US20060030475A1 - Method for fabricating ceramic articles and ceramic articles produced thereby - Google Patents

Method for fabricating ceramic articles and ceramic articles produced thereby Download PDF

Info

Publication number
US20060030475A1
US20060030475A1 US11/197,050 US19705005A US2006030475A1 US 20060030475 A1 US20060030475 A1 US 20060030475A1 US 19705005 A US19705005 A US 19705005A US 2006030475 A1 US2006030475 A1 US 2006030475A1
Authority
US
United States
Prior art keywords
weight
batch
raw materials
binder
silicate mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/197,050
Inventor
Douglas Beall
Irene Peterson
David Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to US11/197,050 priority Critical patent/US20060030475A1/en
Assigned to CORNING INCORPORATED reassignment CORNING INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEALL, DOUGLAS MUNROE, PETERSON, IRENE MONA, THOMPSON, DAVID JOHN
Publication of US20060030475A1 publication Critical patent/US20060030475A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates generally to a method for fabricating ceramic articles from moldable powdered mixtures that are formed by mixing inorganic particulate raw materials with a binder system that includes a water-soluble organic binder and an inorganic binder, and water as a solvent. More particularly, the method relates to the manufacturing of cordierite articles having improved strength to resist cracking and damage during sintering.
  • cellular ceramic monoliths which are generally formed by extrusion, such as cordierite honeycomb substrates which find applications in catalytic converters, diesel particulate filters, electrically heated catalyst, and chemical processing catalyst, require binders and other similar aids for proper processing.
  • the binder which is an organic material must meet a number of requirements.
  • the binder must be compatible with the ceramic material such that a flowable dispersion comprising a relatively high loading of the ceramic material in the binder may be provided.
  • the “green” perform produced by shaping the dispersion of ceramic powder in the binder should have reasonable strength such that it can be handled.
  • the binder should be removable from the shaped ceramic part without incurring distortion or breakage of the part. Also, the binder-free perform should be strong enough to undergo defect-free consolidation.
  • the formulations of binders meeting these requirements is complex and a large number of different binder formulations are known in the art.
  • water-soluble cellulose ether binders are used for cordierite-forming batches. These binders result in subsequently formed green bodies having good “wet” strength, as well as good integrity in size and shape. “Wet” strength is used to describe the strength of the body after extrusion but before drying. “Green” strength refers to the strength of the body after drying but before firing.
  • Cellulose ether binders which burnout in the temperature region between 100° C.-600° C., and more specifically around 300° C., are difficult to remove without incurring distortion or breakage of the ceramic part. Removal of organic components during firing involves a sequence of simultaneous reactions which are fairly complex, including, for example, oxidation, volatilization, and thermal degradation.
  • the major obstacle in working with plasticized mixtures including organic binders is that the subsequently-formed green ceramic article may crack when fired, particularly in thin walled-honeycomb structures.
  • the cracking is a result of internal stresses developed during the removal of large amounts of organics which causes excessive temperature or pressure gradients internal to the bodies.
  • the present invention is a method for fabricating a ceramic article by providing a batch comprising powdered inorganic raw materials, binder, and solvent.
  • the binder includes a water-soluble organic binder, such as cellulose ether binder, and a fibrous silicate mineral.
  • the fibrous silicate material preferably has a high aspect ratio (preferably greater than 500) in combination with a large surface area (preferably greater than 100 m 2 /gm). More preferably, the fibrous silicate material exhibits a median particle size of 1-2 microns.
  • the batch preferably also includes a polar solvent.
  • a suitable polar solvent is, for example, water.
  • the inorganic powder materials are a mixture of cordierite-forming raw materials and include silica, talc, alumina, optionally clay and other cordierite-forming raw materials, each of the raw materials present in an effective amount which in combination with the other batch components, are capable of yielding a fired ceramic article whose main phase is cordierite.
  • the batch components are mixed together to form a homogeneous and plasticized mass, which is then shaped into a green body.
  • the shaping can be performed according to any known method in the art.
  • the green body is a honeycomb monolith.
  • the plasticized mass is preferably extruded through a honeycomb die.
  • the green body is sintered to a temperature and for a time to initiate and sufficiently achieve the conversion of the green body into a fired ceramic article.
  • ceramic articles of the type described can be fired faster with less or no cracks.
  • the green bodies have improved strength in a temperature region between 300° C. to 900° C., and are therefore more resistant and less susceptible to cracking and being damaged during subsequent sintering.
  • the preferred amount of the inorganic component, preferably a fibrous silicate mineral for providing improved strength in a temperature region between 300° C. to 900° C. is between 2-10%.
  • One preferable fibrous silicate mineral is attapulgite clay.
  • the fired strength of the structure may be improved.
  • a ceramic article comprising a predominant phase of cordierite having a composition, expressed on an oxide basis, of 33 to 41% of aluminum oxide, 46 to 53% of silica, and 11 to 17% magnesium oxide wherein said article is manufactured from a batch including a mixture of inorganic raw materials comprising talc, alumina, and silica; a binder comprising a water-soluble organic binder and a fibrous silicate mineral having an aspect ratio greater than 500, a surface area greater than 100 m 2 /gm; and a polar solvent.
  • FIG. 1 is shows shrinkage as a function of temperature up to 800° C. for a green cordierite sample extruded without attapulgite clay.
  • FIG. 2 shows shrinkage as a function of temperature up to 800° C. for a green cordierite sample extruded with 5% by weight attapulgite clay.
  • the invention is applicable to ceramic powder processing for the fabrication of shaped articles from moldable batches including inorganic raw materials, binder, and solvent.
  • the invention is particularly suitable to the formation of ceramic articles which contain cordierite, and/or mullite.
  • ceramic articles include mixtures of 2-60% mullite, and 30-97% cordierite, with allowance for other phases, typically up to 10% by weight.
  • Some ceramic batch material compositions for forming cordierite that are especially suited to the practice of the present invention are those disclosed in U.S. Pat. No. 6,541,407 which is herein incorporated by reference as filed.
  • An embodiment of a ceramic material which ultimately forms cordierite upon firing is provided as follows (in percent by weight, assuming 100% by weight): 33 to 41% of aluminum oxide, 46 to 53% of silica, and 11 to 17% magnesium oxide.
  • the inorganic raw materials used in the batch composition can be synthetically produced materials such as oxides, hydroxides, and the like, or they can be naturally occurring minerals, such as clays, talcs, or any combination of these.
  • the invention is not limited to the types of powders or raw materials. These can be chosen depending on the properties desired in the body.
  • Suitable cordierite-forming inorganic ceramic powder raw materials for the purpose of forming cordierite-containing ceramic articles may be selected from any source, and preferably include high-purity talc, silica, alumina, clay, and magnesia-yielding raw materials.
  • Preferred raw materials are talc, alumina and silica.
  • the talc has a median particle size (MPS) greater than 15 microns (mm) by less than 35 microns. It ha a platelet morphology to promote low CTE in the sintered ceramic article.
  • a suitable morphology index for the talc i.e., a measure of the degree of platiness of the talc is greater than 0.75, as further described in U.S. Pat. No. 5,141,686.
  • Alumina is used as a source for various suitable kinds such as alpha-alumina, gamma-alumina, rho-alumina, aluminum hydroxide, boehmite, and mixtures thereof.
  • the alumina has a median particle size of between 5 and 25 microns.
  • Silica includes but is not limited to quartz, cristobalite, non-crystalline silica such as fused silica or a sol-gel silica, zeolite, diatomaceous silica, and combinations thereof.
  • the silica has a median particle size of between 10 and 35 microns.
  • the inorganic raw materials may include a clay, such as kaolin.
  • the binder in the present invention includes a water-soluble organic binder, such a cellulose ether binder, and an inorganic component.
  • the inorganic component is preferably a fibrous silicate mineral. Preferably, it has a high aspect ratio (preferably greater than 500) in combination with a large surface area (preferably greater than 100 m 2 /gm) that is highly charged and has a strong interaction with a polar solvent (e.g., water).
  • the fibrous silicate material is preferably further characterized by a median particle size of 1-2 microns.
  • a suitable fibrous silicate mineral is attapulgite clay, which is a hydrated magnesium aluminosilicate clay. Attapulgite clay has fiber or needle-like particles contained therein, which are very fine providing a high aspect ratio and a large surface area. Typically, the aspect ratio is at least 500.
  • a source for this material is available under the trade name of Acti-gelTM 208 from Active Materials Company (Hunt Valley, Md.).
  • the fibrous silicate mineral is added to the batch in an amount of at least 2.0% by weight, but no more than 10.0% by weight, preferably at least 5.0% by weight, but no more than 10.0% by weight. However, as will be described below, addition of small amounts (1-3%) achieve increases in final strength of the ceramic article.
  • Suitable cellulose ether binders are methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
  • Methylcellulose and/or methylcellulose derivatives are especially suited with methylcellulose, hydroxypropyl methylcellulose, or combinations of these being preferred (available as MethocelTM, Dow Chemical Co.).
  • the organic binder is preferably added in amount of between 2.5 to 10.0% by weight, with between 2.5 to 5.0% by weight being a more preferred range. If the organic binder content is too low, the plasticity of the batch may be compromised which may lead to cracking during extrusion as the batch cannot stretch without breaking.
  • the organic binder is added as a super-addition to the inorganic raw materials of the powdered mixture. By super-addition is meant that to 100 grams of inorganic raw material mixture are added for example between 2.5 to 10 grams of metal oxide.
  • the binder system and powder materials are mixed with a solvent, such as water, which wets the powder materials and provides a medium for the binder to dissolve in thus providing plasticity to the batch.
  • the batch may also include other organic or inorganic components which are used as optional processing aids. These include surfactants, lubricants, dispersants, oils and the like.
  • An oil component provides fluidity necessary for shaping of the mixture, while maintaining the strength of the binder in the solvent. Suitable oils include paraffinic oils, such as mineral oils, hydrogenated polybutenes, alpha olefins, internal olefins, polyphenyl ethers, polybutenes, and polyisobutylene.
  • a surfactant if present, promotes emulsification between the solvent and the oil component. It disperses or wets the inorganic powders. Typically, the surfactant by itself without other substances, is insoluble in the solvent at room temperature. Suitable surfactants are oleic acid, lauric acid, stearic acid and combinations of these. A lubricant aids in the formation of a plasticized batch as known in the art. A suitable example of such a component is sodium stearate.
  • the batch may also include a pore former which is any particulate substance (not a binder) that burns out of the green body in the firing step.
  • a pore former which is any particulate substance (not a binder) that burns out of the green body in the firing step.
  • Suitable types of pore formers include graphite, starch, polymers, cellulose, flour, and the like.
  • Graphite is one preferred pore former because it has the least adverse effect on the processing. Combinations of pore formers may also be employed.
  • a moldable batch is preferably prepared by mixing the powdered raw materials with the binder system and the other optional components to form a plasticized mixture.
  • the batch components are mixed in any desired amounts selected.
  • the batch includes 100% by weight cordierite-forming inorganic raw materials, 2.0 to 10.0% by weight attapulgite clay, and based on 100% by weight cordierite-forming raw materials, 2.5 to 10% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
  • the moldable powder includes 100% by weight cordierite-forming inorganic raw materials, 5.0 to 10.0% by weight attapulgite, and based on 100% by weight cordierite-forming raw materials 2.5 to 5.0% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
  • the individual components of the binder system are mixed with the ceramic powder material, the other optional batch components and an adequate amount of solvent (i.e., water) to form a homogenous and formable mixture.
  • solvent i.e., water
  • the batch formation takes place in two stages prior to the shaping step.
  • the ceramic materials along with the binder components and other dry components are dry mixed followed by addition of the water.
  • the mixing can take place for example in a Littleford mixer, as known in the art.
  • the second stage involves plasticization of the batch.
  • the wet mix from the first stage is sheared in any suitable mixer in which the batch will be plasticized, such as for example in a twin-screw extruder/mixer, auger mixer, muller mixer, or double arm, etc.
  • the resulting plasticized mixture is then shaped into a green body by any known method for shaping plasticized mixtures, but is best suited for extrusion through a die.
  • the extrusion operation either vertical or horizontal, can be done using a hydraulic ram extrusion press, or a two stage de-airing single auger extruder, or a twin screw mixer with a die assembly attached to the discharge end. In the latter, the proper screw elements are chosen according to material and other process conditions in order to build up sufficient pressure to force the batch material through the die.
  • the extruded green body is preferably then dried according to conditions well known in the art, and fired at a selected temperature under suitable atmosphere and for a time dependent upon the composition, size and geometry so as to result in a ceramic article of the desired ceramic.
  • the subsequently formed parts are typically fired at a rate of between 15-100° C. per hour to a maximum temperature of between 1405-1430° C. with the holding times at these temperatures ranging from about 6-25 hours. Firing times and temperatures depend upon factors such as kinds and amounts of materials and the type of equipment utilized.
  • ceramic article of the present invention are honeycomb substrates composed of a cordierite-ceramic body.
  • Honeycomb structures are well known in the art. They are designed to have an inlet end or face through which the exhaust gas enters the body, and an outlet end or face opposite the inlet end, the exhaust gas exiting the body at the outlet end. A multiplicity of cells extend between the inlet and outlet ends, the cells having porous walls.
  • part of the total number of cells at the inlet end are plugged along a portion of their lengths, and the remaining part of the cells that are open at the inlet end are plugged at the outlet end, so that exhaust passing through the cells of the honeycomb flows into the open cells, through the cell walls, and out of the structure through the open cells at the outlet end.
  • the benefits and advantages of the present invention having the combination described above include: (1) a green body that has good wet strength and shape retention after exiting the die; (2) a green body that has improved and increased strength in a temperature region between 300° C. to 900° C. to withstand thermal stresses and differential shrinkage during sintering, especially in the beginning of the firing cycle, where the organics in the batch are removed or burned-off; (3) being able to employ shorter firing cycles; (4) a more efficient and cost-effective manufacturing process; and, (5) less wasted ware.
  • the instant invention is thus suitably applied to the fabrication of complicated formed ceramic bodies, especially cordierite, that are usually formed by extrusion, and to the manufacture of the corresponding fired bodies such as multicellular honeycomb structures having a high cell density and exhibiting thin cell wall dimensions.
  • Samples are prepared according to the compositions provided in Table I below.
  • the dry ingredients are weighed, and mixed with water and other batch components, followed by kneading in a stainless steel muller to form a plasticized batch which is then extruded into cellular honeycomb bodies consisting of multiple parallel channels of square cross section.
  • the cellular bodies contain approximately 200 cells per square inch (csi) and have a wall thickness of 0.019 inches.
  • CTE coefficient of thermal expansion
  • MOR modulus of rupture
  • inventive (Inv) samples show that the use of attapulgite clay in combination with methylcellulose in the processing of cordierite bodies, provides an improvement in the high temperature green strength at both 400° C. and 800° C., such during subsequent sintering the bodies can resist the thermal stresses that are likely to lead to cracking during firing. Consequently, the inventive samples all survived firing without cracking. Whereas, the comparative sample cracked.
  • FIG. 1 shows shrinkage as measured up to 800° C. for comparative sample 1 which is processed without attapulgite clay. Between about 275-590° C. there occurs a large shrinkage event which is associated with the burnout of the methylcellulose binder. It is believed that the thermal gradients and stresses resulting from this shrinkage event cause the sample to crack, as it does not have the high temperature green strength to accommodate this large dimensional change.
  • inventive sample 3 which is processed with 5% by weight attapulgite clay binder.
  • FIG. 2 therein illustrated is the shrinkage as measured up to 800° C. for inventive sample 3 which is processed with 5% by weight attapulgite clay binder.
  • inventive sample 3 did not crack because of this reduction in dimensional change in combination with the increased strength in the aforementioned temperature region.
  • the CTE of the inventive sample increases slightly with increasing amount of the attapulgite clay.
  • the resulting CTEs are still within useful limits for the intended use of honeycombs in catalytic converters, diesel particulate filters, and the like.
  • Ceramic article of the present invention is preferably a honeycomb substrate composed of a cordierite-ceramic body, in particular, a diesel particulate filter as described above.
  • the batch used to form this article includes only a very small amount of the fibrous silicate mineral, such as attipulgite clay.
  • adding 1-3% of the fibrous silicate mineral in combination with the methocellularose binder was discovered to increase the final fired strength of the article. Accordingly, the advantages of this aspect of the present invention are that the fired body has increased final strength as compared to like (with same porosity, CTE) ceramic articles manufactured without the use of the fibrous silicate mineral.
  • the strength increase may be as large as 25% (as based on MOR values as described above) or more as compared to like ceramic articles manufactured without the benefit of the small amounts of the fibrous silicate mineral.
  • compositions having porosity of greater than 45% and CTEs less than 0.5 ⁇ 10 ⁇ 6 /° C. (RT-800° C.) may be achieved utilizing the batch composition.
  • the batch preferably comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight of the fibrous silicate mineral based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight of the water-soluble organic binder.
  • the high strength ceramic article is manufactured from an inventive batch which comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight attapulgite clay based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight methylcellulose.
  • the invention comprises a method for fabricating a ceramic article, comprising providing a batch comprising a mixture of components.
  • the components include inorganic raw materials including talc, alumina, and silica; a binder comprising the combination of 1) a water-soluble organic binder and 2) a fibrous silicate mineral having a high aspect ratio, a large surface area; and a polar solvent; mixing the batch components to form a homogenous and plasticized mass; shaping the plasticized mass into a green body; and sintering the green body by to achieve conversion of the green body into a fired ceramic article.
  • the batch also includes a pore former such as graphite.
  • the article includes predominant phase of cordierite.

Abstract

A method for fabricating a ceramic article which includes providing a batch comprising components of (i) a mixture of inorganic raw materials comprising talc, alumina, and silica; (ii) a binder comprising a water-soluble organic binder and a fibrous silicate mineral having a high aspect ratio in combination with a large surface area; and (iii) a polar solvent; mixing the batch components to form a homogenous and plasticized mass; shaping the plasticized mass into a green body wherein the green body has improved strength; and, sintering the green body by heating to a temperature and for a time to initiate and sufficiently achieve conversion of the green body into a fired ceramic article.

Description

    RELATED APPLICATIONS
  • This is a continuation-in-part application of U.S. patent application Ser. No. 10/911,083 filed Aug. 3, 2004 entitled “Method For Fabricating Ceramic Articles.”
  • FIELD OF THE INVENTION
  • The present invention relates generally to a method for fabricating ceramic articles from moldable powdered mixtures that are formed by mixing inorganic particulate raw materials with a binder system that includes a water-soluble organic binder and an inorganic binder, and water as a solvent. More particularly, the method relates to the manufacturing of cordierite articles having improved strength to resist cracking and damage during sintering.
  • BACKGROUND OF THE INVENTION
  • Popular cellular ceramic monoliths which are generally formed by extrusion, such as cordierite honeycomb substrates which find applications in catalytic converters, diesel particulate filters, electrically heated catalyst, and chemical processing catalyst, require binders and other similar aids for proper processing. Typically, the binder which is an organic material must meet a number of requirements.
  • For example, the binder must be compatible with the ceramic material such that a flowable dispersion comprising a relatively high loading of the ceramic material in the binder may be provided. Also, the “green” perform produced by shaping the dispersion of ceramic powder in the binder should have reasonable strength such that it can be handled.
  • For desirable burnout, the binder should be removable from the shaped ceramic part without incurring distortion or breakage of the part. Also, the binder-free perform should be strong enough to undergo defect-free consolidation. The formulations of binders meeting these requirements is complex and a large number of different binder formulations are known in the art.
  • Typically, water-soluble cellulose ether binders are used for cordierite-forming batches. These binders result in subsequently formed green bodies having good “wet” strength, as well as good integrity in size and shape. “Wet” strength is used to describe the strength of the body after extrusion but before drying. “Green” strength refers to the strength of the body after drying but before firing.
  • Cellulose ether binders which burnout in the temperature region between 100° C.-600° C., and more specifically around 300° C., are difficult to remove without incurring distortion or breakage of the ceramic part. Removal of organic components during firing involves a sequence of simultaneous reactions which are fairly complex, including, for example, oxidation, volatilization, and thermal degradation.
  • Therefore, the major obstacle in working with plasticized mixtures including organic binders is that the subsequently-formed green ceramic article may crack when fired, particularly in thin walled-honeycomb structures. The cracking is a result of internal stresses developed during the removal of large amounts of organics which causes excessive temperature or pressure gradients internal to the bodies.
  • Accordingly, special considerations must be undertaken during firing to avoid cracking of the ceramic body. For example, long firing cycles, specially designed kilns, and similar means have been used to control the burnout of organic binders and reduce the thermal stresses, differential shrinkage and high cracking frequency. These methods however, require expensive and sophisticated equipment and increase the cost of firing and manufacturing.
  • In light of the foregoing problems experience in the art, there remains a need for a method of fabricating ceramic articles, and in particular cordierite ceramic bodies having improved strength to withstand the thermal stresses and shrinkage which form in the body during sintering thereby enabling such articles to be fired with less cracks and defects, in a cost-effective and efficient manner.
  • SUMMARY OF INVENTION
  • The present invention is a method for fabricating a ceramic article by providing a batch comprising powdered inorganic raw materials, binder, and solvent. The binder includes a water-soluble organic binder, such as cellulose ether binder, and a fibrous silicate mineral. The fibrous silicate material preferably has a high aspect ratio (preferably greater than 500) in combination with a large surface area (preferably greater than 100 m2/gm). More preferably, the fibrous silicate material exhibits a median particle size of 1-2 microns. The batch preferably also includes a polar solvent. A suitable polar solvent is, for example, water.
  • In one embodiment the inorganic powder materials are a mixture of cordierite-forming raw materials and include silica, talc, alumina, optionally clay and other cordierite-forming raw materials, each of the raw materials present in an effective amount which in combination with the other batch components, are capable of yielding a fired ceramic article whose main phase is cordierite.
  • The batch components are mixed together to form a homogeneous and plasticized mass, which is then shaped into a green body. The shaping can be performed according to any known method in the art. In one embodiment the green body is a honeycomb monolith. To form such a structure, the plasticized mass is preferably extruded through a honeycomb die. Finally, the green body is sintered to a temperature and for a time to initiate and sufficiently achieve the conversion of the green body into a fired ceramic article.
  • It has been found that by using organic and inorganic components for the binder, ceramic articles of the type described can be fired faster with less or no cracks. In particular the green bodies have improved strength in a temperature region between 300° C. to 900° C., and are therefore more resistant and less susceptible to cracking and being damaged during subsequent sintering. The preferred amount of the inorganic component, preferably a fibrous silicate mineral for providing improved strength in a temperature region between 300° C. to 900° C. is between 2-10%. One preferable fibrous silicate mineral is attapulgite clay. Furthermore, when using organic and inorganic components for the binder in small amounts (for example 1-3%), the fired strength of the structure may be improved.
  • According to another aspect of the invention, a ceramic article is provided, comprising a predominant phase of cordierite having a composition, expressed on an oxide basis, of 33 to 41% of aluminum oxide, 46 to 53% of silica, and 11 to 17% magnesium oxide wherein said article is manufactured from a batch including a mixture of inorganic raw materials comprising talc, alumina, and silica; a binder comprising a water-soluble organic binder and a fibrous silicate mineral having an aspect ratio greater than 500, a surface area greater than 100 m2/gm; and a polar solvent.
  • BRIEF DESCRIPTION OF DRAWINGS
  • A complete understanding of the present invention may be obtained with reference to the accompanying drawings, when considered in conjunction with the subsequent detailed description, in which:
  • FIG. 1 is shows shrinkage as a function of temperature up to 800° C. for a green cordierite sample extruded without attapulgite clay.
  • FIG. 2 shows shrinkage as a function of temperature up to 800° C. for a green cordierite sample extruded with 5% by weight attapulgite clay.
  • DESCRIPTION OF THE INVENTION
  • The invention is applicable to ceramic powder processing for the fabrication of shaped articles from moldable batches including inorganic raw materials, binder, and solvent. However, the invention is particularly suitable to the formation of ceramic articles which contain cordierite, and/or mullite. Examples of such ceramic articles include mixtures of 2-60% mullite, and 30-97% cordierite, with allowance for other phases, typically up to 10% by weight.
  • Some ceramic batch material compositions for forming cordierite that are especially suited to the practice of the present invention are those disclosed in U.S. Pat. No. 6,541,407 which is herein incorporated by reference as filed. An embodiment of a ceramic material which ultimately forms cordierite upon firing is provided as follows (in percent by weight, assuming 100% by weight): 33 to 41% of aluminum oxide, 46 to 53% of silica, and 11 to 17% magnesium oxide.
  • The inorganic raw materials used in the batch composition can be synthetically produced materials such as oxides, hydroxides, and the like, or they can be naturally occurring minerals, such as clays, talcs, or any combination of these. The invention is not limited to the types of powders or raw materials. These can be chosen depending on the properties desired in the body.
  • Suitable cordierite-forming inorganic ceramic powder raw materials for the purpose of forming cordierite-containing ceramic articles may be selected from any source, and preferably include high-purity talc, silica, alumina, clay, and magnesia-yielding raw materials. Preferred raw materials are talc, alumina and silica.
  • The talc has a median particle size (MPS) greater than 15 microns (mm) by less than 35 microns. It ha a platelet morphology to promote low CTE in the sintered ceramic article. A suitable morphology index for the talc (i.e., a measure of the degree of platiness of the talc) is greater than 0.75, as further described in U.S. Pat. No. 5,141,686. Alumina is used as a source for various suitable kinds such as alpha-alumina, gamma-alumina, rho-alumina, aluminum hydroxide, boehmite, and mixtures thereof. The alumina has a median particle size of between 5 and 25 microns. Silica includes but is not limited to quartz, cristobalite, non-crystalline silica such as fused silica or a sol-gel silica, zeolite, diatomaceous silica, and combinations thereof. The silica has a median particle size of between 10 and 35 microns. Optionally, the inorganic raw materials may include a clay, such as kaolin.
  • The binder in the present invention includes a water-soluble organic binder, such a cellulose ether binder, and an inorganic component. The inorganic component is preferably a fibrous silicate mineral. Preferably, it has a high aspect ratio (preferably greater than 500) in combination with a large surface area (preferably greater than 100 m2/gm) that is highly charged and has a strong interaction with a polar solvent (e.g., water). The fibrous silicate material is preferably further characterized by a median particle size of 1-2 microns.
  • For cordierite-forming batches, a suitable fibrous silicate mineral is attapulgite clay, which is a hydrated magnesium aluminosilicate clay. Attapulgite clay has fiber or needle-like particles contained therein, which are very fine providing a high aspect ratio and a large surface area. Typically, the aspect ratio is at least 500. A source for this material is available under the trade name of Acti-gel™ 208 from Active Materials Company (Hunt Valley, Md.). To achieve the aforementioned green strength improvement, the fibrous silicate mineral is added to the batch in an amount of at least 2.0% by weight, but no more than 10.0% by weight, preferably at least 5.0% by weight, but no more than 10.0% by weight. However, as will be described below, addition of small amounts (1-3%) achieve increases in final strength of the ceramic article.
  • Suitable cellulose ether binders are methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof. Methylcellulose and/or methylcellulose derivatives are especially suited with methylcellulose, hydroxypropyl methylcellulose, or combinations of these being preferred (available as Methocel™, Dow Chemical Co.).
  • The organic binder is preferably added in amount of between 2.5 to 10.0% by weight, with between 2.5 to 5.0% by weight being a more preferred range. If the organic binder content is too low, the plasticity of the batch may be compromised which may lead to cracking during extrusion as the batch cannot stretch without breaking. The organic binder is added as a super-addition to the inorganic raw materials of the powdered mixture. By super-addition is meant that to 100 grams of inorganic raw material mixture are added for example between 2.5 to 10 grams of metal oxide.
  • The binder system and powder materials are mixed with a solvent, such as water, which wets the powder materials and provides a medium for the binder to dissolve in thus providing plasticity to the batch. The batch may also include other organic or inorganic components which are used as optional processing aids. These include surfactants, lubricants, dispersants, oils and the like. An oil component provides fluidity necessary for shaping of the mixture, while maintaining the strength of the binder in the solvent. Suitable oils include paraffinic oils, such as mineral oils, hydrogenated polybutenes, alpha olefins, internal olefins, polyphenyl ethers, polybutenes, and polyisobutylene.
  • A surfactant if present, promotes emulsification between the solvent and the oil component. It disperses or wets the inorganic powders. Typically, the surfactant by itself without other substances, is insoluble in the solvent at room temperature. Suitable surfactants are oleic acid, lauric acid, stearic acid and combinations of these. A lubricant aids in the formation of a plasticized batch as known in the art. A suitable example of such a component is sodium stearate.
  • The batch may also include a pore former which is any particulate substance (not a binder) that burns out of the green body in the firing step. Suitable types of pore formers include graphite, starch, polymers, cellulose, flour, and the like. Graphite is one preferred pore former because it has the least adverse effect on the processing. Combinations of pore formers may also be employed.
  • In the preparation of ceramic bodies according to the present invention a moldable batch is preferably prepared by mixing the powdered raw materials with the binder system and the other optional components to form a plasticized mixture. The batch components are mixed in any desired amounts selected.
  • In one embodiment the batch includes 100% by weight cordierite-forming inorganic raw materials, 2.0 to 10.0% by weight attapulgite clay, and based on 100% by weight cordierite-forming raw materials, 2.5 to 10% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
  • In another embodiment the moldable powder includes 100% by weight cordierite-forming inorganic raw materials, 5.0 to 10.0% by weight attapulgite, and based on 100% by weight cordierite-forming raw materials 2.5 to 5.0% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
  • The individual components of the binder system are mixed with the ceramic powder material, the other optional batch components and an adequate amount of solvent (i.e., water) to form a homogenous and formable mixture. Particularly, in the case of batches for ceramic products, the batch formation takes place in two stages prior to the shaping step. In the first stage or wetting stage of batch formation, the ceramic materials along with the binder components and other dry components are dry mixed followed by addition of the water. The mixing can take place for example in a Littleford mixer, as known in the art.
  • The second stage involves plasticization of the batch. Typically the wet mix from the first stage is sheared in any suitable mixer in which the batch will be plasticized, such as for example in a twin-screw extruder/mixer, auger mixer, muller mixer, or double arm, etc.
  • The resulting plasticized mixture is then shaped into a green body by any known method for shaping plasticized mixtures, but is best suited for extrusion through a die. The extrusion operation, either vertical or horizontal, can be done using a hydraulic ram extrusion press, or a two stage de-airing single auger extruder, or a twin screw mixer with a die assembly attached to the discharge end. In the latter, the proper screw elements are chosen according to material and other process conditions in order to build up sufficient pressure to force the batch material through the die.
  • The extruded green body is preferably then dried according to conditions well known in the art, and fired at a selected temperature under suitable atmosphere and for a time dependent upon the composition, size and geometry so as to result in a ceramic article of the desired ceramic. For example, for a composition which is primarily for forming cordierite honeycomb structures, the subsequently formed parts are typically fired at a rate of between 15-100° C. per hour to a maximum temperature of between 1405-1430° C. with the holding times at these temperatures ranging from about 6-25 hours. Firing times and temperatures depend upon factors such as kinds and amounts of materials and the type of equipment utilized.
  • In one embodiment ceramic article of the present invention are honeycomb substrates composed of a cordierite-ceramic body. Honeycomb structures are well known in the art. They are designed to have an inlet end or face through which the exhaust gas enters the body, and an outlet end or face opposite the inlet end, the exhaust gas exiting the body at the outlet end. A multiplicity of cells extend between the inlet and outlet ends, the cells having porous walls. For purposes of a diesel particulate filter, part of the total number of cells at the inlet end are plugged along a portion of their lengths, and the remaining part of the cells that are open at the inlet end are plugged at the outlet end, so that exhaust passing through the cells of the honeycomb flows into the open cells, through the cell walls, and out of the structure through the open cells at the outlet end.
  • The benefits and advantages of the present invention having the combination described above include: (1) a green body that has good wet strength and shape retention after exiting the die; (2) a green body that has improved and increased strength in a temperature region between 300° C. to 900° C. to withstand thermal stresses and differential shrinkage during sintering, especially in the beginning of the firing cycle, where the organics in the batch are removed or burned-off; (3) being able to employ shorter firing cycles; (4) a more efficient and cost-effective manufacturing process; and, (5) less wasted ware.
  • The instant invention is thus suitably applied to the fabrication of complicated formed ceramic bodies, especially cordierite, that are usually formed by extrusion, and to the manufacture of the corresponding fired bodies such as multicellular honeycomb structures having a high cell density and exhibiting thin cell wall dimensions.
  • To more fully illustrate the invention the following non-limiting examples are provided.
  • EXAMPLES
  • Samples are prepared according to the compositions provided in Table I below. The dry ingredients are weighed, and mixed with water and other batch components, followed by kneading in a stainless steel muller to form a plasticized batch which is then extruded into cellular honeycomb bodies consisting of multiple parallel channels of square cross section. The cellular bodies contain approximately 200 cells per square inch (csi) and have a wall thickness of 0.019 inches.
    TABLE I
    1 2 3 4 5 6 7
    Comp Inv Inv Inv Inv Inv Inv
    Raw Materials Wt % Wt % Wt % Wt % Wt % Wt % Wt %
    Talc (MPS = mm) 39.96 39.16 37.99 36.02 39.16 37.99 36.02
    α-Al2O3 21.54 21.14 20.79 20.32 21.14 20.79 20.32
    (MPS = mm)
    Al(OH)3 16.35 16.35 16.02 15.35 16.35 16.02 15.35
    (MPS = mm)
    Silica (Quartz) 22.15 21.35 20.20 18.31 21.35 20.20 18.31
    (MPS = mm)
    Acti-gel 208 ® 0.00 2.00 5.00 10.00 2.00 5.00 10.00
    (Attapulgite Clay)
    Methocel ™ F240M 5.00 5.00 5.00 5.00 2.50 2.50 2.50
    (Methylcellulose)
    Graphite 10.00 10.00 10.00 10.00 10.00 10.00 10.00
    (MPS = mm)
    Sodium Stearate 1.00 1.00 1.00 1.00 1.00 1.00 1.00
    Water 40 40 40 40 40 40 40
  • After drying the parts are fired according to a predetermined firing cycle up to a maximum temperature of 1425° C. and held there for 15 hours. The cellular bodies are approximately 5.66 inches in diameter and were cut to be 10 inches in length. After firing, the samples are visually inspected for cracks, and characterized for the coefficient of thermal expansion (CTE) as measured by dilatometry between room temperature (RT) and 975° C., and modulus of rupture (MOR) strength as measured in a four point bend test on cylindrical rods or cellular bars. CTE is provided in units of 10−6° C.−1. The MOR is measured at 400° C. and 800° C. to determine the strength of the samples at high temperatures. MOR is provided in units of pounds per square inch (psi). The measured properties are provided in Table II below.
    TABLE II
    1 2 3 4 5 6 7
    Comp Inv Inv Inv Inv Inv Inv
    Properties
    MOR @ 400° C. (psi) 5* 179 301 579 165 387 522
    MOR @ 800° C. (psi) 5* 180 301 715 182 500 462
    GTE (RT-975° C.) 0.93 1.07 1.01 1.13 0.98 1.15 1.22
    (10−6° C.−1)
    Cracks Many None None None None None None

    *measurements taken on cellular bars
  • Rod samples of the comparative (Comp) sample were so weak at both 400° C. and 800° C. that they crumbled before any measurement could be taken. MOR measurements on cellular bars indicated readings of 5 psi, the values which are reported in Table II.
  • The inventive (Inv) samples show that the use of attapulgite clay in combination with methylcellulose in the processing of cordierite bodies, provides an improvement in the high temperature green strength at both 400° C. and 800° C., such during subsequent sintering the bodies can resist the thermal stresses that are likely to lead to cracking during firing. Consequently, the inventive samples all survived firing without cracking. Whereas, the comparative sample cracked.
  • FIG. 1 shows shrinkage as measured up to 800° C. for comparative sample 1 which is processed without attapulgite clay. Between about 275-590° C. there occurs a large shrinkage event which is associated with the burnout of the methylcellulose binder. It is believed that the thermal gradients and stresses resulting from this shrinkage event cause the sample to crack, as it does not have the high temperature green strength to accommodate this large dimensional change.
  • Referring now to FIG. 2 therein illustrated is the shrinkage as measured up to 800° C. for inventive sample 3 which is processed with 5% by weight attapulgite clay binder. In comparison with FIG. 1, the dimensional changes occurring between about 275-590° C. are greatly reduced. Therefore, it is believed that inventive sample 3 did not crack because of this reduction in dimensional change in combination with the increased strength in the aforementioned temperature region.
  • It has also been observed that the CTE of the inventive sample increases slightly with increasing amount of the attapulgite clay. However, by adding no more than 10% by weight of this material as described above, the resulting CTEs are still within useful limits for the intended use of honeycombs in catalytic converters, diesel particulate filters, and the like.
  • Another embodiment of ceramic article of the present invention is preferably a honeycomb substrate composed of a cordierite-ceramic body, in particular, a diesel particulate filter as described above. The batch used to form this article includes only a very small amount of the fibrous silicate mineral, such as attipulgite clay. In particular, adding 1-3% of the fibrous silicate mineral in combination with the methocelulose binder was discovered to increase the final fired strength of the article. Accordingly, the advantages of this aspect of the present invention are that the fired body has increased final strength as compared to like (with same porosity, CTE) ceramic articles manufactured without the use of the fibrous silicate mineral. In particular, the strength increase may be as large as 25% (as based on MOR values as described above) or more as compared to like ceramic articles manufactured without the benefit of the small amounts of the fibrous silicate mineral. Using smaller amounts of the fibrous silicate mineral, such as attipulgite clay, has the additional benefit that CTE of the ceramic article is less affected. In particular, compositions having porosity of greater than 45% and CTEs less than 0.5×10−6/° C. (RT-800° C.) may be achieved utilizing the batch composition.
  • According to a preferred example of the invention which exhibits enhanced final ceramic strength, the batch preferably comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight of the fibrous silicate mineral based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight of the water-soluble organic binder. More preferably, the high strength ceramic article is manufactured from an inventive batch which comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight attapulgite clay based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight methylcellulose. In a most preferred embodiment, the invention comprises a method for fabricating a ceramic article, comprising providing a batch comprising a mixture of components. The components include inorganic raw materials including talc, alumina, and silica; a binder comprising the combination of 1) a water-soluble organic binder and 2) a fibrous silicate mineral having a high aspect ratio, a large surface area; and a polar solvent; mixing the batch components to form a homogenous and plasticized mass; shaping the plasticized mass into a green body; and sintering the green body by to achieve conversion of the green body into a fired ceramic article. Most preferably, the batch also includes a pore former such as graphite. Preferably the article includes predominant phase of cordierite.
  • While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (23)

1. A method for fabricating a ceramic article, comprising:
providing a batch comprising components of (i) a mixture of inorganic raw materials comprising talc, alumina, and silica; (ii) a binder comprising a water-soluble organic binder and a fibrous silicate mineral having a high aspect ratio in combination with a large surface area; and (iii) a polar solvent;
mixing the batch components to form a homogenous and plasticized mass;
shaping the plasticized mass into a green body; and
sintering the green body by heating to a temperature and for a time to initiate and sufficiently achieve conversion of the green body into a fired ceramic article.
2. The method according to claim 1 wherein the green body has improved strength in a temperature region between 300°-900° C. to resist cracking during the sintering as compared to a like green body without the fibrous silicate mineral.
3. The method according to claim 1 wherein the ceramic article has improved final strength after the sintering as compared to a like ceramic body without the fibrous silicate mineral.
4. The method according to claim 1 wherein the inorganic raw materials are present in an effective which in combination with the other batch components are capable of yielding a fired ceramic article whose main phase is cordierite.
5. The method according to claim 1 wherein the organic binder is a cellulose ether binder.
6. The method according to claim 5 wherein the cellulose ether binder is a methylcellulose binder.
7. The method according to claim 6 wherein the methylcellulose binder is added in an amount of 2.5-10% by weight super-addition.
8. The method according to claim 7 wherein the methylcellulose binder is added in an amount of 2.5-5% by weight super-addition.
9. The method according to claim 1 wherein the fibrous silicate mineral is attapulgite clay.
10. The method according to claim 1 wherein the fibrous silicate mineral is added in an amount of 2-10% by weight.
11. The method according to claim 8 wherein the fibrous silicate mineral is added in an amount of 5-10% by weight.
12. The method according to claim 1 wherein the fibrous silicate mineral is added in an amount of 1-3% by weight.
13. The method according to claim 1 wherein the batch includes other optional organic and inorganic components to be used as processing aids.
14. The method according to claim 13 wherein the batch includes a surfactant and a pore former.
15. The method according to claim 1 wherein the green body is a honeycomb structure.
16. The method according to claim 1 wherein the batch comprises 100% by weight cordierite-forming inorganic raw materials, 2.0 to 10.0% by weight attapulgite clay, and based on 100% by weight cordierite-forming raw materials 2.5 to 10% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
17. The method according to claim 16 wherein the batch comprises 100% by weight cordierite-forming inorganic raw materials, 5.0 to 10.0% by weight attapulgite clay, and based on 100% by weight inorganic raw materials 2.5 to 5.0% by weight methylcellulose, up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
18. The method according to claim 1 wherein the batch comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight of the fibrous silicate mineral based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight of the water-soluble organic binder.
19. The method according to claim 1 wherein the batch comprises 100% by weight cordierite-forming inorganic raw materials, 1.0 to 3.0% by weight attapulgite clay based on 100% by weight inorganic raw materials, and 2.5 to 10.0% by weight methylcellulose.
20. The method according to claim 19 wherein the batch further comprises up to and including 3% by weight sodium stearate, up to and including 30% by weight graphite, and 25.0 to 40.0% by weight water, as solvent.
21. The method according to claim 1 wherein the fibrous silicate mineral has an aspect ratio greater than 500 and a surface area greater than 100 m2/gm.
22. The method according to claim 1 further characterized by a median particle size of 1-2 microns.
22. A ceramic article, comprising:
a predominant phase of cordierite having a composition, expressed on an oxide basis, of 33 to 41% of aluminum oxide, 46 to 53% of silica, and 11 to 17% magnesium oxide wherein said article is manufactured from a batch including
a mixture of inorganic raw materials comprising talc, alumina, and silica;
a binder comprising a water-soluble organic binder and a fibrous silicate mineral having an aspect ratio greater than 500, a surface area greater than 100 m2/gm; and
a polar solvent.
US11/197,050 2004-08-03 2005-08-03 Method for fabricating ceramic articles and ceramic articles produced thereby Abandoned US20060030475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/197,050 US20060030475A1 (en) 2004-08-03 2005-08-03 Method for fabricating ceramic articles and ceramic articles produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/911,083 US7445745B2 (en) 2004-08-03 2004-08-03 Method for fabricating ceramic articles
US11/197,050 US20060030475A1 (en) 2004-08-03 2005-08-03 Method for fabricating ceramic articles and ceramic articles produced thereby

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/911,083 Continuation-In-Part US7445745B2 (en) 2004-08-03 2004-08-03 Method for fabricating ceramic articles

Publications (1)

Publication Number Publication Date
US20060030475A1 true US20060030475A1 (en) 2006-02-09

Family

ID=35756633

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/911,083 Expired - Fee Related US7445745B2 (en) 2004-08-03 2004-08-03 Method for fabricating ceramic articles
US11/197,050 Abandoned US20060030475A1 (en) 2004-08-03 2005-08-03 Method for fabricating ceramic articles and ceramic articles produced thereby

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/911,083 Expired - Fee Related US7445745B2 (en) 2004-08-03 2004-08-03 Method for fabricating ceramic articles

Country Status (5)

Country Link
US (2) US7445745B2 (en)
EP (1) EP1773550A2 (en)
JP (1) JP2008509067A (en)
CN (1) CN100540503C (en)
WO (1) WO2006017676A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964262B2 (en) 2006-08-29 2011-06-21 Corning Incorporated Layered silicate modified cordierite and method
CN103521001A (en) * 2013-09-06 2014-01-22 安徽青阳县雄伟泵阀制造有限公司 Perlite filter element and preparation method thereof
US20140336033A1 (en) * 2008-05-30 2014-11-13 Corning Incorporated High porosity cordierite honeycomb articles
CN110790582A (en) * 2018-08-02 2020-02-14 日本碍子株式会社 Method for manufacturing honeycomb structure

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358662B2 (en) * 2004-03-23 2009-11-04 日本碍子株式会社 Method for producing cordierite honeycomb structure
US7474286B2 (en) 2005-04-01 2009-01-06 Spudnik, Inc. Laser displays using UV-excitable phosphors emitting visible colored light
US8000005B2 (en) 2006-03-31 2011-08-16 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
US8089425B2 (en) 2006-03-03 2012-01-03 Prysm, Inc. Optical designs for scanning beam display systems using fluorescent screens
US8451195B2 (en) 2006-02-15 2013-05-28 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
JP4811189B2 (en) * 2006-08-21 2011-11-09 株式会社デンソー Method for producing filter substrate for exhaust gas purification
RU2442197C2 (en) 2007-05-17 2012-02-10 Призм, Инк. The multilayer screens with light emitting strips for the display system with a scan-off beam
US8556430B2 (en) 2007-06-27 2013-10-15 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
WO2010094084A1 (en) * 2009-02-23 2010-08-26 Refire Glass Research Pty Limited A process and method for producing a silica based product
US9227878B2 (en) * 2009-04-30 2016-01-05 Corning Incorporated Selected binders for the extrusion of ultra-thin wall cellular ceramics
JP5746690B2 (en) 2009-06-05 2015-07-08 コーニング インコーポレイテッド Cordierite forming batch material and method of use thereof
US8257623B2 (en) * 2009-08-27 2012-09-04 Corning Incorporated Extrusion die flow modification and use
JP5687710B2 (en) * 2009-11-30 2015-03-18 コーニング インコーポレイテッド Method for controlling pore size distribution in sintered ceramic articles
US8148297B2 (en) * 2009-11-30 2012-04-03 Corning Incorporated Reticular cordierite composition, article and manufacture thereof
US8440586B2 (en) 2010-02-26 2013-05-14 Corning Incorporated Low pressure drop extruded catalyst filter
US9856177B2 (en) 2010-05-28 2018-01-02 Corning Incorporated Cordierite porous ceramic honeycomb articles
US9334191B2 (en) 2010-05-28 2016-05-10 Corning Incorporated Methods for forming ceramic honeycomb articles
US8680344B2 (en) 2011-01-25 2014-03-25 Zeochem Llc Molecular sieve adsorbent blends and uses thereof
US9878958B2 (en) * 2012-02-29 2018-01-30 Corning Incorporated Dimensional control of ceramic structures via composition
CN104846252A (en) * 2015-04-27 2015-08-19 苏州统明机械有限公司 High-temperature-resistant special ceramic comprising copper oxide and preparation method thereof
KR102609809B1 (en) * 2015-06-29 2023-12-06 코닝 인코포레이티드 Manufacturing lines, processes and sintered articles
US10486332B2 (en) 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace
CN113929433A (en) * 2021-09-27 2022-01-14 蒙娜丽莎集团股份有限公司 Low-clay system high-whiteness ceramic plate and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885977A (en) * 1973-11-05 1975-05-27 Corning Glass Works Anisotropic cordierite monolith
US5252272A (en) * 1989-07-28 1993-10-12 Engelhard Corporation Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
US6132671A (en) * 1999-05-27 2000-10-17 Corning Incorporated Method for producing honeycomb ceramic bodies
US6174608B1 (en) * 1997-11-27 2001-01-16 Ferro (Italia) Srl Ceramic tile and glaze for use thereon
US6207101B1 (en) * 1999-09-30 2001-03-27 Corning Incorporated Method of making fired bodies
US6284705B1 (en) * 1996-04-23 2001-09-04 Westvaco Corporation Adsorptive monolith including activated carbon, method for making said monolith, and method for adsorbing chemical agents from fluid streams
US6444601B1 (en) * 1998-11-12 2002-09-03 Itc, Inc. Purified attapulgite clay
US6544913B2 (en) * 2001-01-19 2003-04-08 Agency For Defense Development Alumina-silica ceramic
US20030183988A1 (en) * 2002-03-26 2003-10-02 Das Swapan Kumar Process for the production of ceramic tiles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132832A (en) * 1998-05-07 2000-10-17 Ferro Corporation Tile glaze
JP4358662B2 (en) * 2004-03-23 2009-11-04 日本碍子株式会社 Method for producing cordierite honeycomb structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885977A (en) * 1973-11-05 1975-05-27 Corning Glass Works Anisotropic cordierite monolith
US5252272A (en) * 1989-07-28 1993-10-12 Engelhard Corporation Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
US6284705B1 (en) * 1996-04-23 2001-09-04 Westvaco Corporation Adsorptive monolith including activated carbon, method for making said monolith, and method for adsorbing chemical agents from fluid streams
US6174608B1 (en) * 1997-11-27 2001-01-16 Ferro (Italia) Srl Ceramic tile and glaze for use thereon
US6444601B1 (en) * 1998-11-12 2002-09-03 Itc, Inc. Purified attapulgite clay
US6132671A (en) * 1999-05-27 2000-10-17 Corning Incorporated Method for producing honeycomb ceramic bodies
US6207101B1 (en) * 1999-09-30 2001-03-27 Corning Incorporated Method of making fired bodies
US6544913B2 (en) * 2001-01-19 2003-04-08 Agency For Defense Development Alumina-silica ceramic
US20030183988A1 (en) * 2002-03-26 2003-10-02 Das Swapan Kumar Process for the production of ceramic tiles
US6743383B2 (en) * 2002-03-26 2004-06-01 Council Of Scientific And Industrial Research Process for the production of ceramic tiles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964262B2 (en) 2006-08-29 2011-06-21 Corning Incorporated Layered silicate modified cordierite and method
US20140336033A1 (en) * 2008-05-30 2014-11-13 Corning Incorporated High porosity cordierite honeycomb articles
US9227880B2 (en) * 2008-05-30 2016-01-05 Corning Incorporated High porosity cordierite honeycomb articles
CN103521001A (en) * 2013-09-06 2014-01-22 安徽青阳县雄伟泵阀制造有限公司 Perlite filter element and preparation method thereof
CN110790582A (en) * 2018-08-02 2020-02-14 日本碍子株式会社 Method for manufacturing honeycomb structure
US11492295B2 (en) * 2018-08-02 2022-11-08 Ngk Insulators, Ltd. Method for producing honeycomb structure

Also Published As

Publication number Publication date
WO2006017676A2 (en) 2006-02-16
WO2006017676A3 (en) 2006-08-24
CN100540503C (en) 2009-09-16
US7445745B2 (en) 2008-11-04
US20060027951A1 (en) 2006-02-09
EP1773550A2 (en) 2007-04-18
JP2008509067A (en) 2008-03-27
CN1993300A (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US20060030475A1 (en) Method for fabricating ceramic articles and ceramic articles produced thereby
EP0549873B1 (en) Method of making porous ceramic suitable as diesel particulate filters
US6210626B1 (en) Method of producing cordierite bodies utilizing substantially reduced firing times
JP5683271B2 (en) Cement composition for application to honeycomb bodies
EP2254678B1 (en) Honeycomb manufacturing method using ground nut shells
EP1736455B1 (en) Method for manufacturing honeycomb structure
US7947355B2 (en) High porosity thermally shock resistant ceramic structures
EP2364283B1 (en) Cordierite honeycomb body and manufacturing method
US6221308B1 (en) Method of making fired bodies
US5344799A (en) Formable ceramic compositions and method of use therefor
US11447422B2 (en) Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom
KR100639145B1 (en) Method for manufacturing porous honeycomb structure and honeycomb formed boy
EP1739065B1 (en) Method for producing porous honeycomb structure and porous honeycomb structure
JP2012501287A (en) Cell type monolithic structure gas pore former
JP4627826B2 (en) Method for producing porous mullite article
US7141204B2 (en) Method of forming ceramic articles
US5962351A (en) Method of producing β-spodumene bodies
EP1555253B1 (en) Method for manufacturing porous honeycomb structure and honeycomb body

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEALL, DOUGLAS MUNROE;PETERSON, IRENE MONA;THOMPSON, DAVID JOHN;REEL/FRAME:016863/0652

Effective date: 20050803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION