image processing
US7657123B2 (en) * 2001-10-03 2010-02-02 Microsoft Corporation Text document capture with jittered digital camera
WO2004001667A3 (en) 2002-06-21 2004-04-22 Univ Columbia Systems and methods for de-blurring motion blurred images

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400266A (en) * 1964-12-02 1968-09-03 Barnes Eng Co Infrared radiometric microscope
US4854669A (en) * 1987-02-27 1989-08-08 Quantum Diagnostics Ltd. Optical image processor with highly selectable modulation transfer function
US5206717A (en) * 1988-08-08 1993-04-27 Canon Kabushiki Kaisha Image sensing apparatus having horizontal shielding masks
US6734903B1 (en) * 1994-02-28 2004-05-11 Canon Kabushiki Kaisha Image sensing apparatus
US5638461A (en) * 1994-06-09 1997-06-10 Kollmorgen Instrument Corporation Stereoscopic electro-optical system for automated inspection and/or alignment of imaging devices on a production assembly line
US5696848A (en) * 1995-03-09 1997-12-09 Eastman Kodak Company System for creating a high resolution image from a sequence of lower resolution motion images
US5737456A (en) * 1995-06-09 1998-04-07 University Of Massachusetts Medical Center Method for image reconstruction
US5949914A (en) * 1997-03-17 1999-09-07 Space Imaging Lp Enhancing the resolution of multi-spectral image data with panchromatic image data using super resolution pan-sharpening
US5974272A (en) * 1997-10-29 1999-10-26 Eastman Kodak Company Parallax corrected image capture system
US20030002746A1 (en) * 2000-09-28 2003-01-02 Yosuke Kusaka Image creating device and image creating method

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136932A1 (en) * 2003-02-25 2008-06-12 Matsushita Electric Industrial Co., Ltd. Image Pickup Processing Method and Image Pickup Apparatus
US7859568B2 (en) * 2003-02-25 2010-12-28 Panasonic Corporation Image capturing processing method and system for performing roll correction
US7697778B2 (en) 2004-11-10 2010-04-13 Fotonation Vision Limited Method of notifying users regarding motion artifacts based on image analysis
US20070058073A1 (en) * 2004-11-10 2007-03-15 Fotonation Vision Limited Method of Determining PSF Using Multiple Instances of a Nominally Scene
US7676108B2 (en) 2004-11-10 2010-03-09 Fotonation Vision Limited Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US7660478B2 (en) * 2004-11-10 2010-02-09 Fotonation Vision Ltd. Method of determining PSF using multiple instances of nominally scene
US20110193989A1 (en) * 2004-11-10 2011-08-11 Tessera Technologies Ireland Limited Method of Notifying Users Regarding Motion Artifacts Based on Image Analysis
US8244053B2 (en) * 2004-11-10 2012-08-14 DigitalOptics Corporation Europe Limited Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US20060098891A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of notifying users regarding motion artifacts based on image analysis
US20110199493A1 (en) * 2004-11-10 2011-08-18 Tessera Technologies Ireland Limited Method of Notifying Users Regarding Motion Artifacts Based on Image Analysis
US20060098890A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of determining PSF using multiple instances of a nominally similar scene
US20060098237A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US8270751B2 (en) 2004-11-10 2012-09-18 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US20080316321A1 (en) * 2004-11-10 2008-12-25 Fotonation Vision Limited Method Of Notifying Users Regarding Motion Artifacts Based On Image Analysis
US7636486B2 (en) * 2004-11-10 2009-12-22 Fotonation Ireland Ltd. Method of determining PSF using multiple instances of a nominally similar scene
US20090046161A1 (en) * 2004-11-10 2009-02-19 Fotonation Vision Limited Method and Apparatus for Initiating Subsequent Exposures Based On Determination Of Motion Blurring Artifacts
US8494299B2 (en) 2004-11-10 2013-07-23 DigitalOptics Corporation Europe Limited Method of determining PSF using multiple instances of a nominally similar scene
US8494300B2 (en) * 2004-11-10 2013-07-23 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US7639888B2 (en) * 2004-11-10 2009-12-29 Fotonation Ireland Ltd. Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US20100201827A1 (en) * 2004-11-10 2010-08-12 Fotonation Ireland Limited Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US20100201826A1 (en) * 2004-11-10 2010-08-12 Fotonation Vision Limited Method of determining psf using multiple instances of a nominally similar scene
US8285067B2 (en) 2004-11-10 2012-10-09 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US7639889B2 (en) * 2004-11-10 2009-12-29 Fotonation Ireland Ltd. Method of notifying users regarding motion artifacts based on image analysis
US8559751B2 (en) * 2005-07-12 2013-10-15 Nxp B.V. Method and device for removing motion blur effects
US20100119171A1 (en) * 2005-07-12 2010-05-13 Nxp B.V. Method and device for removing motion blur effects
US20070242142A1 (en) * 2006-04-14 2007-10-18 Nikon Corporation Image restoration apparatus, camera and program
US8169486B2 (en) 2006-06-05 2012-05-01 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US20070296833A1 (en) * 2006-06-05 2007-12-27 Fotonation Vision Limited Image Acquisition Method and Apparatus
US8520082B2 (en) 2006-06-05 2013-08-27 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US7626612B2 (en) * 2006-06-30 2009-12-01 Motorola, Inc. Methods and devices for video correction of still camera motion
US20080004073A1 (en) * 2006-06-30 2008-01-03 Motorola, Inc. Methods and devices for video correction of still camera motion
US20080100716A1 (en) * 2006-11-01 2008-05-01 Guoyi Fu Estimating A Point Spread Function Of A Blurred Digital Image Using Gyro Data
US8218889B2 (en) 2007-01-09 2012-07-10 University Of Utah Research Foundation Systems and methods for deblurring data corrupted by shift variant blurring
US20080166063A1 (en) * 2007-01-09 2008-07-10 Gengsheng Lawrence Zeng Systems And Methods For Deblurring Data Corrupted By Shift Variant Blurring
US7860333B2 (en) 2007-01-09 2010-12-28 University Of Utah Research Foundation Systems and methods for deblurring data corrupted by shift variant blurring
US20110102638A1 (en) * 2007-03-05 2011-05-05 Tessera Technologies Ireland Limited Rgbw sensor array
US8878967B2 (en) 2007-03-05 2014-11-04 DigitalOptics Corporation Europe Limited RGBW sensor array
US8417055B2 (en) 2007-03-05 2013-04-09 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US8737766B2 (en) 2007-03-05 2014-05-27 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US8890983B2 (en) 2007-03-05 2014-11-18 DigitalOptics Corporation Europe Limited Tone mapping for low-light video frame enhancement
US9094648B2 (en) 2007-03-05 2015-07-28 Fotonation Limited Tone mapping for low-light video frame enhancement
US9307212B2 (en) 2007-03-05 2016-04-05 Fotonation Limited Tone mapping for low-light video frame enhancement
US8199222B2 (en) 2007-03-05 2012-06-12 DigitalOptics Corporation Europe Limited Low-light video frame enhancement
US20090303343A1 (en) * 2007-03-05 2009-12-10 Fotonation Ireland Limited Low-light video frame enhancement
US20110205381A1 (en) * 2007-03-05 2011-08-25 Tessera Technologies Ireland Limited Tone mapping for low-light video frame enhancement
US8264576B2 (en) 2007-03-05 2012-09-11 DigitalOptics Corporation Europe Limited RGBW sensor array
US8698924B2 (en) 2007-03-05 2014-04-15 DigitalOptics Corporation Europe Limited Tone mapping for low-light video frame enhancement
US8649627B2 (en) 2007-03-05 2014-02-11 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US20080219581A1 (en) * 2007-03-05 2008-09-11 Fotonation Vision Limited Image Processing Method and Apparatus
US7773118B2 (en) 2007-03-25 2010-08-10 Fotonation Vision Limited Handheld article with movement discrimination
US20080231713A1 (en) * 2007-03-25 2008-09-25 Fotonation Vision Limited Handheld Article with Movement Discrimination
US8212882B2 (en) 2007-03-25 2012-07-03 DigitalOptics Corporation Europe Limited Handheld article with movement discrimination
US20100238309A1 (en) * 2007-03-25 2010-09-23 Fotonation Vision Limited Handheld Article with Movement Discrimination
WO2008131438A3 (en) * 2007-04-23 2010-11-25 Fotonation Ireland Limited Detection and estimation of camera movement
US9160897B2 (en) 2007-06-14 2015-10-13 Fotonation Limited Fast motion estimation method
US20080309769A1 (en) * 2007-06-14 2008-12-18 Fotonation Ireland Limited Fast Motion Estimation Method
US8896712B2 (en) 2007-07-20 2014-11-25 Omnivision Technologies, Inc. Determining and correcting for imaging device motion during an exposure
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure
US8989516B2 (en) 2007-09-18 2015-03-24 Fotonation Limited Image processing method and apparatus
US20090179999A1 (en) * 2007-09-18 2009-07-16 Fotonation Ireland Limited Image Processing Method and Apparatus
US8180173B2 (en) 2007-09-21 2012-05-15 DigitalOptics Corporation Europe Limited Flash artifact eye defect correction in blurred images using anisotropic blurring
US20090135264A1 (en) * 2007-11-28 2009-05-28 Motorola, Inc. Motion blur detection using metadata fields
US8090212B1 (en) 2007-12-21 2012-01-03 Zoran Corporation Method, apparatus, and system for reducing blurring of an image using multiple filtered images
US8098948B1 (en) 2007-12-21 2012-01-17 Zoran Corporation Method, apparatus, and system for reducing blurring in an image
US8160309B1 (en) 2007-12-21 2012-04-17 Csr Technology Inc. Method, apparatus, and system for object recognition and classification
US8139884B2 (en) * 2008-01-24 2012-03-20 Asustek Computer Inc. Blur image adjusting method
US20090190851A1 (en) * 2008-01-24 2009-07-30 Asustek Computer Inc. Blur image adjusting method
US20090316995A1 (en) * 2008-06-23 2009-12-24 Microsoft Corporation Blur estimation
US8139886B2 (en) 2008-06-23 2012-03-20 Microsoft Corporation Blur estimation
US8781250B2 (en) 2008-06-26 2014-07-15 Microsoft Corporation Image deconvolution using color priors
US8315455B2 (en) * 2008-11-07 2012-11-20 Seiko Epson Corporation Robot system, robot control device and method for controlling robot
US8666141B2 (en) 2008-11-07 2014-03-04 Seiko Epson Corporation Robot system, robot control device and method for controlling robot
US20100119146A1 (en) * 2008-11-07 2010-05-13 Seiko Epson Corporation Robot system, robot control device and method for controlling robot
US8743220B2 (en) 2009-09-14 2014-06-03 Cognex Corporation System and method for acquiring a still image from a moving image
US8542281B2 (en) 2009-09-14 2013-09-24 Cognex Corporation System and method for acquiring a still image from a moving image
US20110063459A1 (en) * 2009-09-14 2011-03-17 Cognex Corporation System and method for acquiring a still image from a moving image
US20110122266A1 (en) * 2009-11-20 2011-05-26 Samsung Electronics Co., Ltd. Method and apparatus for estimating point spread function
US8830363B2 (en) 2009-11-20 2014-09-09 Samsung Electronics Co., Ltd. Method and apparatus for estimating point spread function
US8514289B2 (en) * 2009-11-20 2013-08-20 Samsung Electronics Co., Ltd. Method and apparatus for estimating point spread function
US20110142369A1 (en) * 2009-12-16 2011-06-16 Nvidia Corporation System and Method for Constructing a Motion-Compensated Composite Image
US8478071B2 (en) * 2009-12-16 2013-07-02 Nvidia Corporation System and method for constructing a motion-compensated composite image
US8648918B2 (en) 2010-02-18 2014-02-11 Sony Corporation Method and system for obtaining a point spread function using motion information
US20110199492A1 (en) * 2010-02-18 2011-08-18 Sony Corporation Method and system for obtaining a point spread function using motion information
US9529803B2 (en) 2014-07-15 2016-12-27 Google Inc. Image modification
WO2017164716A1 (en) * 2016-03-25 2017-09-28 Samsung Electronics Co., Ltd. Method and device for processing multimedia information

Also Published As

Publication number Publication date Type
US20110286681A1 (en) 2011-11-24 application
US20090154823A1 (en) 2009-06-18 application
US20060119710A1 (en) 2006-06-08 application
WO2004001667A2 (en) 2003-12-31 application
US7619656B2 (en) 2009-11-17 grant
WO2004001667A3 (en) 2004-04-22 application
US8547441B2 (en) 2013-10-01 grant
US8009197B2 (en) 2011-08-30 grant

Similar Documents

Publication Publication Date Title
US8648918B2 (en) Method and system for obtaining a point spread function using motion information
US20060188169A1 (en) Extended range image processing for electro-optical systems
US20090096897A1 (en) Imaging Device, Image Processing Device, and Program
US7711201B2 (en) Method of and apparatus for generating a depth map utilized in autofocusing
US7546026B2 (en) Camera exposure optimization techniques that take camera and scene motion into account
US20090274387A1 (en) Method of capturing high dynamic range images with objects in the scene
US20090290809A1 (en) Image processing device, image processing method, and program
US20070189750A1 (en) Method of and apparatus for simultaneously capturing and generating multiple blurred images
US20040100560A1 (en) Tracking digital zoom in a digital video camera
US20060044422A1 (en) Image capture apparatus and control method therefor
US20050012833A1 (en) Image capturing apparatus
US7796872B2 (en) Method and apparatus for producing a sharp image from a handheld device containing a gyroscope
US20080056613A1 (en) Image combining device and imaging apparatus
US20070132874A1 (en) Selecting quality images from multiple captured images
US7557832B2 (en) Method and apparatus for electronically stabilizing digital images
US20090179995A1 (en) Image Shooting Apparatus and Blur Correction Method
US20060279639A1 (en) Method and system for deblurring an image based on motion tracking
US7057645B1 (en) Camera system that compensates low luminance by composing multiple object images
US20080079839A1 (en) Multi-focal camera apparatus and methods and mediums for generating focus-free image and autofocus image using the multi-focal camera apparatus
US20070110417A1 (en) Image processing apparatus and image processing method
US20060078215A1 (en) Image processing based on direction of gravity
US6614998B1 (en) Automatic focusing camera and shooting method
US7636486B2 (en) Method of determining PSF using multiple instances of a nominally similar scene
US20060078214A1 (en) Image processing based on direction of gravity
Karpenko et al. Digital video stabilization and rolling shutter correction using gyroscopes

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEN-EZRA, MOSHE;NAYAR, SHREE K.;REEL/FRAME:017585/0782

Effective date: 20050822

AS Assignment

Owner name: MORNINGSIDE, COLUMBIA UNIVERSITY NEW YORK, NEW YOR

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NATIONAL SCIENCE FOUNDATION;REEL/FRAME:020398/0871

Effective date: 20080107