US20060036419A1 - System and method for animal production optimization - Google Patents

System and method for animal production optimization Download PDF

Info

Publication number
US20060036419A1
US20060036419A1 US10902504 US90250404A US2006036419A1 US 20060036419 A1 US20060036419 A1 US 20060036419A1 US 10902504 US10902504 US 10902504 US 90250404 A US90250404 A US 90250404A US 2006036419 A1 US2006036419 A1 US 2006036419A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
animal
information
input
feed
system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10902504
Inventor
David Cook
Daniel Barziza
Steve Burghardi
Gregory Engelke
Donald Giesting
John Hahn
Brian Knudson
Wade Martinson
Bruce McGoogan
Michael Messman
Mark Newcomb
Jennifer Ligt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CAN Technologies Inc
Original Assignee
CAN Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K5/00Feeding devices for stock or game ; Feeding wagons; Feeding stacks
    • A01K5/02Automatic devices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • G06Q10/063Operations research or analysis
    • G06Q10/0635Risk analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
    • G06Q10/101Collaborative creation of products or services

Abstract

A system for generating optimized values for variable inputs to an animal production system. The system includes a simulator engine configured to receive a plurality of animal information inputs and generate a performance projection, wherein at least one of the animal information inputs is designated as a variable input and an enterprise supervisor engine configured to generate an optimized value for the at least one variable input based on at least one optimization criteria and an animal feed formulation.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    The present invention relates generally to the field of systems for and methods of animal production. More particularly, the present invention relates to systems for and methods of optimizing an animal production system based on one or more optimization criteria.
  • [0002]
    An animal production system may include any type of system or operation utilized in producing animals or animal based products. Examples may include farms, ranches, aquaculture farms, animal breeding facilities, etc. Animal production facilities may vary widely in scale, type of animal, location, production purpose, etc. However, almost all animal production facilities can benefit from identifying and implementing improvements to production efficiency. Improvements to production efficiency can include anything that results in increased production results, improved proportional output of desired products versus less desirable products (e.g. lean vs. fat), and/or decreased production costs.
  • [0003]
    A producer (i.e. a farmer, rancher, aquaculture specialist, etc.) generally benefits from maximizing the amount or quality of the product produced by an animal (e.g. gallons of milk, pounds of meat, quality of meat, amount of eggs, nutritional content of eggs produced, amount of work, hair/coat appearance/health status, etc.) while reducing the cost for the inputs associated with that production. Exemplary inputs may include animal feed, animal facilities, animal production equipment, labor, medicine, etc.
  • [0004]
    In order to maximize animal production over time, almost any input may be treated as a variable input. For example, the contribution of almost any input may be increased, decreased, or changed in some other way over time. For example, additional animal feed may be obtained, additional facilities may be constructed, additional labor may be hired, etc.
  • [0005]
    Every variable input may further be associated with one or more effects of variation. For example, for almost every variable input, an increase in the amount of the variable input is associated with an increase in the cost of the variable input. In a specific example, constructing additional facilities may be associated with building costs, financing costs, maintenance costs, etc. Additionally, the increase in the amount of the variable input is associated with an increase in the benefit provided by the variable input. Returning to our earlier example, the construction of the additional facilities may be associated with an increase in the number of animals that may be produced at the facility, or a reduction in animal crowding that will increase the production of each animal, etc.
  • [0006]
    What is needed is a system for and method of receiving inputs related to an animal production facility and processing the inputs to determine the effect of modifications to one or more of the inputs. What is further needed is such a system and method where the inputs are related to animal environment, animal type, animal feed ingredients, animal health, animal metabolic status, and/or animal economic data. Still further, what is needed is a system for and method of determining optimized inputs related to an animal production facility based on the minimization or maximization of an objective criteria.
  • SUMMARY OF THE INVENTION
  • [0007]
    One embodiment of the invention relates to a system for generating optimized values for variable inputs to an animal production system. The system includes a simulator engine configured to receive a plurality of animal information inputs and generate a performance projection, wherein at least one of the animal information inputs is designated as a variable input. The system further includes an enterprise supervisor engine that is configured to generate an optimized value for the at least one variable input based on at least one optimization criteria and an animal feed formulation.
  • [0008]
    Another embodiment of the invention relates to a method for determining optimized values for inputs to an animal production system. The method includes receiving a plurality of animal information inputs, wherein at least one of the animal information inputs is designated as a variable input. The method further includes generating at least one performance projection based on the animal information inputs and generating an optimized value for the at least one variable input based on the at least one performance projection and an animal feed formulation and at least one optimization criteria.
  • [0009]
    Yet another embodiment of the invention relates to a system for generating an animal feed formulation. The system includes a simulator engine configured to receive a plurality of animal information inputs and generate animal requirements based on the animal information inputs, a formulator engine, the formulator engine configured to receive a plurality of animal feed ingredient inputs and generate at least one animal feed formulation composed of the animal feed ingredients based on the animal requirements, wherein at least one of the animal feed ingredient inputs is designated as a variable input, and an enterprise supervisor engine configured to optimize the at least one animal feed formulation according to at least one optimization criteria, and further configured to generate an optimized value for the at least one variable input based on the at least one optimization criteria.
  • [0010]
    Yet another embodiment of the invention relates to an animal production optimization system. The system includes an optimization engine, having an objective function program therein, configured to receive a feed formulation input provided to the optimization engine. The system further includes an animal production modeling system configured to receive animal information input, including at least one variable input, receive feed formulation input, and provide modeling output to the optimization engine. The optimization engine optimizes the objective function to provide an optimized solution for the at least one variable input based on the modeling output.
  • [0011]
    Yet another embodiment of the invention relates to a method for generating optimized values for variable inputs to an animal production optimization system. The method includes the steps of receiving animal information input, including at least one variable input, generating modeling output based on the animal information input, receiving a feed formulation input to the objective function, and generating an objective function based on the modeling output and the feed formulation input. The method further includes optimizing the objective function to provide an optimized value for the at least one variable input.
  • [0012]
    Other features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many modifications and changes within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    The exemplary embodiments will hereafter be described with reference to the accompanying drawings, wherein like numerals depict like elements, and:
  • [0014]
    FIG. 1 is a general block diagram illustrating an animal production optimization system, according to an exemplary embodiment;
  • [0015]
    FIG. 2 is a general block diagram illustrating an enterprise supervisor for an animal production optimization system, according to an exemplary embodiment;
  • [0016]
    FIG. 3 is a general block diagram illustrating a simulator for an animal production system, according to an exemplary embodiment;
  • [0017]
    FIG. 4 is a general block diagram illustrating an ingredients engine and a formulator for an animal production system, according to an exemplary embodiment; and
  • [0018]
    FIG. 5 is a flowchart illustrating a method for animal production optimization, according to an exemplary embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0019]
    In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident to one skilled in the art, however, that the exemplary embodiments may be practiced without these specific details. In other instances, structures and devices are shown in diagram form in order to facilitate description of the exemplary embodiments.
  • [0020]
    In at least one exemplary embodiment illustrated below, a computer system is described which has a central processing unit (CPU) that executes sequences of instructions contained in a memory. More specifically, execution of the sequences of instructions causes the CPU to perform steps, which are described below. The instructions may be loaded into a random access memory (RAM) for execution by the CPU from a read-only memory (ROM), a mass storage device, or some other persistent storage. In other embodiments, multiple workstations, databases, processes, or computers can be utilized. In yet other embodiments, hardwired circuitry may be used in place of, or in combination with, software instructions to implement the functions described. Thus, the embodiments described herein are not limited to any particular source for the instructions executed by the computer system.
  • [0021]
    Referring now to FIG. 1, a general block diagram is shown illustrating an animal production optimization system 100, according to an exemplary embodiment. System 100 includes an enterprise supervisor 200, a simulator 300, an ingredient engine 400, and a formulator 500.
  • [0022]
    System 100 may be implemented utilizing a single or multiple computing systems. For example, where system 100 is implemented using a single computing system, each of enterprise supervisor 200, simulator 300, ingredient engine 400, and formulator 500 may be implemented on the computing system as computer programs, discrete processors, subsystems, etc. Alternatively, where system 100 is implemented using multiple computers, each of enterprise supervisor 200, simulator 300, ingredient engine 400, and formulator 500 may be implemented using a separate computing system. Each separate computing system may further include hardware configured for communicating with the other components of system 100 over a network. According to yet another embodiment, system 100 may be implemented as a combination of single computing systems implementing multiple processes and distributed systems.
  • [0023]
    System 100 is configured to receive animal information input including at least one variable input and analyze the received information to determine whether variation in one or more of the variable input will increase animal productivity or satisfy some other optimization criteria. Animal productivity may be a relative measure of the amount, type, or quality of output an animal produces relative to the expense associated with that production. Animal information input can include any type of information associated with an animal production system. For example, animal information input may be associated with a specific animal or group of animals or type of animals, an animal's environment, an economy related to the animal production, etc. Animal productivity may further be configured to include positive and negative outputs associated with the production. For example, animal productivity may be configured to represent harmful gaseous emissions as an expense (based on either financial costs associated with clean up or the negative impact on the environment), reducing the overall productivity.
  • [0024]
    Information associated with a specific animal or a group or type of animals may include, but is not limited to, a species, a state, an age, a production level, a job, a size (e.g. current, target, variability around, etc.), a morphology (e.g. intestinal), a body mass composition, an appearance, a genotype, a composition of output, a collection of microbial information, health status, a color, etc. The information associated with a specific animal may be any type of information relevant for determining the productivity of the animal.
  • [0025]
    Species information can include a designation of any type or class of animals such as domestic livestock, wild game, pets, aquatic species, humans, or any other type of biological organism. Livestock may include, but is not limited to, swine, dairy, beef, equine, sheep, goats, and poultry. Wild game may include, but is not limited to, ruminants, such as deer, elk, bison, etc., game birds, zoo animals, etc. Pets may include, but are not limited to, dogs, cats, birds, rodents, fish, lizards, etc. Aquatic species may include, but are not limited to, shrimp, fish (production), frogs, alligators, turtles, crabs, eels, crayfish, etc. and include those species grown for productive purposes (e.g., food products).
  • [0026]
    Animal state may include any reference or classification of animals that may affect the input requirement or production outputs for an animal. Examples may include, but are not limited to, a reproductive state, including gestation and egg laying, a lactation state, a health state or stress level, a maintenance state, an obese state, an underfed or restricted-fed state, a molting state, a seasonal-based state, a compensatory growth, repair or recovery state, a nutritional state, a working or athletic or competitive state, etc. Animal health states or stress level may further include multiple sub-states such as normal, compromised, post-traumatic (e.g. wean, mixing with new pen mates, sale, injury, transition to lactation, etc.), chronic illness, acute illness, immune response, an environmental stress, etc.
  • [0027]
    Animal age may include an actual age or a physiological state associated with an age. Examples of physiologic states may include a developmental state, a reproductive state including cycles, such as stage and number of pregnancies, a lactation state, a growth state, a maintenance state, an adolescent state, a geriatric state, etc.
  • [0028]
    Animal job may include a physiologic state as described above, such as gestation, lactation, growth, etc. Animal job may further include the animal's daily routine or actual job, especially with reference to canine and equines. Animal job may also include an animal movement allowance, such as whether the animal is generally confined versus allowed free movement in a pasture, or, for an aquatic animal, the different water flows the aquatic animal experiences, etc.
  • [0029]
    Animal size may include the actual weight, height, length, circumference, body mass index, mouth gape, etc. of the animal. The animal size may further include recent changes in animal size, such as whether the animal is experiencing weight loss, weight gain, growth in height or length, changes in circumference, etc.
  • [0030]
    Animal morphology includes a body shape exhibited by an animal. For example, a body shape may include a long body, a short body, a roundish body, etc. Animal morphology may further include distinct measurement of internal organ tissue changes like the length of intestinal villi or depth of intestinal crypts.
  • [0031]
    Animal body mass composition may include a variety of composition information such as a fatty acid profile, a vitamin E status, a degree of pigmentation, a predicted body mass composition, etc. The body mass composition generally is a representation of the percentage or amount of any particular component of body mass, such as lean muscle, water, fat, etc. The body mass composition may further include separate representations composition for individual body parts/sections. For example, body mass composition may include edible component compositions such as fillet yield, breast meat yield, tail meat yield, etc.
  • [0032]
    Animal appearance may include any measure or representation of an animal appearance. Examples can include the glossiness of an animal's coat, an animal's pigmentation, muscle tone, etc.
  • [0033]
    Animal genotype may include any representation of all or part of the genetic constitution of an individual or group. For example, an animal genotype may include DNA markers associated with specific traits, sequencing specific segments of DNA, etc. For example, the genotype may define the genetic capability to grow lean tissue at a specific rate or to deposit intramuscular fat for enhanced leanness or marbling, respectively. Additionally, genotype may be defined by phenotypic expression of traits linked to genotypic capacity such as the innate capacity for milk production, protein accretion, work, etc.
  • [0034]
    Composition of output may include the composition of a product produced by an animal. For example, the composition of output may include the nutrient levels found in eggs produced by poultry or milk produced by dairy cows, the amount, distribution, and/or composition of fat in meat products, etc.
  • [0035]
    Microbial and/or enzyme information may include current microbial populations within an animal or within an animal's environment. The microbial and/or enzyme information may include measures of the quantity or proportion of gram positive or negative species or other classifications such as aerobes, anaerobes, salmonella species, E. coli species, etc. Enzyme information may include the current content, quantity and/or composition of any enzyme, such as protease, amylase, and/or lipase, produced by the pancreas, produced within the gastrointestinal tract, enzymes produced by a microbial population, etc. Microbial and/or enzyme information may further include information about potential nutritional biomass represented by the microbial community that may be used as a feed source for some species (e.g., ruminants, aquatic species, etc.). The microbial and/or enzymatic environment may be monitored using any of a variety of techniques that are known in the art, such as cpn60, other molecular microbiological methods, and in vitro simulation of animal systems or sub-systems.
  • [0036]
    Animal information input associated with an animal or group of animals' environment may include, but is not limited to, factors related specifically to the environment, factors related to the animal production facility, etc. Animal environment may include any factors not associated with the animal that have an effect on the productivity of the animal or group of animals.
  • [0037]
    Examples of animal information input related to the environment may include ambient temperature, wind speed or draft, photoperiod or the amount of daylight exposure, acclimation, seasonal effects, air quality, water quality, water flow rate, aeration rate, system substrate, filter surface area, filtration loan capacity, geographic location, mud score, etc. The environmental information may further include detailed information regarding the system containing the animal or animals, such as system size (e.g. the size in square meters, hectares, acres, volume, etc.), system preparation such as using liming, discing, etc., aeration rate, system type, etc. Although some environmental factors are beyond the control of a producer, the factors can usually be modified or regulated by the producer. For example, the producer may reduce draft by closing vents, raise ambient temperature by including heaters or even relocating or moving certain animal production operations to a better climate for increasing productivity. According to another example, an aqua producer may modify nutrient input to an aquatic environment by altering a feed design or feeding program for the animals in the environment. According to an exemplary embodiment, animal information input related to the environment may be generated automatically using an environmental appraisal system (EAS) to calculate a thermal impact estimate for an animal and to provide measurements for the animal's current environment.
  • [0038]
    Examples of animal information input related to a production facility may include animal density, animal population interaction, feeder type, feeder system, feeder timing and distribution, pathogen loads, bedding type, type of confinement, feathering, lighting intensity, lighting time patterns, etc. Animal information input for a production facility may be modified by a producer to increase productivity or address other production goals. For example, a producer may build additional facilities to reduce population density, obtain additional or different types of feeding systems, modify the type of confinement, etc.
  • [0039]
    Animal information input associated with economic factors may include, but is not limited to, animal market information. Animal market information may include, but is not limited to, historical, current and/or projected prices for outputs, market timing information, geographic market information, product market type (e.g., live or carcass-based), etc.
  • [0040]
    Animal information inputs may further include any of a variety of inputs that are not easily classifiable into a discrete group. Examples may include an animal expected output (e.g., milk yield, product composition, body composition, etc.), a user defined requirement, a risk tolerance, an animal mixing (e.g., mixing different animals), variations with an animal grouping, etc., buyer or market requirements (e.g. Angus beef, Parma hams, milk for particular cheeses, etc.), expected and/or targeted growth curves, survival rates, expected harvest dates, etc.
  • [0041]
    The above described animal information input may include information that is directly received from a user or operator through a user interface, as will be described below with reference to FIG. 2. Alternatively, the animal information input or some part of the input may be retrieved from a database or other information source.
  • [0042]
    Further, some of the inputs may be dependent inputs that are calculated based on one or more other inputs or values. For example, an animal's stress level may be determined or estimated based on population density, recent weight loss, ambient temperature, etc. Each calculated value may include an option enabling a user to manually override the calculated value.
  • [0043]
    Yet further, each animal information input may include a variety of information associated with that input. For example, each animal information input may include one or more subfields based on the content of the animal information input. For example, where an indication is provided that an animal is in a stressed state, subfields may be received indicating the nature and severity of the stress.
  • [0044]
    According to an exemplary embodiment, the animal information input includes a capability to designate any of the animal information inputs as a variable input. A variable input may be any input that a user has the ability to modify or control. For example, a user may designate ambient temperature as a variable input based on the ability to modify the ambient temperature through a variety of methods such as heating, cooling, venting, etc. According to an alternative embodiment, system 100 may be configured to automatically recommend specific animal information inputs as variable inputs based on their effect on productivity or satisfying the optimization criteria, as will be further discussed below with reference to FIG. 2.
  • [0045]
    Designation of a variable input may require submission of additional information, such as a cost and/or benefit of variation of the variable input, recommended degrees of variation for optimization testing, etc. Alternatively, the additional information may be stored and retrievable from within system 100 or an associated database.
  • [0046]
    The animal information inputs may further include target values as well as current values. A target value may include a desirable level for animal productivity or some aspect of animal productivity. For example, a producer may wish to target a specific nutrient level for eggs produced by poultry. Therefore, the producer may enter current nutrient levels for eggs currently being produced as well as target nutrient values for the eggs. According to another example, a current size breakdown for shrimp in a pond versus a potential size breakdown. The target values and current values may be utilized by system 100 to make changes in an animal feed formulation or to make changes to variable inputs as will be described further below. Further, the target values may be viewed as equality constraints and/or inequality constraints for the optimization problem.
  • [0047]
    Table 1 below lists exemplary animal information inputs that may be provided as inputs to animal production optimization system 100. This listing of potential animal information inputs is exemplary and not exclusive. According to an exemplary embodiment, any one or more of the listed animal information inputs can be designated as a variable input.
    TABLE 1
    General Characteristics
    Impact of the ration on the greater Quantity and/or composition Quantity and/or
    environment: (e.g. nitrogen, phosporus, composition of urine
    etc.) of manure per animal
    Quantity and/or quality of
    odor from facility
    Swine Characteristics
    Sow reproductive performance
    No. of pigs born No. of pigs born alive No. of pigs weaned
    Piglets birth weight Uniformity of baby pigs Mortality of baby pigs
    Piglets weaning weight Sow body condition score Sow lactation back fat loss
    Sow lactation weight loss Interval weaning to estrus Sow longevity
    Working boar
    Body condition score Working frequency Semen quality
    Finisher
    Average daily gain Average daily lean gain Average daily feed intake
    per weight gain
    Average daily feed intake per Feed wastage Feed form
    lean gain
    Mortality Days to market Feed cost per kg gain
    Feed cost per kg lean gain Medication usage per pig Dressing percentage
    Lean percentage Back fat thickness Fatty acid composition
    Evaluation Criteria for Environment
    Thermal environment (Draft, Air quality (Dust, Humidity, Pig/pen
    Floor type, Bedding, Insulation) Ammonia, Carbon dioxide,
    etc)
    Pig density Health condition Feeder type
    Pigs/feeder hole Water quality and quantity
    Evaluation Criteria for appearance
    Hair coat condition Skin color Ham shape
    Body shape and length
    Evaluation Criteria for meat/fat quality
    Meat and fat color Iodine value Fatty acid profile
    PSE Juiciness Flavor
    Tenderness Marbling score Water holding capacity
    Evaluation Criteria for Health
    Suckling piglets
    Eye condition (dry and dirty or Skin condition (elastic or Hair condition (dense or
    bright and vital eyes) dry) and color (pink or coarse)
    pale)
    Dirtiness of around anus Breathe with open mouth Belly condition
    Finisher
    Respiratory disease Body temperature Cannibalism (tail, ear, belly
    biting)
    Skin and hair condition (mange Stool condition Swollen knee and ankle
    and parasites) joint
    Dirtiness of around eyes Nose condition Respiratory sound
    (Difficulties in breathing)
    Activity
    Sows
    MMA (Mastitis, Metritis, Stool condition Abortion and stillbirth
    Agaclactia) (constipation)
    Wet belly Body shaking Vaginal and uterine
    prolapse
    Body condition score Interval weaning to estrus Feed intake (sick sows eat
    less)
    Leg problem Body temperature
    Dairy Characteristics
    Cow reproductive performance
    Breeding per conception Live birth Days to first estrous
    Calf birth weight Days open Days to cleaning
    Calf weaning weight Cow body condition score MUN and BUN
    Cow body reserve change Calving interval Blood hormones
    progesterone and estrogen
    Lactation
    Milk per day Body fatty acid loss or gain Average daily feed intake
    per kg milk
    Average daily feed intake per Feed wastage Feed form
    kg milk
    Mortality Lactation length Feed cost per kg milk
    Milk per year and lifetime milk Morbidity Body amino acid loss or
    gain
    Fatty acid composition of milk
    (CLA, EPA and DHA, 18:2 to
    18:3 ratio of milk)
    Evaluation Criteria for Environment
    Thermal environment (Draft, Air quality (Dust, Humidity, Blood cortisol, NEFA
    Floor type, Bedding, Insulation) Ammonia, Carbon dioxide,
    etc)
    Animal density Health condition Feed presentation method
    Cows per bunk or waterer Water quality and quantity Cow care and comfort
    space score card
    Evaluation Criteria for appearance
    Hair coat condition Skin color Body condition score
    Body shape and length Color of mucus memberance Appearence of eyes and
    ears
    Evaluation Criteria for milkquality
    Milk color Milk protein composition Milk fat yield
    Milk flavor Milk lactose Milk protein yield
    Milk fatty acid composition Total milk solids
    Evaluation Criteria for Health
    Calves
    Eye condition (dry and dirty or Skin condition (elastic or Hair condition (dense or
    bright and vital eyes) dry) and color (pink or coarse)
    pale)
    Dirtiness of around anus Breathe with open mouth Belly condition
    Heifers
    Respiratory disease Body temperature
    Skin and hair condition (mange Stool condition Swollen knee and ankle
    and parasites) joint
    Dirtiness of around eyes Nose condition Respiratory sound
    (Difficulties in breathing)
    Activity
    Cows
    Mastitis, Metritis Stool condition Abortion and stillbirth
    (constipation) manure
    screener
    Blood measures EX: cortisol, Body shaking Vaginal and uterine
    NEFA, BHBA, alkaline prolapse
    phosphitase, progesterone
    estrogen bun
    Body condition score Calving interval Feed intake (sick cows eat
    less)
    Leg problem Body temperature Milk urea nitrogen
    Companion Animal and Equine Characteristics
    Hair coat shine Hair coat-fullness Skin scale/flake level
    Fecal consistency Gas production Breath
    Immune status Antioxidant status Body condition (thin,
    normal, obese)
    skeletal growth rate endurance Digestive health status
    Circulatory health status Hoof quality Hair quality
    Body fluid status Workload (NRC specifies
    light, medium and heavy
    workloads)
    Characteristics to optimize for athlete animals:
    Speed Sprint Muscular glycogen spare
    Muscular glycogen recovery Decrease recovery time Endurance
    after exercise
    Body condition
    Health and Welfare of the Animal:
    Welfare and behavior (calmer or Relationship between Dry matter intake
    energetic diet): NDF/starch or forage/grain
    Long fiber intake Electrolytes
    General health status: Low allergenicity Digestive health
    Improving inmunologic Increasing antioxidant
    status status
    Minimize digestive upset
    Immunologic status
    Beef Characteristics
    Cow reproductive performance
    Conception rate Weaning rate Calf birth weight
    Calf mortality Calf weaning weight Cow body condition score
    Interval weaning to estrus Calving interval
    Bulls
    Body condition score Breeding Soundness
    Growing
    Average daily lean gain Average daily feed intake Feed cost per unit gain
    per lean gain
    Feed cost per unit lean gain
    Evaluation Criteria for Environment
    Air quality Nutrient excretion
    Evaluation Criteria for appearance
    Hair coat condition Height Height/weight ratio
    Evaluation Criteria for meat/fat quality
    Meat and fat color Fatty acid profile Juiciness
    Flavor Tenderness Marbling score
    Dressing percentage Red meat yield Muscle pH
    Intra muscular fat Antioxidant status
    Evaluation Criteria for Health
    Mortality Medication cost Morbidity
    Poultry Characteristics
    Egg and reproduction
    Egg number Fertility Hatchability
    Egg weight Egg mass Egg internal quality
    (Haugh Units)
    Egg yolk color Eggshell quality Egg bacteriological content
    (Salmonella-fee)
    Fertile eggs breakout analysis
    Performance
    Average daily gain Average daily feed intake Feed conversion
    Mortality Occurrences of Leg Feed cost per kg gain live
    problem weight
    Feed cost per dozen eggs Yield of Eviscerated Yield of body parts
    carcass (breast, thigh, back etc.)
    Flock Uniformity Feed consumption
    Environment
    Temperature Air quality (Dust, Bird density
    Humidity, Ammonia,
    Carbon dioxide, etc)
    Feeder space Lighting program Water quality and quantity
    Litter quality (Wet droppings) Biosecurity
    Evaluation Criteria for appearance
    Feathering score Skin color Skin scratching score
    Feed appearance (color, texture,
    etc.)
    Aquaculture Animal Characteristics
    Initial weight Size variability Developmental stage
    Target weight Stocking density Body composition (or meat
    composition)
    Body condition Animal or meat color Survival rate
    Feedings per day Feeding activity Swimming Speed
    Feed water stability Desired shelf-life Specific growth rate
    Meat yield (e.g., fillet, tail meat, Mouth gape Cost per unit gain
    etc.)
    FCR Days to market Genotype
    Pigmentation Feed Consumption Harvest Biomass
    Number of days to “X” animal $ cost/unit weight gain % of yield of target
    size product (shrimp tails, fillet,
    etc.)
    $ profit/unit production biomass Return on investment Cycles per year
    $ of feed/unit weight of $ of feed/$ of biomass Total harvest biomass
    production
    % of animals in target size range Mortality or survival rate Specific growth rate
    Average animal size $ of profit/unit of culture Average weight gain/week
    area or volume
    Weight of production/unit of Product shelf life
    aeration
    Aquaculture Environmental Characteristics
    System type Ammonia, pH, dissolved Water flow rate
    oxygen, alkalinity, temp.,
    hardness, etc.
    Water exchange rate Nutrient load Natural productivity
    biomass (species specific
    forage base)
    Population health Environmental pathogen Temperature, oxygen, etc.
    load variability
    System Substrate Water Filtration Rate Feed on feeding tray
    Total Filtration Capacity Photoperiod Processing form for feed
    (Mechanical and Chemical)
    Medicine application Aeration rate Water exchange rate
    Aeration pattern Feeding tray # and Feed distribution pattern
    positioning
    Secchi disc reading
  • [0048]
    Referring now to the components of system 100, supervisor 200 may be any type of system configured to manage the data processing function within system 100 to generate optimization information, as will be further discussed below with reference to FIG. 2. Simulator 300 may be any type of system configured to receive animal information or animal formulation data, apply one or more models to the received information, and generate performance projections such as animal requirements, animal performance projections, environmental performance projections, and/or economic performance projections as will be further discussed below with reference to FIG. 3. Ingredient engine 400 may be any kind of system configured to receive a list of ingredients and generate ingredient profile information for each of the ingredients including nutrient and other information. Formulator 500 may be any type of system configured to receive an animal requirements projection and ingredient profile information and generate animal formulation data, as will be further discussed below with reference to FIG. 4.
  • [0049]
    Referring now to FIG. 2, a general block diagram illustrating an enterprise supervisor 200 for an animal production optimization system 100 is shown, according to an exemplary embodiment. Enterprise supervisor 200 includes a user interface 210 and an optimization engine 230. Enterprise supervisor 200 may be any type of system configured to receive animal information input through user interface 210, submit the information to simulator 300 to generate at least one animal requirement, submit the at least one animal requirement to formulator 500 to generate least cost animal feed formulation given the animal requirement, submit the optimized formulation to simulator 300 to generate a performance projection and to utilize optimization engine 230 to generate optimized values for one or more variable inputs.
  • [0050]
    According to an alternative embodiment, optimization or some portion of the optimization may be performed by a different component of system 100. For example, optimization described herein with reference to supervisor 200 may alternatively be performed by simulator 300. Further, optimization of animal feed formulation may be performed by formulator 500.
  • [0051]
    Enterprise supervisor 200 may include or be linked to one or more databases configured to automatically provide animal information inputs or to provide additional information based upon the animal information inputs. For example, where a user has requested optimization information for a dairy production operation, enterprise supervisor 200 may be configured to automatically retrieve stored information regarding the user's dairy operation that was previously recorded to an internal database and also to download all relevant market prices or other relevant information from an external database or source.
  • [0052]
    User interface 210 may be any type of interface configured to allow a user to provide input and receive output from system 100. According to an exemplary embodiment, user interface 210 may be implemented as a web based application within a web browsing application. For example, user interface 210 may be implemented as a web page including a plurality of input fields configured to receive animal information input from a user. The input fields may be implemented using a variety of standard input field types, such as drop-down menus, text entry fields, selectable links, etc. User interface 210 may be implemented as a single interface or a plurality of interfaces that are navigable based upon inputs provided by the user. Alternatively, user interface 210 may be implemented using a spreadsheet based interface, a custom graphical user interface, etc.
  • [0053]
    User interface 210 may be customized based upon the animal information inputs and database information. For example, where a user defines a specific species of animal, enterprise supervisor 200 may be configured to customize user interface 210 such that only input fields that are relevant to that specific species of animal are displayed. Further, enterprise supervisor 200 may be configured to automatically populate some of the input fields with information retrieved from a database. The information may include internal information, such as stored population information for the particular user, or external information, such as current market prices that are relevant for the particular species as described above.
  • [0054]
    Optimization engine 230 may be a process or system within enterprise supervisor 200 configured to receive data inputs and generate optimization information based on the data inputs and at least one of the optimization criteria. According to an exemplary embodiment, optimization engine 230 may be configured to operate in conjunction with simulator 300 to solve one or more performance projections and calculate sensitivities in the performance projection. Calculating sensitivities in the performance projections may include identifying animal information input or variable inputs that have the greatest effect on overall productivity or other satisfaction of the optimization criteria. Optimization engine 230 may further be configured to provide optimized values for the animal information inputs or variable inputs based on the sensitivity analysis. Optimization may include any improvement to productivity or some other measure according to the optimization criteria. The process and steps in producing the optimized values are further discussed below with reference to FIG. 5.
  • [0055]
    Optimization criteria may include any criteria, target, or combination of targets or balanced goals that are desirable to the current user. In a preferred embodiment, the optimization criteria is maximizing productivity. Maximizing productivity may include maximizing a single or multiple factors associated with productivity such as total output, output quality, output speed, animal survival rates, etc. Maximizing productivity may further include minimizing negative values associated with the productivity, such as costs, harmful waste, etc. Alternative optimization criteria may include profitability, product quality, product characteristics, feed conversion rate, survival rate, growth rate, biomass/unit space, biomass/feed cost, cost/production day, cycles/year, etc. Alternatively, the optimization criteria may include minimizing according to an optimization criteria. For example, it may be desirable to minimize the nitrogen or phosphorus content of animal excretion.
  • [0056]
    Optimization engine 230 maybe configured to implement its own optimization code for applications where feed ingredient information from formulator 500 is combined with other information and/or projections calculated in simulator 300. Optimization problems that coordinate several independent calculation engines, referred to as multidisciplinary optimizations, may be solved using gradient-based methods, or more preferably simplex methods such as Nelder-Mead or Torczon's algorithm. Preferably, optimization engine 230 may be configured to implement a custom combination of a gradient-based method for variables on which the optimization criteria depends smoothly (decision variables fed to simulator 300) and a simplex method for variables on which the objective function has a noisy or discontinuous dependence (diet requirements fed to formulator 500). Alternatively, other optimization methods may be applied, including but not limited to, pseudo-gradient based methods, stochastic methods, etc.
  • [0057]
    Enterprise supervisor 200 may be further configured to format the optimization results and provide the results as output through user interface 210. The results may be provided as recommended optimized values for the variable inputs. The results may further include recommended values for additional animal information inputs, independent of whether the animal information input was designated as a variable input. The results may further include a projection of the effects of implementation of the optimized values for the variable inputs.
  • [0058]
    Enterprise supervisor 200 may be configured to implement a Monte Carlo method where a specific set of values is drawn from a set of distributions of model parameters to solve for optimized values for the variable inputs. This process may be repeated many times, creating a distribution of optimized solutions. Based on the type of optimization, enterprise supervisor 200 maybe used to select either the value most likely to provide the optimal solution or the value that gives confidence that is sufficient to meet a target. For example, a simple optimization might be selected which provides a net energy level that maximizes the average daily gain for a particular animal. A Monte Carlo simulation may provide a distribution of requirements including various net energy levels and the producer may select the net energy level that is most likely to maximize the average daily gain.
  • [0059]
    Enterprise supervisor 200 may further be configured to receive real world feedback based on the application of the optimized values for the variable inputs. The real world feedback may be compared to the performance projections, further discussed below with reference to FIG. 3. Real world feedback can be provided using any of a variety of methods such as automated monitoring, manual input of data, etc.
  • [0060]
    Further, enterprise supervisor 200 may be configured to enable dynamic control of models. After setting an initial control action, for example the feed formulation, as will be discussed below with reference to FIG. 5, the animal response may be monitored and compared with the prediction. If the animal response deviates too far from the prediction, a new control action, e.g., feed formulation, may be provided. For example, if the performance begins to exceed prediction, some value may be recovered by switching to a less costly feed formulation, different water flow rate, etc. If performance lags prediction, switching to higher value feed formulation, may help to ensure that the final product targets are met. Although the control action is described above with reference to a feed formulation, the control action may be for any control variable, such as water flow rate, feeding rate, etc. Similarly, the adjustments may be made to that control variable, such as by increasing or decreasing the flow rate, etc.
  • [0061]
    Referring now to FIG. 3, a general block diagram illustrating a simulator 300 is shown according to an exemplary embodiment. Simulator 300 includes a requirements engine 310, an animal performance simulator 320, an environment performance simulator 330, and an economic performance simulator 340. Generally, simulator 300 may be any process or system configured to apply one or more models to input data to produce output data. The output data may include any performance projection, such as animal requirements and/or performance projections, including animal performance projections, economic performance projections, environmental performance projections, etc.
  • [0062]
    Specifically, simulator 300 is configured to receive animal information input from enterprise supervisor 200, process the information using requirements engine 310 and an animal requirements model to produce a set of animal requirements. Further, simulator 300 may be configured to receive feed formulation data from enterprise supervisor 200 and process the feed formulation data using any combination of animal performance simulator 320, environment performance simulator 330, and economic performance simulator 340 to produce at least one performance projection.
  • [0063]
    An animal requirements model, used by simulator 300 to convert input values into one or more outputs, may consist of a system of equations that, when solved, relate inputs like animal size to an animal requirement like protein requirement or a system requirement like space allotment or feed distribution. A specific mathematical form for the model is not required, the most appropriate type of model may be selected for each application. One example is models developed by the National Research Council (NRC), consisting of algebraic equations that provide nutrient requirements based on empirical correlations. Another example is MOLLY, a variable metabolism-based model of lactating cow performance developed by Prof. R. L. Baldwin, University of California-Davis. A model may consist of a set of explicit ordinary differential equations and a set of algebraic equations that depend on the differential variables. A very general model may consist of a fully implicit, coupled set of partial differential, ordinary differential, and algebraic equations, to be solved in a hybrid discrete-continuous simulation.
  • [0064]
    A model may be configured to be independent of the functionality associated with simulator 300. Independence allows the model and the numerical solution algorithms to be improved independently and by different groups.
  • [0065]
    Preferably, simulator 300 may be implemented as an equation-based process simulation package in order to solve a wide variety of models within system 100. Equation-based simulators abstract the numerical solution algorithms from the model. This abstraction allows model development independent from numerical algorithms development. The abstraction further allows a single model to be used in a variety of different calculations (steady-state simulation, dynamic simulation, optimization, parameter estimation, etc.). Simulators may be configured to take advantage of the form and structure of the equations for tasks such as the sensitivity calculations. This configuration allows some calculations to be performed more robustly and/or efficiently than is possible when the model is developed as a block of custom computer code. An equation-based process simulation package is software configured to interact directly with the equations that make up a model. Such a simulator typically parses model equations and builds a representation of the system of equations in memory. The simulator uses this representation to efficiently perform the calculations requested, whether steady-state simulations, dynamic simulations, optimization, etc. An equation-based process simulation package also allows incorporation of calculations that are more easily written as combination of procedures and mathematical equations. Examples may include interpolation within a large data table, calling proprietary calculation routines distributed as compiled code for which equations are not available, etc. As newer and better solution algorithms are developed, these algorithms may be incorporated into simulator 300 without requiring any changes to the models simulator 300 is configured to solve.
  • [0066]
    According to an exemplary embodiment, simulator 300 may be a process simulator. Process simulators generally include a variety of solution algorithms such as reverse mode automatic differentiation, the staggered corrector method for variable sensitivities, automatic model index reduction, robust Newton iteration for solving nonlinear systems from poor initial values, error-free scaling of variable systems, and the interval arithmetic method for locating state events. Process simulators utilize sparse linear algebra routines for direct solution of linear systems. The sparse linear algebra routines can efficiently solve very large systems (hundreds of thousands of equations) without iteration. Process simulators further provide a particularly strong set of optimization capabilities, including non-convex mixed integer non-linear problems (MINLPs) and global variable optimization. These capabilities allow simulator 300 to solve optimization problems using the model directly. In particular, the staggered corrector algorithm is a particularly efficient method for the sensitivities calculation, which is often the bottleneck in the overall optimization calculation.
  • [0067]
    Variable inputs for optimization to be solved by simulator 300 may include both fixed and time-varying parameters. Time varying parameters are typically represented as profiles given by a set of values at particular times using a specific interpolation method, such as piecewise constant, piecewise linear, Bezier spline, etc.
  • [0068]
    Simulator 300 and the associated models may be configured and structured to facilitate periodic updating. According to an exemplary embodiment, simulator 300 and the associated models may be implemented as a dynamic link library (DLL). Advantageously, a DLL may be easily exported but not viewed or modified in any structural way.
  • [0069]
    Requirements engine 310 may be any system or process configured to receive animal information input and generate animal requirements by applying one or more requirements models to the set of animal information input. A requirements model may be any projection of potential outputs based upon any of a variety of set of inputs. The model may be as simple as a correlation relating milk production to net energy in an animal feed or as complex as a variable model computing the nutrient requirement to maximize the productivity of a shrimp aquaculture pond ecosystem. Requirements engine 310 may be configured to select from a plurality of models based on the animal information inputs. For example, requirements engine 310 may include models for swine requirements, dairy requirements, companion animal requirements, equine requirements, beef requirements, general requirements, poultry requirements, aquaculture animal requirements, etc. Further, each model may be associated with a plurality of models based on an additional categorization, such as developmental stage, stress level, etc.
  • [0070]
    Animal requirements generated by requirements engine 310 may include a listing of nutrient requirements for a specific animal or group of animals. Animal requirements may be a description of the overall diet to be fed to the animal or group of animals. Animal requirements further may be defined in terms of a set of nutritional parameters (“nutrients”). Nutrients and/or nutritional parameters may include those terms commonly referred to as nutrients as well as groups of ingredients, microbial measurements, indices of health, relationships between multiple ingredients, etc. Depending on the degree of sophistication of system 100, the animal requirements may include a relatively small set of nutrients or a large set of nutrients. Further, the set of animal requirements may include constraints or limits on the amount of any particular nutrient, combination of nutrients, and/or specific ingredients. Advantageously, constraints or limits are useful where, for example, it has been established at higher levels of certain nutrients or combination of nutrients could pose a risk to the health of an animal being fed. Further, constraints may be imposed based on additional criteria such as moisture content, palatability, etc. The constraints may be minimums or maximums and may be placed on the animal requirement as a whole, any single ingredient, or any combination ingredients. Although described in the context of nutrients, animal requirements may include any requirements associated with an animal, such as space requirements, heating requirements, etc.
  • [0071]
    Additionally, animal requirements may be generated that define ranges of acceptable nutrient levels. Advantageously, utilizing nutrient ranges allows greater flexibility during animal feed formulation, as will be described further below with reference to FIG. 3.
  • [0072]
    Requirements engine 310 may be further configured to account for varying digestibility of nutrients. For example, digestibility of some nutrients depends on the amount ingested. Digestibility may further depend on the presence or absence of other nutrients, microbes and/or enzymes, processing effects (e.g. gelatinization, coating for delayed absorption, etc.), animal production or life stage, previous nutrition level, etc. Simulator 300 may be configured to account for these effects. For example, simulator 300 may be configured to adjust a requirement for a particular nutrient based on another particular nutrient.
  • [0073]
    Requirements engine 310 may also be configured to account for varying digestion by an animal. Animal information inputs may include information indicating the health of an animal, stress level of an animal, reproductive state of an animal, methods of feeding the animal, etc. as it affects ingestion and digestion by an animal. For example, the stress level of an animal may decrease the overall feed intake by the animal, while gut health may increase or decrease a rate of passage.
  • [0074]
    Table 2 below includes an exemplary listing of nutrients that may be included in the animal requirements. According to an exemplary embodiment, within the animal requirements, each listed nutrient may be associated with a value, percentage, range, or other measure of amount. The listing of nutrients may be customized to include more, fewer, or different nutrients based on any of a variety of factors, such as animal type, animal health, nutrient availability, etc.
    TABLE 2
    Nutrients Suitable for Generating Animal Requirements
    ADF Animal Fat Ascorbic Acid
    Arginine (Total and/or Digestible) Ash Biotin
    Calcium Calcium/Phos ratio Chloride
    Choline Chromium Cobalt
    Copper Cystine (Total and/or Dry Matter
    Digestible)
    Fat Fiber Folic Acid
    Hemicellulose Iodine Iron
    Isoleucine (Total and/or Lactose Lasalocid
    Digestible)
    Leucine (Total and/or Digestible) Lysine (Total and/or Magnesium
    Digestible)
    Manganese Margin Methionine (Total and/or
    Digestible)
    Moisture Monensin NDF
    NEg (Net Energy Gain) NEl (Net Energy Lactation) NEm (Net Energy
    Maintenance)
    NFC (Non-Fiber Carbohydrate) Niacin Phenylalanine (Total
    and/or Digestible)
    Phosphorus Phosphate Potassium
    Protein Pyridoxine Rh Index (Rumen Health
    Index)
    Riboflavin Rough NDF Rum Solsug (Rumen
    Soluble Sugars)
    Rumres NFC (Ruminant Residual RUP (Rumen Salt
    Non-Fiber Carbohydrate) Undegradable Protein)
    Selenium Simple Sugar Sodium
    Sol RDP (Soluble Rumen Sulfur Sw ME (Metabolizable
    Degradable Protein) Energy)
    Thiamine Threonine (Total and/or Total RDP
    Digestible)
    Tryptophan (Total and/or Valine (Total and/or Vitamin A
    Digestible) Digestible)
    Vitamin B12 Vitamin B6 Vitamin D
    Vitamin E Vitamin K Zinc
    Gut Health Index
  • [0075]
    Requirements engine 310 may be configured to generate the animal requirements based on one or more requirement criteria. Requirement criteria can be used to define a goal for which the requirement should be generated. For example, exemplary requirement criteria can include economic constraints, such as maximizing production, slowing growth to hit the market, or producing an animal at the lowest input cost.
  • [0076]
    The requirements engine 310 may further be configured to generate the animal requirements based on one or more dynamic nutrient utilization models. Dynamic nutrient utilization may include a model of the amount of nutrients within an animal feed that are utilized by an animal based on information received in the animal information inputs, such as animal health, feeding method, feed form (mash, pellets, extruded, etc.), water stability of feed, uneaten food, etc.
  • [0077]
    Animal performance simulator 320 may be a process or system including a plurality of models similar to the models described above with reference to requirements engine 310. The models utilized in animal performance simulator 320 receive an animal feed formulation from formulator 300 through enterprise supervisor 200 and the animal information inputs and apply the models to the feed formulation to produce one or more animal performance projections. The animal performance projection may be any predictor of animal productivity that will be produced given the animal feed formulation input and other input variables.
  • [0078]
    Environment performance simulator 330 may be a process or system including a plurality of models similar to the models described above with reference to requirements engine 310. The models utilized in environment performance simulator 330 receive animal feed formulation from formulator 300 through enterprise supervisor 200 and apply the models to the feed formulation and animal information inputs to produce a performance projection based on environmental factors. The environmental performance projection may be any prediction of performance that will be produced given the animal feed formulation input, animal information inputs, and environmental factors.
  • [0079]
    Economic performance simulator 340 may be a process or system including a plurality of models similar to the models described above with reference to requirements engine 310. The models utilized in economic performance simulator 340 receive animal feed formulation from formulator 300 through enterprise supervisor 200 and apply the models to the feed formulation and animal information inputs to produce a performance projection based on economic factors. The economic performance projection may be any prediction of performance that will be produced given the animal feed formulation input, animal information inputs, and the economic factors.
  • [0080]
    The performance projections may include a wide variety of information related to outputs produced based on the provided set inputs. For example, performance projections may include information related to the performance of a specific animal such as the output produced by an animal. The output may include, for example, the nutrient content of eggs produced by the animal, qualities associated with meat produced by the animal, the contents of waste produced by the animal, the effect of the animal on an environment, etc.
  • [0081]
    According to exemplary embodiment, simulators 320, 330, and 340 may be run in parallel or in series to produce multiple performance projections. The multiple animal performance projections may remain separated or be combined into a single comprehensive performance projection. Alternatively, performance projections may be generated based on a single simulator or a combination of less than all of the simulators.
  • [0082]
    Requirements engine 310 may further include additional simulators as needed to generate performance projections that are customized to satisfy a specific user criteria. For example, requirements engine 310 may include a bulk composition simulator, egg composition simulator, meat fat composition, waste output simulator, etc.
  • [0083]
    Referring now to FIG. 4, a general block diagram illustrating an ingredients engine 400 and a formulator 500 is shown, according to an exemplary embodiment. Ingredients engine 400 is configured to exchange information with formulator 500. Ingredients engine 400 and formulator 500 are generally configured to generate an animal feed formulation based on available ingredients and received animal requirements.
  • [0084]
    Ingredients engine 400 includes one or more listings of available ingredients at one or more locations. The listing further includes additional information associated with the ingredients, such as the location of the ingredient, nutrients associated with the ingredient, costs associated with the ingredient, etc.
  • [0085]
    085 Ingredients engine 400 may include a first location listing 410, a second ingredient location listing 420, and a third ingredient location listing 430. First ingredient listing 410 may include a listing of ingredients available at a first location, such as ingredients at a user's farm. The second ingredient listing 420 may include a listing of ingredients that are available for purchase from an ingredient producer. Third ingredient listing 430 may include a listing of ingredients that are found in a target animal's environment such as forage in a pasture, plankton, zoo plankton, or small fish in an aquaculture pond, etc.
  • [0086]
    Referring now to third ingredient listing 430, an example of a listing of ingredients that are found in a target animal's environment may include a listing of the mineral content of water. An animal's total water consumption can be estimated based on known in consumption ratios, such as a ratio of water to dry feed matter consumed. This ratio may be either assigned an average value or, more preferably, calculated from known feed and animal properties. The mineral content of the water provided by producer may be measured on-site. This water, with measured mineral content and calculated intake level, may be incorporated as third ingredient listing 430.
  • [0087]
    Alternatively, third ingredient listing 430 may include an aquatic ecosystem total nutrient content. The ecosystem contribution to total nutrition may be included in several ways. For example, a sample may be drawn and analyzed for total nutrient content and included as third listing 430. Preferably, the models solved in simulator 300 may be expanded to include not only that species being produced but other species that live in the ecosystem as well. The model may include one or more of the following effects: other species competition for feed, produced species consumption of other species in ecosystem, and other species growth over time in response to excretion, temperature, sunlight, etc.
  • [0088]
    Third ingredient listing 430 may further include performance projections generated by simulator 300. For example, the nutrient content of milk may be modeled for the particular animals for an individual producer. This milk nutrient content model may be used as a third ingredient listing 430 for consumption by a nursing animal.
  • [0089]
    Each listing of ingredients may further include additional information associated with the ingredients. For example, a listing of ingredients may include a listing of costs associated with that ingredient. Alternatively, an ingredient at the first location may include a costs associated with producing the ingredient, storing the ingredient, dispensing the ingredient, etc., while an ingredient at the second location may include a cost associated with purchasing the ingredient, and an ingredient at the third location may include a cost associated with maintaining the environment. The additional information may include any type of information that may be relevant to later processing steps.
  • [0090]
    Table 3 below includes an exemplary list of ingredients which may be used in generating the animal feed formulation. The listing of ingredients may include more, fewer, or different ingredients depending on a variety of factors, such as ingredient availability, entry price, animal type, etc.
    TABLE 3
    Exemplary Ingredients Suitable for
    Use in Formulating Custom Feed Mixes
    Acidulated Soap Stocks Active Dry Yeast Alfalfa Meal
    Alfalfa-Dehydrated Alimet Alka Culture
    Alkaten Almond Hulls Ammonium Chloride
    Ammonium Lignin Ammonium Polyphosphate Ammonium Sulfate
    Amprol Amprol Ethopaba Anhydrous Ammonia
    Appetein Apramycin Arsanilic Acid
    Ascorb Acid Aspen Bedding
    Avizyme Bacitracin Zinc Bakery Product
    Barley Barley-Crimped Barley-Ground
    Barley-Hulless Barley-Hulls Barley-Midds
    Barley-Needles Barley-Rolled
    Barley-Whole Barley-With Enzyme Baymag
    Beet
    Beet Pulp Biotin Biscuit By Product
    Black Beans Blood-Flash Dry
    Bone Meal Brewers Rice Brix Cane
    Buckwheat Cage Calcium
    Calcium Cake Calcium Chloride Calcium Formate
    Calcium Iodate Calcium Sulfate Calcium Prop
    Canadian Peas Cane-Whey
    Canola Cake Canola Fines Canola Meal
    Canola Oil Canola Oil Blender Canola Oil Mix
    Canola Screenings Canola-Whole Carbadox
    Carob Germ Carob Meal Cashew Nut Byproduct
    Catfish Offal Meal Choline Chloride Chromium Tripicolinate
    Citrus Pulp Clopidol Cobalt
    Cobalt Carbonate Cobalt Sulfate Cocoa Cake
    Cocoa Hulls Copper Oxide Copper Sulfate
    Corn Chips Corn Chops Corn Coarse Cracked
    Corn-Coarse Ground Corn Cob-Ground Corn Distillers
    Corn Flint Corn Flour Corn Germ Bran
    Corn Germ Meal Corn Gluten Corn-High Oil
    Corn Kiblets Corn Meal Dehulled Corn Oil
    Corn Residue Corn Starch Corn/Sugar Blend
    Corn-Cracked Corn-Crimped Corn-Ground Fine
    Corn-Ground Roasted Corn-Steam Flaked Corn-Steamed
    Corn-Whole Cottonseed Culled Cottonseed Hull
    Cottonseed Meal Cottonseed Oil Cottonseed Whole
    Coumaphos Culled Beans Danish Fishmeal
    Decoquinate Dextrose Diamond V Yeast
    Disodium Phosphate Distillers Grains Dried Apple Pomace
    Dried Brewers Yeast Dried Distillers Milo Dried Porcine
    Dried Whole Milk Powder Duralass Enzyme Booster
    Epsom Salts Extruded Grain
    Extruded Soy Flour Fat Feather Meal
    Feeding Oatmeal Fenbendazole Fermacto
    Ferric Chloride Ferrous Carbonate Ferrous Carbonate
    Ferrous Sulfate Fine Job's Tear Bran Fish Meal
    Fish Flavoring Folic Acid
    Fresh Arome Fried Wheat Noodles
    Gold Dye Gold Flavor Grain Dust
    Grain Screening Granite Grit Grape Pomace
    Green Dye Green Flavor Guar Gum
    Hard Shell Hemicellulose Extract
    Herring Meal Hominy Hygromycin
    Indian Soybean Meal Iron Oxide-Red Iron-Oxide Yellow
    Job's Tear Broken Seeds Kelp Meal
    Kem Wet Lactose Larvadex
    Lasalocid Levams Hcl Limestone
    Linco Lincomix Lincomycin
    Linseed Meal Liquid Fish Solubles Lupins
    Lysine Magnesium Magnesium Sulfate
    Malt Plant By-Products Manganous Ox Maple Flavor
    Masonex Meat And Bone Meal Meat Meal
    Mepron Methionine Millet Screenings
    Millet White Millet-Ground Milo Binder
    Milo-Coarse Ground Milo-Cracked Milo-Whole
    Mineral Flavor Mineral Oil Mixed Blood Meal
    Molasses Molasses Blend Molasses Dried
    Molasses Standard Beet Molasses Standard Cane Molasses-Pellet
    Mold Monensin Monoamonum Phos
    Monosodium Glutamate Monosodium Phosphate Mung Bean Hulls
    Mustard Meal High Fat Mustard Oil Mustard Shorts
    Narasin Natuphos Niacin
    Nicarbazin Nitarsone Oat Cullets
    Oat Flour Oat Groats Oat Hulls
    Oat Mill Byproducts Oat Screenings Oat Whole Cereal
    Oatmill Feed Oats Flaked Oats-Ground
    Oats-Hulless Oats-Premium Oats-Rolled
    Oats-Whole Oyster Shell Paddy Rice
    Palm Kernel Papain Papain Enzyme
    Paprika Spent Meal Parboiled Broken Rice Pea By-Product
    Pea Flour Peanut Meal Peanut Skins
    Pelcote Dusting Phosphate Phosphoric Acid
    Phosphorus Phosphorus Defluorinated Pig Nectar
    Poloxalene Popcorn
    Popcorn Screenings Porcine Plasma; Dried Pork Bloodmeal
    Porzyme Posistac Potassium Bicarbonate
    Potassium Carbonate Potassium Magnesium Potassium Sulfate
    Sulfate
    Potato Chips Poultry Blood/Feather Poultry Blood Meal
    Meal
    Poultry Byproduct Predispersed Clay Probios
    Procain Penicillen Propionic Acid Propylene Glycol
    pyran Tart Pyridoxine Quest Anise
    Rabon Rapeseed Meal Red Flavor
    Red Millet Riboflavin Rice Bran
    Rice By-Products Fractions Rice Dust Rice Ground
    Rice Hulls Rice Mill By-Product Rice Rejects Ground
    Roxarsone Rumen Paunch Rumensin
    Rye Rye Distillers Rye With Enzymes
    Safflower Meal Safflower Oil Safflower Seed
    Sago Meal Salinomycin Salt
    Scallop Meal Seaweed Meal Selenium
    Shell Aid Shrimp Byproduct Silkworms
    Sipernate Sodium Acetate Sodium Benzoate
    Sodium Bicarbonate Sodium Molybdate Sodium Sesquicarbonate
    Sodium Sulfate Solulac
    Soy Flour Soy Pass Soy Protein Concentrate
    Soybean Cake Soybean Curd By-Product Soybean Dehulled Milk By-Product
    Soybean Hulls Soybean Mill Run Soybean Oil
    Soybean Residue Soybeans Extruded Soybeans-Roasted
    Soycorn Extruded Spray Dried Egg Standard Micro Premix
    Starch Molasses Steam Flaked Corn Steam Flaked Wheat
    Sugar (Cane) Sulfamex-Ormeto Sulfur
    Sunflower Meal Sunflower Seed Tallow Fancy
    Tallow-Die Tallow-Mixer Tapioca Meal
    Tapioca Promeance Taurine Terramycin
    Thiabenzol Thiamine Mono Threonine
    Tiamulin Tilmicosin Tomato Pomace
    Trace Min Tricalcium Phosphate Triticale
    Tryptophan Tryptosine Tuna Offal Meal
    Tylan Tylosin Urea
    Vegetable Oil Blend Virginiamycin Vitamin A
    Vitamin B Complex Vitamin B12 Vitamin D3
    Vitamin E Walnut Meal Wheat Bran
    Wheat Coarse Ground Wheat Germ Meal Wheat Gluten
    Wheat Meal Shredded Wheat Millrun Wheat Mix
    Wheat Noodles Low Fat Wheat Red Dog Wheat Starch
    Wheat Straw Wheat With Enzyme Wheat-Ground
    Wheat-Rolled Wheat-Whole Whey Dried
    Whey Permeate Whey Protein Concentrate Whey-Product Dried
    Yeast Brewer Dried Yeast Sugar Cane Zinc
    Zinc Oxide Zoalene
  • [0091]
    Ingredient engine 400 may further include an ingredient information database 440. Ingredient information database 440 may include any kind of information related to ingredients to be used in generating the feed formulation, such as nutrient information, cost information, user information, etc. The information stored in database 440 may include any of a variety of types of information such as generic information, information specifically related to the user, real-time information, historic information, geographically based information, etc. Ingredient information database 440 may be utilized by ingredient engine 400 to supply information necessary for generating an optimized feed formulation in conjunction with information supplied by the user.
  • [0092]
    Ingredient information database 440 may further be configured to access external databases to acquire additional relevant information, such as feed market information. Feed market information may similarly include current prices for ingredient, historical prices for output, ingredient producer information, nutrient content of ingredient information, market timing information, geographic market information, delivery cost information, etc. Ingredient information database 440 may further be associated with a Monte Carlo type simulator configured to provide historical distributions of ingredient pricing and other information that can be used as inputs to other components of system 100.
  • [0093]
    Ingredient engine 400 may further include a variable nutrient engine 450 configured to provide tracking and projection functions for factors that may affect the nutrient content of an ingredient. For example, variable nutrient engine 450 may be configured to project the nutrient content for ingredients over time. The nutrient content for some ingredients may change over time based on method of storage, method of transportation, natural leaching, processing methods, etc. Further, variable nutrient engine 450 may be configured to track variability in nutrient content for the ingredients received from specific ingredient producers to project a probable nutrient content for the ingredients received from those specific ingredient producers.
  • [0094]
    Variable nutrient engine 450 may be further configured to account for variability in nutrient content of ingredients. The estimation of variability of an ingredient may be calculated based on information related to the particular ingredient, the supplier of the ingredient, testing of samples of ingredient, etc. According to exemplary embodiment, recorded and/or estimated variability and covariance may be used to create distributions that are sampled in a Monte Carlo approach. In this approach, the actual nutrient content of ingredients in an optimized feed formulation are sampled repeatedly from these distributions, producing a distribution of nutrient contents. Nutrient requirements may then be revised for any nutrients for which the nutrient content is not sufficient. The process may be repeated until the desired confidence is achieved for all nutrients.
  • [0095]
    Referring now to formulator 500, formulator 500 is configured to receive animal requirements from simulator 300 through enterprise supervisor 200 and nutrient information from ingredients engine 400 based on available ingredients and generate an animal feed formulation. Formulator 500 calculates a least-cost feed formulation that meets the set of nutrient levels defined in the animal requirements.
  • [0096]
    The least-cost animal feed formulation may be generated using linear programming optimization, as is well-known in the industry. The least-cost formulation is generally configured to utilize a users available ingredients in combination with purchased ingredients to create an optimized feed formulation. More specifically, the linear programming will incorporate nutrient sources provided by a user such as grains, forages, silages, fats, oils, micronutrients, or protein supplements, as ingredients with a fixed contribution to the total feed formulation. These contributions are then subtracted from the optimal formulation; the difference between the overall recipe and these user-supplied ingredients constitute the ingredient combinations that would be produced and sold to the customer.
  • [0097]
    Alternatively, the formulation process may be performed as a Monte Carlo simulation with variability in ingredient pricing included as either historical or projected ranges to created distribution which are subsequently optimized as described above.
  • [0098]
    Referring now to FIG. 5, a flowchart illustrating a method 600 for animal production optimization is shown, according to an exemplary embodiment. Method 600 generally includes identifying optimized values for one or more animal information inputs according to at least one optimization criteria. Although the description of method 600 includes specific steps and a specific ordering of steps, it is important to note that more, fewer, and/or different orderings of the steps may be performed to implement the functions described herein. Further, implementation of a step may require reimplementation of an earlier step. Accordingly, although the steps are shown in a linear fashion for clarity, several loop back conditions may exist.
  • [0099]
    In a step 605, enterprise supervisor 200 is configured to receive the animal information inputs. The animal information inputs can be received from a user through user interface 210, populated automatically based on related data, populated based on stored data related to the user, or received in a batch upload from the user. The received animal information inputs include a designation of one or more of the animal information inputs as a variable input. The designation as a variable input may be received for single, multiple, or all of the animal information inputs.
  • [0100]
    In a step 610, enterprise supervisor 200 is configured to receive an optimization criteria through user interface 210 or, alternatively, receive a preprogrammed optimization criteria. The optimization criteria may include maximizing productivity, reducing expenses, maximizing quality of output, achieving productivity targets, etc. In an exemplary embodiment, the optimization criteria may be an objective function requiring minimization or maximization. The objective function may have constraints incorporated therein or may be subject to independent constraints. The objective function may be a function of any combination of variables of the animal production system.
  • [0101]
    In a step 615, enterprise supervisor 200 is configured to communicate the animal information inputs and optimization criteria to simulator 300. Upon receiving the animal information inputs and optimization criteria, simulator 300 is configured to generate a set of animal requirements in a step 620.
  • [0102]
    In a step 625, the set of animal requirements are communicated from simulator 300 through enterprise supervisor 200 to formulator 500. Formulator 500 is configured to generate a least cost animal feed formulation based upon the animal requirements and nutrient information received from nutrient engine 450 in a step 630.
  • [0103]
    In a step 635, enterprise supervisor 200 is configured to generate optimized values for the one or more variable inputs received in step 605, as discussed in detail above with reference to FIG. 2.
  • [0104]
    Although specific functions are described herein as being associated with specific components of system 100, functions may alternatively be associated with any other component of system 100. For example, user interface 210 may alternatively be associated with simulator 300 according to an alternative embodiment.
  • [0105]
    Many other changes and modifications may be made to the present invention without departing from the spirit thereof. The scope of these and other changes will become apparent from the appended claims.

Claims (70)

  1. 1. A system for generating optimized values for variable inputs to an animal production system, comprising:
    a simulator engine configured to receive a plurality of animal information inputs and generate a performance projection, wherein at least one of the animal information inputs is designated as a variable input; and
    an enterprise supervisor engine configured to generate an optimized value for the at least one variable input based on at least one optimization criteria and an animal feed formulation.
  2. 2. The system of claim 1, further including a formulator engine, the formulator engine configured to receive animal feed ingredient information and generate the animal feed formulation composed of the animal feed ingredients based on the performance projection.
  3. 3. The system of claim 1, wherein generating an optimized value for the at least one variable input includes providing a projected effect of the modification to the at least one variable input.
  4. 4. The system of claim 1, wherein the variable input is one of an animal factor, an environmental factor, and an economic factor.
  5. 5. The system of claim 4, wherein the variable input is an environmental factor and includes at least one of a thermal environment, an animal population environment, a photoperiod environment, a feeding environment, an animal comfort environment, an animal structural environment, and an animal microbial environment.
  6. 6. The system of claim 4, wherein the variable input is an animal factor and includes at least one of an animal species type, an animal job, an animal genotype, and an animal composition.
  7. 7. The system of claim 4, wherein the variable input is an economic factor and includes at least one of a market timing, an animal feed price, an animal product valuation, and a market location.
  8. 8. The system of claim 1, wherein the simulator engine includes an animal performance simulator configured to generate an animal performance profile based upon the animal feed formulation information and the animal information input including at least one variable input.
  9. 9. The system of claim 8, wherein the enterprise supervisor engine is configured to actuate the simulator engine based upon variations in the variable input to generate a plurality of animal performance profiles.
  10. 10. The system of claim 9, wherein the enterprise supervisor is further configured to select an optimized value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  11. 11. The system of claim 10, wherein the optimization criteria includes at least one of weight gain per day, weight per week, value of product per cost of feed, value of product per unit of space, survival rate, environmental impact, cycles per year, animal size, stocking density, water exchange rate, total biomass of production, and product form.
  12. 12. The system of claim 1, wherein the simulator engine further includes an animal environment performance simulator configured to generate an animal performance profile based upon variations in a variable input associated with the environment for at least one animal.
  13. 13. The system of claim 12, wherein the enterprise supervisor engine is configured to actuate the simulator engine based upon variations in the variable input to generate a plurality of animal performance profiles.
  14. 14. The system of claim 13, wherein the enterprise supervisor is further configured to select a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  15. 15. The system of claim 14, wherein the optimization criteria includes at least one of productivity per unit of nitrogenous waste released, productivity per unit of phosphorous released, balance of bypass nutrients, water exchange rate, and aeration rate.
  16. 16. The system of claim 1, wherein the simulator engine further includes an animal economic performance simulator configured to generate an animal performance profile based upon variations in a variable input associated with economic factors for at least one animal.
  17. 17. The system of claim 16, wherein the enterprise supervisor engine is configured to actuate the simulator engine based upon variations in the variable input to generate a plurality of animal performance profiles.
  18. 18. The system of claim 17, wherein the enterprise supervisor is further configured to select a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  19. 19. The system of claim 18, wherein the optimization criteria includes at least one of value of biomass per cost of feed, value of product per unit of space, value of product per hour of labor, return on investment, return on working capital, and value per kilogram of product produced.
  20. 20. The system of claim 1, wherein the simulator engine further includes an animal performance simulator, an animal environment performance simulator, and an animal economic performance simulator configured to generate a comprehensive animal performance profile based upon the animal feed formulation information and the animal information input including at least one variable input.
  21. 21. The system of claim 20, wherein the enterprise supervisor engine is configured to actuate the simulator engine based upon variations in the variable input to generate a plurality of animal performance profiles.
  22. 22. The system of claim 21, wherein the enterprise supervisor is further configured to select a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  23. 23. The system of claim 22, wherein the optimization criteria includes at least one of weight gain per day, weight gain per week, value of product per cost of feed, value of product per unit of space, survival rate, environmental impact, cycles per year, animal size, stocking density, water exchange rate, product form, productivity per unit of ammonia released, productivity per unit of phosphorous released, water exchange rate, aeration rate, biomass produced per cost of feed, value of biomass per cost of feed, value of product per unit of space, value of product per hour of labor, return on investment, return on working capital, and value per kilogram of product produced.
  24. 24. The system of claim 20, wherein the animal performance profile is generated based on at least two of animal performance, animal environment, animal economics.
  25. 25. A method for determining optimized values for inputs to an animal production system, comprising:
    receiving a plurality of animal information inputs, wherein at least one of the animal information inputs is designated as a variable input;
    generating at least one performance projection based on the animal information inputs; and
    generating an optimized value for the at least one variable input based on the at least one performance projection and an animal feed formulation and at least one optimization criteria.
  26. 26. The method of claim 25, further including generating at least one animal feed formulation composed of the animal feed ingredients based on the at least one performance projection.
  27. 27. The method of claim 26, further including optimizing the at least one animal feed formulation according to at least one optimization criteria.
  28. 28. The method of claim 25, wherein generating an optimized value for the at least one variable input includes providing an effect of the modification to the at least one variable input.
  29. 29. The method of claim 25, wherein the variable input is one of an animal factor, an environmental factor, and an economic factor.
  30. 30. The method of claim 29, wherein the variable input is an environmental factor and includes at least one of a thermal environment, an animal population environment, a photoperiod environment, a feeding environment, an animal comfort environment, an animal structural environment, and an animal microbial environment.
  31. 31. The method of claim 29, wherein the variable input is an animal factor and includes at least one of an animal species type, an animal job, an animal genotype, and an animal composition.
  32. 32. The method of claim 29, wherein the variable input is an economic factor and includes at least one of a market timing, market pricing, and a market location.
  33. 33. The method of claim 26, further including generating a plurality of animal performance profiles based upon the animal feed formulation information and the animal information input including at least one variable input.
  34. 34. The method of claim 33, further including generating a plurality of animal performance profiles based on variations in the at least one variable input.
  35. 35. The method of claim 34, further including selecting a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  36. 36. The method of claim 35, wherein the optimization criteria includes at least one of weight gain per day, weight per week, value of product per cost of feed, value of product per unit of space, survival rate, environmental impact, cycles per year, animal size, stocking density, water exchange rate, and product form.
  37. 37. The method of claim 25, further including generating an animal performance profile based upon variation of a variable input associated with the environment for at least one animal.
  38. 38. The method of claim 37, further including iteratively generating a plurality of animal performance profiles based on variation of the at least one variable input.
  39. 39. The method of claim 38, further including selecting a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  40. 40. The method of claim 39, wherein the optimization criteria includes at least one of productivity per unit of ammonia released, productivity per unit of phosphorous released, water exchange rate, and aeration rate.
  41. 41. The method of claim 25, further including generating an animal performance profile based upon variations in a variable input associated with economic factors for at least one animal.
  42. 42. The method of claim 41, further including generating a plurality of animal performance profiles based on variation of the at least one variable input.
  43. 43. The method of claim 42, further including generating an optimized value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  44. 44. The method of claim 43, wherein the optimization criteria includes at least one of value of biomass per cost of feed, value of product per unit of space, value of product per hour of labor, return on investment, return on working capital, and value per kilogram of product produced.
  45. 45. The method of claim 25, further including generating a comprehensive animal performance profile based upon the animal information input including at least one variable input and at least two of an animal performance profile, an animal environment performance profile, and an animal economic performance profile.
  46. 46. The method of claim 45, further including generating a plurality of animal performance profiles based upon variation of the at least one variable input.
  47. 47. The method of claim 46, further including generating an optimized value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  48. 48. The method of claim 47, wherein the optimization criteria includes at least one of weight gain per day, weight per week, value of product per cost of feed, value of product per unit of space, survival rate, environmental impact, cycles per year, animal size, stocking density, water exchange rate, product form, productivity per unit of ammonia released, productivity per unit of phosphorous released, water exchange rate, aeration rate, value of biomass per cost of feed, value of product per unit of space, value of product per hour of labor, return on investment, return on working capital, and value per kilogram of product produced.
  49. 49. A system for generating an animal feed formulation, comprising:
    a simulator engine configured to receive a plurality of animal information inputs and generate animal requirements based on the animal information inputs;
    a formulator engine, the formulator engine configured to receive a plurality of animal feed ingredient inputs and generate at least one animal feed formulation composed of the animal feed ingredients based on the animal requirements, wherein at least one of the animal feed ingredient inputs is designated as a variable input; and
    an enterprise supervisor engine configured to optimize the at least one animal feed formulation according to at least one optimization criteria, and further configured to generate an optimized value for the at least one variable input based on the at least one optimization criteria.
  50. 50. The system of claim 49, wherein suggesting a modification to the at least one variable input includes providing an effect of the modification to the at least one variable input.
  51. 51. The system of claim 49, wherein the variable input is the nutrient content of an ingredient.
  52. 52. The system of claim 49, wherein the simulator engine further includes an animal performance simulator configured to generate an animal performance profile based upon the animal feed formulation information and the animal information input including at least one variable input.
  53. 53. The system of claim 52, wherein the enterprise supervisor engine is configured to actuate the simulator engine based upon variations in the variable input to generate a plurality of animal performance profiles.
  54. 54. The system of claim 53, wherein the enterprise supervisor is further configured to select a preferred value for the at least one variable input based on application of the at least one optimization criteria to the plurality of animal performance profiles.
  55. 55. The system of claim 54, wherein the optimization criteria includes at least one of weight gain per day, weight per week, value of product per cost of feed, value of product per unit of space, survival rate, environmental impact, cycles per year, animal size, stocking density, water exchange rate, and product form.
  56. 56. An animal production optimization system, comprising:
    an optimization engine, having an objective function program therein, configured to receive a feed formulation input; and
    an animal production modeling system configured to
    receive animal information input, including at least one variable input,
    receive feed formulation input, and
    provide modeling output to the optimization engine,
    wherein the optimization engine optimizes the objective function to provide an optimized solution for the at least one variable input based on the modeling output.
  57. 57. The animal production optimization system of claim 56, further including a user interface configured to allow the selection, by a user, of one or more variable inputs.
  58. 58. The animal production optimization system of claim 56, further including a formulator engine configured to generate to the feed formulation input.
  59. 59. The animal production optimization system of claim 56, wherein optimizing the objective function includes iteratively generating modeling output based on variations to the one or more variable input.
  60. 60. The animal production optimization system of claim 56, wherein the variable input is one of an animal factor, an environmental factor, and an economic factor.
  61. 61. The animal production optimization system of claim 60, wherein the variable input is an environmental factor and includes at least one of a thermal environment, an animal population environment, a photoperiod environment, a feeding environment, an animal comfort environment, an animal structural environment, and an animal microbial environment.
  62. 62. The animal production optimization system of claim 60, wherein the variable input is an animal factor and includes at least one of an animal species type, an animal job, an animal genotype, and an animal composition.
  63. 63. The animal production optimization system of claim 60, wherein the variable input is an economic factor and includes at least one of a market timing, animal product valuation, and a market location.
  64. 64. A method for generating optimized values for variable inputs to an animal production optimization system, comprising:
    receiving animal information input, including at least one variable input;
    generating modeling output based on the animal information input;
    receiving a feed formulation input to the objective function;
    generating an objective function based on the modeling output and the feed formulation input; and
    optimizing the objective function to provide an optimized value for the at least one variable input.
  65. 65. The method of claim 64, further including receiving a selection, by a user, of one or more variable inputs.
  66. 66. The method of claim 64, wherein optimizing the objective function includes iteratively generating modeling output based on variations to the one or more variable input.
  67. 67. The method of claim 64, wherein the variable input is one of an animal factor, an environmental factor, and an economic factor.
  68. 68. The method of claim 67, wherein the variable input is an environmental factor and includes at least one of a thermal environment, an animal population environment, a photoperiod environment, a feeding environment, an animal comfort environment, an animal structural environment, and an animal microbial environment.
  69. 69. The method of claim 67, wherein the variable input is an animal factor and includes at least one of an animal species type, an animal job, an animal genotype, and an animal composition.
  70. 70. The method of claim 67, wherein the variable input is an economic factor and includes at least one of a market timing, animal product valuation, and a market location.
US10902504 2004-07-29 2004-07-29 System and method for animal production optimization Abandoned US20060036419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10902504 US20060036419A1 (en) 2004-07-29 2004-07-29 System and method for animal production optimization

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
US10902504 US20060036419A1 (en) 2004-07-29 2004-07-29 System and method for animal production optimization
CA 2573897 CA2573897A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
PCT/US2005/026589 WO2006015017A2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
CN 200580025413 CN101023442A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
EP20050775637 EP1776685A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
RU2007107396A RU2399289C2 (en) 2004-07-29 2005-07-27 System and method of optimisation of animal production
KR20077005062A KR20070055522A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
US11191238 US20060041419A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on a target output characteristic
CA 2573901 CA2573901A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
JP2007523756A JP2008508606A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
KR20077005061A KR20070038173A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
EP20050775488 EP1776664A2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
KR20077005063A KR20070052773A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
CN 200580025242 CN101010685A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
JP2007523757A JP2008508607A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
US11191236 US7904284B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on empirical feedback
PCT/US2005/026590 WO2006015018A2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
CA 2573899 CA2573899A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
CN 200580025243 CN101014973A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
EP20050775645 EP1776665A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production
JP2007523778A JP2008508867A (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
PCT/US2005/026681 WO2006015061A2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
US11191257 US20060041413A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
US11191255 US7827015B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
RU2007107395A RU2007107395A (en) 2004-07-29 2005-07-27 System and method for optimizing the production of animal products on the basis of input data on the natural nutrients
RU2007107397A RU2007107397A (en) 2004-07-29 2005-07-27 System and method for optimizing the production of animal products on the basis of dynamic information about the nutrients
US11978552 US20080183453A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on empirical feedback
US11978541 US20080189085A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production
US11978376 US20080154568A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on dynamic nutrient information
US11978536 US20080234995A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on a target output characteristic
US11978523 US20080154569A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on environmental nutrient inputs
US12859632 US20110010154A1 (en) 2004-07-29 2010-08-19 System and method for optimizing animal production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11191257 Continuation-In-Part US20060041413A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information

Publications (1)

Publication Number Publication Date
US20060036419A1 true true US20060036419A1 (en) 2006-02-16

Family

ID=35107022

Family Applications (9)

Application Number Title Priority Date Filing Date
US10902504 Abandoned US20060036419A1 (en) 2004-07-29 2004-07-29 System and method for animal production optimization
US11191238 Abandoned US20060041419A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on a target output characteristic
US11191257 Abandoned US20060041413A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
US11191255 Expired - Fee Related US7827015B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
US11191236 Expired - Fee Related US7904284B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on empirical feedback
US11978552 Abandoned US20080183453A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on empirical feedback
US11978523 Abandoned US20080154569A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on environmental nutrient inputs
US11978376 Abandoned US20080154568A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on dynamic nutrient information
US11978536 Abandoned US20080234995A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on a target output characteristic

Family Applications After (8)

Application Number Title Priority Date Filing Date
US11191238 Abandoned US20060041419A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on a target output characteristic
US11191257 Abandoned US20060041413A1 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on dynamic nutrient information
US11191255 Expired - Fee Related US7827015B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on environmental nutrient inputs
US11191236 Expired - Fee Related US7904284B2 (en) 2004-07-29 2005-07-27 System and method for optimizing animal production based on empirical feedback
US11978552 Abandoned US20080183453A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on empirical feedback
US11978523 Abandoned US20080154569A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on environmental nutrient inputs
US11978376 Abandoned US20080154568A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on dynamic nutrient information
US11978536 Abandoned US20080234995A1 (en) 2004-07-29 2007-10-29 System and method for optimizing animal production based on a target output characteristic

Country Status (8)

Country Link
US (9) US20060036419A1 (en)
EP (3) EP1776665A1 (en)
JP (3) JP2008508867A (en)
KR (3) KR20070052773A (en)
CN (3) CN101010685A (en)
CA (3) CA2573901A1 (en)
RU (3) RU2399289C2 (en)
WO (3) WO2006015061A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060041412A1 (en) * 2004-07-29 2006-02-23 Can Technologies, Inc. System and method for optimizing animal production based on empirical feedback
US20080189085A1 (en) * 2004-07-29 2008-08-07 Can Technologies, Inc. System and method for optimizing animal production
US8170908B1 (en) * 2006-08-10 2012-05-01 Vaughan Jr John Thomas Apparatus and method for processing agricultural materials and changing the proportions of output materials
US20140272028A1 (en) * 2013-03-15 2014-09-18 Nestec Sa Systems and methods for ordering and manufacturing custom pet food
US20150245595A1 (en) * 2012-09-12 2015-09-03 Big Dutchman International Gmbh Method and system for monitoring and/or controlling the resource consumption of an agricultural plant
CN104915338A (en) * 2014-03-12 2015-09-16 北京智慧农业有限公司 Dynamic nutrient-allocated proportion method and system based on twin support vector regression

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673647A (en) * 1994-10-31 1997-10-07 Micro Chemical, Inc. Cattle management method and system
DK1889538T3 (en) * 2004-01-13 2014-06-02 Delaval Holding Ab Device and method for feeding animals
CA2588932C (en) 2004-11-30 2016-09-27 John T. Haynes Determining respiratory or circulatory health condition in animals for improved management
US7681527B2 (en) 2005-01-19 2010-03-23 Micro Beef Technologies, Ltd. Method and system for tracking and managing animals and/or food products
US9159126B2 (en) 2006-04-03 2015-10-13 Jbs Usa, Llc System and method for analyzing and processing food product
US7613330B2 (en) * 2006-04-03 2009-11-03 Jbs Swift & Company Methods and systems for tracking and managing livestock through the production process
US20090092715A1 (en) * 2006-07-27 2009-04-09 Beck James F System for real-time characterization of ruminant feed rations
US20080145476A1 (en) * 2006-07-27 2008-06-19 Beck James F Method and feed for enhancing ruminant animal nutrition
WO2008013940A3 (en) * 2006-07-27 2008-12-04 James F Beck Feed delivery system for enhancing ruminant animal nutrition
EP1886581B1 (en) * 2006-08-11 2009-03-11 Maple Leaf Foods Inc. Ruminant animal feed formulations and methods of formulating same
US7882462B2 (en) * 2006-09-11 2011-02-01 The Mathworks, Inc. Hardware definition language generation for frame-based processing
NL1032611C2 (en) * 2006-10-03 2008-04-04 Maasland Nv A method, software and computer for managing milking animals of a group.
US9420807B2 (en) 2007-04-02 2016-08-23 Purina Animal Nutrition Llc Method of feeding young monogastric mammals and composition fed to young monogastric mammals
NL1033926C2 (en) * 2007-06-03 2008-12-08 Maasland Nv Method and device for managing a group of dairy animals, as well as a computer program product thereof.
US8234139B2 (en) * 2007-10-15 2012-07-31 Oracle International Corporation Process manufacturing with least cost formulation
GB0813778D0 (en) * 2008-07-28 2008-09-03 Delaval Holding Ab Monitoring animal condition
GB0813782D0 (en) * 2008-07-28 2008-09-03 Delaval Holding Ab Animal installation with height measurement device
GB0915190D0 (en) * 2009-09-02 2009-10-07 Biosauce Ltd Nutritional product dispenser
JP5546825B2 (en) * 2009-10-06 2014-07-09 明治飼糧株式会社 Simulation device simulation method and simulation system,
EP2507671A4 (en) * 2009-12-02 2017-12-27 Shell Oil Co Economics-based coordination of advanced process control and real-time optimization
US8694947B1 (en) 2009-12-09 2014-04-08 The Mathworks, Inc. Resource sharing workflows within executable graphical models
US9436441B1 (en) 2010-12-08 2016-09-06 The Mathworks, Inc. Systems and methods for hardware resource sharing
US9323235B2 (en) * 2011-04-11 2016-04-26 Rockwell Automation Technologies, Inc. Industrial control system with distributed motion planning
US9355000B1 (en) 2011-08-23 2016-05-31 The Mathworks, Inc. Model level power consumption optimization in hardware description generation
US8655751B2 (en) * 2012-07-11 2014-02-18 Animal Health International, Inc. System and method for control of commodities inventory for animal feed rations
RU2537555C2 (en) * 2012-10-09 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт биохимии им. А.Н. Баха Российской академии наук Dry full ration fodder for large breed dogs balanced in terms of amino acid composition with proved bio-functional properties (versions)
WO2014066895A3 (en) * 2012-10-26 2015-07-16 Farmeron, Inc. Method for managing dairy production
US20140172678A1 (en) * 2012-12-14 2014-06-19 Craig Alan Stephens Institution simulation
KR20170068626A (en) * 2013-03-01 2017-06-19 클레버펫 엘엘씨 Animal interaction device, system, and method
US20140261196A1 (en) * 2013-03-15 2014-09-18 Prairie Systems, LLC System for Managing Livestock Flow
US8660888B2 (en) 2013-04-13 2014-02-25 Leachman Cattle of Colorado, LLC System, computer-implemented method, and non-transitory, computer-readable medium to determine relative market value of a sale group of livestock based on genetic merit and other non-genetic factors
US9817931B1 (en) 2013-12-05 2017-11-14 The Mathworks, Inc. Systems and methods for generating optimized hardware descriptions for models
CA2873333A1 (en) * 2013-12-05 2015-06-05 Canarm Ltd. Sow feeding system
RU2627564C2 (en) * 2016-01-20 2017-08-08 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт пантового оленеводства" (ФГБНУ ВНИИПО) Device for weaning young animals from mothers

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463706A (en) * 1982-05-19 1984-08-07 J.B.M. Associates Method and system for monitoring the dispensing of drugs or nutrients to animals
US4493290A (en) * 1982-05-27 1985-01-15 Dataface Limited Milk yield recording and concentrate feed ration calculation for dairy cows
US4498424A (en) * 1982-05-15 1985-02-12 Holscher & Leuschner Gmbh & Co. Animal feeding method and apparatus
US4517923A (en) * 1983-07-07 1985-05-21 Key Systems, Inc. Animal feeding system
US4532892A (en) * 1981-08-17 1985-08-06 Ralston Purina Company Animal feeding and monitoring system
US4589372A (en) * 1983-04-11 1986-05-20 The University Of Toledo Dispensing system having weight dependent control means
US4712511A (en) * 1985-08-15 1987-12-15 Zamzow Donald D Programmed mix and delivery system
US4729894A (en) * 1984-01-03 1988-03-08 Oklahoma State University Poultry drinking water additive
US5105767A (en) * 1989-01-03 1992-04-21 168189 Canada Limited Computerized monitoring system for animal feed ration processing mills
US5174244A (en) * 1992-03-12 1992-12-29 Gaalswyk Mark K Livestock feed batching system
US5309864A (en) * 1990-11-12 1994-05-10 N.V. Nederlandsche Apparatenfabriek Nedap Method and apparatus for feeding animals
US5355833A (en) * 1992-04-14 1994-10-18 Michel Legrain Computer aided feed distribution equipment for young animals
US5374524A (en) * 1988-05-10 1994-12-20 E. I. Du Pont De Nemours And Company Solution sandwich hybridization, capture and detection of amplified nucleic acids
US5474085A (en) * 1994-02-24 1995-12-12 University Of Prince Edward Island Remote thermographic sensing of livestock
US5478989A (en) * 1989-09-27 1995-12-26 Shepley; Kenneth J. Nutritional information system for shoppers
US5579719A (en) * 1995-04-06 1996-12-03 Iowa State University Research Foundation, Inc. Method and means for quasi ad-libitum feeding for gestation sows in loose housing
US5595444A (en) * 1993-07-02 1997-01-21 Her Majesty The Queen In Right Of Canada, As Represented By The Department Of Agriculture And Agri-Food Canada Method for detecting poor meat quality in groups of live animals
US5636118A (en) * 1992-11-09 1997-06-03 Lextron, Inc. Method and apparatus for uniform delivery of feed ration along a feedbunk
US5668718A (en) * 1993-09-22 1997-09-16 American Institute Of Nutrition And Management Generating growth alternatives
US5673647A (en) * 1994-10-31 1997-10-07 Micro Chemical, Inc. Cattle management method and system
US5700590A (en) * 1994-01-10 1997-12-23 Abbott Laboratories Nutritional formula with ribo-nucleotides
US5816191A (en) * 1995-05-24 1998-10-06 Beaudoin; Gaetan Stall manager system, module and feeding device for management of mealtimes and food distribution in animal stalls
US5843498A (en) * 1994-06-02 1998-12-01 Snow Brand Seed Co., Ltd. Method for depressing methanogenesis in the rumen of a ruminant
US5901660A (en) * 1996-09-12 1999-05-11 Bio-Enhancement Systems, Corp. Communications system for monitoring the presence of animals in a natural feeding environment
US6076043A (en) * 1993-09-22 2000-06-13 American Institute Of Nutrition And Management Utilization effectiveness of nutrients in a population
US6082304A (en) * 1998-07-08 2000-07-04 Crain; Scott L. Feedyard information system and associated method
US6314909B1 (en) * 1997-06-11 2001-11-13 F&M Horwood Nominees Pty Limited Poultry feeding system
US6394963B1 (en) * 2000-06-20 2002-05-28 Eastman Kodak Company Technique for diagnosing attention deficit disorder
US20020082486A1 (en) * 2000-05-25 2002-06-27 Lavery Lawrence A. Foot temperature and health monitoring system
US20020120402A1 (en) * 2000-12-15 2002-08-29 Burghardi Steve R. Computer system for determining a customized animal feed
US6556948B1 (en) * 2000-08-07 2003-04-29 Mckenna Paul A. Apparatus for logging data associated with feed ingredients and rations for delivery to feedlots
US6658308B1 (en) * 2002-06-19 2003-12-02 Can Technologies, Inc. System for and method of customizing an animal feed based on nucleic acid material content
US6805074B2 (en) * 2002-12-23 2004-10-19 Cargill, Incorporated System and method of customizing an animal feed based on heat increment
US6868804B1 (en) * 2003-11-20 2005-03-22 Growsafe Systems Ltd. Animal management system
US6895893B2 (en) * 1999-09-02 2005-05-24 Kristopher Larsen Innovation A/S Breeding control system for free-range animals

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216053B1 (en) * 1992-11-09 2001-04-10 Lextron, Inc. Apparatus and method for uniformly delivering feed rations along a feedbunk using global positioning system
DE4441992A1 (en) 1994-11-25 1996-05-30 Meyer Lohne Maschf Gmbh Method and device for feeding animals, especially fattening animals
US6358546B1 (en) 1999-01-15 2002-03-19 Ralston Purina Company Methods for customizing pet food
KR100418434B1 (en) 2000-01-21 2004-02-11 김현 Peripheral device of computer for automatically recognizing stress and system for determining stress using the same
WO2001089285A2 (en) 2000-05-19 2001-11-29 Cargill, Incorporated Methods and apparatus for developing an optimized livestock production plan, for automatically executing commercial transactions in support thereof and for analyzing economic factors pertaining thereto
CA2415119C (en) 2000-07-05 2010-03-16 Jeremy Francis Taylor Method of managing and marketing livestock based on genetic profiles
JP2005502937A (en) * 2001-05-15 2005-01-27 サイコジェニックス・インコーポレーテッドPsychogenics Inc. System and method for monitoring the behavior and Information Engineering
CN1415195A (en) 2002-12-16 2003-05-07 吉林延边林业集团有限公司 Method for feeding forest beasts and livestock
US20080189085A1 (en) * 2004-07-29 2008-08-07 Can Technologies, Inc. System and method for optimizing animal production
US20060036419A1 (en) * 2004-07-29 2006-02-16 Can Technologies, Inc. System and method for animal production optimization
CA2616523A1 (en) * 2005-07-27 2007-02-08 Can Technologies, Inc System and method for optimizing animal production using genotype information

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532892A (en) * 1981-08-17 1985-08-06 Ralston Purina Company Animal feeding and monitoring system
US4498424A (en) * 1982-05-15 1985-02-12 Holscher & Leuschner Gmbh & Co. Animal feeding method and apparatus
US4463706A (en) * 1982-05-19 1984-08-07 J.B.M. Associates Method and system for monitoring the dispensing of drugs or nutrients to animals
US4493290A (en) * 1982-05-27 1985-01-15 Dataface Limited Milk yield recording and concentrate feed ration calculation for dairy cows
US4589372A (en) * 1983-04-11 1986-05-20 The University Of Toledo Dispensing system having weight dependent control means
US4517923A (en) * 1983-07-07 1985-05-21 Key Systems, Inc. Animal feeding system
US4729894A (en) * 1984-01-03 1988-03-08 Oklahoma State University Poultry drinking water additive
US4712511A (en) * 1985-08-15 1987-12-15 Zamzow Donald D Programmed mix and delivery system
US5374524A (en) * 1988-05-10 1994-12-20 E. I. Du Pont De Nemours And Company Solution sandwich hybridization, capture and detection of amplified nucleic acids
US5105767A (en) * 1989-01-03 1992-04-21 168189 Canada Limited Computerized monitoring system for animal feed ration processing mills
US5478989A (en) * 1989-09-27 1995-12-26 Shepley; Kenneth J. Nutritional information system for shoppers
US5309864A (en) * 1990-11-12 1994-05-10 N.V. Nederlandsche Apparatenfabriek Nedap Method and apparatus for feeding animals
US5174244A (en) * 1992-03-12 1992-12-29 Gaalswyk Mark K Livestock feed batching system
US5355833A (en) * 1992-04-14 1994-10-18 Michel Legrain Computer aided feed distribution equipment for young animals
US5878402A (en) * 1992-11-09 1999-03-02 Lextron, Inc. System and method for uniformly delivering feed rations to the feedbunks of animal pens in a feedlot
US5636118A (en) * 1992-11-09 1997-06-03 Lextron, Inc. Method and apparatus for uniform delivery of feed ration along a feedbunk
US5595444A (en) * 1993-07-02 1997-01-21 Her Majesty The Queen In Right Of Canada, As Represented By The Department Of Agriculture And Agri-Food Canada Method for detecting poor meat quality in groups of live animals
US6076043A (en) * 1993-09-22 2000-06-13 American Institute Of Nutrition And Management Utilization effectiveness of nutrients in a population
US5668718A (en) * 1993-09-22 1997-09-16 American Institute Of Nutrition And Management Generating growth alternatives
US6115692A (en) * 1993-09-22 2000-09-05 Liu; Jinkui Generating growth alternatives
US5700590A (en) * 1994-01-10 1997-12-23 Abbott Laboratories Nutritional formula with ribo-nucleotides
US5474085A (en) * 1994-02-24 1995-12-12 University Of Prince Edward Island Remote thermographic sensing of livestock
US5843498A (en) * 1994-06-02 1998-12-01 Snow Brand Seed Co., Ltd. Method for depressing methanogenesis in the rumen of a ruminant
US5673647A (en) * 1994-10-31 1997-10-07 Micro Chemical, Inc. Cattle management method and system
US6135055A (en) * 1994-10-31 2000-10-24 Micro Beef Technologies, Inc. Cattle management method and system
US5579719A (en) * 1995-04-06 1996-12-03 Iowa State University Research Foundation, Inc. Method and means for quasi ad-libitum feeding for gestation sows in loose housing
US5816191A (en) * 1995-05-24 1998-10-06 Beaudoin; Gaetan Stall manager system, module and feeding device for management of mealtimes and food distribution in animal stalls
US5901660A (en) * 1996-09-12 1999-05-11 Bio-Enhancement Systems, Corp. Communications system for monitoring the presence of animals in a natural feeding environment
US6314909B1 (en) * 1997-06-11 2001-11-13 F&M Horwood Nominees Pty Limited Poultry feeding system
US6082304A (en) * 1998-07-08 2000-07-04 Crain; Scott L. Feedyard information system and associated method
US6895893B2 (en) * 1999-09-02 2005-05-24 Kristopher Larsen Innovation A/S Breeding control system for free-range animals
US20020082486A1 (en) * 2000-05-25 2002-06-27 Lavery Lawrence A. Foot temperature and health monitoring system
US6394963B1 (en) * 2000-06-20 2002-05-28 Eastman Kodak Company Technique for diagnosing attention deficit disorder
US6556948B1 (en) * 2000-08-07 2003-04-29 Mckenna Paul A. Apparatus for logging data associated with feed ingredients and rations for delivery to feedlots
US20020120402A1 (en) * 2000-12-15 2002-08-29 Burghardi Steve R. Computer system for determining a customized animal feed
US6681717B2 (en) * 2000-12-15 2004-01-27 Can Technologies, Inc. Computer system for determining a customized animal feed
US20040098209A1 (en) * 2000-12-15 2004-05-20 Can Technologies, Inc. Computer system for determining a customized animal feed
US6658308B1 (en) * 2002-06-19 2003-12-02 Can Technologies, Inc. System for and method of customizing an animal feed based on nucleic acid material content
US6805074B2 (en) * 2002-12-23 2004-10-19 Cargill, Incorporated System and method of customizing an animal feed based on heat increment
US6868804B1 (en) * 2003-11-20 2005-03-22 Growsafe Systems Ltd. Animal management system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904284B2 (en) 2004-07-29 2011-03-08 Can Technologies, Inc. System and method for optimizing animal production based on empirical feedback
US20080154569A1 (en) * 2004-07-29 2008-06-26 Can Technologies, Inc. System and method for optimizing animal production based on environmental nutrient inputs
US20080154568A1 (en) * 2004-07-29 2008-06-26 Can Technologies, Inc System and method for optimizing animal production based on dynamic nutrient information
US20080183453A1 (en) * 2004-07-29 2008-07-31 Can Technologies, Inc. System and method for optimizing animal production based on empirical feedback
US20080189085A1 (en) * 2004-07-29 2008-08-07 Can Technologies, Inc. System and method for optimizing animal production
US20080234995A1 (en) * 2004-07-29 2008-09-25 Can Technologies, Inc. System and method for optimizing animal production based on a target output characteristic
US20060041412A1 (en) * 2004-07-29 2006-02-23 Can Technologies, Inc. System and method for optimizing animal production based on empirical feedback
US8170908B1 (en) * 2006-08-10 2012-05-01 Vaughan Jr John Thomas Apparatus and method for processing agricultural materials and changing the proportions of output materials
US9043221B1 (en) * 2006-08-10 2015-05-26 John Thomas Vaughan, Jr. Method and apparatus for processing agricultural materials and changing the proportions of output materials
US20150245595A1 (en) * 2012-09-12 2015-09-03 Big Dutchman International Gmbh Method and system for monitoring and/or controlling the resource consumption of an agricultural plant
US20140272028A1 (en) * 2013-03-15 2014-09-18 Nestec Sa Systems and methods for ordering and manufacturing custom pet food
US9420809B2 (en) * 2013-03-15 2016-08-23 Nestec Sa Systems and methods for ordering and manufacturing custom pet food
CN104915338A (en) * 2014-03-12 2015-09-16 北京智慧农业有限公司 Dynamic nutrient-allocated proportion method and system based on twin support vector regression

Also Published As

Publication number Publication date Type
CN101023442A (en) 2007-08-22 application
US20080154568A1 (en) 2008-06-26 application
JP2008508606A (en) 2008-03-21 application
EP1776665A1 (en) 2007-04-25 application
KR20070038173A (en) 2007-04-09 application
RU2007107396A (en) 2008-09-10 application
WO2006015017A2 (en) 2006-02-09 application
CN101014973A (en) 2007-08-08 application
EP1776685A1 (en) 2007-04-25 application
US7904284B2 (en) 2011-03-08 grant
KR20070052773A (en) 2007-05-22 application
US7827015B2 (en) 2010-11-02 grant
US20080183453A1 (en) 2008-07-31 application
RU2399289C2 (en) 2010-09-20 grant
US20060041413A1 (en) 2006-02-23 application
CN101010685A (en) 2007-08-01 application
EP1776664A2 (en) 2007-04-25 application
JP2008508867A (en) 2008-03-27 application
RU2007107397A (en) 2008-09-10 application
US20060041412A1 (en) 2006-02-23 application
US20080234995A1 (en) 2008-09-25 application
US20080154569A1 (en) 2008-06-26 application
CA2573897A1 (en) 2006-02-09 application
KR20070055522A (en) 2007-05-30 application
WO2006015018A2 (en) 2006-02-09 application
CA2573901A1 (en) 2006-02-09 application
JP2008508607A (en) 2008-03-21 application
RU2007107395A (en) 2008-09-10 application
US20060041408A1 (en) 2006-02-23 application
WO2006015061A2 (en) 2006-02-09 application
CA2573899A1 (en) 2006-02-09 application
US20060041419A1 (en) 2006-02-23 application

Similar Documents

Publication Publication Date Title
Knowlton et al. Animal management to reduce phosphorus losses to the environment 1
Tedeschi et al. A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth
Rotz et al. A dairy herd model for use in whole farm simulations
Cederberg Greenhouse gas emissions from Swedish production of meat, milk and eggs 1990 and 2005
VandeHaar et al. Major advances in nutrition: Relevance to the sustainability of the dairy industry
Kanis et al. Breeding for societally important traits in pigs 1
Miller Dairy cattle feeding and nutrition
Cunha Swine feeding and nutrition
Robinson et al. A practical guide to nutrition, feeds, and feeding of catfish
Kolver Nutritional limitations to increased production on pasture-based systems
Fox et al. The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion
Young et al. Comparison of three methods of feeding sows in gestation and the subsequent effects on lactation performance 1
Amir et al. Conducting On-Farm Animal Research: Procedures & Economic Analysis.
Day et al. The separate and interactive effects of handling and environmental enrichment on the behaviour and welfare of growing pigs
Grasman et al. Phosophorus Nutrition in White‐Tailed Deer: Nutrient Balance, Physiological Responses, and Antler Growth
Brickett et al. Influence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens
US6681717B2 (en) Computer system for determining a customized animal feed
Dourmad et al. Nitrogen and phosphorus consumption, utilisation and losses in pig production: France
Archimède et al. Growth performances and carcass traits of Ovin Martinik lambs fed various ratios of tropical forage to concentrate under intensive conditions
Fernández et al. Nitrogen and phosphorus consumption, utilisation and losses in pig production: Denmark
Capper et al. A comparison of the environmental impact of Jersey compared with Holstein milk for cheese production1
Quinton et al. Breeding salmonids for feed efficiency in current fishmeal and future plant-based diet environments
Shell Feeds and feeding of warm-water fish in North America
Tedeschi et al. Mathematical models in ruminant nutrition
Harrington Consumer demands: major problems facing industry in a consumer-driven society

Legal Events

Date Code Title Description
AS Assignment

Owner name: CAN TECHNOLOGIES, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COOK, DAVID A.;BARZIZA, DANIEL;ENGELKE, GREGORY L.;AND OTHERS;REEL/FRAME:015876/0019;SIGNING DATES FROM 20050404 TO 20050407

AS Assignment

Owner name: CARGILL, INCORPORATED, MINNESOTA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNORS HAHN, KNUDSON AND MARTINSON IMPROPERLY ASSIGNING THEIR RIGHTS TO CAN TECHNOLOGIES, INC. PREVIOUSLY RECORDED ON REEL 015876 FRAME 0019;ASSIGNORS:HAHN, JOHN J.;KNUDSON, BRIAN J.;MARTINSON, WADE S.;REEL/FRAME:019267/0713;SIGNING DATES FROM 20070328 TO 20070425