US20060063019A1 - Highly friction resistant and durable bearing coatings for crankshafts and large end bearings - Google Patents

Highly friction resistant and durable bearing coatings for crankshafts and large end bearings Download PDF

Info

Publication number
US20060063019A1
US20060063019A1 US11/203,830 US20383005A US2006063019A1 US 20060063019 A1 US20060063019 A1 US 20060063019A1 US 20383005 A US20383005 A US 20383005A US 2006063019 A1 US2006063019 A1 US 2006063019A1
Authority
US
United States
Prior art keywords
alloy
slide
layer
bearing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/203,830
Inventor
Johann Kraemer
Erwin Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of US20060063019A1 publication Critical patent/US20060063019A1/en
Assigned to DAIMLER CHRYSLER AG reassignment DAIMLER CHRYSLER AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRAEMER, JOHANN, SCHMIDT, ERWIN
Assigned to DAIMLER AG reassignment DAIMLER AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIMLERCHRYSLER AG
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the invention concerns highly friction resistant and durable bearing coatings for crankshafts, connecting-rod bearings and large end bearings, slide bearings, as well as a suitable manufacturing process.
  • the conventional processes for production of the bearings of this generic type involves coating a base material (for example steel or light metal) with a bearing or coating, or to clad the base material with a bearing shell.
  • a base material for example steel or light metal
  • the slide bearings have on their surface a slide layer of a comparatively soft material. This is formed for example using Pb alloys or Al—Sn— alloys.
  • a layer composite material as slide element for bearing shells or bearing bushings in which the materials from the alloy system Cu/Zn/Al or Cu/Al are employed.
  • the slide layer is applied onto the carrier material using a continuous band cast process, in which the carrier material is preheated to a temperature of 1000° C.
  • a slide bearing shell is known with a slide layer applied by electron beam vaporization, which is comprised of a compound material of a matrix phase, preferably of aluminum, and a disperse phase, preferably of Sn, Pb, Bi and/or Sb.
  • WO 9100375 describes a bearing, of which the bearing surface is comprised of a base material, in particular Al, and a disperse phase, in particular Sn.
  • the layer is applied by a sputtering process.
  • a separate bearing layer upon a metal component in particular for crankshafts, connecting-rod bearings and large end bearings, comprised of an alloy with several phases, which form a matrix and a dispersed phase, wherein the dispersed phase exhibits only a low solubility in the metal of the matrix, as well as by a process for producing a bearing layer of an alloy with a microstructure of a metal matrix and dispersed metallic phase.
  • the separate bearing layer is comprised of an alloy, with a microstructure of several metal phases, wherein one phase represents a metal matrix and a further phase represents a metallic phase distributed or dispersed therein.
  • the disperse metal phase exhibits only a low solubility in the metal of the metal matrix.
  • the metal matrix is formed by an Al alloy and the disperse phase by Bi or a high melting Bi alloy.
  • the melting point of the Bi is 271° C., and therewith is significantly higher than that of Sn employed as alloy component in comparable slide bearings or slide layers with a melting point of 232° C.
  • bismuth alloys are characterized by a low melting point, which is below that of both the bismuth as well as that of the other alloy elements.
  • Bismuth is thus typically employed as alloy component for reducing the melting point of an alloy.
  • a bismuth alloy comprised of bismuth, lead, indium, tin and cadmium exhibits a melting point of below 50° C.
  • Other alloys with bismuth are for example Wood metal (bismuth 50%, lead, tin and cadmium) with a melting point of 71° C., or Lichtenberg-metal (bismuth respectively 50% with varying components tin and lead).
  • the inventive alloy of Bi exhibits, in comparison, a substantially higher melting point.
  • the Bi alloys employed have a melting point above 250° C. These include Bi alloys with Sn or Sb in an amount of 3 to 6 wt. %, for example Bi with 4% Sn (melting point: 360° C.) or Bi with 5% Sb (melting point: 296° C.).
  • One substantial advantage of the inventive combination of metal matrix formed of an Al alloy and a dispersed phase of Bi, or a high melting Bi alloy, is attributable to the low solubility of the two metal main components Al and Bi. While in a eutectic alloy a melt or flux simultaneously forms two crystalline phases at the eutectic temperature, in a monotectic system the homogenous flux or melt decomposes at a temperature (the monotectic temperature) into a solid plus a liquid flux with a composition significantly different than that of the starting flux. This second melt or flux remains liquid until substantially below this temperature.
  • Monotectic alloys belong to the class of the immiscible alloys, that means, in the molten liquid condition there is a region of the composition in which the involved components are not miscible. If the inventive bearing layer is formed or, as the case may be, separated, at elevated temperatures and is rapidly cooled, then there forms thus a very fine microstructure with defined dispersed phase of Bi or, as the case may be, Bi alloy.
  • the preferred content of Bi in the alloy or, as the case may be, bearing layer is below 50 wt. %, in particular in the range of 10 to 40 wt. %. It si particularly preferred when the slide layer or, as the case may be, bearing layer, exhibits 10 to 30 wt. % Bi, 0.1 to 5 wt. % Cu with the rest being substantially Al.
  • Further alloy components could include in particular the element Cu, or Mn. Their content preferably lies below 1 wt. %.
  • the particle size of the disperse phase is of significance.
  • the particles of the disperse phase must have a sufficient size in order to be able to exercise their mechanical effect in the slide system, and on the other hand, they may not be so large that a non-homogenous material results.
  • the most preferred particle size of the particles of the disperse phase lies in the range of approximately 50 nm to 1 ⁇ m.
  • the essential component of the Bi or the Bi alloy is so finely distributed that no primary phases can be recognized under a light microscope. Particularly preferred is when these phases are likewise amorphous under X-ray, i.e., not detectable by X-ray diffraction examination.
  • very diverse microstructures can be formed, which are differentiated in particular by the distribution of the Bi within the matrix.
  • very large Bi or Bi alloy exclusions or segregations are formed and, in comparison, if formed by metal organic chemical vapor deposition, they are comparitively very fine.
  • the metallic matrix of the slide layer in a preferred embodiment of the invention, is an Al alloy with copper in an amount of 0.1 to 5, particularly preferably up to 3 wt. %.
  • the content of further low melting alloy components is accordingly kept small.
  • the Sn-content and/or the Pb-content of the Al alloy is below 0.1 wt. %.
  • the slide layer forms, in accordance with the invention, the upper-most metallic layer of a slide bearing.
  • the slide bearing is, as a rule, comprised of multiple material layers.
  • the slide bearing is formed by a base piece of steel, a layer of bearing metal, a thin adhesion promoting layer and the inventive slide layer.
  • the base piece could also be a bearing shell, which is inserted in the bearing, or likewise could be formed by the bearing itself, wherein then the bearing metal is applied directly upon the bearing outer surface.
  • Suitable bearing metals include in particular Cu/Ni—, Cu/Sn/Bi alloys or bronzes.
  • the bearing metal layer preferably has a thickness in the range of 0.1 to 0.5 mm.
  • the adhesion promoting layer is preferably comprised of Ni— or a Ni alloy in a thickness in the range of 0.2 to 5 ⁇ m.
  • a further aspect of the invention concerns preferred processes for producing the described slide bearing layer.
  • Suitable processes include metal-organic chemical vapor deposition, in which the material is deposited in the form of atoms or small atom clusters. These include PVD- or CVD-processes.
  • the material In the separation or depositing from the gas phase, the material is essentially built up without passing through a molten phase.
  • inventive alloy materials can be formed with an exceptionally homogenous microstructure with very fine exclusion zones or precipitates or segregations of dispersed phases.
  • the particularly preferred processes for producing the slide layer include the sputtering process, frequently referred to as cathodic evaporation.
  • cathodic evaporation an electrical field is applied in a vacuum chamber between the substrate to be coated (anode) and the target (cathode) of the layer material. Electrons located in this field are accelerated and collide with argon atoms, which were introduced into the sealed vacuum chamber (recipient), and ionizes these. This shock ionization brings about formation of a plasma. Upon collision of the accelerated Ar-ions on the cathode, atoms or atom clusters are released therefrom and separate onto the substrate (workpiece).
  • Suitable Al/Bi alloys can be employed as sputter target, preferably however multiple sputter targets of various composition are employed, for example, of a bismuth-free Al alloy and of the Bi alloy.
  • the mixing relationship can be adjusted by the size or surface area relationship of the various targets to each other.
  • the different targets are alternatingly employed, so that during the separation atomic tiers or layers of Al alloy and Bi alloy alternate.
  • the thickness of the separated atom tiers, and therewith the homogeneity of the layer can be adjusted and controlled by the sputter times of the various targets.
  • the layer thickness of the inventive slide layer lies typically in the range of a few ⁇ m up to several 100 ⁇ m. Particularly preferred is a layer thickness in the range of 5 to 20 ⁇ m.
  • the layers are separated/deposited upon an adhesive intermediate layer of Ni or a Ni alloy.
  • the sputter processes have the advantage that the formation of a molten phase of the separated off components is substantially avoided and the size of the separated off particles lies essentially in the range of atoms and atom clusters.
  • the separated off particles lie mixed on a quasi-atomic plane.

Abstract

Slide layer for slide bearing, in particular for crankshafts, connecting-rod bearings or large end bearings, comprised of an alloy with several phases, which form a matrix and a dispersed phase, wherein the dispersed phase exhibits only a low solubility in the metal of the matrix, wherein the metal matrix is formed by a Al alloy and the dispersed phase by a Bi or a high melting Bi alloy, as well as slide bearings coated therewith and processes for producing a slide layer by sputter processes.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention concerns highly friction resistant and durable bearing coatings for crankshafts, connecting-rod bearings and large end bearings, slide bearings, as well as a suitable manufacturing process.
  • 2. Related Art of the Invention
  • The conventional processes for production of the bearings of this generic type involves coating a base material (for example steel or light metal) with a bearing or coating, or to clad the base material with a bearing shell.
  • With the development of new generations of automobile motors, the requirements placed on the materials used in the drive assemblies steadily increase. For high power motors in commercial vehicles or passenger vehicles, in the future peak pressures of up to and beyond 250 bar are to be realized in the combustion cylinders in order to improve efficiency, power and exhaust gas quality.
  • The available bearings for the drive assemblies, in particular the bearings for the crankshafts, connecting-rod bearings large end bearings, are no longer capable of meeting the high mechanical and thermal strains resulting therefrom.
  • While previously frequently Pb-containing alloys based on Cu have been used as materials for the slide bearings, these are today, for reasons of environmental protection, increasingly being replaced with alloys free of Pb.
  • Frequently the slide bearings have on their surface a slide layer of a comparatively soft material. This is formed for example using Pb alloys or Al—Sn— alloys.
  • From DE 198 01 074 A1 there is known for example a layer composite material as slide element for bearing shells or bearing bushings, in which the materials from the alloy system Cu/Zn/Al or Cu/Al are employed. The slide layer is applied onto the carrier material using a continuous band cast process, in which the carrier material is preheated to a temperature of 1000° C.
  • From DE 198 24 308 C1 a slide bearing shell is known with a slide layer applied by electron beam vaporization, which is comprised of a compound material of a matrix phase, preferably of aluminum, and a disperse phase, preferably of Sn, Pb, Bi and/or Sb.
  • As slide bearings for high technical requirements, there are also known Al/Cu alloys with Sn content in the range of 17 to 35 wt. %.
  • WO 9100375 describes a bearing, of which the bearing surface is comprised of a base material, in particular Al, and a disperse phase, in particular Sn. The layer is applied by a sputtering process.
  • The known slide bearings and their slide layers cannot exhibit the required long-term stability in the face of these high demands, particularly the combination of high pressure and high temperature, and in the case of dry rubbing conditions do not exhibit the required safety prior to galling or seizing. Particularly with the high demands placed on modern motors a partial short-time loss of oil cooling on the slide surface is not an infrequent operating condition, so that there is a great need for the ability to run while dry.
  • SUMMARY OF THE INVENTION
  • It is thus the task of the invention to provide a bearing coating or slide layer, which exhibits an elevated long time endurance, in particular with respect to elevated pressure and temperature loads, and exhibits a reduced tendency towards galling or seizing.
  • This task is solved in accordance with the invention by a separate bearing layer upon a metal component, in particular for crankshafts, connecting-rod bearings and large end bearings, comprised of an alloy with several phases, which form a matrix and a dispersed phase, wherein the dispersed phase exhibits only a low solubility in the metal of the matrix, as well as by a process for producing a bearing layer of an alloy with a microstructure of a metal matrix and dispersed metallic phase.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The separate bearing layer is comprised of an alloy, with a microstructure of several metal phases, wherein one phase represents a metal matrix and a further phase represents a metallic phase distributed or dispersed therein. The disperse metal phase exhibits only a low solubility in the metal of the metal matrix.
  • In a preferred embodiment of the invention the metal matrix is formed by an Al alloy and the disperse phase by Bi or a high melting Bi alloy.
  • By this combination of materials it is achieved, that on the basis of the low solubility of the Bi in the Al on the one hand a very finely distributed disperse phase is formed and on the other hand the thermal stability of the disperse phase, and therewith the total bearing layer, is significantly elevated by the comparatively high melting point of Bi or, as the case may be, its alloy, in comparison to known comparable bearing layers. Due to the insulation by unmixed interstices in the Al/Bi system the tendency of the dispersed distributed Bi to recrystallize under the influence of temperature is reduced.
  • The melting point of the Bi is 271° C., and therewith is significantly higher than that of Sn employed as alloy component in comparable slide bearings or slide layers with a melting point of 232° C.
  • Conventionally most bismuth alloys are characterized by a low melting point, which is below that of both the bismuth as well as that of the other alloy elements. Bismuth is thus typically employed as alloy component for reducing the melting point of an alloy. A bismuth alloy comprised of bismuth, lead, indium, tin and cadmium exhibits a melting point of below 50° C. Other alloys with bismuth are for example Wood metal (bismuth 50%, lead, tin and cadmium) with a melting point of 71° C., or Lichtenberg-metal (bismuth respectively 50% with varying components tin and lead).
  • The inventive alloy of Bi exhibits, in comparison, a substantially higher melting point. Preferably the Bi alloys employed have a melting point above 250° C. These include Bi alloys with Sn or Sb in an amount of 3 to 6 wt. %, for example Bi with 4% Sn (melting point: 360° C.) or Bi with 5% Sb (melting point: 296° C.).
  • One substantial advantage of the inventive combination of metal matrix formed of an Al alloy and a dispersed phase of Bi, or a high melting Bi alloy, is attributable to the low solubility of the two metal main components Al and Bi. While in a eutectic alloy a melt or flux simultaneously forms two crystalline phases at the eutectic temperature, in a monotectic system the homogenous flux or melt decomposes at a temperature (the monotectic temperature) into a solid plus a liquid flux with a composition significantly different than that of the starting flux. This second melt or flux remains liquid until substantially below this temperature. Monotectic alloys belong to the class of the immiscible alloys, that means, in the molten liquid condition there is a region of the composition in which the involved components are not miscible. If the inventive bearing layer is formed or, as the case may be, separated, at elevated temperatures and is rapidly cooled, then there forms thus a very fine microstructure with defined dispersed phase of Bi or, as the case may be, Bi alloy.
  • In accordance with the invention the preferred content of Bi in the alloy or, as the case may be, bearing layer, is below 50 wt. %, in particular in the range of 10 to 40 wt. %. It si particularly preferred when the slide layer or, as the case may be, bearing layer, exhibits 10 to 30 wt. % Bi, 0.1 to 5 wt. % Cu with the rest being substantially Al.
  • Further alloy components could include in particular the element Cu, or Mn. Their content preferably lies below 1 wt. %.
  • In the formation of the dispersed phase, the particle size of the disperse phase is of significance. On the one hand the particles of the disperse phase must have a sufficient size in order to be able to exercise their mechanical effect in the slide system, and on the other hand, they may not be so large that a non-homogenous material results.
  • The most preferred particle size of the particles of the disperse phase lies in the range of approximately 50 nm to 1 μm. Preferably the essential component of the Bi or the Bi alloy is so finely distributed that no primary phases can be recognized under a light microscope. Particularly preferred is when these phases are likewise amorphous under X-ray, i.e., not detectable by X-ray diffraction examination.
  • Depending upon the manufacturing process of the sliding layer, very diverse microstructures can be formed, which are differentiated in particular by the distribution of the Bi within the matrix. Thus in the case of, for example, melt processes, very large Bi or Bi alloy exclusions or segregations are formed and, in comparison, if formed by metal organic chemical vapor deposition, they are comparitively very fine.
  • The metallic matrix of the slide layer, in a preferred embodiment of the invention, is an Al alloy with copper in an amount of 0.1 to 5, particularly preferably up to 3 wt. %. The content of further low melting alloy components is accordingly kept small.
  • Preferably the Sn-content and/or the Pb-content of the Al alloy is below 0.1 wt. %.
  • The slide layer forms, in accordance with the invention, the upper-most metallic layer of a slide bearing. The slide bearing is, as a rule, comprised of multiple material layers.
  • Preferably the slide bearing is formed by a base piece of steel, a layer of bearing metal, a thin adhesion promoting layer and the inventive slide layer. The base piece could also be a bearing shell, which is inserted in the bearing, or likewise could be formed by the bearing itself, wherein then the bearing metal is applied directly upon the bearing outer surface. Suitable bearing metals include in particular Cu/Ni—, Cu/Sn/Bi alloys or bronzes. The bearing metal layer preferably has a thickness in the range of 0.1 to 0.5 mm. The adhesion promoting layer is preferably comprised of Ni— or a Ni alloy in a thickness in the range of 0.2 to 5 μm.
  • A further aspect of the invention concerns preferred processes for producing the described slide bearing layer. Suitable processes include metal-organic chemical vapor deposition, in which the material is deposited in the form of atoms or small atom clusters. These include PVD- or CVD-processes.
  • In the separation or depositing from the gas phase, the material is essentially built up without passing through a molten phase. Thereby the inventive alloy materials can be formed with an exceptionally homogenous microstructure with very fine exclusion zones or precipitates or segregations of dispersed phases.
  • The particularly preferred processes for producing the slide layer include the sputtering process, frequently referred to as cathodic evaporation. For this, an electrical field is applied in a vacuum chamber between the substrate to be coated (anode) and the target (cathode) of the layer material. Electrons located in this field are accelerated and collide with argon atoms, which were introduced into the sealed vacuum chamber (recipient), and ionizes these. This shock ionization brings about formation of a plasma. Upon collision of the accelerated Ar-ions on the cathode, atoms or atom clusters are released therefrom and separate onto the substrate (workpiece).
  • Suitable Al/Bi alloys can be employed as sputter target, preferably however multiple sputter targets of various composition are employed, for example, of a bismuth-free Al alloy and of the Bi alloy. The mixing relationship can be adjusted by the size or surface area relationship of the various targets to each other. The different targets are alternatingly employed, so that during the separation atomic tiers or layers of Al alloy and Bi alloy alternate. The thickness of the separated atom tiers, and therewith the homogeneity of the layer, can be adjusted and controlled by the sputter times of the various targets.
  • The layer thickness of the inventive slide layer lies typically in the range of a few μm up to several 100 μm. Particularly preferred is a layer thickness in the range of 5 to 20 μm.
  • In a preferred embodiment of the invention the layers are separated/deposited upon an adhesive intermediate layer of Ni or a Ni alloy.
  • The sputter processes have the advantage that the formation of a molten phase of the separated off components is substantially avoided and the size of the separated off particles lies essentially in the range of atoms and atom clusters. The separated off particles lie mixed on a quasi-atomic plane.

Claims (9)

1. A slide layer for a slide bearing, in particular for crankshafts, connecting-rod bearings and large end bearings, of an alloy with several phases, which form a matrix and a dispersed phase, wherein
the dispersed phase exhibits only a small solubility in the metal of the matrix,
the matrix metal is an Al alloy,
the dispersed phase is Bi or a high melting Bi alloy, and
the Bi or the Bi alloy exists so finely distributed or divided, that it is amorphous under X-ray or the primary phases are not recognizable under a light microscope.
2. The slide layer according to claim 1, wherein the Bi content in the total slide layer is 10 to 40 wt. %.
3. The slide layer according to one of the preceding claims, wherein the melting point of the Bi alloy is above 250° C.
4. The slide layer according to one of the preceding claims, wherein the Bi alloy includes Sn or Sb in an amount of 3 to 6 wt. %.
5. The slide layer according to one of the preceding claims, wherein the Al alloy includes copper in an amount of 0.1 to 5 wt. %.
6. The slide layer according to one of the preceding claims, wherein the Sn content of the Al alloy lies below 0.1 wt. %.
7. The slide layer according to one of the preceding claims, wherein the Pb content of the Al alloy lies below 0.1 wt. %.
8. A slide bearing with a base material of steel, a layer of bearing metal, a thin adhesion promoting layer, and a slide layer of an alloy with several phases, which form a matrix and a dispersed phase, wherein
the dispersed phase exhibits only a small solubility in the metal of the matrix,
the matrix metal is an Al alloy,
the dispersed phase is Bi or a high melting Bi alloy, and
the Bi or the Bi alloy exists so finely distributed or divided, that it is amorphous under X-ray or the primary phases are not recognizable under a light microscope.
9. The slide bearing according to claim 8, wherein the bearing metal is Cu/Ni—, Cu/Sn/Bi alloys or bronzes; the adhesion promoting layer is Ni— or Ni alloys; and the slide layer is an Al alloy with 10-40 wt. % Bi.
US11/203,830 2004-09-17 2005-08-15 Highly friction resistant and durable bearing coatings for crankshafts and large end bearings Abandoned US20060063019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045110A DE102004045110B3 (en) 2004-09-17 2004-09-17 Highly wear-resistant and durable bearing coating for crankshaft and connecting rod bearings
DE102004045110.9-24 2004-09-17

Publications (1)

Publication Number Publication Date
US20060063019A1 true US20060063019A1 (en) 2006-03-23

Family

ID=34895639

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/203,830 Abandoned US20060063019A1 (en) 2004-09-17 2005-08-15 Highly friction resistant and durable bearing coatings for crankshafts and large end bearings

Country Status (4)

Country Link
US (1) US20060063019A1 (en)
DE (1) DE102004045110B3 (en)
FR (1) FR2875564A1 (en)
GB (1) GB0514922D0 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260445A1 (en) * 2007-10-11 2010-10-14 Walter Gaertner Method for producing a sliding bearing element having a bismuth-containing sliding layer
US20120114971A1 (en) * 2007-01-05 2012-05-10 Gerd Andler Wear resistant lead free alloy sliding element method of making
US9657777B2 (en) 2007-01-05 2017-05-23 Federal-Mogul Llc Wear resistant lead free alloy bushing and method of making
CN113550979A (en) * 2021-09-23 2021-10-26 苏州虎伏新材料科技有限公司 Manufacturing process of bimetallic bearing bush and shaft sleeve material, and bimetallic bearing bush and shaft sleeve material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001283A1 (en) 2010-01-27 2011-09-08 Maschinenfabrik Alfing Kessler Gmbh crankshaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562884A (en) * 1968-10-29 1971-02-16 Gen Motors Corp Aluminum-based alloy bearing material and method of making
US4590133A (en) * 1985-02-01 1986-05-20 D.A.B. Industries Bearing material
US5209578A (en) * 1989-07-03 1993-05-11 T & N Technology Limited Bearings having an overlay coating containing dispersed phase of a second material
US5445896A (en) * 1992-09-28 1995-08-29 Daido Metal Company Ltd. Sliding bearing material including overlay having excellent anti-seizure property
US6139191A (en) * 1998-06-02 2000-10-31 Federal-Mogul Wiesbaden Gmbh Half bearing
US6273970B1 (en) * 1998-03-01 2001-08-14 Elecmatec Electro-Magnetic Technologies, Ltd. Aluminum-bismuth bearing alloy and methods for its continuous casting
US20060182375A1 (en) * 2004-11-17 2006-08-17 Johann Kraemer Thermal sprayed bearing shells for connecting rod

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19861160C5 (en) * 1998-01-14 2005-05-25 Federal-Mogul Wiesbaden Gmbh & Co. Kg Laminated material for sliding elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562884A (en) * 1968-10-29 1971-02-16 Gen Motors Corp Aluminum-based alloy bearing material and method of making
US4590133A (en) * 1985-02-01 1986-05-20 D.A.B. Industries Bearing material
US5209578A (en) * 1989-07-03 1993-05-11 T & N Technology Limited Bearings having an overlay coating containing dispersed phase of a second material
US5445896A (en) * 1992-09-28 1995-08-29 Daido Metal Company Ltd. Sliding bearing material including overlay having excellent anti-seizure property
US6273970B1 (en) * 1998-03-01 2001-08-14 Elecmatec Electro-Magnetic Technologies, Ltd. Aluminum-bismuth bearing alloy and methods for its continuous casting
US6139191A (en) * 1998-06-02 2000-10-31 Federal-Mogul Wiesbaden Gmbh Half bearing
US20060182375A1 (en) * 2004-11-17 2006-08-17 Johann Kraemer Thermal sprayed bearing shells for connecting rod

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114971A1 (en) * 2007-01-05 2012-05-10 Gerd Andler Wear resistant lead free alloy sliding element method of making
US9657777B2 (en) 2007-01-05 2017-05-23 Federal-Mogul Llc Wear resistant lead free alloy bushing and method of making
US20100260445A1 (en) * 2007-10-11 2010-10-14 Walter Gaertner Method for producing a sliding bearing element having a bismuth-containing sliding layer
CN101873928A (en) * 2007-10-11 2010-10-27 米巴·格来特来格有限公司 Method for producing a sliding bearing element having a bismuth-containing sliding layer
CN103347629A (en) * 2010-11-17 2013-10-09 费德罗-莫格尔公司 Wear resistant lead free alloy sliding element and method of making
CN113550979A (en) * 2021-09-23 2021-10-26 苏州虎伏新材料科技有限公司 Manufacturing process of bimetallic bearing bush and shaft sleeve material, and bimetallic bearing bush and shaft sleeve material
CN113550979B (en) * 2021-09-23 2021-11-26 苏州虎伏新材料科技有限公司 Manufacturing process of bimetallic bearing bush and shaft sleeve material, and bimetallic bearing bush and shaft sleeve material

Also Published As

Publication number Publication date
GB0514922D0 (en) 2005-08-24
DE102004045110B3 (en) 2006-01-19
FR2875564A1 (en) 2006-03-24

Similar Documents

Publication Publication Date Title
JP2624693B2 (en) Composite material having at least one smooth layer deposited by sputtering and method for producing the same
RU2296804C1 (en) Aluminum alloy for application of coats on surfaces subjected to tribological loads
US9435376B2 (en) Multi-layered plain bearing
US5352538A (en) Surface hardened aluminum part and method of producing same
DE102006031783B4 (en) coating process
JP2017145508A (en) Zn-Mg ALLOY PLATED STEEL SHEET AND PRODUCTION METHOD THEREOF
US20060063019A1 (en) Highly friction resistant and durable bearing coatings for crankshafts and large end bearings
RU2600819C2 (en) Piston ring, use of piston ring and method of applying protective coating for piston ring
JP2010529389A (en) piston ring
US20100260445A1 (en) Method for producing a sliding bearing element having a bismuth-containing sliding layer
KR100408313B1 (en) Flame-sprayed copper-aluminum composite material and its production method
JP4637978B2 (en) Corrosion-resistant paint and corrosion-resistant steel material coated with the same
JPH0756077B2 (en) Highly loadable coated structural member consisting of titanium-aluminide intermetallic phase
Shaĭtura et al. Fabrication of quasicrystalline coatings: a review
CN113458553A (en) Wear-resistant high-entropy alloy overlaying layer and preparation method thereof
CN101215685B (en) Method for preparing tin content step-up PVD bushing in antifriction layer
Pokhmurskii et al. Plasma electrolytic oxidation of arc-sprayed aluminum coatings
Fatoba et al. The effects of Sn addition on the microstructure and surface properties of laser deposited Al-Si-Sn coatings on ASTM A29 steel
Liang et al. Microstructures and properties of PVD aluminum bronze coatings
US20140193266A1 (en) Coupling apparatuses and methods of forming the same
CN108138326B (en) Projection material for mechanical plating and highly corrosion-resistant coating film
Srivastava et al. FESEM and XPS studies of ZrO 2 modified electrodeposited NiCoCrAlY nanocomposite coating subjected to hot corrosion environment
CN1219098C (en) High temp wearing-resistant corrosion-resistant Ni-Mo-Si metal silicide alloy material
Harris et al. Production of ultrafine microstructures in Al-Sn, Al-Sn-Cu and Al-Sn-Cu-Si alloys for use in tribological applications
JP3048143B1 (en) Thermal spray layer with excellent sliding properties

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLER CHRYSLER AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRAEMER, JOHANN;SCHMIDT, ERWIN;REEL/FRAME:017582/0232;SIGNING DATES FROM 20050707 TO 20050803

AS Assignment

Owner name: DAIMLER AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER AG;REEL/FRAME:021275/0435

Effective date: 20071019

Owner name: DAIMLER AG,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER AG;REEL/FRAME:021275/0435

Effective date: 20071019

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION