US20060000165A1 - Fire barrier devices - Google Patents

Fire barrier devices Download PDF

Info

Publication number
US20060000165A1
US20060000165A1 US11/199,246 US19924605A US2006000165A1 US 20060000165 A1 US20060000165 A1 US 20060000165A1 US 19924605 A US19924605 A US 19924605A US 2006000165 A1 US2006000165 A1 US 2006000165A1
Authority
US
United States
Prior art keywords
pipe
slab
barrier device
main body
fire barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/199,246
Inventor
Paul Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ9594A external-priority patent/AUPQ959400A0/en
Priority claimed from AUPR1210A external-priority patent/AUPR121000A0/en
Priority claimed from AUPR2403A external-priority patent/AUPR240301A0/en
Application filed by Individual filed Critical Individual
Priority to US11/199,246 priority Critical patent/US20060000165A1/en
Publication of US20060000165A1 publication Critical patent/US20060000165A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/065Physical fire-barriers having as the main closure device materials, whose characteristics undergo an irreversible change under high temperatures, e.g. intumescent
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G15/00Forms or shutterings for making openings, cavities, slits, or channels
    • E04G15/06Forms or shutterings for making openings, cavities, slits, or channels for cavities or channels in walls of floors, e.g. for making chimneys
    • E04G15/061Non-reusable forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/04Sealing to form a firebreak device

Definitions

  • This invention relates to barriers and in particular to barrier devices for closing pipes, ducts or conduit which penetrate walls, floors or ceilings of a building in the event of fire.
  • Walls, floors and ceilings of a building usually a multi-story building commonly have pipes, ducts and conduits formed of a plastics material which penetrate the wall, floor or ceiling for carrying services for example water, sewerage or electrical services.
  • the penetrating pipes, ducts or conduits allow flames and/or smoke and gases to spread rapidly through the wall, floor or ceiling.
  • a number of devices are currently known for use in conjunction with plastic services pipe or ducts for closing off the pipes or ducts in the event of fire.
  • Some of the devices which are used incorporate a heat reactive expandable material or intumescent which is in the form of a flexible wrap and which is located on the inside of a steel or plastic sleeve or housing which is placed about the pipe or duct. When exposed to heat, the heat expandable material will rapidly expand inwardly to squeeze and collapse the pipe which has softened to due heat exposure.
  • These devices can either be surface mounted or fully or semi-cast into masonry floors, walls or ceilings or can be mounted on one or both sides of the floor, wall or ceiling depending upon the direction of risk.
  • the pipe is not fully sealed by the heat expandable material and thus they are not fully effective as fire barriers.
  • Retention devices are essential to retain the intumescent material in their housing however, often the retention devices are not effective with that result that the intumescent material as it expands can fall out of the housing or sleeve and slab.
  • the intumescent material in plastic housings is usually retained in the housing by means of a metal retaining ring. When the intumescent material expands under the influence of heat, it tends to push the ring out of the housing and thus the intumescent material also falls out.
  • some of the devices are made up of a number of components which can be of more than one part, the intumescent material, and a spacer or retention device within the housing.
  • the intumescent material and a spacer or retention device within the housing.
  • a further disadvantage associated with fire barrier devices having metal housings is that the metal rapidly conducts heat through a slab and thus some of the devices of this type do not satisfy fire-rating requirement.
  • the housings have to be as low as possible in the slab to reduce the conduction of heat however this sometimes is not possible in the case of larger penetration pipes where the metal housings are relatively large.
  • the present invention aims to provide an improved fire barrier device for providing a barrier to the passage of smoke or gases and/or flames along pipes, ducts or conduits passing through walls, floor or ceilings of a building which is of a simple construction, which is effective in use and which is relatively inexpensive.
  • the present invention in a further aspect aims to provide a method of manufacturing a fire barrier device of the above type.
  • the present invention further aims to provide a method of installing a fire barrier device of the above type in a slab or ceiling.
  • the present invention thus provides in a first aspect a fire barrier device for use with a pipe passing though a wall, floor or ceiling of a building, said pipe having an outer diameter and said device comprising a substantially annular main body, said body comprising a wholly rigid self-supporting body and being moulded from a mouldable material containing a heat reactive expandable material, said body having a central axis and a bore moulded with said body and extending along said central axis, at least a portion of said bore having a diameter substantially the same as the outer diameter of said pipe.
  • pipe or “services pipe” as used throughout the specification and claims includes any pipe, duct or conduit which carries services in a building such as a water pipe, a stormwater pipe, or a drain pipe.
  • fire barrier device is moulded in an injection moulding process and the material for forming the fire barrier device and for injection moulding includes the heat reactive expandable (or intumescent) material and a carrier or plasticiser.
  • the intumescent material comprises graphite in particulate form.
  • the carrier or plasticiser may comprise HDPE (high density polyethylene) or other similar material.
  • the material may additionally include a fire retardant to prevent or minimize flaming or burning of the material.
  • a typical flame or fire retardant may comprise sodium silicate.
  • the material may additionally include a smoke suppressant to prevent excess generation of smoke when the fire barrier device is subject to heat or flames.
  • the fire barrier device may be mounted to a wall, floor or ceiling of a building around a pipe, duct or conduit penetrating the wall, floor or ceiling or installed within a wall, floor or ceiling such as a slab wall, floor or ceiling either by being cast in situ within a slab or located in a recess in the slab around the pipe, duct or conduit.
  • the present invention provides a fire barrier device for use with a services pipe, said fire barrier device being moulded from a material containing a heat reactive expandable material and being wholly rigid and self-supporting, said fire barrier device having:
  • main heat expandable body centered on said central axis, said main body having a maximum outer diameter
  • mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and
  • said fire barrier device has a reduced diameter region between said main body and said mounting means, the outer diameter of said reduced diameter region being less than the maximum outer diameter of said main body.
  • the fire barrier device is typically encased within a slab of settable material such as concrete.
  • the slab typically is constructed on formwork which defines one side of the slab.
  • the pipe has an external diameter and the axial passage having a portion of internal diameter substantially the same as the external diameter of said pipe.
  • the mounting means is adapted to secure the fire barrier device to the formwork during construction of the slab.
  • the main body is of substantially annular form to extend in use generally radially of the pipe so as to be retained within the slab by the material thereof when installed within the slab during the construction thereof.
  • at least portion of the outer surface of the main body is curved.
  • the main body may be of substantially spherical or part spherical configuration with the maximum diameter region thereof being arranged in use within the slab and the minimum diameter region being located in use adjacent the one side of the slab.
  • the spherical or part-spherical external surface or surfaces which is centered on the axial passage cooperate/s with the slab material to concentrate the expansion forces of the heat expandable material to more effective close off the pipe.
  • the main body may be of frustonconical form centered on the axis of the passage.
  • the external surface of the body may be of any other divergent form in cross section.
  • the body may have a stepped outer wall defining a shoulder which cooperates with the material of the slab to retain the device within the slab.
  • the main body may additionally or alternatively include integrally formed retaining means adapted for cooperation and bonding with the material of the slab.
  • the retaining means may comprise an external groove in the body in which the “wet” material of the slab locates during slab construction.
  • the groove suitably is a substantially annular groove extending peripherally about the main body.
  • the main body may include one or more peripherally extending grooves.
  • the main body may include one or more radially extending projections which are adapted to cooperate with the slab material to assist in retaining the main body within the slab.
  • the projections may be of substantially annular form to extend substantially peripherally of the body.
  • the mounting means is suitably integrally formed with the main body and the Annular flange or lugs may comprise a radially extending annular flange or radially extending lugs by which the device may be secured to the formwork.
  • the flange or lugs may include openings or slots to receive or locate fasteners such as nails, cleats or screws to secure the device to the formwork or alternatively, nails, or cleats may be driven through the flange or lugs into the formwork.
  • means may be provided for cooperation with the flange for holding or clamping the flange to the formwork.
  • Such means may be in the form of an annular clamping ring which is engageable with the flange. Any suitably fasteners may be used for fastening the clamping ring to the formwork. Typically the fasteners may be cleats or other nails or screws.
  • the axial passage through the main body may include a first portion at one end of the main body and a second portion larger than the first portion at or adjacent the opposite end of the main body.
  • the first portion is remote from the mounting means and has an internal diameter substantially the same as the outer diameter of the pipe so as to grip and support the latter during installation thereof in the wall or floor slab.
  • the second enlarged portion of the axial passage may extend from the first portion, being stepped outwardly therefrom.
  • the second enlarged portion may extend to adjacent the mounting means to open in use to the one side of the wall or slab after formation thereof.
  • the mounting means may include between the main body and annular flange or lugs, a wall which is coaxial with the main body and formed integrally therewith with the main body extending radially outwardly of the wall.
  • a sleeve-like member or wall may join the annular flange or lugs or may include an outwardly stepped or inclined portion to join the annular flange or lugs.
  • the wall defines at least adjacent the flange a third passage portion which extends from and is coaxial with the second portion of the passage through the main body.
  • Both the second and third passage portions are suitably of greater diameter than the pipe with which the device is to be used so as to define an annular space between the main body and sleeve like member which opens to one side of the slab in the direction of the fire risk such that heat from a fire can rapidly reach the main body to cause rapid expansion thereof.
  • the annular space in addition, allows connection of the pipe with a further pipe, duct or conduit or fitting.
  • the main body joins at its end opposite the mounting means, a collar which is coaxial with the axial bore.
  • the collar may be formed integrally with the main body.
  • the collar has an internal diameter substantially the same as the pipe with which the device is to be used so as to firmly engage and support the pipe, duct or conduit during installation in a slab.
  • the collar provides a seal with the pipe to prevent escape of smoke and/or gases in the event of a fire. This ensures that smoke is contained in the pipe and is directed out of the building through the pipe rather than being trapped in the building.
  • the collar may define at least a part of the first portion of the axial passage extending through the main body.
  • mounting means which may be separate from the main body may be provided for mounting the main body to the slab formwork.
  • the mounting means is of generally annular form and defines an annular flange by which the device may be secured to the formwork.
  • the flange may include spaced openings to receive fasteners such as nails, cleats or screws to secure the device to the formwork or alternatively nails or cleats may be driven through the flange into the formwork.
  • the mounting means may be in the form of an annular spacer which includes an annular side wall extending axially from the annular flange.
  • the annular spacer may also include a further radially inwardly directed wall upon which the moulded main body is seated and is secured.
  • the moulded main body may be secured to the spacer by adhesives or alternatively by a mechanical connecting arrangement.
  • the main body may be formed with members such as lugs which cooperate with slots or apertures in the inwardly directed wall of the spacer such that relative rotation between the spacer and main body will secure them together.
  • the spacer may include members which project into the material of the main body.
  • Retaining means may also be provided on the spacer to assist in retaining the device in the slab.
  • the means on the spacer may comprise an annular bead or enlargement or alternatively an annular groove in the spacer.
  • the bead, enlargement or groove may be formed in the annular side wall of the spacer.
  • the mounting means may comprise a hollow body formed of a heat softenable material and the main body of intumescent material which is mounted to surround the hollow body.
  • the hollow body may have a side wall surrounding an opening through which a duct or pipe may pass, and the main body is in the form of a collar of a heat reactive expandable material surrounding the side wall and extending outwardly therefrom so as to retain said device in the slab when said material thereof sets or cures.
  • the collar of heat expandable or intumescent material may be formed integrally with the hollow body which itself is thus formed of the heat expandable material or alternatively, the annular collar is separate of the hollow body and may be located thereover coaxially.
  • the annular collar may supported or seat on a shoulder formed in an external wall of the hollow body.
  • the annular collar may be of any cross sectional form but typically may have a curved outer configuration.
  • the annular collar suitably extends radially outwardly of the body so as to be retained in the material of the slab.
  • the wall of the hollow body may have means at one end for securing the body to formwork defining a boundary of said slab during the formation thereof.
  • the means at one end may comprise and annular flange.
  • the hollow body may be in the configuration of a sleeve.
  • the outer wall of the sleeve is stepped to define a shoulder upon which the collar may seat.
  • the portion of the sleeve wall adjacent the shoulder and within the collar is preferably relatively thin so as to soften rapidly when subject to heat and not prevent expansion of the collar.
  • the outer diameter of the sleeve wall portion is substantially the same as the internal diameter of the collar such that the later may be firmly engaged with the sleeve wall portion.
  • the upper portion of the sleeve suitably has an internal diameter such as to enable the sleeve to firmly grip the outer wall of the duct or pipe to support the duct or pipe in an upstanding attitude.
  • a sleeve may be associated with the device to act as a stack through the slab for accepting the pipe, duct or conduit therethrough, the sleeve being of such a length as to project beyond the slab when formed.
  • the sleeve may be secured to any part of the device such as to the collar of the device where provided for example by adhesives or mechanical fasteners.
  • the sleeve may be formed integrally with the device and extend coaxially therefrom relative to the axial bore through the body.
  • the device may also include on its underside, a radially extending recess for accommodating radially extending lugs of a joining sleeve or fitting.
  • the recess may be defined by an integrally formed radially extending tunnel shaped member extending from the main body.
  • the joining sleeve or fitting may be of the type which incorporates a heating coil to effect joining by heat fusion to a pipe, duct or conduit which terminates in connecting terminal or lugs extending radially therefrom for connection to a current source.
  • the present invention in yet a further aspect provides a method of installing a fire barrier device of the above type in a wall, floor or ceiling slab formed of a settable material, said method including the steps of inserting a pipe into the passage of said main body, securing said device to formwork defining one side of said wall, floor or ceiling slab, and applying the settable material of said slab to said formwork and around said fire barrier device such that said settable material encases said device and leaves said pipe projecting beyond said slab.
  • the method may also include the step of removing the formwork when said settable material is set or cured, said device being retained in said slab by cooperation between the material of said slab and said device.
  • the formwork is formed of timber and is removed after formation of the slab.
  • the formwork may be metal decking sheets such as that known as Bondeck and remain in situ after curing of the slab material.
  • the fire barrier devices in such situations are secured to the metal sheets by metal fasteners such as screws or rivets and a circular opening is formed in the metal decking in alignment with the fire barrier device to enable the service line or pipe to be passed therethrough.
  • the opening may be formed before or after affixing of the fire barrier device.
  • radially extending stop means may be associated with the fire barrier device to span the device adjacent the mounting flange, the stop means being abutted by the end of the pipe.
  • the present invention provides a fire barrier device for use with a services pipe, said fire barrier device comprising a body moulded from a material containing a heat reactive expandable material, said body being a self-supporting and wholly rigid body, said body having: a central axis and first and second ends spaced apart along said central axis, an axial bore extending along said central axis from said first end to said second end for receipt of said pipe, a radially extending main heat expandable portion between said first end and said second end and centered on said central axis, said main heat expandable portion having a maximum transverse dimension in a direction normal to said central axis, mounting means at said second end for mounting said fire barrier device, and wherein said fire barrier device has, between said main heat expandable portion and said mounting means, a region of a transverse dimension less than the maximum transverse dimension of said main heat expandable portion.
  • the present invention provides a fire barrier device in combination with a pipe passing through a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and comprising: a main body moulded from a mouldable material containing a heat reactive expandable material, said main body having first and second opposite ends and an axial bore extending therethrough and receiving said pipe, said main body being a wholly rigid body; and a collar at said first end of, and joining said, main body, said collar being coaxial with said axial bore and having an internal diameter substantially the same as the external diameter of said pipe so as to engage and support said pipe.
  • the present invention provides a fire barrier device in combination with a pipe located within a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and having: a central axis and first and second ends spaced apart along said central axis, a passage extending along said central axis and receiving said pipe, said passage having a portion of an internal diameter substantially the same as the external diameter of said pipe, a main body heat expandable body moulded from a mouldable material containing a heat reactive expandable material, said main body being centered on said central axis and extending radially outwardly relative to said central axis, said body having a maximum outer diameter and being wholly rigid, mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and wherein said fire barrier device has a region between said main body and said mounting means of an outer diameter less than the maximum outer diameter of said main body.
  • FIG. 1 illustrates the fire barrier device according to an embodiment of the invention in side view
  • FIG. 2 illustrates in perspective view, the fire barrier device of FIG. 1 ;
  • FIG. 3 illustrates in sectional view, the manner in which the fire barrier device or FIGS. 1 and 2 is installed within a slab;
  • FIG. 4 illustrates in sectional view, the installed fire barrier device within a slab
  • FIGS. 5 and 6 illustrate in side and perspective views a further form of fire barrier device according to the invention similar to the embodiment of FIGS. 1 and 2 ;
  • FIG. 7 is a perspective view of a further form of fire barrier device according to the present invention.
  • FIG. 8 is a side elevational view of the device of FIG. 7 ;
  • FIG. 9 is a cross sectional view of the device of FIG. 7 installed within a slab.
  • FIG. 10 illustrates in plan view, a fire barrier device according to a further embodiment of the invention.
  • FIG. 11 is a sectional view of the fire barrier device of along line A-A of FIG. 10 with associated clamping ring;
  • FIG. 12 illustrates the manner in which the fire barrier device of FIG. 10 is installed within a slab
  • FIG. 13 illustrates in sectional view, the installed fire barrier device of FIG. 10 within the slab
  • FIG. 14 is a plan view of a fire barrier device according to a further embodiment of the invention.
  • FIG. 15 is a sectional view along line B-B of FIG. 14 ;
  • FIG. 16 illustrates in sectional view, the manner in which the device of FIGS. 14 and 15 is installed within a slab
  • FIG. 17 illustrates in sectional view the fire barrier device of FIGS. 14 and 15 installed in a ceiling
  • FIG. 18 illustrates in sectional view a further form of fire barrier device according to the invention.
  • FIG. 19 illustrates in perspective view, a fire barrier device according to a further embodiment of the invention.
  • FIG. 20 illustrates the fire barrier device of FIG. 19 in side view
  • FIG. 21 illustrates in sectional view the manner in which the fire barrier device of FIGS. 19 and 20 is installed within a slab
  • FIG. 22 illustrates in sectional view, the installed fire barrier device of FIGS. 19 and 20 within the slab
  • FIG. 23 illustrates in perspective view, a fire barrier device according to a further embodiment of the invention.
  • FIG. 24 illustrates the fire barrier device of FIG. 23 in side view
  • FIG. 25 illustrates in sectional view the manner in which the fire barrier device of FIGS. 23 and 24 is installed within a slab
  • FIG. 26 illustrates in sectional view, the installed fire barrier device within the slab.
  • a fire barrier device 10 including a main body 11 integrally formed with a mounting portion 12 which is adapted to mount the body 11 in a desired position within a slab of settable material such as concrete as described further below.
  • the device 10 comprising the main body 11 and mounting portion 12 are formed integrally in a conventional injection moulding process so that the device 10 is a wholly rigid device.
  • the material for moulding includes a heat reactive expandable material or intumescent material which has suitable properties such as to expand when subject to heat as encountered in a fire.
  • the intumescent material comprises graphite.
  • the moulding material also includes a plasticiser or carrier for example HDPE to enable moulding, a smoke suppressant and a fire suppressant for example sodium silicate.
  • the main body 11 is circular in cross-section and has an external part spherical wall 13 centred on the central axis of the body 11 in which is formed an annular groove 14 .
  • Wall 13 has a maximum diameter adjacent the mounting portion 12 and the body 11 is stepped inwardly adjacent portion 12 to present an annular wall portion or shoulder 13 ′ which faces the mounting portion 12 .
  • the device 10 comprises a self-supporting device which needs no external support and further is wholly rigid.
  • the main body 11 joins at its upper end an integrally formed collar 15 which defines a passage or bore 16 with an internal diameter substantially the same as the external diameter of pipe, duct or conduit to be received in the device 10 .
  • the bore 16 is stepped outwardly in the main body 11 to form a second enlarged bore 17 which extends through the main body 11 .
  • the mounting section 12 includes a sleeve-like member or wall 18 extending from and formed integrally with the main body 11 , the bore 17 extending through the member 18 .
  • the member 18 is stepped outwardly through an annular radially extending wall 19 and a second cylindrical wall 20 , the latter terminating in a radially extending flange 21 .
  • the annular flange 21 includes circumferentially spaced slots 22 for locating fasteners. Alternatively, the slots 22 may be replaced by preformed apertures in the flange 21 .
  • the device 10 may be used in a number of different situations to close off pipes, ducts or conduits passing through walls, floor or ceilings. Most commonly, however the device 10 may be installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 3 and 4 .
  • a pipe 23 is initially passed through the collar 15 such that it is frictionally gripped by the internal wall thereof and thereafter the device 10 may be secured to formwork 24 which defines one face of a concrete slab to be formed. This is achieved by means of the flange 21 of the device 10 which is seated on the formwork 24 with cleats 25 or other fasteners located by the slots 22 drive into the formwork 24 to clamp the flange 21 and thus the device 10 to the formwork 24 .
  • devices 10 may be initially secured to the formwork 24 at the desired positions where the service pipes 23 are to penetrate the slab and thereafter the pipes 23 inserted into the devices 10 to be supported in an upstanding attitude in the manner shown, the lengths of the pipes 23 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 24 .
  • the concrete or concrete composite material 26 may then be poured or deposited onto the formwork 24 and around the devices 10 secured to the formwork 24 and pipe 23 until the required thickness of the wall, floor or ceiling slab 27 is achieved. As shown, the pipe 23 extends above or beyond the slab 27 to enable connection to further pipes to form the service line through the slab 27 .
  • the formwork 24 is removed as shown in FIG. 4 which leaves the device 10 embedded in the concrete slab 27 . The device is retained in the slab 27 due to the radially enlarged form of the main body 11 of the device which is embedded within the slab 27 .
  • Retention is further enhanced by the interlocking achieved through the material 26 of the slab filling the annular groove 14 and further because of the slab material filling the undercut annular space 28 between the shoulder 13 ′ and the annular wall 19 .
  • the device 10 is thus anchored within the formed slab wall, floor or ceiling.
  • the bore 17 in the main body 11 defines with the pipe 23 , an annular space 29 which opens through the mounting section 12 to the underside of the slab and which ensures that in the event of fire on the underside of the slab 27 , the generated heat will be directed towards the inside of the main body 11 so that the intumescent material thereof is rapidly subject to heat which will cause it to expand and close over the softened pipe 23 as illustrated in dotted outline in FIG. 4 .
  • the curved nature of the external wall of the body 11 ensures that there is a concentrated expansion of the intumescent material as indicated by the arrows in FIG. 4 reacting against the surrounding slab material 26 which directs the expansion forces generally radially as illustrated to rapidly close over the softened pipe 23 as indicated in dotted outline.
  • the space 29 also facilitates the connection between the pipe 23 and a further pipe or other fitting such as an elbow 30 (shown in dotted outline) having a mating female socket for joining to the end of the pipe 23 within the space 29 by suitable adhesives usually contact adhesives.
  • the annular finger of concrete or other settable material in the space 28 defined by the outwardly extending wall 19 serves to govern the exposure of part of the body 11 to heat to control the rate of expansion of the body 11 and so that the device 10 has sufficient fire rating and will continue to be effective over a considerable period of time.
  • the body 11 is preferably of part-spherical external configuration as illustrated, it may be of alternate configurations for example of toroidal shape or simple ring-like shape and include alternative retention means for retaining the device 10 in the slab 27 .
  • the body portion 11 may have outward projections which may be of annular form to cooperate with the slab material 26 .
  • the cylindrical wall or member 18 in some embodiments may simply extend downwardly to join the annular flange 21 and thus in this case, the walls 19 and 20 may be eliminated.
  • the annular flange 21 and wall 20 may be eliminated and the wall 19 radially extended to service as a mounting flange for the device.
  • the mounting portion 12 of the device may be eliminated such that the main body 11 may seat on the formwork so that the bore 17 opens to the underside of the slab 27 .
  • the mounting section 12 may be eliminated and the body 11 be of simple annular form with the bore 17 reduced to the internal diameter of the collar 16 to engage firmly a pipe, duct or conduit with which the device is to be used.
  • the main body 11 may the be located within the slab 27 at any desired position prior to forming the slab 27 such that it is retained within the slab 27 about a pipe passing through the slab 27 .
  • the device 10 may be engaged about a pipe externally of a slab.
  • FIGS. 5 and 6 illustrate an alternative form of fire barrier device 31 according to the invention which is similar to the embodiment of FIGS. 1 and 2 and which is used in the same manner as that described with reference to FIGS. 3 and 4 .
  • like parts to those of FIGS. 1 and 2 have been given like numerals.
  • the collar 15 is of extended length to provide additional support to a pipe or duct 23 passing therethrough, the collar 12 also extending into the main body 11 . Further the wall 20 in this case is inclined outwardly.
  • the devices 10 and 31 may also be used with a sleeve-like member 32 (shown in FIG. 3 in dotted outline) which forms a stack extending beyond the top side of the slab 27 with the pipe 23 passing coaxially therethrough.
  • the sleeve-like member 32 may be fixed to the collar 12 by mechanical or adhesive means or alternative may be formed integrally with the device 10 or 31 .
  • the device 33 as in the first embodiment includes a collar 15 for closely receiving a pipe, duct or conduit, a substantially annular main body 11 and a mounting portion 12 comprising an annular wall or member 18 which is outwardly angled to join an annular mounting flange 21 .
  • a radially extending tunnel shaped member 34 is formed integrally with the device 33 and intercepts the wall 18 to define on the underside of the device 32 , a radially extending recess 35 extending from the space 29 for a purpose which will hereinafter become apparent.
  • the tunnel shaped member 34 is closed at its outer end 36 .
  • the device 33 may be installed and used in the same manner as the collar 10 as described with reference to FIGS. 3 and 4 .
  • the device 33 however is particularly suited for use with HDPE or similar pipes which are joined by heatable joining sleeves 37 (see FIG. 9 ).
  • Sleeves 37 of this type are used for joining by heat fusion, pipes formed of HDPE or other heat formable or joinable material which cannot be glued with conventional adhesives.
  • the joining sleeves 37 are provided with heating elements which extend circumferentially of the sleeve and which terminate in a pair of radially extending terminals 38 to which a current can be applied through wires 39 connected to the terminals 38 via suitable plugs to effect heating of the sleeve 37 .
  • a first HDPE pipe 40 is inserted into the device 33 to be gripped by the collar 15 and supported in an upstanding attitude prior to pouring the settable material on to the formwork 24 (shown in dotted outline) to form the slab 27 .
  • the sleeve 37 may then be engaged with the lower end of the pipe 40 in the space 29 with the radially extending recess 35 accommodating the radially extending terminal or terminals 38 of the sleeve 37 providing sufficient room for receipt of the connecting plugs of the wires 39 .
  • a further HDPE pipe 41 (or other fitting) may be inserted into the lower end of the sleeve 37 and current applied through the wires 39 to effect connection and sealing by fusion heating between the sleeve 37 and pipes 40 and 41 to form the service line through the slab 27 .
  • the wires 39 After connection, the wires 39 of course are disconnected from the terminals 38 .
  • the devices 10 , 31 and 33 are preferably installed within a slab, they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space.
  • the devices 10 (or 31 or 33 ) may be secured to a plasterboard ceiling panel with an enlarged opening formed in the panel in alignment with the device 10 (or 31 or 33 ) such that a pipe 23 supported by the device 10 (or 31 or 33 ) may be secured to a further pipe or fitting through a female socket on the end of the further pipe or fitting which locates within the enlarged opening and space 29 in the device 10 (or 31 or 33 ).
  • the device 10 (or 31 or 33 ) will function in the same manner as that described above to shut over the service pipe in the event of fire.
  • a fire barrier device 42 comprising or consisting of a heat reactive intumescent material and being moulded as a wholly rigid self supporting device in one piece in any suitable moulding apparatus such as by injection moulding.
  • the device 42 is of a generally hat shaped configuration in side view and includes a main body 43 which is circular in cross-section and which has a generally spherical outer configuration defined by an external curved wall 44 such that the diameter of the body 43 in the middle thereof is greater than the diameter at each end for a purpose which will become apparent.
  • a central bore 45 extends through the body 43 and is of a stepped configuration to define at one end a first bore portion 46 which is of a diameter substantially the same as the diameter of a pipe or duct to be passed through the body 43 and a second bore portion 47 at the other end of the body 43 which is of an enlarged diameter relative to the bore portion 46 .
  • Extending peripherally about the end of the body 43 adjacent the bore portion 47 is a peripheral flange or rim 48 which extends generally radially of the body 43 .
  • the outer edge of the flange or rim 48 is provided with an annular recess 49 formed in the surface of the flange or rim 48 adjacent the body 43 .
  • annular stepped securing ring 50 which includes an inwardly projecting rim portion 51 complementary to and adapted to be received in the recess 49 .
  • the securing ring 50 may be formed of plastics or metal and may be provide with a series of preformed apertures 52 for accepting cleats or other or other fasteners 53 .
  • the material of the ring 50 may be such that it may be easily penetrated by cleats 53 or other fasteners driven therethrough.
  • the device 42 may be used in a number of different situations to close off pipes or ducts passing through walls, floors, or ceilings. Most commonly however, the device 42 is installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 12 and 13 .
  • a pipe or duct 54 is initially passed through the bore 45 such that it is frictionally gripped by walls of the first portion 46 of the bore 45 and thereafter the device 42 may be secured to formwork 55 which defines one face of a concrete slab to be formed.
  • devices 42 may be initially secured to the formwork 55 at the desired positions where the service pipes or ducts are to penetrate the slab and thereafter the pipes or ducts 54 are inserted into the devices 42 to be upstanding therefrom in the manner shown, the lengths of the pipes or ducts 54 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 55 .
  • the concrete or concrete composite material 56 may then be poured or deposited onto the formwork 55 and around the devices 42 secured to the formwork 55 and pipe or duct 54 until the required thickness of the wall, floor or ceiling is achieved. As shown, the pipe or duct 54 extends above or beyond the slab to enable connection with joining pipes or ducts. After the concrete or concrete composite material has cured or set, the formwork 55 is removed as shown in FIG. 13 which leaves the device 42 embedded in the concrete slab.
  • the device 42 is retained in the concrete slab due to the interlocking achieved through the material of the slab filling the undercut portion 57 of the device 42 defined between the curved wall 44 of the device 42 and the flange 48 and further because the largest diameter portion of the device 42 is located within the slab at a position spaced from the adjacent side of the slab defined by the formwork 55 .
  • the device 42 is thus locked within the formed slab wall, floor or ceiling.
  • the enlarged diameter portion 47 of the bore 45 defines with the pipe or duct 54 , an annular space 58 which ensures that in the event of fire, the generated heat will be directed towards the enlarged portion of the body 42 so that the intumescent material is rapidly subject to heat which will cause it to expand and close over the softened pipe 55 .
  • the curved nature of the wall 44 of the body 43 ensures that there is a concentrated expansion of the heat expandable material as indicated by the arrows in FIG. 13 against the wall 44 which directs the forces generally radially as illustrated to rapidly close over the softened pipe 54 as indicated in dotted outline.
  • the space 58 facilitates the connection between the pipe or duct 54 and a further pipe or duct 59 (showing in dotted outline) having a mating female socket for joining to the end of the pipe or duct 54 within the space 58 .
  • FIGS. 14 and 15 illustrate a further embodiment of fire barrier device 60 according to the invention in which similar components to the embodiment of FIGS. 12 and 13 have been given like numerals.
  • the body 61 is of a generally half-spherical configuration having a curved external wall 62 which is at a minimum diameter adjacent the securing flange 48 and at a maximum at its opposite end 63 .
  • This device 60 is used in a similar manner to that described above with the flange 48 being secured to formwork 55 as shown in FIG. 16 and a pipe or duct 54 being received within the body 62 , passing through the bore 45 to be supported in an upstanding attitude by the bore portion 46 .
  • concrete or other settable material 56 is applied to the formwork 55 , the latter normally being removed after curing or setting of the material 56 .
  • the device 60 thus remains in situ within the slab being held therein due to the diverging nature of the side wall 62 which places the maximum diameter end 63 of the body 61 within the slab and the minimum diameter portion 64 adjacent one side of the slab.
  • the heat applied to the intumescent material of the body 60 will cause that material to expand with the expansion forces being concentrated by the curved surface of the concrete at the interface with the side wall 62 of the body 61 in a generally radial direction as indicated by the arrows in FIG. 16 to rapidly close over the softening pipe 54 .
  • the devices described with reference to FIGS. 1 to 16 are preferably installed within a slab, they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space as illustrated in FIG. 17 .
  • the device 60 (or 10 , 31 , 33 or 42 ) is secured to plasterboard ceiling panels 65 by the appropriate fastening arrangement as described above with an enlarged opening 66 being formed in the panels 65 in alignment with the bore portions 46 and 47 in the body 61 such that a pipe 54 supported by the body 61 may be secured to a further pipe 68 (shown in dotted outline) through a female socket 69 on the end of the further pipe 68 which locates within the opening 66 and bore portion 47 .
  • the device 60 (or 10 , 31 , 33 or 42 ) will function in the same manner as that described above with the heat expandable or intumescent material of the body expanding when subject to heat to close over the pipe 54 .
  • the body 71 of the device 70 comprises an enlarged collar 72 having an internal bore 73 for neatly receiving the pipe 54 and an inner annular leg 74 which extends from the collar 72 at a position radially inwardly from the outer circumference thereof to define a shoulder 75 which cooperates with the concrete or other settable material 56 of the slab to be formed to retain the device 70 in the slab.
  • the leg 74 terminates in an annular flange 76 which may be secured to the formwork 55 by cleats through the flange 76 or by a separate clamping ring 50 as in the embodiments of FIGS. 10 to 17 .
  • the pipe 54 is gripped by the walls of the bore 73 which support the pipe 54 in an upstanding attitude whilst the concrete 56 is applied to the formwork 55 .
  • the leg 74 forms with the pipe 54 a space 77 which allows rapid passage of heat of the fire to the collar 72 of the device 70 to cause rapid expansion thereof as shown in dotted outline to close over the pipe 54 .
  • the space 77 also allows for connection of the pipe 54 with a further pipe in a similar manner to that shown in FIG. 13 after the formwork 55 has been removed.
  • the device 70 as well as being used within a slab may also be used in a ceiling space as in the arrangement of FIG. 17 .
  • the devices 42 , 60 and 70 by being moulded in one piece are wholly rigid and self supporting and do not have an external housing and thus there is no rapid transfer of heat as in the prior art devices where the housing is metal. Further the material of the devices is self-supporting within or out of a slab and no retention device is required to maintain the devices within the slab. When installed within a slab, the material from which the bodies of the devices are formed may form a mechanical and/or chemical bond with the material of the slab to further assist in retention of the bodies within the slab.
  • the devices additionally are highly resistant to weather conditions, moisture or other adverse environments.
  • the devices 42 or 60 in a preferred form have an outer curved wall which provides an enlarged body of intumescent material for closing a pipe or duct
  • the curved wall may be of other configurations which flares or is stepped outwardly between the minimum and maximum portions of the device as in FIG. 9 or which have an enlarged portion located in use within the slab.
  • the devices 42 , 60 and 70 are preferably of circular cross section, they may be of square cross sectional form or of any other cross section. Whilst the device 42 and 60 are shown to be secured to formwork by a clamping ring 50 , they may be secured thereto by cleats or other fasteners driven directly through the flange 48 or preformed apertures or slots therein.
  • a fire barrier device 78 comprising an annular spacer 79 preferably formed of metal having an annular side wall 80 , an annular flange 81 at one end of the wall 80 and a disc-like end wall 82 (see FIG. 21 ) at the opposite end of the side wall 80 and extending inwardly towards the central axis of the spacer 79 .
  • an annular body 83 Seated upon the end wall 82 is an annular body 83 moulded from a material comprising or consisting of a heat reactive intumescent material as described above, the body 83 being rigid and self supporting.
  • the body 83 is circular in cross-section and has an upper collar 84 and a curved external wall 85 curving inwardly from the outer periphery of the spacer 79 to the collar 84 so as to be externally of part-spherical form.
  • the body portion 85 has an internal bore portion 86 of an internal diameter greater than the internal diameter of the collar 84 and has in its external surface 85 an annular radially inwardly extending groove 87 .
  • the body 83 is attached to the spacer 79 by any suitable means such as by suitable adhesives or by a mechanical connection.
  • the mechanical connection may include lugs on the body 83 which locate in slots or apertures in the disc-like wall 82 .
  • the body portion 85 may be locked to the spacer 79 by rotating one relative to the other.
  • the body 85 may include downwardly extending headed lugs which may locate in keyhole shaped apertures in the wall 82 such that when rotated relative to each other, the body 85 becomes mechanically connected to the spacer 79 .
  • the collar 84 has an internal bore which is of a diameter substantially the same as the diameter of a pipe or duct to be passed through the device 78 .
  • the device 78 may be used in a number of different situations to close off pipes or ducts passing through walls, floors, or ceilings. Most commonly however, the device 78 is installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 21 and 22 .
  • a pipe or duct 90 is initially passed through the sleeve 84 such that it is frictionally gripped by the internal wall thereof and thereafter the device 78 may be secured to formwork 91 which defines one face of a concrete slab to be formed.
  • devices 78 may be initially secured to the formwork 91 at the desired positions where the service pipes or ducts 90 are to penetrate the slab and thereafter the pipes or ducts 90 are inserted into the devices 78 to be upstanding therefrom in the manner shown, the lengths of the pipes or ducts 90 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 91 .
  • the concrete or concrete composite material 93 may then be poured or deposited onto the formwork 91 and around the devices 78 secured to the formwork 91 and pipe or duct 90 until the required thickness of the wall, floor or ceiling is achieved to form the slab 94 .
  • the pipe or duct 90 extends above or beyond the slab 94 to enable connection with joining pipes or ducts.
  • the formwork 91 is removed as shown in FIG. 22 which leaves the device 78 embedded in the concrete slab 94 .
  • the device 78 is retained in the concrete slab due to the interlocking achieved through the material 93 of the slab 94 filling the annular groove 87 .
  • the slab material 93 will also exert a grip on the side wall 80 of the spacer 79 .
  • the device 78 is thus locked within the formed slab wall, floor or ceiling.
  • the bore 86 in the body 83 defines with the pipe or duct 90 , an annular space 95 which ensures that in the event of fire, the generated heat will be directed towards the inside of the body 83 so that the intumescent material thereof is rapidly subject to heat which will cause it to expand and close over the softened pipe 90 as illustrates in dotted outline in FIG. 22 .
  • the curved nature of the external wall of the body 83 ensures that there is a concentrated expansion of the intumescent material as indicated by the arrows in FIG. 22 reacting against the surrounding slab material 93 which directs the forces generally radially as illustrates to rapidly close over the softened pipe 90 as indicated in dotted outline.
  • space 95 facilitates the connection between the pipe or duct 90 and a further pipe or duct 96 (shown in dotted outline) having a mating female socket for joining to the end of the pipe or duct 90 within the space 95 by suitable adhesives usually contact adhesives.
  • the body 83 is preferably of the part-spherical configuration as shown, it may be of alternate configurations and include alternative retention means for retaining the device 78 in the slab.
  • the body 83 may have outwardly extending projections which may be of annular form to cooperate with the slab material 93 .
  • the annular spacer 79 may also include on its external wall 80 , outward projections which may also be in the form of an annular outwardly extending protrusion.
  • the body 83 may be flared or extend radially outwardly of the spacer 79 as shown in dotted outline at 97 to have a larger diameter than the spacer 79 such as to cooperate with the slab material to retain the device 78 in the slab 94 .
  • the spacer 79 Whilst the spacer 79 is shown to have an external wall 80 , the wall 80 may be reduced in size so that the spacer is of generally disc-like form and accordingly positions the body 83 in use adjacent to one side of the slab 94 . Alternatively, the wall 80 may be extended in width to position the body 83 further within the slab 94 .
  • FIGS. 23 to 26 illustrate a further embodiment of fire barrier device 98 according to the invention which in this case includes a sleeve-like body 99 which has a wall 100 having a number of outward steps and which terminates in an annular flange 101 , the body 99 suitably being formed of a plastics material.
  • a ring 103 of heat expandable material Supported on one stepped portion or shoulder 102 of the wall 99 is a ring 103 of heat expandable material, the ring 103 having a curved outer wall and being self-supporting and being moulded from a material comprising or containing intumescent material as described above to be of a relatively rigid construction.
  • the wall portion 104 of the body 99 inwardly of the ring 103 is relatively thin for a purpose which will hereinafter become apparent.
  • the wall 100 of the body 99 at its upper end 105 has an internal diameter which is substantially the same as a duct or pipe to be received in the body 99 whilst the internal diameter of the wall portion 104 is greater than the diameter of the pipe or duct again for a purpose which will hereinafter become apparent.
  • the device 98 is used in a similar manner to that described above with the flange 101 being secured by cleats or nails 106 to formwork 107 as shown in FIG. 25 and a pipe or duct 108 inserted into the body 98 to be gripped by the upper end 105 of the body 99 to be supported in an upstanding attitude.
  • concrete or other settable material 109 is applied to the formwork 107 to form the slab 110 , the formwork 107 being removed after curing or setting of the material 109 .
  • the device 98 remains in situ within the slab 109 as shown in FIG.
  • the pipe 108 may be connected to a further pipe 112 having a female socket in the space between the wall 104 and pipe 107 .
  • the ring 103 of intumescent material is a separate component such that the sleeve-like body 99 may be used for other purposes but may be converted for use in the applications described above.
  • the body 99 and ring 103 may be formed integrally such as by moulding from a material including or consisting of intumescent material as referred to previously.
  • the sleeve-like body 99 may have at its upper end 105 an internal annular recess for engagement by a puddle flange of conventional form which locates about a penetrating pipe 107 .
  • the devices 78 and 98 are preferably installed within a slab, however they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space.
  • the device 78 or 98 may be secured to a plasterboard ceiling panel with an enlarged opening being formed in the panel in alignment with the device 78 or 98 such that a pipe 90 or 108 supported by the device 78 or 98 may be secured to a further pipe through a female socket on the end of the further pipe which locates within the enlarged opening and enlarged axial bore in the device 78 or 98 .
  • the device 78 or 98 will function in the same manner as that described above to shut over the lines of pipes in the event of fire.
  • the intumescent material of the devices of the invention is self-supporting within or out of a slab.
  • the intumescent material from which the heat expandable bodies of the devices are formed may form a mechanical and/or chemical bond with the material of the slab to further assist in retention of the bodies within the slab.
  • the devices additionally are highly resistant to weather conditions, moisture or other adverse environments.
  • the devices are preferably of circular cross section, they may be of square cross sectional form or of any other cross section.
  • the devices and the bores therein may be varied in size to suit the application and the size of pipe, duct or conduit with which the devices are to be used.
  • the devices Whilst the devices commonly may be used in connection with formwork which is removed after moulding of a slab, they may be used in connection with formwork which remains in situ after slab moulding for example metal decking which defines formwork for forming of the slab.
  • the metal decking may need to be cut out at the required locations where pipes are required to penetrate the slab, the devices of the invention being mounted in alignment with the cut out portions so that the pipes or ducts passing through the devices can pass through the cut out portions of the decking.
  • the devices When used with this type of formwork, the devices are usually secured in position by suitable metal fasteners.
  • the devices may be provided with stop members.
  • a typical configuration of stop member 113 is shown in FIG. 4 , the stop member 113 simply comprising a strap extending diagonally of the device and being secured at opposite ends to the device and being removable therefrom after slab moulding.

Abstract

A fire barrier device for use in a slab of settable material such as concrete, the fire barrier device being moulded integrally from a heat reactive expandable material and having a main body and a mounting flange for mounting the device to formwork defining one side of the slab during the construction of the slab. The fire barrier device has a reduced diameter region between the main body and mounting flange so that it will be retained within the slab. The main body may also include one or more grooves in its outer surface for cooperation with the material of the slab.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of application Ser. No. 10/344,563 filed Feb. 21, 2003.
  • TECHNICAL FIELD
  • This invention relates to barriers and in particular to barrier devices for closing pipes, ducts or conduit which penetrate walls, floors or ceilings of a building in the event of fire.
  • BACKGROUND ART
  • Walls, floors and ceilings of a building usually a multi-story building commonly have pipes, ducts and conduits formed of a plastics material which penetrate the wall, floor or ceiling for carrying services for example water, sewerage or electrical services. In the event of fire however, the penetrating pipes, ducts or conduits allow flames and/or smoke and gases to spread rapidly through the wall, floor or ceiling. To overcome this problem, a number of devices are currently known for use in conjunction with plastic services pipe or ducts for closing off the pipes or ducts in the event of fire. Some of the devices which are used incorporate a heat reactive expandable material or intumescent which is in the form of a flexible wrap and which is located on the inside of a steel or plastic sleeve or housing which is placed about the pipe or duct. When exposed to heat, the heat expandable material will rapidly expand inwardly to squeeze and collapse the pipe which has softened to due heat exposure. These devices can either be surface mounted or fully or semi-cast into masonry floors, walls or ceilings or can be mounted on one or both sides of the floor, wall or ceiling depending upon the direction of risk.
  • The devices which are available however have some deficiencies. Sometimes, the pipe is not fully sealed by the heat expandable material and thus they are not fully effective as fire barriers. Retention devices are essential to retain the intumescent material in their housing however, often the retention devices are not effective with that result that the intumescent material as it expands can fall out of the housing or sleeve and slab. The intumescent material in plastic housings is usually retained in the housing by means of a metal retaining ring. When the intumescent material expands under the influence of heat, it tends to push the ring out of the housing and thus the intumescent material also falls out. Further, some of the devices are made up of a number of components which can be of more than one part, the intumescent material, and a spacer or retention device within the housing. As a result, such devices can be relative complex or time consuming to assemble and are thus costly. A further disadvantage associated with fire barrier devices having metal housings is that the metal rapidly conducts heat through a slab and thus some of the devices of this type do not satisfy fire-rating requirement. To reduce this effect, the housings have to be as low as possible in the slab to reduce the conduction of heat however this sometimes is not possible in the case of larger penetration pipes where the metal housings are relatively large.
  • SUMMARY OF THE INVENTION
  • The present invention aims to provide an improved fire barrier device for providing a barrier to the passage of smoke or gases and/or flames along pipes, ducts or conduits passing through walls, floor or ceilings of a building which is of a simple construction, which is effective in use and which is relatively inexpensive. The present invention in a further aspect aims to provide a method of manufacturing a fire barrier device of the above type. The present invention further aims to provide a method of installing a fire barrier device of the above type in a slab or ceiling.
  • The present invention thus provides in a first aspect a fire barrier device for use with a pipe passing though a wall, floor or ceiling of a building, said pipe having an outer diameter and said device comprising a substantially annular main body, said body comprising a wholly rigid self-supporting body and being moulded from a mouldable material containing a heat reactive expandable material, said body having a central axis and a bore moulded with said body and extending along said central axis, at least a portion of said bore having a diameter substantially the same as the outer diameter of said pipe.
  • The term “pipe” or “services pipe” as used throughout the specification and claims includes any pipe, duct or conduit which carries services in a building such as a water pipe, a stormwater pipe, or a drain pipe.
  • Preferably, fire barrier device is moulded in an injection moulding process and the material for forming the fire barrier device and for injection moulding includes the heat reactive expandable (or intumescent) material and a carrier or plasticiser. Typically, the intumescent material comprises graphite in particulate form. The carrier or plasticiser may comprise HDPE (high density polyethylene) or other similar material. The material may additionally include a fire retardant to prevent or minimize flaming or burning of the material. A typical flame or fire retardant may comprise sodium silicate. The material may additionally include a smoke suppressant to prevent excess generation of smoke when the fire barrier device is subject to heat or flames.
  • The fire barrier device may be mounted to a wall, floor or ceiling of a building around a pipe, duct or conduit penetrating the wall, floor or ceiling or installed within a wall, floor or ceiling such as a slab wall, floor or ceiling either by being cast in situ within a slab or located in a recess in the slab around the pipe, duct or conduit.
  • In another aspect, the present invention provides a fire barrier device for use with a services pipe, said fire barrier device being moulded from a material containing a heat reactive expandable material and being wholly rigid and self-supporting, said fire barrier device having:
  • a central axis and first and second ends spaced apart along said central axis,
  • an axial passage extending along said central axis from said first end to said second end for receipt of said pipe,
  • a radially extending main heat expandable body centered on said central axis, said main body having a maximum outer diameter,
  • mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and
  • wherein said fire barrier device has a reduced diameter region between said main body and said mounting means, the outer diameter of said reduced diameter region being less than the maximum outer diameter of said main body.
  • The fire barrier device is typically encased within a slab of settable material such as concrete. The slab typically is constructed on formwork which defines one side of the slab. The pipe has an external diameter and the axial passage having a portion of internal diameter substantially the same as the external diameter of said pipe. The mounting means is adapted to secure the fire barrier device to the formwork during construction of the slab.
  • Preferably, the main body is of substantially annular form to extend in use generally radially of the pipe so as to be retained within the slab by the material thereof when installed within the slab during the construction thereof. Typically at least portion of the outer surface of the main body is curved. The main body may be of substantially spherical or part spherical configuration with the maximum diameter region thereof being arranged in use within the slab and the minimum diameter region being located in use adjacent the one side of the slab. The spherical or part-spherical external surface or surfaces which is centered on the axial passage cooperate/s with the slab material to concentrate the expansion forces of the heat expandable material to more effective close off the pipe.
  • Alternatively, the main body may be of frustonconical form centered on the axis of the passage. The external surface of the body however may be of any other divergent form in cross section. For example, the body may have a stepped outer wall defining a shoulder which cooperates with the material of the slab to retain the device within the slab.
  • The main body may additionally or alternatively include integrally formed retaining means adapted for cooperation and bonding with the material of the slab. The retaining means may comprise an external groove in the body in which the “wet” material of the slab locates during slab construction. The groove suitably is a substantially annular groove extending peripherally about the main body. The main body may include one or more peripherally extending grooves. Alternatively, or additionally, the main body may include one or more radially extending projections which are adapted to cooperate with the slab material to assist in retaining the main body within the slab. The projections may be of substantially annular form to extend substantially peripherally of the body.
  • The mounting means is suitably integrally formed with the main body and the Annular flange or lugs may comprise a radially extending annular flange or radially extending lugs by which the device may be secured to the formwork. The flange or lugs may include openings or slots to receive or locate fasteners such as nails, cleats or screws to secure the device to the formwork or alternatively, nails, or cleats may be driven through the flange or lugs into the formwork. In another form, means may be provided for cooperation with the flange for holding or clamping the flange to the formwork. Such means may be in the form of an annular clamping ring which is engageable with the flange. Any suitably fasteners may be used for fastening the clamping ring to the formwork. Typically the fasteners may be cleats or other nails or screws.
  • The axial passage through the main body may include a first portion at one end of the main body and a second portion larger than the first portion at or adjacent the opposite end of the main body. Suitably, the first portion is remote from the mounting means and has an internal diameter substantially the same as the outer diameter of the pipe so as to grip and support the latter during installation thereof in the wall or floor slab.
  • The second enlarged portion of the axial passage may extend from the first portion, being stepped outwardly therefrom. The second enlarged portion may extend to adjacent the mounting means to open in use to the one side of the wall or slab after formation thereof.
  • The mounting means may include between the main body and annular flange or lugs, a wall which is coaxial with the main body and formed integrally therewith with the main body extending radially outwardly of the wall. A sleeve-like member or wall may join the annular flange or lugs or may include an outwardly stepped or inclined portion to join the annular flange or lugs. The wall defines at least adjacent the flange a third passage portion which extends from and is coaxial with the second portion of the passage through the main body. Both the second and third passage portions are suitably of greater diameter than the pipe with which the device is to be used so as to define an annular space between the main body and sleeve like member which opens to one side of the slab in the direction of the fire risk such that heat from a fire can rapidly reach the main body to cause rapid expansion thereof. The annular space in addition, allows connection of the pipe with a further pipe, duct or conduit or fitting.
  • Preferably, the main body joins at its end opposite the mounting means, a collar which is coaxial with the axial bore. The collar may be formed integrally with the main body. The collar has an internal diameter substantially the same as the pipe with which the device is to be used so as to firmly engage and support the pipe, duct or conduit during installation in a slab. In addition, the collar provides a seal with the pipe to prevent escape of smoke and/or gases in the event of a fire. This ensures that smoke is contained in the pipe and is directed out of the building through the pipe rather than being trapped in the building. The collar may define at least a part of the first portion of the axial passage extending through the main body.
  • In another form, mounting means which may be separate from the main body may be provided for mounting the main body to the slab formwork. Suitably the mounting means is of generally annular form and defines an annular flange by which the device may be secured to the formwork. The flange may include spaced openings to receive fasteners such as nails, cleats or screws to secure the device to the formwork or alternatively nails or cleats may be driven through the flange into the formwork. The mounting means may be in the form of an annular spacer which includes an annular side wall extending axially from the annular flange. The annular spacer may also include a further radially inwardly directed wall upon which the moulded main body is seated and is secured. The moulded main body may be secured to the spacer by adhesives or alternatively by a mechanical connecting arrangement. For example, the main body may be formed with members such as lugs which cooperate with slots or apertures in the inwardly directed wall of the spacer such that relative rotation between the spacer and main body will secure them together. Alternatively, the spacer may include members which project into the material of the main body.
  • Retaining means may also be provided on the spacer to assist in retaining the device in the slab. The means on the spacer may comprise an annular bead or enlargement or alternatively an annular groove in the spacer. The bead, enlargement or groove may be formed in the annular side wall of the spacer.
  • In yet an alternative arrangement, the mounting means may comprise a hollow body formed of a heat softenable material and the main body of intumescent material which is mounted to surround the hollow body. The hollow body may have a side wall surrounding an opening through which a duct or pipe may pass, and the main body is in the form of a collar of a heat reactive expandable material surrounding the side wall and extending outwardly therefrom so as to retain said device in the slab when said material thereof sets or cures.
  • The collar of heat expandable or intumescent material may be formed integrally with the hollow body which itself is thus formed of the heat expandable material or alternatively, the annular collar is separate of the hollow body and may be located thereover coaxially. The annular collar may supported or seat on a shoulder formed in an external wall of the hollow body. The annular collar may be of any cross sectional form but typically may have a curved outer configuration. The annular collar suitably extends radially outwardly of the body so as to be retained in the material of the slab.
  • The wall of the hollow body may have means at one end for securing the body to formwork defining a boundary of said slab during the formation thereof. The means at one end may comprise and annular flange.
  • The hollow body may be in the configuration of a sleeve. Suitably, the outer wall of the sleeve is stepped to define a shoulder upon which the collar may seat. The portion of the sleeve wall adjacent the shoulder and within the collar is preferably relatively thin so as to soften rapidly when subject to heat and not prevent expansion of the collar. Preferably also the outer diameter of the sleeve wall portion is substantially the same as the internal diameter of the collar such that the later may be firmly engaged with the sleeve wall portion. The upper portion of the sleeve suitably has an internal diameter such as to enable the sleeve to firmly grip the outer wall of the duct or pipe to support the duct or pipe in an upstanding attitude.
  • In a further embodiment, a sleeve may be associated with the device to act as a stack through the slab for accepting the pipe, duct or conduit therethrough, the sleeve being of such a length as to project beyond the slab when formed. The sleeve may be secured to any part of the device such as to the collar of the device where provided for example by adhesives or mechanical fasteners. In a further embodiment, the sleeve may be formed integrally with the device and extend coaxially therefrom relative to the axial bore through the body.
  • The device may also include on its underside, a radially extending recess for accommodating radially extending lugs of a joining sleeve or fitting. The recess may be defined by an integrally formed radially extending tunnel shaped member extending from the main body. The joining sleeve or fitting may be of the type which incorporates a heating coil to effect joining by heat fusion to a pipe, duct or conduit which terminates in connecting terminal or lugs extending radially therefrom for connection to a current source.
  • The present invention in yet a further aspect provides a method of installing a fire barrier device of the above type in a wall, floor or ceiling slab formed of a settable material, said method including the steps of inserting a pipe into the passage of said main body, securing said device to formwork defining one side of said wall, floor or ceiling slab, and applying the settable material of said slab to said formwork and around said fire barrier device such that said settable material encases said device and leaves said pipe projecting beyond said slab. The method may also include the step of removing the formwork when said settable material is set or cured, said device being retained in said slab by cooperation between the material of said slab and said device.
  • Typically the formwork is formed of timber and is removed after formation of the slab. In however an alternative arrangement, the formwork may be metal decking sheets such as that known as Bondeck and remain in situ after curing of the slab material. The fire barrier devices in such situations are secured to the metal sheets by metal fasteners such as screws or rivets and a circular opening is formed in the metal decking in alignment with the fire barrier device to enable the service line or pipe to be passed therethrough. The opening may be formed before or after affixing of the fire barrier device. To support the service lines or pipes during casting of the slab, radially extending stop means may be associated with the fire barrier device to span the device adjacent the mounting flange, the stop means being abutted by the end of the pipe.
  • In another aspect, the present invention provides a fire barrier device for use with a services pipe, said fire barrier device comprising a body moulded from a material containing a heat reactive expandable material, said body being a self-supporting and wholly rigid body, said body having: a central axis and first and second ends spaced apart along said central axis, an axial bore extending along said central axis from said first end to said second end for receipt of said pipe, a radially extending main heat expandable portion between said first end and said second end and centered on said central axis, said main heat expandable portion having a maximum transverse dimension in a direction normal to said central axis, mounting means at said second end for mounting said fire barrier device, and wherein said fire barrier device has, between said main heat expandable portion and said mounting means, a region of a transverse dimension less than the maximum transverse dimension of said main heat expandable portion.
  • In yet a further aspect, the present invention provides a fire barrier device in combination with a pipe passing through a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and comprising: a main body moulded from a mouldable material containing a heat reactive expandable material, said main body having first and second opposite ends and an axial bore extending therethrough and receiving said pipe, said main body being a wholly rigid body; and a collar at said first end of, and joining said, main body, said collar being coaxial with said axial bore and having an internal diameter substantially the same as the external diameter of said pipe so as to engage and support said pipe.
  • In another aspect, the present invention provides a fire barrier device in combination with a pipe located within a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and having: a central axis and first and second ends spaced apart along said central axis, a passage extending along said central axis and receiving said pipe, said passage having a portion of an internal diameter substantially the same as the external diameter of said pipe, a main body heat expandable body moulded from a mouldable material containing a heat reactive expandable material, said main body being centered on said central axis and extending radially outwardly relative to said central axis, said body having a maximum outer diameter and being wholly rigid, mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and wherein said fire barrier device has a region between said main body and said mounting means of an outer diameter less than the maximum outer diameter of said main body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that the invention may be more readily understood and put into practical effect, reference will now be made to the accompanying drawings which illustrate a preferred embodiment of the invention and wherein:
  • FIG. 1 illustrates the fire barrier device according to an embodiment of the invention in side view;
  • FIG. 2 illustrates in perspective view, the fire barrier device of FIG. 1;
  • FIG. 3 illustrates in sectional view, the manner in which the fire barrier device or FIGS. 1 and 2 is installed within a slab;
  • FIG. 4 illustrates in sectional view, the installed fire barrier device within a slab;
  • FIGS. 5 and 6 illustrate in side and perspective views a further form of fire barrier device according to the invention similar to the embodiment of FIGS. 1 and 2;
  • FIG. 7 is a perspective view of a further form of fire barrier device according to the present invention;
  • FIG. 8 is a side elevational view of the device of FIG. 7;
  • FIG. 9 is a cross sectional view of the device of FIG. 7 installed within a slab.
  • FIG. 10 illustrates in plan view, a fire barrier device according to a further embodiment of the invention;
  • FIG. 11 is a sectional view of the fire barrier device of along line A-A of FIG. 10 with associated clamping ring;
  • FIG. 12 illustrates the manner in which the fire barrier device of FIG. 10 is installed within a slab;
  • FIG. 13 illustrates in sectional view, the installed fire barrier device of FIG. 10 within the slab;
  • FIG. 14 is a plan view of a fire barrier device according to a further embodiment of the invention;
  • FIG. 15 is a sectional view along line B-B of FIG. 14;
  • FIG. 16 illustrates in sectional view, the manner in which the device of FIGS. 14 and 15 is installed within a slab;
  • FIG. 17 illustrates in sectional view the fire barrier device of FIGS. 14 and 15 installed in a ceiling;
  • FIG. 18 illustrates in sectional view a further form of fire barrier device according to the invention;
  • FIG. 19 illustrates in perspective view, a fire barrier device according to a further embodiment of the invention;
  • FIG. 20 illustrates the fire barrier device of FIG. 19 in side view;
  • FIG. 21 illustrates in sectional view the manner in which the fire barrier device of FIGS. 19 and 20 is installed within a slab;
  • FIG. 22 illustrates in sectional view, the installed fire barrier device of FIGS. 19 and 20 within the slab;
  • FIG. 23 illustrates in perspective view, a fire barrier device according to a further embodiment of the invention;
  • FIG. 24 illustrates the fire barrier device of FIG. 23 in side view;
  • FIG. 25 illustrates in sectional view the manner in which the fire barrier device of FIGS. 23 and 24 is installed within a slab; and
  • FIG. 26 illustrates in sectional view, the installed fire barrier device within the slab.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the drawings and firstly to FIGS. 1 and 2, there is illustrated a fire barrier device 10 according to a first embodiment of the present invention including a main body 11 integrally formed with a mounting portion 12 which is adapted to mount the body 11 in a desired position within a slab of settable material such as concrete as described further below. The device 10 comprising the main body 11 and mounting portion 12 are formed integrally in a conventional injection moulding process so that the device 10 is a wholly rigid device. The material for moulding includes a heat reactive expandable material or intumescent material which has suitable properties such as to expand when subject to heat as encountered in a fire. Typically the intumescent material comprises graphite. The moulding material also includes a plasticiser or carrier for example HDPE to enable moulding, a smoke suppressant and a fire suppressant for example sodium silicate. The main body 11 is circular in cross-section and has an external part spherical wall 13 centred on the central axis of the body 11 in which is formed an annular groove 14. Wall 13 has a maximum diameter adjacent the mounting portion 12 and the body 11 is stepped inwardly adjacent portion 12 to present an annular wall portion or shoulder 13′ which faces the mounting portion 12. The device 10 comprises a self-supporting device which needs no external support and further is wholly rigid.
  • The main body 11 joins at its upper end an integrally formed collar 15 which defines a passage or bore 16 with an internal diameter substantially the same as the external diameter of pipe, duct or conduit to be received in the device 10. The bore 16 is stepped outwardly in the main body 11 to form a second enlarged bore 17 which extends through the main body 11.
  • The mounting section 12 includes a sleeve-like member or wall 18 extending from and formed integrally with the main body 11, the bore 17 extending through the member 18. The member 18 is stepped outwardly through an annular radially extending wall 19 and a second cylindrical wall 20, the latter terminating in a radially extending flange 21. The annular flange 21 includes circumferentially spaced slots 22 for locating fasteners. Alternatively, the slots 22 may be replaced by preformed apertures in the flange 21.
  • The device 10 may be used in a number of different situations to close off pipes, ducts or conduits passing through walls, floor or ceilings. Most commonly, however the device 10 may be installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 3 and 4. A pipe 23 is initially passed through the collar 15 such that it is frictionally gripped by the internal wall thereof and thereafter the device 10 may be secured to formwork 24 which defines one face of a concrete slab to be formed. This is achieved by means of the flange 21 of the device 10 which is seated on the formwork 24 with cleats 25 or other fasteners located by the slots 22 drive into the formwork 24 to clamp the flange 21 and thus the device 10 to the formwork 24. Of course, devices 10 may be initially secured to the formwork 24 at the desired positions where the service pipes 23 are to penetrate the slab and thereafter the pipes 23 inserted into the devices 10 to be supported in an upstanding attitude in the manner shown, the lengths of the pipes 23 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 24.
  • The concrete or concrete composite material 26 may then be poured or deposited onto the formwork 24 and around the devices 10 secured to the formwork 24 and pipe 23 until the required thickness of the wall, floor or ceiling slab 27 is achieved. As shown, the pipe 23 extends above or beyond the slab 27 to enable connection to further pipes to form the service line through the slab 27. After the concrete or concrete composite material has cured or set, the formwork 24 is removed as shown in FIG. 4 which leaves the device 10 embedded in the concrete slab 27. The device is retained in the slab 27 due to the radially enlarged form of the main body 11 of the device which is embedded within the slab 27. Retention is further enhanced by the interlocking achieved through the material 26 of the slab filling the annular groove 14 and further because of the slab material filling the undercut annular space 28 between the shoulder 13′ and the annular wall 19. The device 10 is thus anchored within the formed slab wall, floor or ceiling.
  • The bore 17 in the main body 11 defines with the pipe 23, an annular space 29 which opens through the mounting section 12 to the underside of the slab and which ensures that in the event of fire on the underside of the slab 27, the generated heat will be directed towards the inside of the main body 11 so that the intumescent material thereof is rapidly subject to heat which will cause it to expand and close over the softened pipe 23 as illustrated in dotted outline in FIG. 4. The curved nature of the external wall of the body 11 ensures that there is a concentrated expansion of the intumescent material as indicated by the arrows in FIG. 4 reacting against the surrounding slab material 26 which directs the expansion forces generally radially as illustrated to rapidly close over the softened pipe 23 as indicated in dotted outline. The space 29 also facilitates the connection between the pipe 23 and a further pipe or other fitting such as an elbow 30 (shown in dotted outline) having a mating female socket for joining to the end of the pipe 23 within the space 29 by suitable adhesives usually contact adhesives.
  • The annular finger of concrete or other settable material in the space 28 defined by the outwardly extending wall 19 serves to govern the exposure of part of the body 11 to heat to control the rate of expansion of the body 11 and so that the device 10 has sufficient fire rating and will continue to be effective over a considerable period of time.
  • Whilst the body 11 is preferably of part-spherical external configuration as illustrated, it may be of alternate configurations for example of toroidal shape or simple ring-like shape and include alternative retention means for retaining the device 10 in the slab 27. For example, the body portion 11 may have outward projections which may be of annular form to cooperate with the slab material 26. The cylindrical wall or member 18 in some embodiments may simply extend downwardly to join the annular flange 21 and thus in this case, the walls 19 and 20 may be eliminated. In yet an alternative configuration, the annular flange 21 and wall 20 may be eliminated and the wall 19 radially extended to service as a mounting flange for the device.
  • In yet a simplified form, the mounting portion 12 of the device may be eliminated such that the main body 11 may seat on the formwork so that the bore 17 opens to the underside of the slab 27. In another form, the mounting section 12 may be eliminated and the body 11 be of simple annular form with the bore 17 reduced to the internal diameter of the collar 16 to engage firmly a pipe, duct or conduit with which the device is to be used. The main body 11 may the be located within the slab 27 at any desired position prior to forming the slab 27 such that it is retained within the slab 27 about a pipe passing through the slab 27. Alternatively, the device 10 may be engaged about a pipe externally of a slab.
  • FIGS. 5 and 6 illustrate an alternative form of fire barrier device 31 according to the invention which is similar to the embodiment of FIGS. 1 and 2 and which is used in the same manner as that described with reference to FIGS. 3 and 4. In FIGS. 5 and 6, like parts to those of FIGS. 1 and 2 have been given like numerals. In this case the collar 15 is of extended length to provide additional support to a pipe or duct 23 passing therethrough, the collar 12 also extending into the main body 11. Further the wall 20 in this case is inclined outwardly.
  • The devices 10 and 31 may also be used with a sleeve-like member 32 (shown in FIG. 3 in dotted outline) which forms a stack extending beyond the top side of the slab 27 with the pipe 23 passing coaxially therethrough. The sleeve-like member 32 may be fixed to the collar 12 by mechanical or adhesive means or alternative may be formed integrally with the device 10 or 31.
  • Referring now to FIGS. 7 to 9, there is illustrated a further embodiment of fire barrier device 33 according to the present invention in which like components to those of the embodiment of FIGS. 1 to 6 have been given like numerals. The device 33 as in the first embodiment includes a collar 15 for closely receiving a pipe, duct or conduit, a substantially annular main body 11 and a mounting portion 12 comprising an annular wall or member 18 which is outwardly angled to join an annular mounting flange 21. In this embodiment, a radially extending tunnel shaped member 34 is formed integrally with the device 33 and intercepts the wall 18 to define on the underside of the device 32, a radially extending recess 35 extending from the space 29 for a purpose which will hereinafter become apparent. The tunnel shaped member 34 is closed at its outer end 36.
  • The device 33 may be installed and used in the same manner as the collar 10 as described with reference to FIGS. 3 and 4. The device 33 however is particularly suited for use with HDPE or similar pipes which are joined by heatable joining sleeves 37 (see FIG. 9). Sleeves 37 of this type are used for joining by heat fusion, pipes formed of HDPE or other heat formable or joinable material which cannot be glued with conventional adhesives. The joining sleeves 37 are provided with heating elements which extend circumferentially of the sleeve and which terminate in a pair of radially extending terminals 38 to which a current can be applied through wires 39 connected to the terminals 38 via suitable plugs to effect heating of the sleeve 37. A first HDPE pipe 40 is inserted into the device 33 to be gripped by the collar 15 and supported in an upstanding attitude prior to pouring the settable material on to the formwork 24 (shown in dotted outline) to form the slab 27. The sleeve 37 may then be engaged with the lower end of the pipe 40 in the space 29 with the radially extending recess 35 accommodating the radially extending terminal or terminals 38 of the sleeve 37 providing sufficient room for receipt of the connecting plugs of the wires 39. A further HDPE pipe 41 (or other fitting) may be inserted into the lower end of the sleeve 37 and current applied through the wires 39 to effect connection and sealing by fusion heating between the sleeve 37 and pipes 40 and 41 to form the service line through the slab 27. After connection, the wires 39 of course are disconnected from the terminals 38.
  • Whilst the devices 10, 31 and 33 are preferably installed within a slab, they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space. In the latter installation for example, the devices 10 (or 31 or 33) may be secured to a plasterboard ceiling panel with an enlarged opening formed in the panel in alignment with the device 10 (or 31 or 33) such that a pipe 23 supported by the device 10 (or 31 or 33) may be secured to a further pipe or fitting through a female socket on the end of the further pipe or fitting which locates within the enlarged opening and space 29 in the device 10 (or 31 or 33). The device 10 (or 31 or 33) will function in the same manner as that described above to shut over the service pipe in the event of fire.
  • Referring now to FIGS. 10 and 11, there is illustrated a fire barrier device 42 according to a further embodiment of the present invention, the device 42 comprising or consisting of a heat reactive intumescent material and being moulded as a wholly rigid self supporting device in one piece in any suitable moulding apparatus such as by injection moulding. The device 42 is of a generally hat shaped configuration in side view and includes a main body 43 which is circular in cross-section and which has a generally spherical outer configuration defined by an external curved wall 44 such that the diameter of the body 43 in the middle thereof is greater than the diameter at each end for a purpose which will become apparent. A central bore 45 extends through the body 43 and is of a stepped configuration to define at one end a first bore portion 46 which is of a diameter substantially the same as the diameter of a pipe or duct to be passed through the body 43 and a second bore portion 47 at the other end of the body 43 which is of an enlarged diameter relative to the bore portion 46. Extending peripherally about the end of the body 43 adjacent the bore portion 47 is a peripheral flange or rim 48 which extends generally radially of the body 43. The outer edge of the flange or rim 48 is provided with an annular recess 49 formed in the surface of the flange or rim 48 adjacent the body 43. Adapted for cooperation with the flange or rim 48 is an annular stepped securing ring 50 which includes an inwardly projecting rim portion 51 complementary to and adapted to be received in the recess 49. The securing ring 50 may be formed of plastics or metal and may be provide with a series of preformed apertures 52 for accepting cleats or other or other fasteners 53. Alternatively, the material of the ring 50 may be such that it may be easily penetrated by cleats 53 or other fasteners driven therethrough.
  • As above, the device 42 may be used in a number of different situations to close off pipes or ducts passing through walls, floors, or ceilings. Most commonly however, the device 42 is installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 12 and 13. A pipe or duct 54 is initially passed through the bore 45 such that it is frictionally gripped by walls of the first portion 46 of the bore 45 and thereafter the device 42 may be secured to formwork 55 which defines one face of a concrete slab to be formed. This is achieved by means of the securing ring 50 which is engaged with the flange 48 in the above described manner and cleats 53 or other fasteners are driven through the ring 50 into the formwork 55 to clamp the flange 48 and thus the device 42 to the formwork 55. Of course, devices 42 may be initially secured to the formwork 55 at the desired positions where the service pipes or ducts are to penetrate the slab and thereafter the pipes or ducts 54 are inserted into the devices 42 to be upstanding therefrom in the manner shown, the lengths of the pipes or ducts 54 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 55.
  • The concrete or concrete composite material 56 may then be poured or deposited onto the formwork 55 and around the devices 42 secured to the formwork 55 and pipe or duct 54 until the required thickness of the wall, floor or ceiling is achieved. As shown, the pipe or duct 54 extends above or beyond the slab to enable connection with joining pipes or ducts. After the concrete or concrete composite material has cured or set, the formwork 55 is removed as shown in FIG. 13 which leaves the device 42 embedded in the concrete slab. The device 42 is retained in the concrete slab due to the interlocking achieved through the material of the slab filling the undercut portion 57 of the device 42 defined between the curved wall 44 of the device 42 and the flange 48 and further because the largest diameter portion of the device 42 is located within the slab at a position spaced from the adjacent side of the slab defined by the formwork 55. The device 42 is thus locked within the formed slab wall, floor or ceiling.
  • The enlarged diameter portion 47 of the bore 45 defines with the pipe or duct 54, an annular space 58 which ensures that in the event of fire, the generated heat will be directed towards the enlarged portion of the body 42 so that the intumescent material is rapidly subject to heat which will cause it to expand and close over the softened pipe 55. The curved nature of the wall 44 of the body 43 ensures that there is a concentrated expansion of the heat expandable material as indicated by the arrows in FIG. 13 against the wall 44 which directs the forces generally radially as illustrated to rapidly close over the softened pipe 54 as indicated in dotted outline. Further the space 58 facilitates the connection between the pipe or duct 54 and a further pipe or duct 59 (showing in dotted outline) having a mating female socket for joining to the end of the pipe or duct 54 within the space 58.
  • FIGS. 14 and 15 illustrate a further embodiment of fire barrier device 60 according to the invention in which similar components to the embodiment of FIGS. 12 and 13 have been given like numerals. In this case however, the body 61 is of a generally half-spherical configuration having a curved external wall 62 which is at a minimum diameter adjacent the securing flange 48 and at a maximum at its opposite end 63.
  • This device 60 is used in a similar manner to that described above with the flange 48 being secured to formwork 55 as shown in FIG. 16 and a pipe or duct 54 being received within the body 62, passing through the bore 45 to be supported in an upstanding attitude by the bore portion 46. To form the slab, concrete or other settable material 56 is applied to the formwork 55, the latter normally being removed after curing or setting of the material 56. The device 60 thus remains in situ within the slab being held therein due to the diverging nature of the side wall 62 which places the maximum diameter end 63 of the body 61 within the slab and the minimum diameter portion 64 adjacent one side of the slab.
  • Again in this embodiment in the event of fire, the heat applied to the intumescent material of the body 60 will cause that material to expand with the expansion forces being concentrated by the curved surface of the concrete at the interface with the side wall 62 of the body 61 in a generally radial direction as indicated by the arrows in FIG. 16 to rapidly close over the softening pipe 54.
  • Whilst the devices described with reference to FIGS. 1 to 16 are preferably installed within a slab, they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space as illustrated in FIG. 17. In the latter installation, the device 60 (or 10, 31, 33 or 42) is secured to plasterboard ceiling panels 65 by the appropriate fastening arrangement as described above with an enlarged opening 66 being formed in the panels 65 in alignment with the bore portions 46 and 47 in the body 61 such that a pipe 54 supported by the body 61 may be secured to a further pipe 68 (shown in dotted outline) through a female socket 69 on the end of the further pipe 68 which locates within the opening 66 and bore portion 47. The device 60 (or 10, 31, 33 or 42) will function in the same manner as that described above with the heat expandable or intumescent material of the body expanding when subject to heat to close over the pipe 54.
  • Referring now to FIG. 18, there is illustrates a further embodiment of fire barrier device 70 according to the invention and wherein like components to the components of the embodiments of FIGS. 10 to 16 have been given like numerals. In this case, the body 71 of the device 70 comprises an enlarged collar 72 having an internal bore 73 for neatly receiving the pipe 54 and an inner annular leg 74 which extends from the collar 72 at a position radially inwardly from the outer circumference thereof to define a shoulder 75 which cooperates with the concrete or other settable material 56 of the slab to be formed to retain the device 70 in the slab. The leg 74 terminates in an annular flange 76 which may be secured to the formwork 55 by cleats through the flange 76 or by a separate clamping ring 50 as in the embodiments of FIGS. 10 to 17. The pipe 54 is gripped by the walls of the bore 73 which support the pipe 54 in an upstanding attitude whilst the concrete 56 is applied to the formwork 55. The leg 74 forms with the pipe 54 a space 77 which allows rapid passage of heat of the fire to the collar 72 of the device 70 to cause rapid expansion thereof as shown in dotted outline to close over the pipe 54. The space 77 also allows for connection of the pipe 54 with a further pipe in a similar manner to that shown in FIG. 13 after the formwork 55 has been removed. The device 70 as well as being used within a slab may also be used in a ceiling space as in the arrangement of FIG. 17.
  • The devices 42, 60 and 70 by being moulded in one piece are wholly rigid and self supporting and do not have an external housing and thus there is no rapid transfer of heat as in the prior art devices where the housing is metal. Further the material of the devices is self-supporting within or out of a slab and no retention device is required to maintain the devices within the slab. When installed within a slab, the material from which the bodies of the devices are formed may form a mechanical and/or chemical bond with the material of the slab to further assist in retention of the bodies within the slab. The devices additionally are highly resistant to weather conditions, moisture or other adverse environments. Whilst the devices 42 or 60 in a preferred form have an outer curved wall which provides an enlarged body of intumescent material for closing a pipe or duct, the curved wall may be of other configurations which flares or is stepped outwardly between the minimum and maximum portions of the device as in FIG. 9 or which have an enlarged portion located in use within the slab. Further whilst the devices 42, 60 and 70 are preferably of circular cross section, they may be of square cross sectional form or of any other cross section. Whilst the device 42 and 60 are shown to be secured to formwork by a clamping ring 50, they may be secured thereto by cleats or other fasteners driven directly through the flange 48 or preformed apertures or slots therein.
  • Referring now to FIGS. 19 to 21, there is illustrated a fire barrier device 78 according to a further embodiment of the present invention, the device 78 comprising an annular spacer 79 preferably formed of metal having an annular side wall 80, an annular flange 81 at one end of the wall 80 and a disc-like end wall 82 (see FIG. 21) at the opposite end of the side wall 80 and extending inwardly towards the central axis of the spacer 79. Seated upon the end wall 82 is an annular body 83 moulded from a material comprising or consisting of a heat reactive intumescent material as described above, the body 83 being rigid and self supporting. The body 83 is circular in cross-section and has an upper collar 84 and a curved external wall 85 curving inwardly from the outer periphery of the spacer 79 to the collar 84 so as to be externally of part-spherical form. The body portion 85 has an internal bore portion 86 of an internal diameter greater than the internal diameter of the collar 84 and has in its external surface 85 an annular radially inwardly extending groove 87. The body 83 is attached to the spacer 79 by any suitable means such as by suitable adhesives or by a mechanical connection. The mechanical connection may include lugs on the body 83 which locate in slots or apertures in the disc-like wall 82. The body portion 85 may be locked to the spacer 79 by rotating one relative to the other. Typically the body 85 may include downwardly extending headed lugs which may locate in keyhole shaped apertures in the wall 82 such that when rotated relative to each other, the body 85 becomes mechanically connected to the spacer 79. The collar 84 has an internal bore which is of a diameter substantially the same as the diameter of a pipe or duct to be passed through the device 78.
  • The device 78 may be used in a number of different situations to close off pipes or ducts passing through walls, floors, or ceilings. Most commonly however, the device 78 is installed within a concrete or concrete composite slab wall, floor or ceiling during its construction in the manner shown in FIGS. 21 and 22. A pipe or duct 90 is initially passed through the sleeve 84 such that it is frictionally gripped by the internal wall thereof and thereafter the device 78 may be secured to formwork 91 which defines one face of a concrete slab to be formed. This is achieved by means of the flange 81 of the spacer 79 with cleats 92 or other fasteners are driven through the flange 81 into the formwork 91 to clamp the flange 81 and thus the device 78 to the formwork 91. Of course, devices 78 may be initially secured to the formwork 91 at the desired positions where the service pipes or ducts 90 are to penetrate the slab and thereafter the pipes or ducts 90 are inserted into the devices 78 to be upstanding therefrom in the manner shown, the lengths of the pipes or ducts 90 being such that they will extend beyond the side of the wall, floor or ceiling slab to be formed opposite the formwork 91.
  • The concrete or concrete composite material 93 may then be poured or deposited onto the formwork 91 and around the devices 78 secured to the formwork 91 and pipe or duct 90 until the required thickness of the wall, floor or ceiling is achieved to form the slab 94. As shown, the pipe or duct 90 extends above or beyond the slab 94 to enable connection with joining pipes or ducts. After the concrete or concrete composite material 93 has cured or set, the formwork 91 is removed as shown in FIG. 22 which leaves the device 78 embedded in the concrete slab 94. The device 78 is retained in the concrete slab due to the interlocking achieved through the material 93 of the slab 94 filling the annular groove 87. The slab material 93 will also exert a grip on the side wall 80 of the spacer 79. The device 78 is thus locked within the formed slab wall, floor or ceiling.
  • The bore 86 in the body 83 defines with the pipe or duct 90, an annular space 95 which ensures that in the event of fire, the generated heat will be directed towards the inside of the body 83 so that the intumescent material thereof is rapidly subject to heat which will cause it to expand and close over the softened pipe 90 as illustrates in dotted outline in FIG. 22. The curved nature of the external wall of the body 83 ensures that there is a concentrated expansion of the intumescent material as indicated by the arrows in FIG. 22 reacting against the surrounding slab material 93 which directs the forces generally radially as illustrates to rapidly close over the softened pipe 90 as indicated in dotted outline. Further the space 95 facilitates the connection between the pipe or duct 90 and a further pipe or duct 96 (shown in dotted outline) having a mating female socket for joining to the end of the pipe or duct 90 within the space 95 by suitable adhesives usually contact adhesives.
  • Whilst the body 83 is preferably of the part-spherical configuration as shown, it may be of alternate configurations and include alternative retention means for retaining the device 78 in the slab. For example, the body 83 may have outwardly extending projections which may be of annular form to cooperate with the slab material 93. The annular spacer 79 may also include on its external wall 80, outward projections which may also be in the form of an annular outwardly extending protrusion. In yet a further arrangement, the body 83 may be flared or extend radially outwardly of the spacer 79 as shown in dotted outline at 97 to have a larger diameter than the spacer 79 such as to cooperate with the slab material to retain the device 78 in the slab 94.
  • Whilst the spacer 79 is shown to have an external wall 80, the wall 80 may be reduced in size so that the spacer is of generally disc-like form and accordingly positions the body 83 in use adjacent to one side of the slab 94. Alternatively, the wall 80 may be extended in width to position the body 83 further within the slab 94.
  • FIGS. 23 to 26 illustrate a further embodiment of fire barrier device 98 according to the invention which in this case includes a sleeve-like body 99 which has a wall 100 having a number of outward steps and which terminates in an annular flange 101, the body 99 suitably being formed of a plastics material. Supported on one stepped portion or shoulder 102 of the wall 99 is a ring 103 of heat expandable material, the ring 103 having a curved outer wall and being self-supporting and being moulded from a material comprising or containing intumescent material as described above to be of a relatively rigid construction. The wall portion 104 of the body 99 inwardly of the ring 103 is relatively thin for a purpose which will hereinafter become apparent. The wall 100 of the body 99 at its upper end 105 has an internal diameter which is substantially the same as a duct or pipe to be received in the body 99 whilst the internal diameter of the wall portion 104 is greater than the diameter of the pipe or duct again for a purpose which will hereinafter become apparent.
  • The device 98 is used in a similar manner to that described above with the flange 101 being secured by cleats or nails 106 to formwork 107 as shown in FIG. 25 and a pipe or duct 108 inserted into the body 98 to be gripped by the upper end 105 of the body 99 to be supported in an upstanding attitude. To form the slab, concrete or other settable material 109 is applied to the formwork 107 to form the slab 110, the formwork 107 being removed after curing or setting of the material 109. The device 98 remains in situ within the slab 109 as shown in FIG. 26 being held therein due to the configuration of the ring 103 of intumescent material which a diameter greater than the lower adjacent portion of the wall 100 to define a region 111 which fills with the settable material. The pipe 108 may be connected to a further pipe 112 having a female socket in the space between the wall 104 and pipe 107.
  • Again in this embodiment in the event of fire, the heat applied to the ring 103 of intumescent material from the underside of the slab 110 will cause the ring 103 to expand with the expansion forces being concentrated radially through interaction with the surrounding slab material 109. This is further concentrated by the convex outer surface of the ring 103 as indicated by the arrows in FIG. 26 to rapidly close over the softening pipe 108 (and 112).
  • In the embodiment shown in FIGS. 23 to 26, the ring 103 of intumescent material is a separate component such that the sleeve-like body 99 may be used for other purposes but may be converted for use in the applications described above. In other embodiments however, the body 99 and ring 103 may be formed integrally such as by moulding from a material including or consisting of intumescent material as referred to previously.
  • If desired, the sleeve-like body 99 may have at its upper end 105 an internal annular recess for engagement by a puddle flange of conventional form which locates about a penetrating pipe 107.
  • As with the previous embodiments, the devices 78 and 98 are preferably installed within a slab, however they may be secured to one or both sides of a slab and around a service line or pipe extending through the slab or in a ceiling space. In the latter installation, the device 78 or 98 may be secured to a plasterboard ceiling panel with an enlarged opening being formed in the panel in alignment with the device 78 or 98 such that a pipe 90 or 108 supported by the device 78 or 98 may be secured to a further pipe through a female socket on the end of the further pipe which locates within the enlarged opening and enlarged axial bore in the device 78 or 98. The device 78 or 98 will function in the same manner as that described above to shut over the lines of pipes in the event of fire.
  • Unlike the prior art devices, the intumescent material of the devices of the invention is self-supporting within or out of a slab. When installed within a slab, the intumescent material from which the heat expandable bodies of the devices are formed may form a mechanical and/or chemical bond with the material of the slab to further assist in retention of the bodies within the slab. The devices additionally are highly resistant to weather conditions, moisture or other adverse environments. Further whilst the devices are preferably of circular cross section, they may be of square cross sectional form or of any other cross section. Of course, the devices and the bores therein may be varied in size to suit the application and the size of pipe, duct or conduit with which the devices are to be used.
  • Whilst the devices commonly may be used in connection with formwork which is removed after moulding of a slab, they may be used in connection with formwork which remains in situ after slab moulding for example metal decking which defines formwork for forming of the slab. In this case, the metal decking may need to be cut out at the required locations where pipes are required to penetrate the slab, the devices of the invention being mounted in alignment with the cut out portions so that the pipes or ducts passing through the devices can pass through the cut out portions of the decking. When used with this type of formwork, the devices are usually secured in position by suitable metal fasteners. Further to prevent the pipes upstanding from the devices falling through the cut out portions of the decking during moulding of the slab, the devices may be provided with stop members. A typical configuration of stop member 113 is shown in FIG. 4, the stop member 113 simply comprising a strap extending diagonally of the device and being secured at opposite ends to the device and being removable therefrom after slab moulding.
  • Whilst the above has been given by way of illustrative embodiment of the invention, all such variations and modifications thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of the invention as herein defined in the appended claims.

Claims (32)

1. A fire barrier device for use with a pipe passing though a wall, floor or ceiling of a building, said pipe having an outer diameter and said device having a substantially annular main body, said body comprising a wholly rigid self-supporting body and being moulded from a mouldable material containing a heat reactive expandable material, said body having a central axis and a bore moulded with said body and extending along said central axis, at least a portion of said bore having a diameter substantially the same as the outer diameter of said pipe.
2. A fire barrier device as claimed in claim 1 wherein said mouldable material includes a carrier or plasticiser.
3. A fire barrier device as claimed in claim 1 or claim 2 wherein said mouldable material includes a fire retardant and a smoke suppressant.
4. A fire barrier device as claimed in any one of claims 1 to 3 wherein said fire barrier device is injection moulded.
5. A fire barrier device for use with a services pipe, said fire barrier device being moulded from a material containing a heat reactive expandable material and being wholly rigid and self-supporting, said fire barrier device having:
a central axis and first and second ends spaced apart along said central axis,
an axial passage extending along said central axis from said first end to said second end for receipt of said pipe,
a radially extending main heat expandable body centered on said central axis, said main body having a maximum outer diameter,
mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and
wherein said fire barrier device has a reduced diameter region between said main body and said mounting means, the outer diameter of said reduced diameter region being less than the maximum outer diameter of said main body.
6. A fire barrier device as claimed in claim 5 and including a collar centered on said central axis at said first end of said barrier device, said collar being formed integrally with said main body and defining a portion of said axial passage.
7. A fire barrier device as claimed in claim 6 wherein said axial passage is radially enlarged adjacent said mounting means.
8. A fire barrier device as claimed in claim 5 wherein said reduced diameter region is defined by an annular wall.
9. A fire barrier device as claimed in claim 5 wherein said main body has an outer surface and wherein an annular groove centered on said central axis is formed in said outer surface.
11. A fire barrier device as claimed in claim 5 wherein said main body has an outer surface and wherein at least a portion of the outer surface of said main body is curved.
12. A fire barrier device as claimed in claim 11 wherein said main body is of a substantially spherical or part spherical configuration.
13. A fire barrier device as claimed in claim 5 wherein said main body is stepped outwardly along said central axis from said second end.
14. A fire barrier device as claimed in claim 5 wherein said axial passage has a first portion adjacent said first end of said device and a second portion larger than the first portion at or adjacent said second end of said device, said first portion having an internal diameter substantially the same as the outer diameter of said services pipe.
15. A fire barrier device as claimed in claim 5 in combination with a services pipe and a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and said bore having a portion of internal diameter substantially the same as the external diameter of said pipe.
16. The combination as claimed in claim 15 wherein said slab of settable material is constructed on formwork defining one side of said slab and wherein said mounting means is adapted to secure said fire barrier device to said formwork.
17. A fire barrier device for use with a services pipe, said fire barrier device comprising a body moulded from a material containing a heat reactive expandable material, said body being a self-supporting and wholly rigid body, said body having:
a central axis and first and second ends spaced apart along said central axis,
an axial bore extending along said central axis from said first end to said second end for receipt of said pipe,
a radially extending main heat expandable portion between said first end and said second end and centered on said central axis, said main heat expandable portion having a maximum transverse dimension in a direction normal to said central axis,
mounting means at said second end for mounting said fire barrier device, and
wherein said fire barrier device has, between said main heat expandable portion and said mounting means, a region of a transverse dimension less than the maximum transverse dimension of said main heat expandable portion.
18. A fire barrier device as claimed in claim 17 and including a collar centered on said central axis at said first end of said barrier device, said collar being integrally moulded with said main heat expandable portion, said collar defining a portion of said axial bore.
19. A fire barrier device as claimed in claim 18 wherein said axial bore is radially enlarged adjacent said mounting means.
20. The fire barrier device of claim 17 in combination with a slab of settable material and a said services pipe passing through said slab of settable material, said slab being constructed on formwork which defines a first side of said slab, and said barrier device being encased within said slab with said pipe passing through said axial bore.
21. The combination of claim 20 wherein said pipe has an external diameter and wherein said axial bore has a first portion at said first end of the body and a second portion larger than the first portion at or adjacent the second end of the body and opening to said first side of said slab, said first portion of said bore having a diameter substantially the same as the external diameter of said pipe for engagement with and support of said pipe.
22. A fire barrier device in combination with a pipe passing through a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and comprising:
a main body moulded from a mouldable material containing a heat reactive expandable material, said main body having first and second opposite ends and an axial bore extending therethrough and receiving said pipe, said main body being a wholly rigid body; and
a collar at said first end of, and moulded integrally with main body, said collar being coaxial with said axial bore and having an internal diameter substantially the same as the external diameter of said pipe so as to engage and support said pipe.
23. The combination as claimed in claim 22 wherein said main body is of substantially annular form and extends radially of said pipe.
24. The combination as claimed in claim 23 wherein said main body has a radially outer surface and wherein at least a portion of the outer surface of said main body is curved.
25. The combination as claimed in claim 22 and including mounting means at or adjacent said second end of said main body for mounting said fire barrier device.
26. The combination as claimed in claim 25 and including an annular wall coaxial with said axial bore between said mounting means and said main body, said main body extending radially outwardly of said annular wall.
27. The combination as claimed in claim 25 wherein said mounting means comprises one of an annular flange or a plurality of lugs.
28. The combination as claimed in claim 22 wherein said main body has an outer surface and at least one groove in said outer surface for cooperation with the material of said slab.
29. In combination, a fire barrier device, a slab formed of a settable material, and a pipe surrounded by said fire barrier device, said slab having a first side and said pipe having an external diameter, said fire barrier device being encased within said slab and being located adjacent to said first side of said slab and comprising:
a main body moulded from a mouldable material containing a heat reactive expandable material, said main body having a central axis and being a wholly rigid body, said main body having a maximum transverse dimension at a position along said axis spaced from said first side of said slab,
a passage extending through said barrier device along said axis and moulded integrally with said main body, at least a portion of said passage having a diameter substantially the same as the external diameter of said pipe so as to engage with and support said pipe,
and wherein the transverse dimension of said main body adjacent said one side of said slab is less than said maximum transverse dimension.
30. The combination of claim 29 wherein said main body is of substantially annular form and extends radially of the pipe.
31. The combination of claim 30 wherein said main body has an outer surface and wherein at least a portion of the outer surface of said main body is curved.
32. The combination of claim 29 wherein said main body is of a substantially spherical or part spherical configuration.
33. A fire barrier device in combination with a pipe located within a slab of a settable material, said pipe having an external diameter and said barrier device being encased within said slab and having:
a central axis and first and second ends spaced apart along said central axis,
a passage extending along said central axis and receiving said pipe, said passage having a portion of an internal diameter substantially the same as the external diameter of said pipe,
a main body heat expandable body moulded from a mouldable material containing a heat reactive expandable material, said main body being centered on said central axis and extending radially outwardly relative to said central axis, said body having a maximum outer diameter and being wholly rigid;
mounting means at said second end for mounting said fire barrier device, said mounting means comprising one of an annular flange or a plurality of lugs, and
wherein said fire barrier device has a region between said main body and said mounting means of an outer diameter less than the maximum outer diameter of said main body.
US11/199,246 2000-08-23 2005-08-09 Fire barrier devices Abandoned US20060000165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/199,246 US20060000165A1 (en) 2000-08-23 2005-08-09 Fire barrier devices

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
AUPQ9594A AUPQ959400A0 (en) 2000-08-23 2000-08-23 Barriers
AUPQ9594 2000-08-23
AUPR1210 2000-11-03
AUPR1210A AUPR121000A0 (en) 2000-11-03 2000-11-03 Barriers
AUPR2403 2001-01-04
AUPR2403A AUPR240301A0 (en) 2001-01-04 2001-01-04 Barriers
US10/344,563 US20030167712A1 (en) 2000-08-23 2001-08-22 Fire barrie devices
US11/199,246 US20060000165A1 (en) 2000-08-23 2005-08-09 Fire barrier devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/344,563 Continuation-In-Part US20030167712A1 (en) 2000-08-23 2001-08-22 Fire barrie devices

Publications (1)

Publication Number Publication Date
US20060000165A1 true US20060000165A1 (en) 2006-01-05

Family

ID=27158239

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/344,563 Abandoned US20030167712A1 (en) 2000-08-23 2001-08-22 Fire barrie devices
US11/199,246 Abandoned US20060000165A1 (en) 2000-08-23 2005-08-09 Fire barrier devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/344,563 Abandoned US20030167712A1 (en) 2000-08-23 2001-08-22 Fire barrie devices

Country Status (3)

Country Link
US (2) US20030167712A1 (en)
AU (2) AU8557101A (en)
WO (1) WO2002016709A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060117647A1 (en) * 2000-01-12 2006-06-08 Cam Technologie S.P.A Fuel comprising an emulsion between water and a liquid hydrocarbon
US20110094759A1 (en) * 2009-10-22 2011-04-28 Specified Technologies, Inc. Self-adjusting firestopping sleeve apparatus with flexibly resilient supplemental constriction means
US8191330B1 (en) * 2008-11-17 2012-06-05 Cornwall Kenneth R Firestop drain assembly
US20170329947A1 (en) * 2015-10-23 2017-11-16 Boe Technology Group Co., Ltd. Permission Control System and Method, Computer Mouse and Computer System
CN112392206A (en) * 2020-11-10 2021-02-23 刘月华 Fireproof heat insulation board

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070319A1 (en) * 2004-10-01 2006-04-06 Flynn Matthew J Devices and systems for preventing the propagation of fire along cables and methods of preventing same
US7644546B2 (en) * 2005-03-28 2010-01-12 David Middleton Utility pipe tape fitted in pre-construction to prevent the gaps next to utility pipes that let termites in
US20070028543A1 (en) * 2005-08-02 2007-02-08 Lachance Marc D Adjustable size intumescent lined wall passthrough slot
US8030731B2 (en) * 2007-03-28 2011-10-04 Advanced Analogic Technologies, Inc. Isolated rectifier diode
US20110296778A1 (en) 2010-06-08 2011-12-08 Collins Arlan E Pre-manufactured utility wall
US8950132B2 (en) 2010-06-08 2015-02-10 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US9027307B2 (en) 2010-06-08 2015-05-12 Innovative Building Technologies, Llc Construction system and method for constructing buildings using premanufactured structures
US9493940B2 (en) 2010-06-08 2016-11-15 Innovative Building Technologies, Llc Slab construction system and method for constructing multi-story buildings using pre-manufactured structures
DE102011004575A1 (en) * 2011-02-23 2012-08-23 Hilti Aktiengesellschaft Line passage way
CA2786194C (en) * 2011-09-16 2019-01-15 Hilti Aktiengesellschaft Fire-prevention sleeve, use of the fire-prevention sleeve, method for installing a fire-prevention sleeve, and ceiling passage
DE102012212832A1 (en) * 2012-07-23 2014-01-23 Hilti Aktiengesellschaft Assembly for a cable feedthrough
DE102012213107B4 (en) * 2012-07-26 2014-02-20 Hilti Aktiengesellschaft Cable bushing
EP2863503A1 (en) * 2013-10-21 2015-04-22 HILTI Aktiengesellschaft Mounting bracket for a cable duct and assembly with a mounting bracket
US9395260B2 (en) * 2014-03-18 2016-07-19 Lamiflow Air Systems, Inc. Pressure differential indicator with fire stop
JP2015209933A (en) * 2014-04-28 2015-11-24 日動電工株式会社 Fireproof treatment tool using fire compartment wall open hole, and fireproof treatment structure
WO2016032538A1 (en) 2014-08-30 2016-03-03 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
AU2014364345B2 (en) 2014-08-30 2019-11-21 Innovative Building Technologies, Llc Interface between a floor panel and a panel track
EP3805477B1 (en) 2014-08-30 2023-06-28 Innovative Building Technologies, LLC Floor and ceiling panel for use in buildings
WO2016032537A1 (en) 2014-08-30 2016-03-03 Innovative Building Technologies, Llc A prefabricated wall panel for utility installation
CN105793498B (en) 2014-08-30 2018-09-18 创新建筑科技公司 Prefabricated demising wall and headwall
EP3426856B1 (en) 2016-03-07 2022-04-06 Innovative Building Technologies, LLC Prefabricated demising wall with external conduit engagement features
US10508442B2 (en) 2016-03-07 2019-12-17 Innovative Building Technologies, Llc Floor and ceiling panel for slab-free floor system of a building
EP4039905A1 (en) 2016-03-07 2022-08-10 Innovative Building Technologies, LLC Pre-assembled wall panel for utility installation and method of construction
CN109072607B (en) 2016-03-07 2021-01-12 创新建筑技术有限责任公司 Waterproof assembly and prefabricated wall panel comprising same
US10487493B2 (en) 2017-05-12 2019-11-26 Innovative Building Technologies, Llc Building design and construction using prefabricated components
US10323428B2 (en) 2017-05-12 2019-06-18 Innovative Building Technologies, Llc Sequence for constructing a building from prefabricated components
US11098475B2 (en) 2017-05-12 2021-08-24 Innovative Building Technologies, Llc Building system with a diaphragm provided by pre-fabricated floor panels
US10724228B2 (en) 2017-05-12 2020-07-28 Innovative Building Technologies, Llc Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls
CN114000650B (en) * 2021-11-24 2022-11-18 浙江清焓科技有限公司 Double-sided superposed heating wallboard and production process thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223724A (en) * 1976-12-22 1980-09-23 Levoni Carlo F Device for cleaning, widening and repairing wells of drinking water and irrigation water
US4424867A (en) * 1981-03-31 1984-01-10 Fiberglas Canada Inc. Heat hardening sealant-gel for flexible couplings
US5374036A (en) * 1992-10-27 1994-12-20 Foseco International Limited Metallurgical pouring vessels
US5452551A (en) * 1994-01-05 1995-09-26 Minnesota Mining And Manufacturing Company Tiered firestop assembly
US5670748A (en) * 1995-02-15 1997-09-23 Alphagary Corporation Flame retardant and smoke suppressant composite electrical insulation, insulated electrical conductors and jacketed plenum cable formed therefrom
US5953872A (en) * 1993-08-13 1999-09-21 Macmillian; George S. Fire barrier assembly
US6161873A (en) * 1998-02-16 2000-12-19 Hilti Aktiengesellschaft Masonry lead-in fixture
US6470635B2 (en) * 2000-05-18 2002-10-29 Kenneth R. Cornwall Coupling assembly with intumescent material
US6694684B2 (en) * 2002-04-15 2004-02-24 3M Innovative Properties Company Pass through firestop device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323724A (en) * 1980-05-01 1982-04-06 Shine William P Unitary insertable self-anchoring poke-thru wiring device
DE3803585C2 (en) * 1988-02-06 1997-02-06 Minnesota Mining & Mfg Fire-retardant bulkhead for routing cables through a wall opening
CA2111545C (en) * 1993-12-15 2007-04-03 Michael P. Sakno Water impervious intumescent firestop collapsing conduit
AU8158694A (en) * 1993-12-23 1995-07-13 Micaham Pty Ltd Firestop assembly
AU690721B2 (en) * 1994-08-29 1998-04-30 Promat Australia Pty Ltd A fire sealing collar
DE9418172U1 (en) * 1994-11-12 1995-01-26 Staudt Brandschutztechnik Gmbh Pipe sleeve for sealing pipes passing through walls or ceilings
AU718072B2 (en) * 1995-12-18 2000-04-06 Promat Australia Pty Ltd Improvements in fire collars
AU713645B2 (en) * 1996-07-08 1999-12-09 Douglas Leslie Matthews Adjustable fire rated floor penetration
DE19809973C1 (en) * 1998-03-09 1999-07-01 Salamander Ind Produkte Gmbh Fire-resistant foam product for constructional applications, e.g. joint filling
EP1046412A1 (en) * 1999-04-21 2000-10-25 Carboline Europe Limited A pipe with a weakened section and method for preventing fire transmission
DE20007477U1 (en) * 2000-04-25 2000-07-20 Hilti Ag Mounting system for bushings through trapezoidal sheet metal ceilings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223724A (en) * 1976-12-22 1980-09-23 Levoni Carlo F Device for cleaning, widening and repairing wells of drinking water and irrigation water
US4424867A (en) * 1981-03-31 1984-01-10 Fiberglas Canada Inc. Heat hardening sealant-gel for flexible couplings
US5374036A (en) * 1992-10-27 1994-12-20 Foseco International Limited Metallurgical pouring vessels
US5953872A (en) * 1993-08-13 1999-09-21 Macmillian; George S. Fire barrier assembly
US5452551A (en) * 1994-01-05 1995-09-26 Minnesota Mining And Manufacturing Company Tiered firestop assembly
US5670748A (en) * 1995-02-15 1997-09-23 Alphagary Corporation Flame retardant and smoke suppressant composite electrical insulation, insulated electrical conductors and jacketed plenum cable formed therefrom
US6161873A (en) * 1998-02-16 2000-12-19 Hilti Aktiengesellschaft Masonry lead-in fixture
US6470635B2 (en) * 2000-05-18 2002-10-29 Kenneth R. Cornwall Coupling assembly with intumescent material
US6694684B2 (en) * 2002-04-15 2004-02-24 3M Innovative Properties Company Pass through firestop device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060117647A1 (en) * 2000-01-12 2006-06-08 Cam Technologie S.P.A Fuel comprising an emulsion between water and a liquid hydrocarbon
US8191330B1 (en) * 2008-11-17 2012-06-05 Cornwall Kenneth R Firestop drain assembly
US8438807B1 (en) * 2008-11-17 2013-05-14 Kenneth R. Cornwall Firestop drain assembly
US20110094759A1 (en) * 2009-10-22 2011-04-28 Specified Technologies, Inc. Self-adjusting firestopping sleeve apparatus with flexibly resilient supplemental constriction means
US20140020915A1 (en) * 2009-10-22 2014-01-23 Specified Technologies Inc. Self-adjusting firestopping sleeve apparatus with flexibly resillient supplemental constriction means
US8869475B2 (en) * 2009-10-22 2014-10-28 Specified Technologies Inc. Self-adjusting firestopping sleeve apparatus with flexibly resillient supplemental constriction means
US8887458B2 (en) * 2009-10-22 2014-11-18 Specified Technologies Inc. Self-adjusting firestopping sleeve apparatus with flexibly resilient supplemental constriction means
US20170329947A1 (en) * 2015-10-23 2017-11-16 Boe Technology Group Co., Ltd. Permission Control System and Method, Computer Mouse and Computer System
CN112392206A (en) * 2020-11-10 2021-02-23 刘月华 Fireproof heat insulation board

Also Published As

Publication number Publication date
US20030167712A1 (en) 2003-09-11
AU8557101A (en) 2002-03-04
WO2002016709A1 (en) 2002-02-28
AU2007201168A1 (en) 2007-04-19
AU2007201168B2 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
AU2007201168B2 (en) Fire barrier devices
CA1073938A (en) Molded pleated gasket
US4850385A (en) Fire stop pipe coupling adaptor
US4453354A (en) Pipe support coupling and method of using same
US20040168398A1 (en) Block for fire and smoker along a barrier penetrating member
EP0349615A1 (en) Improved fire-retardant fluid coupling assembly and method
US4964180A (en) Shower strainer mounting assembly
KR102061496B1 (en) A granular sleeve for piping having a flow-preventing structure of a refractory filler
KR101978701B1 (en) A clamp for fixing pipe for fireproof filler
US7694474B1 (en) Method and apparatus for firestopping around a water closet drain pipe in a vertical floor opening
US5183070A (en) Firestop device for flammable floor construction
AU2001285571A1 (en) Fire barrier devices
AU2018208045B2 (en) Improved fire collar
JP2004534600A (en) Penetration fire protection device
AU713186B2 (en) Termite barrier
TWI770515B (en) Pre-embedding construction member, construction structure and method for fastening and removing the pre-embedding construction member
AU713645B2 (en) Adjustable fire rated floor penetration
AU650847B2 (en) Concrete slab penetration unit for pipes
JP2604250Y2 (en) Fire pipe connection equipment
AU2002301115B2 (en) Termite barrier ring
KR100571286B1 (en) Pipe support
CA2130059C (en) Passthrough device with firestop
AU783990B2 (en) Drain collars
FR3083554A1 (en) PROCESS FOR PRODUCING A FLOOR SLAB CROSSING
JPH0820996A (en) Joint and contact bonding jig used for connecting manhole to pipeline or the like

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION