US20060076272A1 - Method for gasification of a solid carbonaceous feed and a reactor for use in such a method - Google Patents

Method for gasification of a solid carbonaceous feed and a reactor for use in such a method Download PDF

Info

Publication number
US20060076272A1
US20060076272A1 US10/520,400 US52040005A US2006076272A1 US 20060076272 A1 US20060076272 A1 US 20060076272A1 US 52040005 A US52040005 A US 52040005A US 2006076272 A1 US2006076272 A1 US 2006076272A1
Authority
US
United States
Prior art keywords
gas
dust
quench
cooled channel
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/520,400
Inventor
Jacob Stil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STIL, JACOB HENDRIK
Publication of US20060076272A1 publication Critical patent/US20060076272A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal

Definitions

  • the invention is directed to a method for gasification of a solid carboneous feed, wherein said gasification is performed in an elongated gasification reactor vessel comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit.
  • Ash in the form of slag, gravitates in the cooled channel into a slag bath tank located at the lower end of the elongated reactor.
  • Product gas containing dust and entrained liquid slag droplets, rises in the cooled channel to a quench section.
  • the quenched product gas exits the gasification reactor via a duct into a waste heat boiler or syngas cooler. Solids are removed from the resultant cooled product gas in a so-called solids removal section.
  • a portion of cleaned and cooled gas from the solids removal section is then fed back, by means of a recycle gas compressor, into the cooled channel as quench gas.
  • the quench gas entering the cooled channel cools the product gas such that entrained fly slag particles are solidified and will not stick to the duct or waste heat boiler surfaces as the solids and gas pass through.
  • a carboneous feed is transformed under high temperature and pressure into a hot product gas.
  • Inert ash components contained in the carbon are partly discharged with the hot product gas stream from the gasification reactor in form of fine dust.
  • the components used in the gasification process such as the gasification reactor, quench means, cooled channel, duct and the downstream heat exchanger heating surfaces, must be operated within a pressure wall which can be realized by one or more pressure containers or pressure mantles.
  • the quench tube and the cooled channel are provided with water-cooled cooling surfaces.
  • the dust-loaded hot product gas is cooled with cold quench gas supplied from a quench gas supply unit to a temperature of approx. 900° C. A further cooling takes place in one or more heat exchanger surfaces downstream said quench unit whereby steam is produced.
  • the cooling surfaces of the cooled channel can only withstand small gas-side pressure differences.
  • the pressure between the interior of the cooled channel and the annular space has therefore substantially to be compensated.
  • Openings which fluidly connect the cooled channel and the annular space are for example sliding points in the wall of the cooled channel for compensating thermal expansions and the openings at the quench unit.
  • a method for gasification of a solid carbonaceous feed wherein said gasification is performed in an elongated gasification reactor vessel comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein to an annular space between the reactor vessel wall and the cooled channel a dust-free gas is supplied at a rate sufficient to ensure that no dust-loaded hot gas will flow from the cooled channel to said annular space.
  • the method of the invention intends to charge the annulus with the quench gas in such a way that the gas pressure within the annulus is equal to or somewhat higher than the gas pressure in the gasifier unit and channel.
  • the temperature of the dust-free gas is preferably between 200 and 350° C. and more preferably below 300° C.
  • the dust-free gas is preferably part of the gaseous product of the gasifier unit from which dust has been removed downstream of said gasification reactor, for example the dust free product gas as obtained in the solids removal section. Because this dust-free product gas is also preferably used as quench gas it has been found advantageous to combine the supply of the dust-free gas to the annular space with the supply of quench gas to the cooled channel.
  • the means to supply quench gas is preferably provided with gas discharge openings to supply quench gas to the cooled channel and gas discharge openings to supply quench gas to the annular space. It has been found that by providing sufficient openings in said means to supply quench gas a robust and reliable operation is achieved. One skilled in the art will be able to easily determine the area of these openings given the pressure level of the quench gas and the pressure level in the cooled channel.
  • any sliding points present in the cooled channel are rendered gas-tight with respect to the hot-product gas guided in the cooled channel.
  • the pressure compensation function is separated from the function of the sliding point, since the quench gas used for pressure compensation is introduced from the quench unit between the gasification reactor and the quench tube into the annulus.
  • one or more gas barriers can be situated in the area of small differential expansions between the respective pressure wall and the respective cooled component so that the secondary function of compensating substantial differential expansions in the axial direction of the components at the sliding point is omitted.
  • the annulus present in the syngas cooler which is confined by the at least one heat exchanger surface and the pressure wall surrounding it and which is closed against the annulus charged with quench gas, is charged with cooled hot-gas.
  • the present invention is also directed to an elongated gasification reactor vessel, which may be used in the above described process, comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein also means to supply a dust-free gas to an annular space between the reactor vessel wall and the cooled channel is present.
  • the means to supply quench gas is provided with gas discharge openings to supply the majority of the quench gas to the cooled channel and gas discharge openings to supply a minor amount of quench gas to the annular space.
  • the means for supplying the quench gas are usually holes (exit openings), the size of which determining the quantity of gas passing to the quench tube and the annulus, respectively.
  • the cooled channel is provided with sliding points which are rendered gas-tight with respect to the hot-gas guided in the cooled channel.
  • sliding points there is one or more sliding points in the cooled channel downstream of said quench gas supply unit.
  • Such sliding points are present between two cooled channel segments and/or at the end of the cooled channel.
  • an annular barrier for closing the annular space is situated downstream of said sliding points.
  • a further sliding point is provided in the area of the connection path and this sliding point is preferably associated with an enlargement of the pressure mantle in order to be able to better use the function of the assembling separation in the area of the sliding point.
  • At least one heat exchanger heating surface surrounded by a pressure wall is connected downstream of the cooled channel in order to further cool down the gas (product gas).
  • a sliding point is provided between the cooled channel and the heat exchanger heating surface and that the annular barrier for closing the annulus downstream of the sliding point is situated upstream or downstream of the heat exchanger heating surface.
  • the pressure compensation takes place between the gas interior in the heat exchanger heating surfaces and the surrounding annulus with dust-loaded hot-gas previously cooled down in the heat exchanger heating surfaces. Due to the substantially lower temperatures as compared to the temperatures in the area of the hot-gas guiding channel secondary flows and hence massive dust settlement in the annulus cannot occur anymore.
  • FIG. 1 shows an embodiment of the carbon gasification plant wherein the gasifier unit is situated in a first pressure container (gasification reactor) and the heat exchanger heating surfaces are situated in a second pressure container (syngas cooler), wherein the two pressure containers are connected through a rising connection path (so-called duct); and
  • FIG. 2 shows a representation of a further embodiment comparable to FIG. 1 , with an inclined connection path (duct).
  • the gasification plant depicted in FIG. 1 consists of a gasification reactor 1 , a connection duct 2 and a syngas cooler 3 .
  • the gasification reactor 1 comprises a vertically oriented elongated pressure container 4 in which a cooled channel 5 , 7 and a quench gas supply unit 6 are located.
  • the gasifier unit 8 is supplied with a carboneous feed, for example pulverized coal.
  • the quench gas supply unit 6 is fed with quench gas Q at 9 . Quenched hot-product gas HG flows in the cooled channel part 7 downstream the quench gas supply unit 6 .
  • the cooled channel is provided with cooling surfaces. Preferably these cooling surfaces are bundles of conduits through which cooling water flows.
  • a preferred cooling surface is the membrane wall as disclosed in for example U.S. Pat. No. 4,859,213.
  • the lower end of the gasification reactor 1 is provided with a gas barrier 10 . Furthermore, slag S is discharged at the lower end 11 of the gasification reactor 1 .
  • the pressure container 4 consists of a lower part 4 a and an upper part 4 b with an angled flange 4 c .
  • the pressure mantle 12 connects thereto.
  • the syngas cooler 3 comprises a pressure container 13 consisting of three container parts 13 a , 13 b , 13 c .
  • the pressure container part 13 comprises an angled flange 13 d oriented downwards which defines, together with flange 4 c and pressure mantle 12 , the connection path 2 .
  • Within the gas cooler 3 there are e.g.
  • the heating surfaces are only shown schematically and can be e.g. in the form of heating surfaces with a cooled gas guiding mantle 14 a and straight or winding tube interiors 14 b .
  • the gas guiding mantles 14 a of the two upper heating surfaces are connected together to form a gas guiding mantle 15 which is connected to the gas guiding mantle 17 of the lower heating surface via a gas-tight sliding point 16 .
  • connection between the cooled channel part 7 and the gas guiding mantle 15 is made via a hot-gas guiding channel 18 which extends in a curved portion 18 a into the pressure container 4 , in a straight portion 18 b through the pressure mantle 12 and the flange 13 d , and which is formed in its last portion as a gas deflection chamber 18 c.
  • the gas-guiding channel 18 is provided at its entrance end with a sliding point 19 , which allows a sliding movement relative to the quench tube 7 , which is provided with an enlargement 7 a at its exit end.
  • This enlargement is schematically shown as a simple cone.
  • the opposing ends of cooled channel part 7 and gas guiding channel 18 are provided with compensator holders 20 and 21 between which a ring compensator 22 extends so that the sliding point 19 is gas-tight with respect to the hot hot-gas exiting from the quench tube.
  • a further sliding point 23 between two portions S 1 and S 2 of the gas-guiding channel 18 , the portion S 1 having an enlargement at its exit end.
  • the sliding point 23 corresponds in its design to the sliding point 19 .
  • a further sliding point 24 which differs in design from the sliding points 19 and 23 in that the enlargement 15 a , as seen in the direction of gas flow, is not disposed at the exit end of the gas guiding channel 18 but at the entrance end of the guiding mantle 15 .
  • the sliding point 15 corresponds in its design to the sliding point 24 .
  • the gasification reactor 5 , the cooled channel part 7 , the gas guiding channel 18 , the gas guiding mantle 15 and the gas guiding mantle 17 are surrounded by an annulus 25 defined by the pressure container 4 , the pressure mantle 12 and the pressure container 13 .
  • This annulus is confined on the one hand by the annular barrier 10 in the gasifier unit 1 and is subdivided by an annular barrier 26 , which is situated between the sliding point 24 and the upper heating surface 14 , into two partial annulus 25 a and 25 b.
  • the annulus 25 a is charged with quench gas Q which exits via exit openings 27 from the quench gas supply unit 6 into the annulus 25 a .
  • the geometry of the exit openings 27 is selected in correspondence with the pressures such that the pressure in annulus 25 a is equal to or somewhat higher than the gas pressure of the hot-gas in the gas interior. Since the quench gas enters the annulus with a substantially lower temperature (e.g. 250° C.) than the temperature of the hot-gases in the gas-guiding channel 18 (e.g. 900° C.) a critical heating up of the respective pressure walls cannot take place. Since the quench gas is free of dust, dust settlement cannot occur.
  • the annulus 25 b downstream of the annular barrier 26 is charged backwards and upwards by the already partly cooled down hot-gas exiting the lower end of the gas guiding mantle 17 which is cooled down e.g. to 300-250° C.
  • the pressure mantle 12 can have an enlargement 12 a , which allows entering the sliding point 23 via an entrance opening 12 b for inspection purposes.
  • annular barrier 26 downstream of one of the heating surfaces 14 and thus to enlarge the annulus 25 a . It is also conceivable to dispose the annular barrier 26 above the sliding point 24 .
  • FIG. 2 differs from the embodiment of FIG. 1 in that the connection path between the gasifier 1 and the gas cooler 3 is not rising, but falling.
  • the two general designs according to FIGS. 1 and 2 with rising or falling connection path 12 are also known from the FIGS. 1 and 2 of U.S. Pat. No. 4,859,214. Also in the embodiment of FIG. 2 an enlargement 12 a can be provided for.
  • Other connection paths are also possible, for instance horizontal or curved paths.
  • the annulus 25 confined between the components and the pressure walls is not charged with hot-gas exiting from the quench tube at any point but with cold gas, i.e. on the one hand in form of the quench gas Q and on the other hand with already cooled down hot-gas.
  • the charged spaces are separated by a barrier from one another in order to avoid a short-circuit between quench gas and cooled-down hot-gas.
  • the position of the annular barrier, as seen in the direction of flow of the hot-gas, can be variable.
  • FIG. 3 shows the quench supply unit 6 in more detail.
  • the quench supply unit is an modified quench supply unit as described in FIGS. 3 and 3 a of U.S. Pat. No. 4,859,213.
  • the modification lies in that openings 27 are added through which quench gas can enter the annular space 25 .
  • FIG. 3 also shows part of the membrane wall 45 of cooled channel 5 , 7 , openings 53 to supply quench gas into the cooled channel 5 , 7 and part of the supply conduit 9 .

Abstract

A method for gasification of a solid carboneous feed, wherein the gasification is performed in an elongated gasification reactor vessel having a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of the gasifier unit, wherein to an annular space between the reactor vessel wall and the cooled channel a dust-free gas is supplied at a rate sufficient to ensure that no dust-loaded hot gas will flow from the cooled channel to the annular space.

Description

  • The invention is directed to a method for gasification of a solid carboneous feed, wherein said gasification is performed in an elongated gasification reactor vessel comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit.
  • Such a process is described in U.S. Pat. No. 4,859,213. This publications describes a typical coal gasification process as performed in an elongated gasification reactor vessel comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit. Pulverized coal from a coal feed system is fed into the gasifier unit via burners along with an oxygen containing gas. In the gasifier pulverized coal is partially oxidized with oxygen to a carbon monoxide-hydrogen comprising gas (syngas), further also referred to as product gas. Ash, in the form of slag, gravitates in the cooled channel into a slag bath tank located at the lower end of the elongated reactor. Product gas, containing dust and entrained liquid slag droplets, rises in the cooled channel to a quench section. The quenched product gas exits the gasification reactor via a duct into a waste heat boiler or syngas cooler. Solids are removed from the resultant cooled product gas in a so-called solids removal section. A portion of cleaned and cooled gas from the solids removal section is then fed back, by means of a recycle gas compressor, into the cooled channel as quench gas. The quench gas entering the cooled channel cools the product gas such that entrained fly slag particles are solidified and will not stick to the duct or waste heat boiler surfaces as the solids and gas pass through.
  • In the carbon gasification process, as for example disclosed in U.S. Pat. No. 4,859,213, a carboneous feed is transformed under high temperature and pressure into a hot product gas. Inert ash components contained in the carbon are partly discharged with the hot product gas stream from the gasification reactor in form of fine dust. Since the gasification pressures are up to 50 bar and higher, the components used in the gasification process, such as the gasification reactor, quench means, cooled channel, duct and the downstream heat exchanger heating surfaces, must be operated within a pressure wall which can be realized by one or more pressure containers or pressure mantles. To protect the pressure mantles of the reactor against the high syngas temperatures of over 1500° C., the quench tube and the cooled channel are provided with water-cooled cooling surfaces. The dust-loaded hot product gas is cooled with cold quench gas supplied from a quench gas supply unit to a temperature of approx. 900° C. A further cooling takes place in one or more heat exchanger surfaces downstream said quench unit whereby steam is produced.
  • Between the gasifier unit, the quench unit, and the cooled channel and the pressure wall of the gasification reactor an annular space is created as is also shown in U.S. Pat. No. 4,859,213.
  • The cooling surfaces of the cooled channel can only withstand small gas-side pressure differences. The pressure between the interior of the cooled channel and the annular space has therefore substantially to be compensated. Openings which fluidly connect the cooled channel and the annular space are for example sliding points in the wall of the cooled channel for compensating thermal expansions and the openings at the quench unit.
  • To this end it is known from the speech “Criteria for Design of Gasifier and Syngas Cooler” of Dr. G. Keintzel and Dipl.-Ing. Gawlowski, held at the conference EPOS 2000—International Conferencce on Efficiency, Cost, Optimisation, Simulation and Environmental Aspects of Energy and Process Systems, Jul. 5-7, 2000, University of Twente, Enschede, The Netherlands, Figure “Heating Surfaces in the Syngas Cooler”, to make the sliding point associated with the cooled channel open or to provide it with gas-permeable plugs, in order to thereby achieve a pressure compensation at least at a hot-gas guiding channel segment separated from the pressure wall by gas barriers. Therefore, during pressure compensation dust-loaded hot-product gas enter the annular space. In a carbon gasification plant of industrial scale it has been found that an undesired flow on the gas side occurs in the annular space charged with gas, i.e. a so-called secondary flow, since the hot-gas can cool down at the side of the cooling surface oriented towards the annular space and at the pressure wall, and cooled gas can flow back via the sliding point into the cooled channel. In this way an undesired heating up of regions of the respective pressure wall and setting of dust occurs. This can lead to operation failures.
  • It is an objective of the present to provide a gasification process as generally described above wherein dust loaded product gas cannot enter the annular space and therefore dust depositions are avoided.
  • The following process achieves this object. A method for gasification of a solid carbonaceous feed, wherein said gasification is performed in an elongated gasification reactor vessel comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein to an annular space between the reactor vessel wall and the cooled channel a dust-free gas is supplied at a rate sufficient to ensure that no dust-loaded hot gas will flow from the cooled channel to said annular space.
  • Applicants have found that by supplying such a dust free gas to said annular space no dust loaded hot product gas will pass via the openings, such as at the cited sliding points and at the quench supply means, in the wall of the cooled channel. A so-called positive flow of dust-free gas will exist from the annular space into the cooled channel. To arrive at such a positive flow the rate of dust-free gas as supplied to said annular space is preferably such that the pressure in said annular space is at least equal or just higher than the pressure in said cooled channel. The above is also referred to as a method for pressure compensation.
  • Also here an inadmissible heating up of the pressure wall cannot take place since a secondary flow is effectively suppressed. Therefore no substantial quantities of dust can settle in the annulus surrounding the heat exchanger heating surfaces.
  • While with the earlier proposed charging of the annulus with the dust-loaded hot gas the pressure within the annulus is kept somewhat lower than in the gas interior, the method of the invention intends to charge the annulus with the quench gas in such a way that the gas pressure within the annulus is equal to or somewhat higher than the gas pressure in the gasifier unit and channel.
  • The temperature of the dust-free gas is preferably between 200 and 350° C. and more preferably below 300° C.
  • The dust-free gas is preferably part of the gaseous product of the gasifier unit from which dust has been removed downstream of said gasification reactor, for example the dust free product gas as obtained in the solids removal section. Because this dust-free product gas is also preferably used as quench gas it has been found advantageous to combine the supply of the dust-free gas to the annular space with the supply of quench gas to the cooled channel. In this preferred embodiment the means to supply quench gas is preferably provided with gas discharge openings to supply quench gas to the cooled channel and gas discharge openings to supply quench gas to the annular space. It has been found that by providing sufficient openings in said means to supply quench gas a robust and reliable operation is achieved. One skilled in the art will be able to easily determine the area of these openings given the pressure level of the quench gas and the pressure level in the cooled channel.
  • In a preferred embodiment any sliding points present in the cooled channel are rendered gas-tight with respect to the hot-product gas guided in the cooled channel. With the method of the invention the pressure compensation function is separated from the function of the sliding point, since the quench gas used for pressure compensation is introduced from the quench unit between the gasification reactor and the quench tube into the annulus.
  • In this way the pressure compensation function is also separated from the other two functions attributable to the sliding point, i.e. is the expansion function and the assembling separation function. Preferably one or more gas barriers can be situated in the area of small differential expansions between the respective pressure wall and the respective cooled component so that the secondary function of compensating substantial differential expansions in the axial direction of the components at the sliding point is omitted.
  • Furthermore, it is useful that the annulus present in the syngas cooler, which is confined by the at least one heat exchanger surface and the pressure wall surrounding it and which is closed against the annulus charged with quench gas, is charged with cooled hot-gas.
  • The present invention is also directed to an elongated gasification reactor vessel, which may be used in the above described process, comprising a gasifier unit, a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor, and means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein also means to supply a dust-free gas to an annular space between the reactor vessel wall and the cooled channel is present. Preferably the means to supply quench gas is provided with gas discharge openings to supply the majority of the quench gas to the cooled channel and gas discharge openings to supply a minor amount of quench gas to the annular space. The means for supplying the quench gas are usually holes (exit openings), the size of which determining the quantity of gas passing to the quench tube and the annulus, respectively.
  • Preferably the cooled channel is provided with sliding points which are rendered gas-tight with respect to the hot-gas guided in the cooled channel.
  • Preferably, there is one or more sliding points in the cooled channel downstream of said quench gas supply unit. Such sliding points are present between two cooled channel segments and/or at the end of the cooled channel. Preferably an annular barrier for closing the annular space is situated downstream of said sliding points.
  • It is useful that a further sliding point is provided in the area of the connection path and this sliding point is preferably associated with an enlargement of the pressure mantle in order to be able to better use the function of the assembling separation in the area of the sliding point.
  • As said before, in known carbon gasification plants at least one heat exchanger heating surface surrounded by a pressure wall is connected downstream of the cooled channel in order to further cool down the gas (product gas). In this connection it is useful that a sliding point is provided between the cooled channel and the heat exchanger heating surface and that the annular barrier for closing the annulus downstream of the sliding point is situated upstream or downstream of the heat exchanger heating surface.
  • Usually several heating surfaces connected one after the other at the gas side are used, which are surrounded by the same pressure wall. Preferably, the pressure compensation takes place between the gas interior in the heat exchanger heating surfaces and the surrounding annulus with dust-loaded hot-gas previously cooled down in the heat exchanger heating surfaces. Due to the substantially lower temperatures as compared to the temperatures in the area of the hot-gas guiding channel secondary flows and hence massive dust settlement in the annulus cannot occur anymore.
  • In case of a plurality of heat exchanger heating surfaces it is useful to insert a gas-tight sliding point between at least two adjacent heating surfaces.
  • The invention will now be described in connection with the enclosed drawings. In the drawings:
  • FIG. 1 shows an embodiment of the carbon gasification plant wherein the gasifier unit is situated in a first pressure container (gasification reactor) and the heat exchanger heating surfaces are situated in a second pressure container (syngas cooler), wherein the two pressure containers are connected through a rising connection path (so-called duct); and
  • FIG. 2 shows a representation of a further embodiment comparable to FIG. 1, with an inclined connection path (duct).
  • The gasification plant depicted in FIG. 1 consists of a gasification reactor 1, a connection duct 2 and a syngas cooler 3. The gasification reactor 1 comprises a vertically oriented elongated pressure container 4 in which a cooled channel 5, 7 and a quench gas supply unit 6 are located. The gasifier unit 8 is supplied with a carboneous feed, for example pulverized coal. The quench gas supply unit 6 is fed with quench gas Q at 9. Quenched hot-product gas HG flows in the cooled channel part 7 downstream the quench gas supply unit 6. The cooled channel is provided with cooling surfaces. Preferably these cooling surfaces are bundles of conduits through which cooling water flows. A preferred cooling surface is the membrane wall as disclosed in for example U.S. Pat. No. 4,859,213.
  • The lower end of the gasification reactor 1 is provided with a gas barrier 10. Furthermore, slag S is discharged at the lower end 11 of the gasification reactor 1. The pressure container 4 consists of a lower part 4 a and an upper part 4 b with an angled flange 4 c. The pressure mantle 12 connects thereto. The syngas cooler 3 comprises a pressure container 13 consisting of three container parts 13 a, 13 b, 13 c. The pressure container part 13 comprises an angled flange 13 d oriented downwards which defines, together with flange 4 c and pressure mantle 12, the connection path 2. Within the gas cooler 3 there are e.g. three heat exchanger heating surfaces 14 situated one above the other, as seen in the direction of flow of the hot-gases HG. The heating surfaces are only shown schematically and can be e.g. in the form of heating surfaces with a cooled gas guiding mantle 14 a and straight or winding tube interiors 14 b. In the embodiment shown the gas guiding mantles 14 a of the two upper heating surfaces are connected together to form a gas guiding mantle 15 which is connected to the gas guiding mantle 17 of the lower heating surface via a gas-tight sliding point 16.
  • The connection between the cooled channel part 7 and the gas guiding mantle 15 is made via a hot-gas guiding channel 18 which extends in a curved portion 18 a into the pressure container 4, in a straight portion 18 b through the pressure mantle 12 and the flange 13 d, and which is formed in its last portion as a gas deflection chamber 18 c.
  • The gas-guiding channel 18 is provided at its entrance end with a sliding point 19, which allows a sliding movement relative to the quench tube 7, which is provided with an enlargement 7 a at its exit end. This enlargement is schematically shown as a simple cone.
  • The opposing ends of cooled channel part 7 and gas guiding channel 18 are provided with compensator holders 20 and 21 between which a ring compensator 22 extends so that the sliding point 19 is gas-tight with respect to the hot hot-gas exiting from the quench tube. In the connection path 2 in the area of the pressure mantle 12 there is provided a further sliding point 23 between two portions S1 and S2 of the gas-guiding channel 18, the portion S1 having an enlargement at its exit end. The sliding point 23 corresponds in its design to the sliding point 19.
  • Between the exit end of the gas guiding channel 18 situated in the gas cooler 3 and the entrance to the gas guiding mantle 15 there is provided a further sliding point 24 which differs in design from the sliding points 19 and 23 in that the enlargement 15 a, as seen in the direction of gas flow, is not disposed at the exit end of the gas guiding channel 18 but at the entrance end of the guiding mantle 15. The sliding point 15 corresponds in its design to the sliding point 24.
  • It is possible to dispose the enlargement for the sliding points 19 and 23 also at the other gas-guiding element. Equally, at the sliding points 16 and 24 the enlargement can be provided at the downstream entrance end of the gas guiding section.
  • As shown in FIG. 1, the gasification reactor 5, the cooled channel part 7, the gas guiding channel 18, the gas guiding mantle 15 and the gas guiding mantle 17 are surrounded by an annulus 25 defined by the pressure container 4, the pressure mantle 12 and the pressure container 13. This annulus is confined on the one hand by the annular barrier 10 in the gasifier unit 1 and is subdivided by an annular barrier 26, which is situated between the sliding point 24 and the upper heating surface 14, into two partial annulus 25 a and 25 b.
  • Since the sliding points 19, 23, and 24 are gas-tight with respect to the dust-loaded hot-gases guided within the gas interior, in regular operation no dust-loaded hot-gas can enter the annulus 25 a.
  • For pressure compensation between the gas interior of gasification reactor 1, cooled channel part 7, and gas guiding channel 18, the annulus 25 a is charged with quench gas Q which exits via exit openings 27 from the quench gas supply unit 6 into the annulus 25 a. The geometry of the exit openings 27 is selected in correspondence with the pressures such that the pressure in annulus 25 a is equal to or somewhat higher than the gas pressure of the hot-gas in the gas interior. Since the quench gas enters the annulus with a substantially lower temperature (e.g. 250° C.) than the temperature of the hot-gases in the gas-guiding channel 18 (e.g. 900° C.) a critical heating up of the respective pressure walls cannot take place. Since the quench gas is free of dust, dust settlement cannot occur.
  • The annulus 25 b downstream of the annular barrier 26 is charged backwards and upwards by the already partly cooled down hot-gas exiting the lower end of the gas guiding mantle 17 which is cooled down e.g. to 300-250° C.
  • Since the annulus 25 b is charged with still dust-loaded but substantially cooler gas, secondary flows due to rising and subsequently cooling down hot-gas streams cannot occur.
  • As shown in FIG. 1 in broken lines the pressure mantle 12 can have an enlargement 12 a, which allows entering the sliding point 23 via an entrance opening 12 b for inspection purposes.
  • It is also possible to dispose the annular barrier 26 downstream of one of the heating surfaces 14 and thus to enlarge the annulus 25 a. It is also conceivable to dispose the annular barrier 26 above the sliding point 24.
  • The embodiment of FIG. 2 differs from the embodiment of FIG. 1 in that the connection path between the gasifier 1 and the gas cooler 3 is not rising, but falling. The two general designs according to FIGS. 1 and 2 with rising or falling connection path 12 are also known from the FIGS. 1 and 2 of U.S. Pat. No. 4,859,214. Also in the embodiment of FIG. 2 an enlargement 12 a can be provided for. Other connection paths are also possible, for instance horizontal or curved paths.
  • Thus, in both embodiments the annulus 25 confined between the components and the pressure walls is not charged with hot-gas exiting from the quench tube at any point but with cold gas, i.e. on the one hand in form of the quench gas Q and on the other hand with already cooled down hot-gas. The charged spaces are separated by a barrier from one another in order to avoid a short-circuit between quench gas and cooled-down hot-gas. The position of the annular barrier, as seen in the direction of flow of the hot-gas, can be variable.
  • FIG. 3 shows the quench supply unit 6 in more detail. The quench supply unit is an modified quench supply unit as described in FIGS. 3 and 3 a of U.S. Pat. No. 4,859,213. The modification lies in that openings 27 are added through which quench gas can enter the annular space 25. FIG. 3 also shows part of the membrane wall 45 of cooled channel 5, 7, openings 53 to supply quench gas into the cooled channel 5, 7 and part of the supply conduit 9.

Claims (8)

1. A method for gasification of a solid carboneous feed, wherein said gasification is performed in an elongated gasification reactor vessel comprising: a gasifier unit;
a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor; and,
means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein to an annular space between the reactor vessel wall and the cooled channel a dust-free gas is supplied at a rate sufficient to ensure that no dust-loaded hot gas will flow from the cooled channel to said annular space.
2. The method of claim 1, wherein the pressure in the annular space is equal or higher than the pressure in the cooled channel.
3. The method of claim 2, wherein the temperature of the dust-free gas is between 200 and 350° C.
4. The method of claim 3, wherein the dust-free gas is part of the gaseous product of the gasifier unit from which dust has been removed downstream said gasification reactor.
5. The method of claim 4, wherein the dust-free gas is part of the quench gas.
6. The method of claim 5, wherein the means to supply quench gas is provided with gas discharge openings to supply quench gas to the cooled channel and gas discharge openings to supply quench gas to the annular space.
7. An elongated gasification reactor vessel comprising:
a gasifier unit;
a co-axial positioned cooled channel through which the dust-loaded hot-gaseous product of the gasifier unit is discharged from the reactor; and,
means to supply a quench gas to the dust-loaded hot gaseous product at a position downstream of said gasifier unit, wherein also means to supply a dust-free gas to an annular space between the reactor vessel wall and the cooled channel is present
8. The reactor of claim 7, wherein the means to supply quench gas is provided with gas discharge openings to supply quench gas to the cooled channel and gas discharge openings to supply quench gas to the annular space.
US10/520,400 2002-07-02 2002-07-02 Method for gasification of a solid carbonaceous feed and a reactor for use in such a method Abandoned US20060076272A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/007365 WO2004005438A1 (en) 2002-07-02 2002-07-02 Method for gasification of a solid carbonaceous feed and a reactor for use in such a method

Publications (1)

Publication Number Publication Date
US20060076272A1 true US20060076272A1 (en) 2006-04-13

Family

ID=30011032

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/520,400 Abandoned US20060076272A1 (en) 2002-07-02 2002-07-02 Method for gasification of a solid carbonaceous feed and a reactor for use in such a method

Country Status (7)

Country Link
US (1) US20060076272A1 (en)
EP (1) EP1532229A1 (en)
JP (1) JP2005531673A (en)
CN (1) CN1639306A (en)
AU (1) AU2002368080A1 (en)
GB (1) GB2405603A (en)
WO (1) WO2004005438A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260191A1 (en) * 2005-05-02 2006-11-23 Van Den Berg Robert E Method and system for producing synthesis gas, gasification reactor, and gasification system
EP1860063A1 (en) * 2006-05-22 2007-11-28 Shell Internationale Researchmaatschappij B.V. Process for preparing a paraffin product
US20080172941A1 (en) * 2006-12-01 2008-07-24 Jancker Steffen Gasification reactor
US20100101609A1 (en) * 2008-09-01 2010-04-29 Baker Mathew Self cleaning nozzle arrangement
US20100140817A1 (en) * 2008-12-04 2010-06-10 Harteveld Wouter Koen Vessel for cooling syngas
US20100155669A1 (en) * 2008-12-24 2010-06-24 Conocophillips Company Tar-free gasification system and process
WO2010094797A2 (en) 2009-02-23 2010-08-26 Shell Internationale Research Maatschappij B.V. Waste heat boiler
WO2013098412A1 (en) 2011-12-30 2013-07-04 Shell Internationale Research Maatschappij B.V. Process for preparing a paraffin product
US9528049B2 (en) 2012-12-28 2016-12-27 Shell Oil Company Process for preparing a paraffin product

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814966B1 (en) * 2004-11-22 2019-04-10 Air Products and Chemicals, Inc. Apparatus for gasifying a fuel
US20070082031A1 (en) 2005-10-08 2007-04-12 Hermann Lotter L-lysine-containing feed additives
CN101432400B (en) * 2006-05-01 2012-11-14 国际壳牌研究有限公司 Gasification reactor and its use
AU2007245732B2 (en) * 2006-05-01 2010-07-01 Air Products And Chemicals, Inc. Gasification reactor and its use
CN101200650B (en) 2006-11-01 2012-01-18 国际壳牌研究有限公司 Method of solid carbonaceous feed to liquid process
EP1918352B1 (en) 2006-11-01 2009-12-09 Shell Internationale Researchmaatschappij B.V. Solid carbonaceous feed to liquid process
WO2008125556A1 (en) 2007-04-11 2008-10-23 Shell Internationale Research Maatschappij B.V. Process for operating a partial oxidation process of a solid carbonaceous feed
KR101547865B1 (en) 2007-09-04 2015-08-27 쉘 인터내셔날 리써취 마트샤피지 비.브이. Quenching vessel
JP5527742B2 (en) 2007-09-04 2014-06-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Injection nozzle manifold and method for quenching hot gas by using the same
AU2008327916B2 (en) 2007-11-20 2011-07-28 Shell Internationale Research Maatschappij B.V. Process for producing a purified synthesis gas stream
WO2010040763A2 (en) 2008-10-08 2010-04-15 Shell Internationale Research Maatschappij B.V. Process to prepare a gas mixture of hydrogen and carbon monoxide
AU2009331847B2 (en) 2008-12-22 2012-06-07 Air Products And Chemicals, Inc. Process to prepare methanol and/or dimethylether
EP2226376A1 (en) * 2009-03-04 2010-09-08 Shell Internationale Research Maatschappij B.V. Configuration for gasification and quenching
US9039790B2 (en) 2010-12-15 2015-05-26 Uop Llc Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels
US9193926B2 (en) 2010-12-15 2015-11-24 Uop Llc Fuel compositions and methods based on biomass pyrolysis
CN102329189B (en) * 2011-06-14 2013-12-25 清华大学 Method and device for quenching and heat recovery in partial oxidation process of natural gas
CN103820169B (en) * 2014-03-11 2015-08-19 上海锅炉厂有限公司 A kind of combined type height temperature rough gas cooling purifying device and method
CN207175879U (en) * 2016-06-12 2018-04-03 国际壳牌研究有限公司 Gasification system
CN107099337A (en) * 2017-05-08 2017-08-29 哈尔滨工业大学 A kind of U-shaped coal gasification reaction device and the technique for carrying out coal gasification using the device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859212A (en) * 1988-09-15 1989-08-22 Iowa State University Research Foundation, Inc. Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102963C1 (en) * 2001-01-23 2002-01-03 Bbp Environment Gmbh Equalizing pressure between inside of hot gas guiding channel and annular chamber in coal gasifier comprises forming sliding site gas-tight with respect to hot gas fed into hot gas guiding channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859212A (en) * 1988-09-15 1989-08-22 Iowa State University Research Foundation, Inc. Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260191A1 (en) * 2005-05-02 2006-11-23 Van Den Berg Robert E Method and system for producing synthesis gas, gasification reactor, and gasification system
US8685119B2 (en) * 2005-05-02 2014-04-01 Shell Oil Company Method and system for producing synthesis gas, gasification reactor, and gasification system
EP1860063A1 (en) * 2006-05-22 2007-11-28 Shell Internationale Researchmaatschappij B.V. Process for preparing a paraffin product
US20080172941A1 (en) * 2006-12-01 2008-07-24 Jancker Steffen Gasification reactor
US9051522B2 (en) 2006-12-01 2015-06-09 Shell Oil Company Gasification reactor
US8490635B2 (en) 2008-09-01 2013-07-23 Shell Oil Company Self cleaning nozzle arrangement
US20100101609A1 (en) * 2008-09-01 2010-04-29 Baker Mathew Self cleaning nozzle arrangement
US9261307B2 (en) 2008-09-01 2016-02-16 Shell Oil Company Self cleaning nozzle arrangement
US20100140817A1 (en) * 2008-12-04 2010-06-10 Harteveld Wouter Koen Vessel for cooling syngas
US8960651B2 (en) 2008-12-04 2015-02-24 Shell Oil Company Vessel for cooling syngas
US8252073B2 (en) 2008-12-24 2012-08-28 Phillips 66 Company Tar-free gasification system and process
US20100155669A1 (en) * 2008-12-24 2010-06-24 Conocophillips Company Tar-free gasification system and process
US20120017853A1 (en) * 2009-02-23 2012-01-26 Thomas Paul Von Kossak-Glowczewski Waste heat boiler
CN102325863A (en) * 2009-02-23 2012-01-18 国际壳牌研究有限公司 Waste heat boiler
WO2010094797A2 (en) 2009-02-23 2010-08-26 Shell Internationale Research Maatschappij B.V. Waste heat boiler
WO2013098412A1 (en) 2011-12-30 2013-07-04 Shell Internationale Research Maatschappij B.V. Process for preparing a paraffin product
US9096479B2 (en) 2011-12-30 2015-08-04 Shell Oil Company Process for preparing a paraffin product
US9528049B2 (en) 2012-12-28 2016-12-27 Shell Oil Company Process for preparing a paraffin product

Also Published As

Publication number Publication date
WO2004005438A1 (en) 2004-01-15
GB0428282D0 (en) 2005-01-26
AU2002368080A1 (en) 2004-01-23
JP2005531673A (en) 2005-10-20
GB2405603A (en) 2005-03-09
EP1532229A1 (en) 2005-05-25
CN1639306A (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US20060076272A1 (en) Method for gasification of a solid carbonaceous feed and a reactor for use in such a method
EP0973847B1 (en) Synthesis gas generator with combustion and quench chambers
CA2613955C (en) Entrained flow reactor for gasifying solid and liquid energy sources
US7846226B2 (en) Apparatus for cooling and scrubbing a flow of syngas and method of assembling
AU2006222680B2 (en) Method and apparatus for cooling hot gases and fluidized slag in entrained flow gasification
US8317885B2 (en) Apparatus for gasifying fuel with a dripper edge and heat shield
JP6122793B2 (en) Upright gasifier
US4707163A (en) Gasification of coal dust
CN1022924C (en) Equipment for producing gas from crumb carbonaceous matter
US8960651B2 (en) Vessel for cooling syngas
US8769964B2 (en) System and method for cooling syngas produced from a gasifier
CN104449869B (en) Combined quenching and cleaning system for entrained flow gasification reactor
CN104650984B (en) System and method for gasifying and cooling syngas
US10131857B2 (en) Gasification quench system
US20120189499A1 (en) Gasification reactor for production of crude gas containing co or h2
WO2013167340A1 (en) Gas draw for a gasification reactor
US20180371341A1 (en) Gasification system and process
AU2011301418C1 (en) Method for generating synthesis gas
US10131856B2 (en) Gasification quench system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STIL, JACOB HENDRIK;REEL/FRAME:017075/0941

Effective date: 20030212

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION