US20060054317A1 - Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics - Google Patents

Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics Download PDF

Info

Publication number
US20060054317A1
US20060054317A1 US11/252,650 US25265005A US2006054317A1 US 20060054317 A1 US20060054317 A1 US 20060054317A1 US 25265005 A US25265005 A US 25265005A US 2006054317 A1 US2006054317 A1 US 2006054317A1
Authority
US
United States
Prior art keywords
tcp
charge
detonation
detecting
gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/252,650
Inventor
John Clark
Jamie Oag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US11/252,650 priority Critical patent/US20060054317A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OAG, JAMIE, CLARK, JOHN
Publication of US20060054317A1 publication Critical patent/US20060054317A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • E21B43/11857Ignition systems firing indication systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations

Definitions

  • the present invention relates to the field of perforating guns used in a down hole oil well environment and in particular to a method and apparatus for using flourescent dyes to determine whether or not a tubing conveyed perforating (TCP) gun charge has fired.
  • TCP tubing conveyed perforating
  • perforating guns containing explosive charges are lowered into the wellbore below the casing. Upon detonation the charges blast a hole in the casing, cement and reservoir rock, thereby enabling hydrocarbons in an adjacent hydrocarbon formation to flow into the wellbore for recovery.
  • the conventional method for determining whether the perforating guns have successfully fired is to monitor changes in well bore pressure. Unfortunately, pressure monitoring can only indicate that one or more of the guns have fired (and not always reliably), but cannot determine or whether or not all of the guns have fired successfully. At present there is no known technology available for verifying whether each of the individual perforating guns have fired and hence, there is a lack of reliable quantitative downhole data in this regard.
  • the present invention provides a method and apparatus for determining whether a tubing conveyed perforating (TCP) gun has fired by detecting a change in characteristics of the flow of an oil well.
  • the present invention detects the presence of fluorescent tracer dye to determine whether or not a TCP gun has fired.
  • the present invention detects a change is capacitance, or fiber optic electrical properties to determine whether or not a TCP gun has fired.
  • a method and apparatus is provided that detects the number of charges fired to determine whether or not all TCP guns have fired.
  • the present invention also provides a method and apparatus for determining the contributions of injection wells to producing wells by introducing fluorescent tracers into injection wells and detecting the presence of the fluorescent tracers at production wells.
  • a method and apparatus is provided for placing fluorescent dye particles in a gravel pack to sense when a gravel pack is deteriorating by detecting the tracer dye particles in the well flow.
  • FIG. 1 is an illustration of a method and apparatus for tracking flow from an oil well
  • FIG. 2 is an illustration of the preferred method and apparatus for determining whether a tubing conveyed perforating gun has fired
  • FIG. 3 is an illustration of a preferred injection well tracing method and apparatus of the present invention.
  • FIG. 4 is an illustration of a preferred packing deterioration detection system of the present invention.
  • the present invention provides a method and apparatus for determining whether a tubing conveyed perforating gun (TCP) has fired using an enhanced fluorescent marker material for TCP guns and a downhole and/or surface mounted detection system.
  • the system of the present invention is field portable.
  • the present invention provides on-board software, which enables real-time monitoring which enables non-experts to utilize field-generated data to determine whether each of the perforating guns have fired successfully.
  • the innovative system of the present invention provides a reliable real-time quantitative indication of the downhole status of the wellbore following an attempted TCP gun firing.
  • the system also enables the operator to make an immediate informed decision following TCP gun operation as to the success of the attempted perforation.
  • the benefits and advantages of the present invention include reduction of operational drilling costs by minimizing rig downtime and decreasing the number of runs in hole, enabling a well to be brought on line earlier without unnecessary delays and restarts associated with false starts due to attempted recovery after unsuccessful TCP gun operations.
  • the TCP gun firing detection and identification system comprises an acoustic, ultrasonic or capacitance method of determining the status of an attempted perforation.
  • the present invention fills the void of uncertainty surrounding the status and success of perforating operations.
  • the present invention provides a unique solution, in an area where no known device or technology is presently available.
  • the basic operating principle behind the TCP Gun Fire Identification System (FIS) of the present invention is to provide a fluorescent indicator module and/or dummy charge/shot that is fitted into a TCP gun string.
  • a capsule containing an enhanced marker material fluorescent tracers—micro-encapsulated, pigments, liquid/fluid dyes and solid dye tracers, e.g. glass, plastic, polymer, ceramic, organic compound/s
  • an enhanced marker material fluorescent tracers—micro-encapsulated, pigments, liquid/fluid dyes and solid dye tracers, e.g. glass, plastic, polymer, ceramic, organic compound/s
  • the fluorescent dye particles are embedded or encapsulated within the polymers, glasses and ceramics of the fluorescent indicator module to create a stable, unique and distinctive fluorescent dye tracers.
  • Each dye tracer has a specific excitation and emission spectra, thus enabling several different dye tracers to be used in conjunction and distinctly detected the same time using highly sensitive optoelectronic instrumentation to determine whether or not a particular TCP gun associated with a particular dye tracer has fired.
  • the dye tracers release into the well/reservoir flow stream (fluid and/or gas e.g. hydrocarbon, diesel, mud, brine and water, also including gas condensate or gas stream) within the well casing.
  • gas e.g. hydrocarbon, diesel, mud, brine and water, also including gas condensate or gas stream
  • the well is flowed (the minimum of casing volume) to the surface process plant.
  • the process flow stream is analyzed by a surface mounted monitoring instrument (fluorometer), which detects each dye tracer to verify that each associated TCP gun has successfully fired.
  • a downhole tracer detection sensor module is provided for a quicker response time as the tracer detection sensor is installed closer to the source, i.e., tracers module and provides almost instantaneous and direct analysis.
  • This tracer detection data is transmitted optically, electrically, digitally, acoustically via wireless or analog to the surface instrumentation for storage and display.
  • the tracer detection/TCP firing data can also be stored downhole with memory gauges and/or electronic storage devices.
  • the sensor module further comprises an energy storage device coupled to a signal receiver and an electronic control assembly.
  • the energy storage device comprises any available energy source, for example a battery, fuel cell, a capacitor, power cell or Thermophotovoltaic (TPV) cells which convert heat into electricity.
  • TPV Thermophotovoltaic
  • a fibre optic fluorometer/spectrometer instrument is also provided to determine the concentration and distribution of dye tracers within the harsh conditions of the hydrocarbon process flow stream.
  • a flow cell, fibre optic Probe and/or sensor enables detection of tracer concentrations as low as 10 ppb.
  • a particular fluorescent dye tracer detection count is used as a semi-quantitative indicator when dye/tracer coverage is used to determine the percentage relative flow analyzed in profile or cross section.
  • the present invention provides automated analysis, calibration, and mapping of the spread of tracers introduced into the process stream. The combination of fluorescent dye tracers and real-time process monitoring of tracer type, size and concentration provide new and innovative applications of process stream analysis.
  • Fluorescence is the molecular absorption of light energy at one wavelength and its nearly instantaneous re-emission at another, usually longer wavelength. Some molecules fluoresce naturally and others can be modified to make fluorescent compounds. Fluorescent compounds have two characteristic spectra: an excitation spectrum (the amount of light absorbed) and an emission spectrum (the amount of light emitted). These spectra are often referred to as a compound's fluorescence signature or fingerprint. No two compounds have the same fluorescence signature. It is this uniqueness that enables fluorometry to be used as a highly specific analytical technique. Fluorometry is chosen for its extraordinay sensitivity, high specificity and low cost relative to other analytical techniques.
  • fluoromety is ordinarily 1000-fold more sensitive than conventional absorbance measurements. Fluorometry is a widely accepted and powerful technique that is used for a variety of environmental, industrial and biotechnology applications. Fluorometry is a valuable analytical tool for both quantitative and qualitative analysis.
  • data logging software 10 detects and displays online monitoring for hydrocarbons 20 only. From this diagnostic information, an appraisal can be made as to whether the TCP guns have unsuccessfully fired. That is if there is no flow the guns have not successfully fired.
  • the preferred data logging and monitoring software 12 shows dye tracers 22 as they are monitored and measured by flow cell 14 and Fluorometry 16 . The results are displayed on surface monitor/computer 18 . The configuration of FIG. 2 detects the presence of tracers 22 among flowing hydrocarbons 20 . From this diagnostic information, a determination is made as to whether the TCP guns have successfully fired.
  • TCP Guns Fire Identification module/devices comprising alternative technologies.
  • a capacitance measurement (detects changes in capacitance of the gun casing and/or tool string) module sensor is provided for storing, receiving and transmitting capacitance change data/information to a collection system for analysis to determine whether a TCP gun has fired.
  • a sleeve unit 112 is provided which fits around the TCP gun string.
  • the sleeve is made of a material/s that is ferrous and/or composite (e.g. plastic, ceramic, carbon fibre and Kevlar) and/or hybrid of any of the stated above.
  • an ultrasound, seismic and/or acoustic measurement module sensor is provided to measure the number of explosive gun charges/shots that have been fired by storing, receiving and transmitting this data/information to a collection system for analysis.
  • the receiver and transmitting device/probe is within the downhole tool or positioned within the casing and/or the casing and riser itself. This receiver/transmitter is utilized to transmit the acoustic detection data to a surface receiver.
  • a receiver and transmitting device/probe would be deployed externally of the casing i.e. external to the well, sea and/or seabed.
  • a fibre optic device is embedded, fixed and/or glued onto or into the TCP gun string or alternatively a sleeve unit is designed/built, which fits around the TCP gun string and placed in direct line of fire of explosive gun charges/shot.
  • the fibre optics is distorted/broken at each successful fired gun charge/shot.
  • the difference in each fibre optic/cable length is then determined, electrically and analyzed to identify which charges/shot has fired, by using time of flight instrumentation/device (light source from lamp, LED's and/or laser module device/sensor).
  • a simple optic system which comprises a fitting/placing fibre optic/s on the last TCP gun charge/shot on each gun string.
  • This optic system identifies when last gun charge/shot has successfully fired (identifying that all or most of gun charges/shots within each gun string have fired—top to bottom) when the fibre/s are broken.
  • the fibre optic/s and/or fibre optic probe are used as a sensor which measures a sensed change as an indicative event. A change or no change in the following parameters: temperature, pressure, light (e.g. absorbance, transmission, fluorescence, irradiation and ablation) (flash from explosive charge) is indicative of successful firing. Also colors, sounds, energy (electromagnetic, electrical, thermal), hydrostatics, chemicals, forces, stresses, strains and/or displacements of solid objects and/or fluids can be analyzed and/or measured as TCP firing indicators.
  • module/devices and sensors is transmitted optically, electrically, digitally, or acoustically via wireless or via some other analog or digital method of downhole transmission and/or transmitted to the surface instrumentation/storage devices.
  • the TCP firing data could also be stored downhole with memory gauges and/or electronic storage devices.
  • the present invention provides unique software for real-time monitoring and data display manipulation options.
  • Data logging points are filed and stored directly in the surface or downhole computer's memory.
  • the downloaded data will be stored in ASCII format and imported directly into a standard spreadsheet program and linked to self-generating field report software.
  • parameters such as data collection intervals, graphical display and detection limits are easily selected for display and printing.
  • the method and apparatus of the present invention can also be utilized to assist in developing reservoir models where injection wells 33 , 34 , and 35 are used to support producing wells 30 , 31 and 32 in the same reservoir or field.
  • injection wells 33 , 34 , and 35 are used to support producing wells 30 , 31 and 32 in the same reservoir or field.
  • the present invention enables monitoring at detectors monitor 51 the efficiency of gravel packs 50 in producing wells 53 , by sizing the fluorescent capsules 52 so that, should the gravel 50 pack begin to deteriorate, the first sign of failure would be traces of the fluorescent material particles being detected at the surface.
  • the fluorescent material is sized to be smaller that the reservoir sand particles, and thus gives a good indication of gravel pack deterioration prior to sand breakthrough.

Abstract

A method and apparatus for determining whether a tubing conveyed perforating (TCP) gun has fired by detecting a change in characteristics of the flow of an oil well. A method and apparatus detects the presence of fluorescent tracer dye to determine whether or not a TCP gun has fired. The method and apparatus detects a change is capacitance, or fiber optic electrical properties to determine whether or not a TCP gun has fired. The method and apparatus detects the number of charges fired to determine whether or not all TCP guns have fired and also provides a method and apparatus for determining the contributions of injection wells to producing wells by introducing fluorescent tracers into injection wells and detecting the presence of the fluorescent tracers at production wells. A method and apparatus is provided for placing fluorescent dye particles in a gravel pack to sense when a gravel pack is deteriorating by detecting the tracer dye particles in the well flow.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This patent application is a divisional application of U.S. patent application Ser. No. 10/440,514 (now U.S. Pat. No. 6,055,217) which is a divisional application claiming priority from U.S. patent application Ser. No. 09/749,166 (now U.S. Pat. No. 6,564,866).
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to the field of perforating guns used in a down hole oil well environment and in particular to a method and apparatus for using flourescent dyes to determine whether or not a tubing conveyed perforating (TCP) gun charge has fired.
  • 2. Background of the Related Art
  • During the completion phase of an oil well, perforating guns containing explosive charges are lowered into the wellbore below the casing. Upon detonation the charges blast a hole in the casing, cement and reservoir rock, thereby enabling hydrocarbons in an adjacent hydrocarbon formation to flow into the wellbore for recovery. The conventional method for determining whether the perforating guns have successfully fired is to monitor changes in well bore pressure. Unfortunately, pressure monitoring can only indicate that one or more of the guns have fired (and not always reliably), but cannot determine or whether or not all of the guns have fired successfully. At present there is no known technology available for verifying whether each of the individual perforating guns have fired and hence, there is a lack of reliable quantitative downhole data in this regard. Without useful and reliable data, the decision making process is impaired, with attendant detrimental operational and economic effects. It is imperative that all downhole tubing conveyed perforating guns fire and penetrate the casing to optimize hydrocarbon flow and recovery from the adjacent formation. Thus, there is a need to reliably determine whether each of the perforating guns have successfully fired.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method and apparatus for determining whether a tubing conveyed perforating (TCP) gun has fired by detecting a change in characteristics of the flow of an oil well. In one embodiment the present invention detects the presence of fluorescent tracer dye to determine whether or not a TCP gun has fired. In another embodiment the present invention detects a change is capacitance, or fiber optic electrical properties to determine whether or not a TCP gun has fired. In another embodiment of the present invention a method and apparatus is provided that detects the number of charges fired to determine whether or not all TCP guns have fired. The present invention also provides a method and apparatus for determining the contributions of injection wells to producing wells by introducing fluorescent tracers into injection wells and detecting the presence of the fluorescent tracers at production wells. In another embodiment of the present invention, a method and apparatus is provided for placing fluorescent dye particles in a gravel pack to sense when a gravel pack is deteriorating by detecting the tracer dye particles in the well flow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of a method and apparatus for tracking flow from an oil well;
  • FIG. 2 is an illustration of the preferred method and apparatus for determining whether a tubing conveyed perforating gun has fired;
  • FIG. 3 is an illustration of a preferred injection well tracing method and apparatus of the present invention; and
  • FIG. 4 is an illustration of a preferred packing deterioration detection system of the present invention.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • The present invention provides a method and apparatus for determining whether a tubing conveyed perforating gun (TCP) has fired using an enhanced fluorescent marker material for TCP guns and a downhole and/or surface mounted detection system. The system of the present invention is field portable. The present invention provides on-board software, which enables real-time monitoring which enables non-experts to utilize field-generated data to determine whether each of the perforating guns have fired successfully.
  • The innovative system of the present invention provides a reliable real-time quantitative indication of the downhole status of the wellbore following an attempted TCP gun firing. The system also enables the operator to make an immediate informed decision following TCP gun operation as to the success of the attempted perforation. The benefits and advantages of the present invention include reduction of operational drilling costs by minimizing rig downtime and decreasing the number of runs in hole, enabling a well to be brought on line earlier without unnecessary delays and restarts associated with false starts due to attempted recovery after unsuccessful TCP gun operations.
  • These advantages are paramount in today's market where service companies often offer little substantial difference in technical capability of TCP guns. The major distinction is reflected in the provision of the perforating service and reliability of that service. Innovative and distinctive features of the new system provided by the present invention include adoption of micro-encapsulated fluorescent tracers, the use of flow cells or fibre optic probes for tracer detection, communication between downhole well and surface equipment, a unique surface reporting software package, and the creation of a simple reliable system that performs consistently in the harsh downhole environment of the well bore.
  • There are no known comparable technologies for successfully determining the status of an attempted TCP gun perforation. In an alternative embodiment, the TCP gun firing detection and identification system comprises an acoustic, ultrasonic or capacitance method of determining the status of an attempted perforation. The present invention fills the void of uncertainty surrounding the status and success of perforating operations. The present invention provides a unique solution, in an area where no known device or technology is presently available.
  • The basic operating principle behind the TCP Gun Fire Identification System (FIS) of the present invention is to provide a fluorescent indicator module and/or dummy charge/shot that is fitted into a TCP gun string. Within the module and/or dummy charge/shot a capsule containing an enhanced marker material (fluorescent tracers—micro-encapsulated, pigments, liquid/fluid dyes and solid dye tracers, e.g. glass, plastic, polymer, ceramic, organic compound/s) is ruptured by the TCP gun explosive charge. The fluorescent dye particles are embedded or encapsulated within the polymers, glasses and ceramics of the fluorescent indicator module to create a stable, unique and distinctive fluorescent dye tracers. Each dye tracer has a specific excitation and emission spectra, thus enabling several different dye tracers to be used in conjunction and distinctly detected the same time using highly sensitive optoelectronic instrumentation to determine whether or not a particular TCP gun associated with a particular dye tracer has fired.
  • Hence, when the TCP guns successfully fire, the dye tracers release into the well/reservoir flow stream (fluid and/or gas e.g. hydrocarbon, diesel, mud, brine and water, also including gas condensate or gas stream) within the well casing. After the initial perforating of the casing and reservoir formation, the well is flowed (the minimum of casing volume) to the surface process plant. The process flow stream is analyzed by a surface mounted monitoring instrument (fluorometer), which detects each dye tracer to verify that each associated TCP gun has successfully fired.
  • In an alternative embodiment, a downhole tracer detection sensor module is provided for a quicker response time as the tracer detection sensor is installed closer to the source, i.e., tracers module and provides almost instantaneous and direct analysis. This tracer detection data is transmitted optically, electrically, digitally, acoustically via wireless or analog to the surface instrumentation for storage and display. The tracer detection/TCP firing data can also be stored downhole with memory gauges and/or electronic storage devices. The sensor module further comprises an energy storage device coupled to a signal receiver and an electronic control assembly. The energy storage device comprises any available energy source, for example a battery, fuel cell, a capacitor, power cell or Thermophotovoltaic (TPV) cells which convert heat into electricity.
  • A fibre optic fluorometer/spectrometer instrument is also provided to determine the concentration and distribution of dye tracers within the harsh conditions of the hydrocarbon process flow stream. A flow cell, fibre optic Probe and/or sensor enables detection of tracer concentrations as low as 10 ppb. A particular fluorescent dye tracer detection count is used as a semi-quantitative indicator when dye/tracer coverage is used to determine the percentage relative flow analyzed in profile or cross section. The present invention provides automated analysis, calibration, and mapping of the spread of tracers introduced into the process stream. The combination of fluorescent dye tracers and real-time process monitoring of tracer type, size and concentration provide new and innovative applications of process stream analysis.
  • Fluorescence is the molecular absorption of light energy at one wavelength and its nearly instantaneous re-emission at another, usually longer wavelength. Some molecules fluoresce naturally and others can be modified to make fluorescent compounds. Fluorescent compounds have two characteristic spectra: an excitation spectrum (the amount of light absorbed) and an emission spectrum (the amount of light emitted). These spectra are often referred to as a compound's fluorescence signature or fingerprint. No two compounds have the same fluorescence signature. It is this uniqueness that enables fluorometry to be used as a highly specific analytical technique. Fluorometry is chosen for its extraordinay sensitivity, high specificity and low cost relative to other analytical techniques. Moreover, fluoromety is ordinarily 1000-fold more sensitive than conventional absorbance measurements. Fluorometry is a widely accepted and powerful technique that is used for a variety of environmental, industrial and biotechnology applications. Fluorometry is a valuable analytical tool for both quantitative and qualitative analysis.
  • As shown in FIG. 1, data logging software 10 detects and displays online monitoring for hydrocarbons 20 only. From this diagnostic information, an appraisal can be made as to whether the TCP guns have unsuccessfully fired. That is if there is no flow the guns have not successfully fired. As shown in FIG. 2, the preferred data logging and monitoring software 12 shows dye tracers 22 as they are monitored and measured by flow cell 14 and Fluorometry 16. The results are displayed on surface monitor/computer 18. The configuration of FIG. 2 detects the presence of tracers 22 among flowing hydrocarbons 20. From this diagnostic information, a determination is made as to whether the TCP guns have successfully fired.
  • In an alternative embodiment, TCP Guns Fire Identification module/devices are provided comprising alternative technologies. In a first alternative embodiment, a capacitance measurement (detects changes in capacitance of the gun casing and/or tool string) module sensor is provided for storing, receiving and transmitting capacitance change data/information to a collection system for analysis to determine whether a TCP gun has fired. In this alternative embodiment, as shown in FIG. 2, a sleeve unit 112 is provided which fits around the TCP gun string. The sleeve is made of a material/s that is ferrous and/or composite (e.g. plastic, ceramic, carbon fibre and Kevlar) and/or hybrid of any of the stated above. These materials within the sleeve or the sleeve itself, would change capacitance/conductance values/states when the TCP guns discharge and remove the material from the sleeve. Any material which changes capacitance when the TCP gun fires is suitable.
  • In another alternative embodiment, an ultrasound, seismic and/or acoustic measurement module sensor is provided to measure the number of explosive gun charges/shots that have been fired by storing, receiving and transmitting this data/information to a collection system for analysis. The receiver and transmitting device/probe is within the downhole tool or positioned within the casing and/or the casing and riser itself. This receiver/transmitter is utilized to transmit the acoustic detection data to a surface receiver. Alternatively, a receiver and transmitting device/probe would be deployed externally of the casing i.e. external to the well, sea and/or seabed.
  • In yet another alternative embodiment of the present invention, a fibre optic device is embedded, fixed and/or glued onto or into the TCP gun string or alternatively a sleeve unit is designed/built, which fits around the TCP gun string and placed in direct line of fire of explosive gun charges/shot. The fibre optics is distorted/broken at each successful fired gun charge/shot. The difference in each fibre optic/cable length is then determined, electrically and analyzed to identify which charges/shot has fired, by using time of flight instrumentation/device (light source from lamp, LED's and/or laser module device/sensor).
  • In another alternative embodiment, a simple optic system is provided which comprises a fitting/placing fibre optic/s on the last TCP gun charge/shot on each gun string. This optic system identifies when last gun charge/shot has successfully fired (identifying that all or most of gun charges/shots within each gun string have fired—top to bottom) when the fibre/s are broken. In an alternative embodiment, the fibre optic/s and/or fibre optic probe are used as a sensor which measures a sensed change as an indicative event. A change or no change in the following parameters: temperature, pressure, light (e.g. absorbance, transmission, fluorescence, irradiation and ablation) (flash from explosive charge) is indicative of successful firing. Also colors, sounds, energy (electromagnetic, electrical, thermal), hydrostatics, chemicals, forces, stresses, strains and/or displacements of solid objects and/or fluids can be analyzed and/or measured as TCP firing indicators.
  • The data from each of the alternative embodiment, module/devices and sensors is transmitted optically, electrically, digitally, or acoustically via wireless or via some other analog or digital method of downhole transmission and/or transmitted to the surface instrumentation/storage devices. The TCP firing data could also be stored downhole with memory gauges and/or electronic storage devices.
  • The present invention provides unique software for real-time monitoring and data display manipulation options. Data logging points are filed and stored directly in the surface or downhole computer's memory. The downloaded data will be stored in ASCII format and imported directly into a standard spreadsheet program and linked to self-generating field report software. Using the software provided parameters, such as data collection intervals, graphical display and detection limits are easily selected for display and printing.
  • As shown in FIG. 3, the method and apparatus of the present invention can also be utilized to assist in developing reservoir models where injection wells 33, 34, and 35 are used to support producing wells 30, 31 and 32 in the same reservoir or field. By injecting different fluorescent materials into each of the injection wells using injectors 36, 40 and 41 and monitoring the flow lines of each producing well at monitors/ detectors 37, 38, 39 it is possible to determine which injection wells are providing support for each producing well. Additionally it is possible to generate an indication at detectors 37, 38, 39 of the percentage flow from each injection well 33, 34 and 35 by monitoring at any or all of detectors 37, 38, 39 the volumes of each type of fluorescent material deposited in each injection well 37, 38, 39 at any given producing well 30, 31, 32. Monitoring systems 37, 38 and 39 enable all producing wells in a field or reservoir it is possible to map the water flood in greater detail and with higher accuracy than previously.
  • As shown in FIG. 4, the present invention enables monitoring at detectors monitor 51 the efficiency of gravel packs 50 in producing wells 53, by sizing the fluorescent capsules 52 so that, should the gravel 50 pack begin to deteriorate, the first sign of failure would be traces of the fluorescent material particles being detected at the surface. The fluorescent material is sized to be smaller that the reservoir sand particles, and thus gives a good indication of gravel pack deterioration prior to sand breakthrough.

Claims (17)

1. A method for detecting detonation of a tubing conveyed perforating (TCP) gun in a wellbore comprising the steps for:
(a) placing a sensor in a wellbore;
(b) detonating a TCP charge; and
(c) detecting detonation of the TCP charge.
2. The method of claim 1, wherein the sensor comprises a tracer module containing a fluorescent tracer dye.
3. The method of claim 2, wherein the step of detecting detonation of the TCP charge in further comprising sensing tracer dye released from the tracer module upon detonation of the TCP charge.
4. The method of claim 1 wherein the sensor comprises a fibre optic sleeve surrounding a TCP charge string in the wellbore.
5. The method of claim 4, wherein the step of detecting detonating of the TCP charge in further comprising sensing changes in the electrical properties of the fibre optic sleeve upon detonation of the TCP charge.
6. A method of using a tubing conveyed perforating (TCP) gun in a wellbore comprising:
(a) placing an acoustic sensor in a wellbore;
(b) detonating at least one charge on the TCP gun; and
(c) using the acoustic sensor for detecting detonation of the at least one charge.
7. The method of claim 6 wherein detecting detonation of the TCP charge further comprises acoustically sensing detonation of the TCP charge.
8. A method of determining the contribution from a injection well to a producing well comprising the steps for:
(a) placing at least one identifiable tracer dye in an injection well, the tracer dye identifier being associated with the injection well; and
(b) detecting the presence of at the at least one identifiable tracer dye at the producing well, thereby determining the contribution from the injection well to the producing well.
9. An apparatus for detecting detonation of a tubing conveyed perforating (TCP) gun in a wellbore comprising:
a TCP charge and detonator deployed in the well bore; and
a detonation sensitive device that reacts to the detonation of the TCP charge.
10. The apparatus of claim 9, wherein the detonation sensitive device comprises a fluorescent tracer dye module that releases the dye upon detonation of the TCP charge, the apparatus further comprising a fluorescent dye detector for sensing release of the fluorescent dye.
11. The apparatus of claim 9, wherein the detonation sensitive device comprises a fibre optic sleeve adjacent the TCP charge that changes electrical properties upon detonation of the TCP charge, the apparatus further comprising a sensor for detecting changes in the electrical properties of the fibre optic sleeve upon detonation of the TCP charge.
12. A system for use in a wellbore comprising:
(a) a tubing conveyed perforating (TCP) Run conveyed in the wellbore, the TCP gun including at least one charge activated by a detonator; and
(b) an acoustic sensor that senses to detonation of the at least one charge.
13. A apparatus for determining the contribution from a injection well to a producing well comprising:
(a) an injector for injecting an identifiable tracer dye into an injection well, the tracer dye identifier being associated with the injection well; and
(b) detecting the presence of at the identifiable tracer dye at the producing well, thereby determining the contribution from the injection well to the producing well.
14. The method of claim 7 further comprising transmitting a signal indicative of the detection to a surface location
15. The method of claim 7 wherein detonating the at least one charge further comprises detonating a plurality of charges.
16. The system of claim 12 further comprising a device for transmitting a signal indicative of the sensing of the detonation to a surface location.
17. The system of claim 12 wherein the at least one charge further comprises a plurality of charges.
US11/252,650 2000-12-27 2005-10-18 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics Abandoned US20060054317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/252,650 US20060054317A1 (en) 2000-12-27 2005-10-18 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/749,166 US6564866B2 (en) 2000-12-27 2000-12-27 Method and apparatus for a tubing conveyed perforating guns fire identification system using enhanced marker material
US10/440,514 US6955217B2 (en) 2000-12-27 2003-05-16 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics
US11/252,650 US20060054317A1 (en) 2000-12-27 2005-10-18 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/440,514 Division US6955217B2 (en) 2000-12-27 2003-05-16 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics

Publications (1)

Publication Number Publication Date
US20060054317A1 true US20060054317A1 (en) 2006-03-16

Family

ID=25012558

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/749,166 Expired - Fee Related US6564866B2 (en) 2000-12-27 2000-12-27 Method and apparatus for a tubing conveyed perforating guns fire identification system using enhanced marker material
US10/440,514 Expired - Fee Related US6955217B2 (en) 2000-12-27 2003-05-16 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics
US11/252,650 Abandoned US20060054317A1 (en) 2000-12-27 2005-10-18 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/749,166 Expired - Fee Related US6564866B2 (en) 2000-12-27 2000-12-27 Method and apparatus for a tubing conveyed perforating guns fire identification system using enhanced marker material
US10/440,514 Expired - Fee Related US6955217B2 (en) 2000-12-27 2003-05-16 Method and apparatus for a tubing conveyed perforating guns fire identification system using fiber optics

Country Status (2)

Country Link
US (3) US6564866B2 (en)
WO (1) WO2002061461A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158337A1 (en) * 2010-12-17 2012-06-21 Anil Singh Method and Integrated System for Improving Data and Service Quality with Respect to Measurement and Analysis of Reservoir Fluid Samples
US20130091943A1 (en) * 2010-10-19 2013-04-18 Torger Skillingstad Tracer Identification of Downhole Tool Actuation
WO2018071816A1 (en) * 2016-10-13 2018-04-19 Schlumberger Technology Corporation Microseismic processing using fiber-derived flow data

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347278B2 (en) 1998-10-27 2008-03-25 Schlumberger Technology Corporation Secure activation of a downhole device
US7383882B2 (en) 1998-10-27 2008-06-10 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US7028773B2 (en) * 2001-11-28 2006-04-18 Schlumberger Technology Coporation Assessing downhole WBM-contaminated connate water
US6942034B2 (en) * 2002-02-01 2005-09-13 Geo-X Systems, Ltd. Extent of detonation determination method using seismic energy
CN1625641A (en) * 2002-02-01 2005-06-08 Geo-X系统有限公司 Extend of detonation determination method using seismic energy
GB2395969B (en) * 2002-02-15 2005-11-23 Schlumberger Holdings Interactive and/or secure activation of a tool
GB2395555B (en) * 2002-11-22 2005-10-12 Schlumberger Holdings Apparatus and method of analysing downhole water chemistry
US20050109087A1 (en) * 2003-11-25 2005-05-26 Robb Ian D. Methods and compositions for determining the sources of fluids or particulates from subterranean formations
US7777643B2 (en) * 2004-05-06 2010-08-17 Halliburton Energy Services, Inc. Optical communications with a bottom hole assembly
US7293715B2 (en) * 2004-12-16 2007-11-13 Schlumberger Technology Corporation Marking system and method
US7635027B2 (en) * 2006-02-08 2009-12-22 Tolson Jet Perforators, Inc. Method and apparatus for completing a horizontal well
US20120175109A1 (en) * 2006-08-24 2012-07-12 Richard Bennett M Non-intrusive flow indicator
US8397810B2 (en) * 2007-06-25 2013-03-19 Turbo-Chem International, Inc. Wireless tag tracer method
US20090087912A1 (en) * 2007-09-28 2009-04-02 Shlumberger Technology Corporation Tagged particles for downhole application
US20090087911A1 (en) * 2007-09-28 2009-04-02 Schlumberger Technology Corporation Coded optical emission particles for subsurface use
US8157022B2 (en) * 2007-09-28 2012-04-17 Schlumberger Technology Corporation Apparatus string for use in a wellbore
US8172007B2 (en) * 2007-12-13 2012-05-08 Intelliserv, LLC. System and method of monitoring flow in a wellbore
US7980309B2 (en) * 2008-04-30 2011-07-19 Halliburton Energy Services, Inc. Method for selective activation of downhole devices in a tool string
US8141633B2 (en) * 2009-03-25 2012-03-27 Occidental Chemical Corporation Detecting fluids in a wellbore
WO2011109721A1 (en) * 2010-03-04 2011-09-09 Altarock Energy, Inc. Downhole deployable tools for measuring tracer concentrations
US8322414B2 (en) 2010-05-25 2012-12-04 Saudi Arabian Oil Company Surface detection of failed open-hole packers using tubing with external tracer coatings
EP3077725B1 (en) 2013-12-02 2018-05-30 Austin Star Detonator Company Method and apparatus for wireless blasting
GB201715109D0 (en) * 2017-09-19 2017-11-01 Johnson Matthey Plc Release system and method
US10760411B2 (en) * 2017-09-27 2020-09-01 Halliburton Energy Services, Inc. Passive wellbore monitoring with tracers
CN107740690B (en) * 2017-11-07 2019-05-10 张成富 A kind of inter-well test method using solid tracers
US10689955B1 (en) 2019-03-05 2020-06-23 SWM International Inc. Intelligent downhole perforating gun tube and components
US11078762B2 (en) 2019-03-05 2021-08-03 Swm International, Llc Downhole perforating gun tube and components
US11268376B1 (en) 2019-03-27 2022-03-08 Acuity Technical Designs, LLC Downhole safety switch and communication protocol
US11125058B2 (en) * 2019-09-13 2021-09-21 Silverwell Technology Ltd Method of wellbore operations
WO2021077082A1 (en) * 2019-10-18 2021-04-22 Core Laboratories Lp Perforating and tracer injection system for oilfield applications
US20230115055A1 (en) * 2020-03-16 2023-04-13 DynaEnergetics Europe GmbH Tandem seal adapter with integrated tracer material
US11619119B1 (en) 2020-04-10 2023-04-04 Integrated Solutions, Inc. Downhole gun tube extension
GB2613635A (en) * 2021-12-10 2023-06-14 Resman As System and method for reservoir flow surveillance

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208966A (en) * 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
US4220212A (en) * 1978-09-18 1980-09-02 Schlumberger Technology Corporation Apparatus for monitoring the operation of well bore guns
US4264329A (en) * 1979-04-27 1981-04-28 Cities Service Company Tracing flow of fluids
US4478294A (en) * 1983-01-20 1984-10-23 Halliburton Company Positive fire indicator system
US4614156A (en) * 1984-03-08 1986-09-30 Halliburton Company Pressure responsive explosion initiator with time delay and method of use
US4650010A (en) * 1984-11-27 1987-03-17 Halliburton Company Borehole devices actuated by fluid pressure
US4660638A (en) * 1985-06-04 1987-04-28 Halliburton Company Downhole recorder for use in wells
US4966233A (en) * 1989-09-19 1990-10-30 Atlantic Richfield Company Tracer deployment tools
US4996638A (en) * 1990-02-15 1991-02-26 Northern Telecom Limited Method of feedback regulating a flyback power converter
US5062485A (en) * 1989-03-09 1991-11-05 Halliburton Company Variable time delay firing head
US5407009A (en) * 1993-11-09 1995-04-18 University Technologies International Inc. Process and apparatus for the recovery of hydrocarbons from a hydrocarbon deposit
US5413045A (en) * 1992-09-17 1995-05-09 Miszewski; Antoni Detonation system
US5979245A (en) * 1992-04-17 1999-11-09 Osaka Gas Company Limited Method of measuring fluid flow by analyzing the fluorescent emissions from tracer particles in the fluid
US6105688A (en) * 1998-07-22 2000-08-22 Schlumberger Technology Corporation Safety method and apparatus for a perforating gun
US6125934A (en) * 1996-05-20 2000-10-03 Schlumberger Technology Corporation Downhole tool and method for tracer injection
US6179064B1 (en) * 1998-07-22 2001-01-30 Schlumberger Technology Corporation System for indicating the firing of a perforating gun
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US20020088620A1 (en) * 1998-10-27 2002-07-11 Lerche Nolan C. Interactive and/or secure activation of a tool
US6520255B2 (en) * 2000-02-15 2003-02-18 Exxonmobil Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
US6837310B2 (en) * 2002-12-03 2005-01-04 Schlumberger Technology Corporation Intelligent perforating well system and method

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208966A (en) * 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
US4220212A (en) * 1978-09-18 1980-09-02 Schlumberger Technology Corporation Apparatus for monitoring the operation of well bore guns
US4264329A (en) * 1979-04-27 1981-04-28 Cities Service Company Tracing flow of fluids
US4478294A (en) * 1983-01-20 1984-10-23 Halliburton Company Positive fire indicator system
US4614156A (en) * 1984-03-08 1986-09-30 Halliburton Company Pressure responsive explosion initiator with time delay and method of use
US4650010A (en) * 1984-11-27 1987-03-17 Halliburton Company Borehole devices actuated by fluid pressure
US4660638A (en) * 1985-06-04 1987-04-28 Halliburton Company Downhole recorder for use in wells
US5062485A (en) * 1989-03-09 1991-11-05 Halliburton Company Variable time delay firing head
US4966233A (en) * 1989-09-19 1990-10-30 Atlantic Richfield Company Tracer deployment tools
US4996638A (en) * 1990-02-15 1991-02-26 Northern Telecom Limited Method of feedback regulating a flyback power converter
US5979245A (en) * 1992-04-17 1999-11-09 Osaka Gas Company Limited Method of measuring fluid flow by analyzing the fluorescent emissions from tracer particles in the fluid
US5413045A (en) * 1992-09-17 1995-05-09 Miszewski; Antoni Detonation system
US5407009A (en) * 1993-11-09 1995-04-18 University Technologies International Inc. Process and apparatus for the recovery of hydrocarbons from a hydrocarbon deposit
US6125934A (en) * 1996-05-20 2000-10-03 Schlumberger Technology Corporation Downhole tool and method for tracer injection
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US6105688A (en) * 1998-07-22 2000-08-22 Schlumberger Technology Corporation Safety method and apparatus for a perforating gun
US6179064B1 (en) * 1998-07-22 2001-01-30 Schlumberger Technology Corporation System for indicating the firing of a perforating gun
US6412573B2 (en) * 1998-07-22 2002-07-02 Schlumberger Technology Corporation System for indicating the firing of a perforating gun
US20020088620A1 (en) * 1998-10-27 2002-07-11 Lerche Nolan C. Interactive and/or secure activation of a tool
US6520255B2 (en) * 2000-02-15 2003-02-18 Exxonmobil Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
US6837310B2 (en) * 2002-12-03 2005-01-04 Schlumberger Technology Corporation Intelligent perforating well system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130091943A1 (en) * 2010-10-19 2013-04-18 Torger Skillingstad Tracer Identification of Downhole Tool Actuation
US8833154B2 (en) * 2010-10-19 2014-09-16 Schlumberger Technology Corporation Tracer identification of downhole tool actuation
US20120158337A1 (en) * 2010-12-17 2012-06-21 Anil Singh Method and Integrated System for Improving Data and Service Quality with Respect to Measurement and Analysis of Reservoir Fluid Samples
WO2018071816A1 (en) * 2016-10-13 2018-04-19 Schlumberger Technology Corporation Microseismic processing using fiber-derived flow data
GB2570083A (en) * 2016-10-13 2019-07-10 Geoquest Systems Bv Microseismic processing using fiber-derived flow data
GB2570083B (en) * 2016-10-13 2021-06-23 Geoquest Systems Bv Microseismic processing using fiber-derived flow data
US20230193746A1 (en) * 2016-10-13 2023-06-22 Schlumberger Technology Corporation Microseismic Processing Using Fiber-Derived Flow Data

Also Published As

Publication number Publication date
WO2002061461A2 (en) 2002-08-08
WO2002061461A3 (en) 2002-12-12
US6564866B2 (en) 2003-05-20
US20040020645A1 (en) 2004-02-05
US20020079098A1 (en) 2002-06-27
US6955217B2 (en) 2005-10-18

Similar Documents

Publication Publication Date Title
US6564866B2 (en) Method and apparatus for a tubing conveyed perforating guns fire identification system using enhanced marker material
CN110541702B (en) Underground fluid distribution monitoring system and method based on distributed optical fiber sensing
US6837310B2 (en) Intelligent perforating well system and method
CA2288784C (en) Monitoring of downhole parameters and tools utilizing fiber optics
CN104500034B (en) Device and method for evaluating influence of pressure change on completeness of cement sheath
EP1945905B1 (en) Monitoring formation properties
US20220389811A1 (en) Targeted tracer injection with online sensor
CN112593924A (en) Underground gas storage safety operation monitoring system and monitoring method
US6943340B2 (en) Method and apparatus of providing an optical fiber along a power supply line
CA2501480C (en) System and method for installation and use of devices in microboreholes
CN112780256B (en) Horizontal well microseism monitoring system and monitoring method based on distributed optical fiber sensing
US20090087912A1 (en) Tagged particles for downhole application
CN102906370B (en) Spectrum nano-sensor logging system and method
NO315133B1 (en) Method and apparatus for monitoring a subsurface formation
US8952319B2 (en) Downhole deployable tools for measuring tracer concentrations
EA027850B1 (en) Method for determining perforation orientation
CN210598961U (en) Underground fluid distribution monitoring system based on distributed optical fiber sensing
CN104033136B (en) Pressure coding detonating device and method
GB2406871A (en) Intelligent well perforation system
CN103883353A (en) Distribution laser gas purely passive warning and monitoring device
CN203856458U (en) Pressure code detonating device
AU2017201319B2 (en) Device and method for corrosion detection and formation evaluation using integrated computational elements
CN214091843U (en) Underground gas storage safety operation monitoring system
RU2442887C1 (en) Method and device for gas-hydrodynamic fracturing of productive formations for development of problematic reserves (variants)
CN214403548U (en) Drilling fluid leakage monitoring system based on distributed optical fiber sensing

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLARK, JOHN;OAG, JAMIE;REEL/FRAME:017120/0426;SIGNING DATES FROM 20010129 TO 20010206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION