US20060065430A1 - Electrical cable having a surface with reduced coefficient of friction - Google Patents

Electrical cable having a surface with reduced coefficient of friction Download PDF

Info

Publication number
US20060065430A1
US20060065430A1 US11120487 US12048705A US2006065430A1 US 20060065430 A1 US20060065430 A1 US 20060065430A1 US 11120487 US11120487 US 11120487 US 12048705 A US12048705 A US 12048705A US 2006065430 A1 US2006065430 A1 US 2006065430A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
material
plastic material
method
lubricating material
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11120487
Inventor
Randy Kummer
David Reece
Mark Dixon
John Carlson
Hai Lam
Philip Sasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwire Co
Original Assignee
Kummer Randy D
David Reece
Dixon Mark D
Carlson John R
Hai Lam
Philip Sasse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/02Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts or for coating articles
    • B29C47/025Coating non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/0009Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the articles
    • B29C47/0016Rod-shaped articles
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • H01B3/465Silicone oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/08Component parts, details or accessories; Auxiliary operations
    • B29C47/12Extrusion nozzles or dies
    • B29C47/20Extrusion nozzles or dies with annular opening, e.g. for tubular articles
    • B29C47/28Cross-head annular extrusion nozzles

Abstract

The present invention includes a cable having reduced surface friction and the method of manufacture thereof including steps in which a conductor wire is coated with a first plastic material and with a mixture of a second plastic material and lubricating material and the coated conductor wire cooled. The cable includes at least one conductor core and at least two coatings of plastic material and incorporates a lubricating material in and/or on the outer layer of plastic material. The equipment for the manufacturing of the electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to tanks containing plastic material and lubricating material for coating the conducting wire, and a reel for taking up the cable.

Description

  • This application claims the benefit of priority of Provisional U.S. Pat. Application No. 60/587,584 filed Jul. 13, 2004, and U.S. patent application Ser. No. 10/952,294, filed Sep. 28, 2004 which are herein incorporated by reference.
  • The present invention relates to an electrical cable and to a method of and equipment for reducing its coefficient of friction.
  • BACKGROUND OF THE INVENTION
  • Electrical cables which include at least one conductor core and at least one coating are well known.
  • Such cables present the disadvantage that their exterior surface has a high coefficient of friction, so that they are awkward to fit in internal sections of walls and ceilings or conduits, since when they come into contact with the surfaces they become stuck or difficult to pull, etc.
  • In order to overcome said difficulty, alternative materials such as vaselines and the like have been used to coat the exterior surface of the cable, thereby reducing the coefficient of friction.
  • In a complementary manner, guides of small diameter are sometimes used, one end of which is inserted through the cavity through which the cable has to pass and the other is attached to the end of the cable which must be inserted into the cavity. Thus, once the guide has emerged at the desired place it is pulled until the end of the cable appears again after having passed through the entire section.
  • In numerous fields of application, and in particular telecommunications, electric or fiber optic cables are inserted into ducts. There is therefore a need to minimize the coefficient of friction between cables and the inside walls of ducts.
  • In one solution, the core of the cable passes via a first extruder which applies a conventional sheath thereto i.e., a jacket and/or insulation, often made of polyethylene. The sheathed core then passes through a second extruder which applies a lubricant layer thereto, such as an alloy of silicone resin and polyethylene. The cable lubricated in that way then passes in conventional manner through a cooling vessel.
  • A second solution provides for an extruder to cover the core of a cable with a sheath. At the outlet from that extruder there is disposed a coating chamber for applying granules of material to the still-hot sheath, which granules are designed to become detached when the cable is inserted in a duct. Finally, the coated cable passes through a cooling vessel.
  • In both of these two prior solutions, it is necessary to interpose additional equipment between the extruder and the cooling vessel. That gives rise to a major alteration of the manufacturing line.
  • In addition, the equipment for depositing the lubricant must be very close to the sheath extrusion head since otherwise it is not possible to control the thickness of the sheath properly. In any event, the additional equipment occupies non-negligible space and such an arrangement is not favorable for control over the dimensions of the sheath.
  • Whatever the prior art method used, the manufacture and/or installation of said cables involves a considerable loss of time and an economic cost, since alternative materials are required.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • The present invention thus seeks to provide a method for making a cable having a surface with reduced coefficient of friction that does not significantly alter the geometrical characteristics of the cable and the cable so produced.
  • The invention thus provides a method for incorporating a lubricant in the sheath of a cable, the sheath being made by means of an extruder and optionally followed by a cooling vessel.
  • In one embodiment of the present invention, the lubricant material is mixed with the sheath material prior to either material being heated.
  • In another embodiment of the invention, the lubricant material is heated and mixed with the sheath material prior to the sheath material being heated.
  • In a further embodiment of the invention, the lubricant material is mixed with the sheath material after both materials have been heated.
  • In yet another embodiment of the invention, the non-heated lubricant material is mixed with heated sheath material.
  • As used herein the term sheath means a jacket and/or insulation applied to the core of a cable.
  • DESCRIPTION OF THE INVENTION
  • With the method and cable of the invention said disadvantages can be solved, while providing other advantages which will be described below.
  • The method for the manufacture of electrical cables is characterized in that it includes a step in which a lubricating material is mixed with the sheath material and this mixture is applied to the core of the cable.
  • A cable with low coefficient of friction is achieved thereby, so that subsequent installation of the same is considerably simplified, since it slides over the surfaces with which it comes into contact.
  • The step of mixing the lubricating material and the sheath material may be carried out with the lubricating material heated or not and the sheath material heated or not.
  • The sheath material normally is introduced in pellet form to an extruder which heats and directs the sheath material onto the cable or conductor core. The present invention includes the embodiment of incorporating the lubricating material into the sheath pellets during the formation of the sheath pellets and introducing this mixture of sheath pellets and lubricant material into an extruder, the embodiment of mixing the lubricant material with the sheath pellets and the embodiment of introducing this mixture into the extruder, and introducing the sheath pellets into the extruder and subsequently introducing the lubricating material into the extruder prior to contacting the cable core.
  • Advantageously, the lubricant material is selected from the group consisting essentially of fatty amides, hydrocarbon oils, fluorinated organic resins, and mixtures thereof. The lubricant material may be incorporated at any point in the manufacturing process before the formation of the sheath, and depending upon the material, may be heated prior to mixing with the sheath material.
  • In instances where the sheath material has a high melting or softening temperature, or for other reasons such as processibility, efficiency of the process, etc. the lubricant material may be added to the sheath material as the sheath material is being formed. If the final cable construction is such that there are two or more different sheath materials applied to the cable core, the lubricant material need only be incorporated into the outermost sheath material.
  • Advantageous fatty amides and metallic fatty acids include, but are not limited to erucamide, oleamide, oleyl palmitamide, stearyl stearamide, stearamide, behenamide, ethylene bisstearamide, ethylene bisoleamide, stearyl erucamide, erucyl stearamide, and the like. Advantageous hydrocarbon oils include, but are not limited to, mineral oil, silicone oil, and the like. Lubricating materials suitable for the present invention further include plasticizers, dibasic esters, silicones, anti-static amines, organic amines, ethanolamides, mono- and di-glyceride fatty amines, ethoxylated fatty amines, fatty acids, zinc stearate, stearic acids, palmitic acids, calcium stearate, lead stearate, sulfates such as zinc sulfate, etc., and the like. The above lubricating materials may be used individually or in combination.
  • The electrical cable is characterized in that it incorporates a lubricating material in the sheath coating, which lubricating material blooms, migrates toward the exterior, or permeates the cable sheath. If desired the sheath material may be somewhat porous, thereby resulting in the lubricating material more readily migrating toward the exterior surface of the sheath.
  • The sheath of the cable thus contains sufficient lubricating material to provide an exterior surface with reduced coefficient of friction.
  • The equipment for the manufacturing of electrical cables is characterized in that it may include a device for the incorporation of a lubricating material into the sheath material prior to application to the cable core.
  • Said equipment may also include a tank to maintain the lubricating material, a section for mixing the lubricating material and sheath material and a section for applying the mixture to the cable core.
  • Moreover, the equipment may also include a pressure adjusting valve(s), a level indicator(s) of the lubricating material tank and sheath material tanks, and a pressure gauge(s).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, a drawing is attached in which, schematically and by way of example, an embodiment is shown.
  • In said drawing,
  • FIG. 1 is a schematic elevation view of equipment for manufacturing electrical cable, according to the method of the present invention.
  • FIG. 2 is a section view of a THHN cable of the present invention.
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • THHN or THWN-2 conductors are 600 volt copper conductors with a thermoplastic insulation/nylon sheath and are heat, moisture, oil, and gasoline resistant. AWG sizes usually range from 14 through 6. THHN conductors are primarily used in conduit and cable trays for services, feeders, and branch circuits in commercial or industrial applications as specified in the National Electrical Code. Type THHN is suitable for use in dry locations at temperatures not to exceed 90° C. Type THWN-2 is suitable for use in wet or dry locations at temperatures not to exceed 90° C. or not to exceed 75° C. when exposed to oil or coolant. Type MTW is suitable for use in wet locations or when exposed to oil or coolant at temperatures not to exceed 60° C. or dry locations at temperatures not to exceed 90° C. Type THHN, THWN-2, and MTW copper conductors are usually annealed (soft) copper, insulated with a tough, heat and moisture resistant polyvinylchloride (PVC), over which a nylon (polyamide) or UL-listed equivalent jacket is applied.
  • As can be appreciated in FIG. 1, the equipment 11 for manufacturing electrical cable 12 of the present invention includes a reel 13 which supplies conductor wire 14 to an extruding head 15, which in turn includes a tank 16 of second plastic material 17; a tank 18 of lubricating material 19 for mixture with plastic material 17 and for application onto the exterior surface of the conductor wire 14; a cooling box 20 for cooling the exterior surface of the plastic material 17—lubricating material 19 mixture which is in a state of fusion or semi-fusion on the conductor wire or cable core 14; and a reel 21 for taking up the resulting cable 12. Advantageously the conductor wire is coated with a first plastic material and this in turn is coated with the second plastic material-lubricating material mixture.
  • As can also be seen in the figures, the tank 18 may include a section 22 through which the lubricating material can pass into tank 16 and be mixed with second plastic material 17 and a section 23 through which lubricating material 19 can be introduced directly into extruding head 15 at a point after second plastic material 17 has been introduced into extruding head 15.
  • The plastic materials include known materials used in electrical wire and cable products such as polyethylene, polypropylene, polyvinylchloride, organic polymeric thermosetting and thermoplastic resins and elastomers, polyolefins, copolymers, vinyls, olefin-vinyl copolymers, polyamides, acrylics, polyesters, fluorocarbons, and the like. Advantageously the THHN cable of the present invention has a layer of polyvinylchloride insulation near or adjacent the conductor with an outer layer of polyamide, preferably nylon, or equivalent outer layer.
  • The present inventive method and the novel cable produced thereby includes the step of coating conductor wire or cable 14 with the mixture of second plastic material 17 and lubricating material 19 and optionally cooling the coated cable formed thereby.
  • Cable 12 is thus obtained with at least one conducting core and an exterior coating, the main characteristic of which is that its coefficient of friction is low, which makes it easier to install since it slips on the surfaces with which it comes into contact.
  • Another beneficial property gained by the present invention is an increased resistance to “burn-through.” “Burn-through,” or “pull-by,” results from friction generated by pulling one cable over another during installation, causing deterioration and eventual destruction to its own jacket as well as the jacket of the other cable. When using a lubricated cable of this invention the number of six-inch-stroke cycles required to produce burn-through was increased from 100 to 300.
  • The present inventive cable may also enhance ease in stripping the jacket from the cable end—termed stripability.
  • A further benefit of the present invention is the reduction of jacket rippling. Jacket rippling results from the friction of the jacket against building materials, causing the jacket material to stretch and bunch. Jacket damage may result. Installation situations, which repeatedly caused jacket rippling in unlubricated cable caused no rippling in lubricated cable jackets.
  • Despite the fact that reference has been made to specific embodiments of the invention, it will be clear to experts in the subject that the cable, the method and the equipment described can be varied and modified in many ways, and that all the details mentioned can be replaced by others which are technically equivalent without departing from the sphere of protection defined by the attached claims.
  • For example, cable 12 on which second plastic material 17 and lubricating material 19 are applied can be of any desired configuration and can be an optical fiber cable or the like.
  • It has been found experimentally that the use of a lubricating material disclosed herein is suitable for providing a considerable reduction of the coefficient of friction of the cable, which means that it is easier to install without adding any external element to it, which is one of the objectives sought in the present invention.
  • EXAMPLE
  • To understand the affects of the jacket lubricant system on the ease of pull variations of the UL (Underwriters Laboratories, Inc.) joist pull test was utilized.
  • The joist pull test outlined in UL 719 Section 23 establishes the integrity of the outer PVC jacket of Type NM-B constructions when subjected to pulling through angled holes drilled through wood blocks.
  • The test apparatus consists of an arrangement of 2″×4″ wood blocks having holes drilled at 15° drilled through the broad face. Four of these blocks are then secured into an frame so that the centerlines of the holes are offset 10″ to create tension in the specimen through the blocks. A coil of NM-B is placed into a cold-box and is conditioned at −20° C. for 24 hours. A section of the cable is fed through corresponding holes in the blocks where the end protruding out of the last block is pulled through at 45° to the horizontal. The cable is then cut off and two other specimens are pulled through from the coil in the cold-box. Specimens that do not exhibit torn or broken jackets and maintain conductor spacing as set fort in the Standard are said to comply.
    Figure US20060065430A1-20060330-P00001
  • Pulling wire through the wood blocks provides a more direct correlation of the amount of force required to pull NM-B in during installation. Because of this relationship, the joist-pull test is initially the basis for which ease of pulling is measured, but a test for quantifying this “ease” into quantifiable data had to be established.
  • A variable-speed device was introduced to pull the cable specimen through the blocks. An electro-mechanical scale was installed between the specimen and the pulling device to provide a readout of the amount of force in the specimen. To create back tension a mass of known weight (5-lbs) was tied to the end of the specimen.
  • Data recorded proved that NM-B constructions having surface lubricates reduced pulling forces.
  • A 12-V constant speed winch having a steel cable and turning sheave was employed; the turning sheave maintains a 45 degree pulling angle and provides a half-speed to slow the rate of the pulling so that more data points could be obtained. Holes were drilled in rafters whereby specimens could be pulled by the winch.
  • It was found using this method that lubricated specimens yielded approximately a 50% reduction in pulling force when compared to standard, non-lubricated NM-B specimens. The results are shown in Tables 1 and 2 wherein the data was recorded at five second intervals.
    Figure US20060065430A1-20060330-P00002
    TABLE 1
    Specimen Description
    Test Pt. Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Control Control Present
    Descr. A1 A2 A3 B1 B2 B3 1 2 Invention
    1st Point 26.8 48.3 37.8 37.4 16.5 41.9 24
    2nd Point 34.6 51.1 35.2 38.1 41.6 42 20.5
    3rd Point 33.7 46.8 32 33 40.2 38.7 20
    4th Point 38.6 49.8 34.7 34.6 41.3 29.5 17.4
    5th Point 33.1 44.8 34.2 32.5 41.3 34.3 20.2
    6th Point 28.6 44.7 32.2 33.2 42.5 35.9 15.8
    7th Point 5.5 51 32.2 33.9 41.1 37 17.2
    8th Point 26.8 49.2 33.9 33 40.9 38.4 17.3
    9th Point 21.9 52.5 32.6 30.6 42.7 37.3 21.9
    Average 30.51 48.69 33.87 34.03 41.45 37.22 19.37
      • AAA—Denotes Outlyers
      • Test in Table 1 performed at a constant speed with winch using ½ speed pulley
      • Test in Table 2 performed on cable with a 5# weight suspended at building entry
      • Std. Prod.
      • Average Present Invention
  • 37.6289 19.37
    TABLE 2
    Specimen Description
    Test Pt. Manufacturer A Manufacturer B Control 1 Control 2 Control 3 Invention A Invention B
    Descr. 14-2 14-2 14-2/12-2 14-2/12-2 14-2/12-2 14-2/12-2 14-2/12-2
    1st Point 34 32.6 50 47.5 40.2 21.5 12.3
    2nd Point 35 35.7 50.6 38.3 37.5 22.9 12.8
    3rd Point 35.5 31.2 46.7 43.2 27.5 29 12.1
    4th Point 37.7 35 44.5 46 36.8 22.4 14.9
    5th Point 40.5 30.6 46.2 39.5 36 23.3 11.9
    6th Point 32.9 28.8 40.9 35.7 41.2 21.1 12.5
    7th Point 44.2 32.4 52.8 37.5 37 21.6 11.7
    8th Point 43 32.4 40.7 27.7 31.7 22.5 11.7
    9th Point 43.4 30.5 40 31.1 19.2 11
    10th Point 40 11.6
    Average 38.62 32.13 45.82 38.50 35.99 22.61 12.25
    14-2/12-2 14-2/12-2 14-2/12-2
    Control Avg. Invention A Invention B
    40.103241 22.61 12.25
  • TABLE 3
    Pulling Data on THHN Cable
    Sample Pulling Force, lbs
    Control Cable 38.5
    Cable + 0.25% additive A 18.1
    Cable + 0.50% additive A 16.0
    Cable + 0.85% additive A 18.5
    Cable + 0.25% additive B 13.2
    Cable + 0.50% additive B 10.3
    Cable + 0.85% additive B  9.6
    Cable + Yellow 77 lube 15.3

    Figure US20060065430A1-20060330-P00003

Claims (33)

  1. 1. A method for the manufacture of an electrical cable including:
    providing an electrical conductor wire;
    providing a first plastic material;
    coating the conductor wire with the first plastic material;
    providing a lubricating material;
    providing a second plastic material;
    mixing the second plastic material and said lubricating material; and
    coating the first plastic coated conductor wire with said mixture of the second plastic material and lubricating material.
  2. 2. The method of claim 1, wherein the first and second plastic material are in the form of pellets.
  3. 3. The method of claim 2, wherein the first plastic material is polyvinylchloride.
  4. 4. The method of claim 2, wherein the second plastic material is a polyamide.
  5. 5. The method of claim 2, wherein the lubricating material is incorporated or mixed with the second plastic material prior to or as the second plastic material is formed into pellets.
  6. 6. The method of claim 1, wherein the lubricating material is introduced to and mixed with the second plastic material prior to coating the conductor wire.
  7. 7. The method of claim 1, wherein the step of coating the conductor wire is accomplished by extruding the mixture of the second plastic material and lubricating material onto the first plastic coated conductor wire.
  8. 8. The method of claim 7, wherein a mixture of the second plastic material and lubricating material is introduced into the extruder.
  9. 9. The method of claim 7, wherein the second plastic material is introduced into the extruder and the lubricating material is subsequently introduced into the extruder.
  10. 10. The method according to claim 1, wherein the lubricating material is selected from the group consisting essentially of fatty amides, hydrocarbon oils, plasticizers, silicone oils and mixtures thereof.
  11. 11. An electrical cable including at least one conductor core and at least one coating of plastic material having a lubricating material incorporated therein.
  12. 12. An apparatus for the manufacture of an electrical cable including a reel for supplying a conductor wire to an extruding head, said extruding head connected to a tank containing plastic material for coating the conducting wire, and a reel for taking up the cable, including a device for providing a lubricating material to the extruding head.
  13. 13. An apparatus for the manufacture of an electrical cable including a reel for supplying a conductor wire to an extruding head, said extruding head connected to a tank containing plastic material for coating the conducting wire, and a reel for taking up the cable, including a device for providing a lubricating material to the tank containing plastic material.
  14. 14. A method for manufacturing an electrical cable, comprising:
    providing an electrical conductor wire;
    providing a first plastic material;
    coating the conductor wire with the first plastic material;
    providing a lubricating material;
    providing a second plastic material;
    mixing the second plastic material and said lubricating material;
    coating the first plastic coated conductor wire with said mixture of the second plastic material and lubricating material wherein the second plastic material has a temperature of at least 85° C.; and
    cooling coated conductor wire.
  15. 15. The method of claim 14, wherein during the coating step, the second plastic material has a temperature of approximately 150 degree C.
  16. 16. The method of claim 14, wherein during the cooling step, the second plastic material and the lubricating material are cooled to approximately 20 degree. C.
  17. 17. The method of claim 14, wherein the lubricating material is selected from the group consisting of fatty amides, hydrocarbon oils, plasticizers, silicone oils and mixtures thereof.
  18. 18. The method of claim 17, wherein the lubricating material comprises oleamide.
  19. 19. The method of claim 17, wherein the lubricating material comprises erucamide.
  20. 20. The method of claim 17, wherein the lubricating material comprises mineral oil.
  21. 21. The method of claim 17, wherein the lubricating material comprises silicone oil.
  22. 22. The method of claim 17, wherein the lubricating material comprises dibasic esters.
  23. 23. The method of claim 17, wherein the lubricating material comprises ethylenebisstearamide.
  24. 24. An electrical cable comprising an electrical conductor wire coated with a first plastic material, said first plastic coated conductor wire coated with a mixture of a second plastic material and a lubricating material.
  25. 25. The electrical cable of claim 24 wherein the first plastic material is polyvinylchloride.
  26. 26. The electrical cable of claim 24, wherein the second plastic material is a polyamide.
  27. 27. The electrical cable of claim 24, wherein the lubricating material is selected from the group consisting essentially of fatty amides, hydrocarbon oils, plasticizers, silicone oils and mixtures thereof.
  28. 28. The electrical cable of claim 27, wherein the lubricating material comprises oleamide.
  29. 29. The electrical cable of claim 27, wherein the lubricating material comprises erucamide.
  30. 30. The electrical cable of claim 27, wherein the lubricating material comprises mineral oil.
  31. 31. The electrical cable of claim 27, wherein the lubricating material comprises silicone oil.
  32. 32. The electrical cable of claim 27, wherein the lubricating material comprises dibasic esters.
  33. 33. The electrical cable of claim 27, wherein the lubricating material comprises ethylenebisstearamide.
US11120487 2004-07-13 2005-05-03 Electrical cable having a surface with reduced coefficient of friction Abandoned US20060065430A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US58758404 true 2004-07-13 2004-07-13
US10952294 US7411129B2 (en) 2004-07-13 2004-09-28 Electrical cable having a surface with reduced coefficient of friction
US11120487 US20060065430A1 (en) 2004-07-13 2005-05-03 Electrical cable having a surface with reduced coefficient of friction

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US11120487 US20060065430A1 (en) 2004-07-13 2005-05-03 Electrical cable having a surface with reduced coefficient of friction
US11135807 US20060249299A1 (en) 2004-07-13 2005-05-24 Electrical cable having a surface with reduced coefficient of friction
US11313596 US20060151196A1 (en) 2004-07-13 2005-12-21 Electrical cable having a surface with reduced coefficient of friction
US11410820 US20060191621A1 (en) 2004-07-13 2006-04-25 Electrical cable having a surface with reduced coefficient of friction
US11411039 US20060251802A1 (en) 2005-05-03 2006-04-25 Electrical cable having a surface with reduced coefficient of friction
US11675441 US7749024B2 (en) 2004-09-28 2007-02-15 Method of manufacturing THHN electrical cable, and resulting product, with reduced required installation pulling force
US11858766 US20080066946A1 (en) 2004-09-28 2007-09-20 Electrical Cable Having a Surface With Reduced Coefficient of Friction
US12787877 US8043119B2 (en) 2004-09-28 2010-05-26 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US13274052 US8382518B2 (en) 2004-09-28 2011-10-14 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US13774677 US8616918B2 (en) 2004-09-28 2013-02-22 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US14144150 US9142336B2 (en) 2004-09-28 2013-12-30 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US14858872 US20160012945A1 (en) 2005-05-03 2015-09-18 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US15068150 US9431152B2 (en) 2004-09-28 2016-03-11 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US15590881 US20170243674A1 (en) 2004-09-28 2017-05-09 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US16015716 US20180301241A1 (en) 2004-09-28 2018-06-22 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US16015688 US20180301240A1 (en) 2004-09-28 2018-06-22 Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10952294 Continuation-In-Part US7411129B2 (en) 2004-07-13 2004-09-28 Electrical cable having a surface with reduced coefficient of friction

Related Child Applications (7)

Application Number Title Priority Date Filing Date
US10952294 Continuation-In-Part US7411129B2 (en) 2004-07-13 2004-09-28 Electrical cable having a surface with reduced coefficient of friction
US11135986 Continuation-In-Part US20060065428A1 (en) 2004-07-13 2005-05-24 Electrical cable having a surface with reduced coefficient of friction
US11135807 Continuation-In-Part US20060249299A1 (en) 2004-07-13 2005-05-24 Electrical cable having a surface with reduced coefficient of friction
US11411039 Division US20060251802A1 (en) 2004-07-13 2006-04-25 Electrical cable having a surface with reduced coefficient of friction
US11410820 Continuation-In-Part US20060191621A1 (en) 2004-07-13 2006-04-25 Electrical cable having a surface with reduced coefficient of friction
US11675441 Continuation-In-Part US7749024B2 (en) 2004-07-13 2007-02-15 Method of manufacturing THHN electrical cable, and resulting product, with reduced required installation pulling force
US11858766 Continuation-In-Part US20080066946A1 (en) 2004-07-13 2007-09-20 Electrical Cable Having a Surface With Reduced Coefficient of Friction

Publications (1)

Publication Number Publication Date
US20060065430A1 true true US20060065430A1 (en) 2006-03-30

Family

ID=35839550

Family Applications (2)

Application Number Title Priority Date Filing Date
US10952294 Active 2024-12-15 US7411129B2 (en) 2004-07-13 2004-09-28 Electrical cable having a surface with reduced coefficient of friction
US11120487 Abandoned US20060065430A1 (en) 2004-07-13 2005-05-03 Electrical cable having a surface with reduced coefficient of friction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10952294 Active 2024-12-15 US7411129B2 (en) 2004-07-13 2004-09-28 Electrical cable having a surface with reduced coefficient of friction

Country Status (3)

Country Link
US (2) US7411129B2 (en)
CA (1) CA2614485C (en)
WO (1) WO2006016895B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000784A1 (en) * 2004-09-28 2010-01-07 Southwire Company Method of manufacturing electrical cable having reduced required force for installation
US20100236811A1 (en) * 2009-03-18 2010-09-23 Southwire Company Electrical Cable Having Crosslinked Insulation With Internal Pulling Lubricant
US20110297418A1 (en) * 2010-06-02 2011-12-08 Richard Temblador Flexible cable with structurally enhanced conductors
US9142336B2 (en) 2004-09-28 2015-09-22 Southwire Company, Llc Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US9200234B1 (en) 2009-10-21 2015-12-01 Encore Wire Corporation System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
US9312047B2 (en) 2012-06-22 2016-04-12 Honeywell International Inc. Method and compositions for producing polymer blends
US9352371B1 (en) 2012-02-13 2016-05-31 Encore Wire Corporation Method of manufacture of electrical wire and cable having a reduced coefficient of friction and required pulling force
US9431152B2 (en) 2004-09-28 2016-08-30 Southwire Company, Llc Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US10056742B1 (en) 2013-03-15 2018-08-21 Encore Wire Corporation System, method and apparatus for spray-on application of a wire pulling lubricant

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638963B1 (en) * 2004-09-01 2006-10-25 엘에스전선 주식회사 Tube for air blown installation and tube cable using the same
US7129415B1 (en) * 2005-10-11 2006-10-31 Southwire Company Non-lead jacket for non-metallic sheathed electrical cable
DE602006000170T2 (en) * 2006-03-15 2008-07-24 Nexans Electrical line
US8047506B2 (en) * 2006-07-17 2011-11-01 Momentive Performance Materials Inc. Cable pulling apparatus and method for pulling thereof
US8800967B2 (en) 2009-03-23 2014-08-12 Southwire Company, Llc Integrated systems facilitating wire and cable installations
DE102010039168A1 (en) 2010-08-10 2012-02-16 Schwering & Hasse Elektrodraht Gmbh Electrical insulation of modified polymers and derived electrical conductor with improved lubricity
US8337734B2 (en) 2010-09-10 2012-12-25 Carefusion 303, Inc. Non-stick medical tubing
RU2483377C1 (en) * 2011-12-26 2013-05-27 Открытое акционерное общество "Каустик" (ОАО "Каустик") Electrically insulating composition
WO2014081629A1 (en) 2012-11-21 2014-05-30 Polyone Designed Structures And Solutions Llc Self-lubricating polymer composition and method of lubricating an article
CN103000302A (en) * 2012-11-26 2013-03-27 晶锋集团股份有限公司 Cable production line capable of enabling printing marks to be clear
CN105122111A (en) 2013-04-17 2015-12-02 陶氏环球技术有限责任公司 Optical module and observation device
JP6289639B2 (en) 2013-12-04 2018-03-07 スリーエム イノベイティブ プロパティズ カンパニー Aqueous low-friction coating for a communication cable
WO2017207649A1 (en) * 2016-06-01 2017-12-07 Leoni Kabel Gmbh Method for producing a cable, cable and use of a material for producing a cable

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685707A (en) * 1950-06-30 1954-08-10 Du Pont Extrusion of tetrafluoroethylene polymer
US3064073A (en) * 1960-07-27 1962-11-13 Du Pont Insulated electrical conductor
US3108981A (en) * 1958-06-18 1963-10-29 Spencer Chem Co Polyethylene compositions
US3877142A (en) * 1970-12-27 1975-04-15 Nippon Denso Co Method of making a rotary electric machine especially suitable for use as a starter for automotive vehicle engines
US4002797A (en) * 1974-03-01 1977-01-11 Siemens Aktiengesellschaft Lubricant for wires with enameled or lacquered insulation
US4274509A (en) * 1978-05-25 1981-06-23 Madison-Kipp Corporation Electrical lubricating apparatus
US4560420A (en) * 1984-06-13 1985-12-24 At&T Technologies, Inc. Method for reducing temperature variations across a semiconductor wafer during heating
US4684214A (en) * 1984-01-04 1987-08-04 Siemens Aktiengesellschaft Cable with a friction reducing outside layer
US4693936A (en) * 1984-05-02 1987-09-15 Essex Group, Inc. Low coefficient of friction magnet wire enamels
US4749059A (en) * 1986-01-17 1988-06-07 American Polywater Corporation Apparatus and method for lubricating cables
US5225635A (en) * 1991-11-08 1993-07-06 Cooper Industries, Inc. Hermetic lead wire
US5614482A (en) * 1995-02-27 1997-03-25 Parker Sales, Inc. Lubricant composition for treatment of non-ferrous metals and process using same
US5733823A (en) * 1995-09-12 1998-03-31 Idemitsu Petrochemical Co., Ltd. Prepreg for printed circuit board and substrate for printed circuit using said prepreg
US5753861A (en) * 1995-02-10 1998-05-19 Minnesota Mining And Manufacturing Covering device
US6146699A (en) * 1997-09-25 2000-11-14 Alcatel Cable covered in solid lubricant
US6159617A (en) * 1995-03-29 2000-12-12 Univation Technologies, Llc Ethylene polymers having superior clarity enhanced toughness, low extractables, and processing ease
US6188026B1 (en) * 1998-04-09 2001-02-13 Pirelli Cable Corporation Pre-lubricated cable and method of manufacture
US20020043391A1 (en) * 2000-08-31 2002-04-18 Kazunori Suzuki Self-lubricating enameled wire
US6416813B1 (en) * 1998-08-19 2002-07-09 Pirelli Cables Y Sistemas, S.A. Method of manufacturing an electrical cable having a reduced coefficient of friction
US6418704B2 (en) * 1999-11-16 2002-07-16 Utilx Corporation Wire rope lubrication
US6461730B1 (en) * 1991-09-20 2002-10-08 Danfoss A/S Lubricant for wire used for forming the stator windings of an electrical refrigerating compressor
US6594717B2 (en) * 2000-03-29 2003-07-15 Intel Corporation Apparatus and method for dedicated interconnection over a shared external bus
US6640533B2 (en) * 1999-11-16 2003-11-04 Utilx Corporation Wire rope lubrication
US6903264B2 (en) * 2001-05-29 2005-06-07 Tokyo Electron Limited Electric wire coated with polyvinyl chloride resin composition and cable

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US544224A (en) * 1895-08-06 Charles helm
US3106981A (en) 1961-04-03 1963-10-15 Metro Mac Inc Electronic driving assurance system
US3555113A (en) * 1968-05-21 1971-01-12 Westinghouse Electric Corp Blends of polymeric amide-imide-ester wire enamels and conductors insulated therewith
JPS5221193B2 (en) * 1971-12-17 1977-06-08
BE793768A (en) * 1972-01-08 1973-07-09 Philips Nv intended safety device has a device used for fluoroscopic examination and equipped with a tilting tray patient
US3852875A (en) * 1973-01-05 1974-12-10 Southwire Co High speed tandem wire drawing and insulation system
US4057956A (en) 1976-03-17 1977-11-15 Tolle Russell W Rubber covered cable
US4137623A (en) * 1978-04-07 1979-02-06 Taylor Industries, Inc. Method and apparatus for dispensing fluid in a conduit
US4275096A (en) * 1978-04-07 1981-06-23 Taylor Industries, Inc. Method and apparatus for dispensing fluid in a conduit
US4360492A (en) * 1980-11-05 1982-11-23 Southwire Company Method of and apparatus for lubricating cable during continuous dry curing
US4356139A (en) * 1980-12-12 1982-10-26 Southwire Company Method for lubricating cable in a dry curing system
US4569420A (en) * 1982-12-13 1986-02-11 Pickett Wiley J Lubricating method and system for use in cable pulling
US4522733A (en) * 1983-01-31 1985-06-11 American Polywater Corporation Substantially neutral aqueous lubricant
US4806425A (en) * 1985-03-06 1989-02-21 Capital Wire & Cable Corporation Isulated electrical products and processes of forming such products
US4965249A (en) * 1987-10-02 1990-10-23 U.S. Philips Corporation Method of manufacturing a superconducting wire
US5036121A (en) * 1988-09-06 1991-07-30 The B. F. Goodrich Company Flame and smoke retardant cable insulation and jacketing compositions
FR2674364B1 (en) 1991-03-19 1996-02-02 Alcatel Cable Cable has low friction coefficient and method and the cable manufacturing apparatus.
US5634746A (en) * 1992-09-21 1997-06-03 The Boeing Co. Normality control for a tool nose
DE4410456A1 (en) 1994-03-25 1995-09-28 Siemens Ag Manufacture procedure for cable with reduced friction for sheath
EP0690458A3 (en) * 1994-06-27 1997-01-29 Mitsubishi Cable Ind Ltd Insulating composition and formed article thereof
US6270849B1 (en) 1999-08-09 2001-08-07 Ford Global Technologies, Inc. Method of manufacturing a metal and polymeric composite article
JP2004055185A (en) * 2002-07-17 2004-02-19 Shibafu Engineering Corp Enameled wire
US20050180725A1 (en) * 2004-02-12 2005-08-18 Carlson John R. Coupled building wire having a surface with reduced coefficient of friction

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685707A (en) * 1950-06-30 1954-08-10 Du Pont Extrusion of tetrafluoroethylene polymer
US3108981A (en) * 1958-06-18 1963-10-29 Spencer Chem Co Polyethylene compositions
US3064073A (en) * 1960-07-27 1962-11-13 Du Pont Insulated electrical conductor
US3877142A (en) * 1970-12-27 1975-04-15 Nippon Denso Co Method of making a rotary electric machine especially suitable for use as a starter for automotive vehicle engines
US4002797A (en) * 1974-03-01 1977-01-11 Siemens Aktiengesellschaft Lubricant for wires with enameled or lacquered insulation
US4274509A (en) * 1978-05-25 1981-06-23 Madison-Kipp Corporation Electrical lubricating apparatus
US4684214A (en) * 1984-01-04 1987-08-04 Siemens Aktiengesellschaft Cable with a friction reducing outside layer
US4693936A (en) * 1984-05-02 1987-09-15 Essex Group, Inc. Low coefficient of friction magnet wire enamels
US4560420A (en) * 1984-06-13 1985-12-24 At&T Technologies, Inc. Method for reducing temperature variations across a semiconductor wafer during heating
US4749059A (en) * 1986-01-17 1988-06-07 American Polywater Corporation Apparatus and method for lubricating cables
US6461730B1 (en) * 1991-09-20 2002-10-08 Danfoss A/S Lubricant for wire used for forming the stator windings of an electrical refrigerating compressor
US5225635A (en) * 1991-11-08 1993-07-06 Cooper Industries, Inc. Hermetic lead wire
US5753861A (en) * 1995-02-10 1998-05-19 Minnesota Mining And Manufacturing Covering device
US5614482A (en) * 1995-02-27 1997-03-25 Parker Sales, Inc. Lubricant composition for treatment of non-ferrous metals and process using same
US6159617A (en) * 1995-03-29 2000-12-12 Univation Technologies, Llc Ethylene polymers having superior clarity enhanced toughness, low extractables, and processing ease
US5733823A (en) * 1995-09-12 1998-03-31 Idemitsu Petrochemical Co., Ltd. Prepreg for printed circuit board and substrate for printed circuit using said prepreg
US6146699A (en) * 1997-09-25 2000-11-14 Alcatel Cable covered in solid lubricant
US6188026B1 (en) * 1998-04-09 2001-02-13 Pirelli Cable Corporation Pre-lubricated cable and method of manufacture
US6416813B1 (en) * 1998-08-19 2002-07-09 Pirelli Cables Y Sistemas, S.A. Method of manufacturing an electrical cable having a reduced coefficient of friction
US6640533B2 (en) * 1999-11-16 2003-11-04 Utilx Corporation Wire rope lubrication
US6418704B2 (en) * 1999-11-16 2002-07-16 Utilx Corporation Wire rope lubrication
US6474057B2 (en) * 1999-11-16 2002-11-05 Utilx Corporation Wire rope lubrication
US6594717B2 (en) * 2000-03-29 2003-07-15 Intel Corporation Apparatus and method for dedicated interconnection over a shared external bus
US20020043391A1 (en) * 2000-08-31 2002-04-18 Kazunori Suzuki Self-lubricating enameled wire
US6903264B2 (en) * 2001-05-29 2005-06-07 Tokyo Electron Limited Electric wire coated with polyvinyl chloride resin composition and cable

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000784A1 (en) * 2004-09-28 2010-01-07 Southwire Company Method of manufacturing electrical cable having reduced required force for installation
US8701277B2 (en) 2004-09-28 2014-04-22 Southwire Company Method of manufacturing electrical cable
US9142336B2 (en) 2004-09-28 2015-09-22 Southwire Company, Llc Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US9431152B2 (en) 2004-09-28 2016-08-30 Southwire Company, Llc Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
US10023740B2 (en) 2009-03-18 2018-07-17 Southwire Company, Llc Electrical cable having crosslinked insulation with internal pulling lubricant
US20100236811A1 (en) * 2009-03-18 2010-09-23 Southwire Company Electrical Cable Having Crosslinked Insulation With Internal Pulling Lubricant
US8986586B2 (en) 2009-03-18 2015-03-24 Southwire Company, Llc Electrical cable having crosslinked insulation with internal pulling lubricant
US9200234B1 (en) 2009-10-21 2015-12-01 Encore Wire Corporation System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
US10062475B1 (en) 2009-10-21 2018-08-28 Encore Wire Corporation System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
US9458404B1 (en) 2009-10-21 2016-10-04 Encore Wire Corporation System, composition and method of application of same for reducing the coefficient of friction and required pulling force during installation of wire or cable
US20110297418A1 (en) * 2010-06-02 2011-12-08 Richard Temblador Flexible cable with structurally enhanced conductors
US9352371B1 (en) 2012-02-13 2016-05-31 Encore Wire Corporation Method of manufacture of electrical wire and cable having a reduced coefficient of friction and required pulling force
US10102947B1 (en) 2012-02-13 2018-10-16 Encore Wire Corporation Method of manufacture of electrical wire and cable having a reduced coefficient of friction and required pulling force
US9916917B2 (en) 2012-06-22 2018-03-13 Advansix Resins & Chemicals Llc Method and compositions for producing polymer blends
US9312047B2 (en) 2012-06-22 2016-04-12 Honeywell International Inc. Method and compositions for producing polymer blends
US10056742B1 (en) 2013-03-15 2018-08-21 Encore Wire Corporation System, method and apparatus for spray-on application of a wire pulling lubricant

Also Published As

Publication number Publication date Type
US20060065427A1 (en) 2006-03-30 application
US7411129B2 (en) 2008-08-12 grant
CA2614485C (en) 2013-11-26 grant
WO2006016895A1 (en) 2006-02-16 application
CA2614485A1 (en) 2006-02-16 application
WO2006016895B1 (en) 2006-05-04 application

Similar Documents

Publication Publication Date Title
US5651081A (en) Composite fiber optic and electrical cable and associated fabrication method
US5201020A (en) Reinforced protective tube for optical waveguide fibers
US7277615B2 (en) Fiber optic cable having a dry insert and methods of making the same
EP0527266A1 (en) Strippable tight buffered optical fiber
US7225534B2 (en) Telecommunications cable jacket adapted for post-extrusion insertion of optical fiber and methods for manufacturing the same
US4401845A (en) Low smoke and flame spread cable construction
US6701047B1 (en) Fiber optic buffer unit and cables including the same
US4447122A (en) Plastic sheathed cables
US5225635A (en) Hermetic lead wire
US6416813B1 (en) Method of manufacturing an electrical cable having a reduced coefficient of friction
US6114036A (en) Flexible fire retardant multi-layer structures comprising polyolefin and polyamide layers and process for making the same
US6188026B1 (en) Pre-lubricated cable and method of manufacture
US4171123A (en) Conductor pulling device
US3980808A (en) Electric cable
US20040086242A1 (en) Peelable buffer layer having a preferential tear portion and methods of manufacturing the same
US3566009A (en) Fire-resistant electrical cables
WO2006054092A1 (en) Improved cable
US4783579A (en) Flat multi-conductor power cable with two insulating layers
US7049523B2 (en) Separable multi-member composite cable
US3333049A (en) Alkali metal composite electrical conductors
US3433884A (en) Electrical wire structure
US3333037A (en) Process for the production of alkali metal composite electrical conductors
US20060104579A1 (en) Optical fiber cable with fiber receiving jacket ducts
US5333230A (en) Optical-fiber cable incorporated longer-sized subaqueous unit
US6845200B1 (en) Fiber optic assemblies, cable, and manufacturing methods therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOUTHWIRE COMPANY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMMER, RANDY D.;REECE, DAVID;DIXON, MARK D.;AND OTHERS;REEL/FRAME:018608/0868;SIGNING DATES FROM 20061204 TO 20061205