Connect public, paid and private patent data with Google Patents Public Datasets

Predictive text dictionary population

Download PDF

Info

Publication number
US20050283724A1
US20050283724A1 US10870035 US87003504A US2005283724A1 US 20050283724 A1 US20050283724 A1 US 20050283724A1 US 10870035 US10870035 US 10870035 US 87003504 A US87003504 A US 87003504A US 2005283724 A1 US2005283724 A1 US 2005283724A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
user
text
words
device
dictionary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10870035
Inventor
Jason Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
BlackBerry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2735Dictionaries

Abstract

A method and system for populating a predictive text dictionary is provided. A connection between a handheld electronic device and a network is detected. The handheld electronic device is operable to allow a user to enter text. The handheld electronic device has a predictive text dictionary that is operable to receive and employ sets of words. User preferences for the handheld electronic device are retrieved. The predictive text dictionary of the handheld electronic device is populated with a set of words at least partially based on the user preferences.

Description

    FIELD OF THE INVENTION
  • [0001]
    The invention relates generally to computing device input interfaces and, more specifically, relates to a method and system for facilitating text entry.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Text entry methods and systems for computing devices are well-known in the art. While some computing devices, such as personal computers, have been afforded with a full QWERTY keyboard for alphanumeric text entry, many other computing devices, such as handheld electronic devices, are equipped with limited keyboards, wherein one key can represent more than one alphabetic character. One such system, referred to in the art as multi-tap, has been in use for a number of years for permitting users to enter text using a conventional telephone key pad such as specified under ITU E 1.161. Multi-tap requires a user to press a key a varying number of times, generally within a limited period of time, to input a specific letter.
  • [0003]
    Another system, T9® developed by Tegic Communications, Inc., uses predictive letter patterns to allow a user to ideally press each key representing a letter only once to enter text. Unlike multi-tap, which requires a user to indicate a desired character by a precise number of presses of a key, or keystrokes, T9 uses a predictive text dictionary and established letter patterns for a language to intelligently guess which one of many characters represented by a key a user intended to enter. The predictive text dictionary is primarily a list of words, acronyms, abbreviations, etc. that can be used in the composition of text. Generally, all possible character string permutations represented by a number of keystrokes entered by a user are compared to the words in the predictive text dictionary and a subset of the permutations is shown to the user to allow selection of the intended character string. The permutations are generally sorted by likelihood determined from the number of words matched in the predictive text dictionary and various metrics maintained for these words. Where the possible character string permutations do not match any words in the predictive text dictionary, the set of established letter patterns for a selected language can be applied to suggest the most likely character string permutations. As can be conceived, a user may be required to input a number of additional keystrokes in order to enter in a desired word.
  • [0004]
    Despite the plethora of these and other interfaces available for inputting text on such computing devices, the ease and speed of text entry may not be satisfactory in some circumstances. The predictive text dictionary may be populated with words unlikely to be used by a user and may not contain other words more likely to be used by that user. As a result, the user may, upon entry of a set of keystrokes, be presented with a list of character strings that correspond to words that the user does not intend to input. Further, character strings corresponding to words the user intends to input may not appear in the suggestions provided by the device.
  • [0005]
    Such predictive text dictionaries have been used on personal computers and, more recently, on computing devices with limited keyboards, to suggest a number of words to the user upon partial entry of the word. On a personal computer, the word fragment entered by a user in a software application is compared to words in a predictive text dictionary to determine a list of words matching the pattern of letters provided by the word fragment. The list of words is then provided to the user as a list of options from which the user can select. Where the word being entered by the user does not appear in the list of words displayed, the user can elect to continue entering in text to complete the word. In computing devices with limited keyboards using systems where one keystroke can represent a number of characters, such as T9, this function is little different than the determination of the character strings to show the user, as, in this case, whole words beginning with characters possibly represented by the keystrokes entered are shown to the user.
  • [0006]
    The provisioning of predictive text dictionaries on some computing devices with limited non-volatile memory has proven to be a challenge. As a result, manufacturers have been forced to equip such devices with a pared-down predictive text dictionary, thus reducing the words available. On the other hand, large, generic predictive text dictionaries can be disadvantageous as a large number of words, many of which may not be relevant to or used by the user, can be suggested by the predictive text dictionary upon entering in a number of keystrokes. This situation serves to frustrate and slow down the user's input of text, and even can result in the insertion of the incorrect words.
  • [0007]
    Some computing devices permit a user to populate the predictive text dictionary with words provided by the user, thus increasing the utility of the predictive text dictionary if placed therein. This method of expanding the predictive text dictionary, however, is slow and typically needs to be repeated for each device of the user.
  • [0008]
    It is, therefore, an object of the invention to provide a novel method and system for populating a predictive text dictionary.
  • SUMMARY OF THE INVENTION
  • [0009]
    By populating a predictive text dictionary of a computing device based on user preferences, the predictive text dictionary can be populated with words that are relevant to the interests, needs, location, etc. of the user. In this manner, the words suggested to the user using the predictive text dictionary may be more likely to match a user's intended input.
  • [0010]
    Further, by not placing words that bear little relevance to the user in the dictionary, the suggestions provided to the user from the predictive text dictionary are likely to be more relevant to the user's intended input.
  • [0011]
    The maintenance of sets of words related to various interests, professions, locations, etc. allows a predictive text dictionary to be quickly populated with words relevant to the user. Also, where a user maintains more than one such computing device, or replaces one computing device with another, the invention provides a simple method of populating the predictive text dictionary of the new computing device(s) that does not require the user to spend an undue amount of time entering the words into the dictionary himself.
  • [0012]
    By maintaining a database of words related to various interests, professions, locations, etc., and using the words in the database to populate the predictive text dictionary of a user's computing device, words can be prospectively placed into the dictionary for later use by the user.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    Certain embodiments of the invention will now be described, by way of example only, with reference to the attached Figures, wherein:
  • [0014]
    FIG. 1 shows a topological view of a number of components of the invention;
  • [0015]
    FIG. 2 shows an exploded view of a cellphone;
  • [0016]
    FIG. 3 shows an exemplary user interface for selecting categories and options for use in the invention;
  • [0017]
    FIG. 4 illustrates a method of updating a computing device's predictive text dictionary; and
  • [0018]
    FIG. 5 illustrates a method of creating an update for a computing device's predictive text dictionary.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0019]
    FIG. 1 is a schematic diagram of a number of components in accordance with an embodiment of the invention. A mobile computing device 104 is shown in communication via radio frequency to a cell tower 108, which is, in turn, connected to the Internet 112 via some wireless network infrastructure (not shown). A server 116 is also connected to the Internet 112, and is additionally coupled to a word database 120 and a user database 124.
  • [0020]
    The word database 120 stores a plurality of words that correspond to a number of categories and/or locations, and a number of other metrics corresponding to each word. A word as used herein refers to a word, an acronym, an abbreviation, a phrase, etc. employed by users to communicate. For example, the words “football”, “NFL”, “Superbowl”, “touchdown”, “referee” and “ref” could be associated with a “Sports” category. Additionally, some words in the word database 120 are related to locations, such as cities. For example, the words “Washington”, “D.C.”, “President”, “White House” and “Smithsonian” and “Pennsylvania Avenue” could be associated with the city of Washington, D.C.
  • [0021]
    Words can be added to or deleted from the word database 120. For example, where a user has selected the “Sports” category, the rise of a new star NFL football player could cause his name to be added to the category. In an embodiment, the player's name is added, along with the date.
  • [0022]
    The user database 124 stores user preferences for each user including the currently selected categories, the date the categories were last updated, the date that the computing device was last updated, the last detected location of the computing device, and the date since which the computing device has been at that location.
  • [0023]
    The server 116 executes a user manager that is operable to retrieve user preferences from the user database 124, a query module to retrieve words corresponding to the user preferences from the word database 120, and a communications module to communicate the retrieved words to the computing device 104.
  • [0024]
    FIG. 2 shows an exploded view of a mobile computing device 104 having a text input interface 24, a display 32, a processor 48, memory 52 and at least one communications interface 56. The text input interface 24 comprises a set of keys via which a user can input text. The display 32 allows the user to view the inputted text and any options provided to the user. The memory 52 comprises non-volatile memory in which an operating system, applications and persistent data are stored, and volatile memory to provide adequate temporary memory registers for the applications and operating system to use during execution. The processor 48 executes the operating system and applications.
  • [0025]
    The communications interface 56 of the mobile computing device 104 is comprised of a wireless radio and antenna and is operable to communicate with the cell tower 128.
  • [0026]
    The mobile computing device 104 executes any of a number of applications, such as a Wireless Application Protocol (WAP) browser, an email application, a Short Message Service (SMS) application, a notes application, etc.
  • [0027]
    In addition, the mobile computing device 104 executes a predictive text application for receiving keystrokes from a user, determining what character strings the keystrokes can represent, and comparing the character strings to words in a predictive text dictionary maintained in non-volatile memory. The predictive text dictionary is a list of words maintained by the computing device 104. The predictive text dictionary maintains the categories and locations (if any) to which each word is associated.
  • [0028]
    Metrics can also be stored in the predictive text dictionary by the predictive text application. The metrics can correspond to the number of times each word is actively selected by the user of the computing device. Additionally or alternatively, the metrics can correspond to the number of times each word is used by the user, or is even present in a document, email, etc. received by the user. A number of non-user-specific metrics can also be stored in the predictive text dictionary, including general likelihoods used to determine priority between two words not previously used by a user. Further, a number of words in the predictive text dictionary that are intended to be permanently located in the dictionary can be marked as such using the metrics.
  • [0029]
    FIG. 3 shows an exemplary user interface 80 for allowing a user to select which categories are relevant to the user. The user interface 80 can be provided via a web page, a client application or the like. In order to change preferences, the user launches the user interface 80 and selects or deselects the categories he deems as relevant. The “Sports”, “Finance” and “Location-specific” categories are shown as being selected.
  • [0030]
    The general updating of the predictive text dictionary on the computing device 104 is shown in FIG. 4. In an embodiment, this process occurs once per day and every time the device or its communication interface 56 is turned on. If the communication interface 56 of computing device 104 was turned off and is then turned on, such as is done when a user of the computing device boards and disembarks from an airplane, the device 104 registers itself with the cell tower 108. At step 210, upon registration with the cell tower 108, the computing device 104 makes a request to the server 116 for any words to be received. The request is sent to the cell tower 108, which, in turn, forwards the request to the server 116 over the Internet 112. The request received by the server 116 includes information regarding the identity of the computing device 104 and the location of the cell tower 108.
  • [0031]
    At step 220, the server 116 determines if there are words to be transferred to the computing device 104. The user manager executing on the server 116 retrieves the user preferences from the user database 124 and determines what queries will need to be run on the word database 120.
  • [0032]
    FIG. 5 shows the method of determining if there are words to be transferred to the computing device 104. At step 221, it is determined whether there are any new words in the word database 120 corresponding to the existing categories a user has selected. For example, where a user has selected the “Sports” category, and the addition of a new NFL football player's name to the word database occurred after the computing device's last update, the player's name could be flagged for transfer to the device at step 222.
  • [0033]
    At step 223, it is determined whether the user has selected new categories. At step 224, the words corresponding to the new categories are added to the list of words to be transferred to the computing device 104. Then, at step 225, it is determined whether the computing device is in a new location and whether the user preferences indicate that the user selected to receive location-specific words. If the answer to both questions is yes, the words associated with the new location in the word database 120 are added to the list of words to be transferred to the computing device 104 at step 226.
  • [0034]
    While the flow chart of FIG. 5 shows three distinct groups of words being determined, those of skill in the art will appreciate that there may be overlap between the three groups and that the determination of the words to be transferred can typically be performed with a single query. The single query is formulated by the query module of the server 116 and made of the word database 120. The word database 120, in turn, returns a set of words that correspond to at least one of the three steps 231, 233 and 235 above.
  • [0035]
    Returning to FIG. 4, the method proceeds to step 230, where the list of words is transferred to the computing device 104 by the server 116. In the implementation being described, the words are transferred via a proprietary protocol. Upon receipt of the words, the device updates the predictive text dictionary by appending the words to the dictionary. The method of updating the computing device is then complete.
  • [0036]
    It can be desirable to remove words from the predictive text dictionary of the computing device 104 for a number of reasons. Where the computing device may have limited memory, words can be removed from the predictive text dictionary by examining the metrics associated with each word and discarding those words with the lowest values determined by a function of those metrics. The predictive text dictionary may also be pared-down by the user or system operator in recognition that over-population of the dictionary with words that are not likely to be used can lead to poor suggestions being provided to the user upon entering a number of keystrokes. In the current implementation, this is performed in two ways.
  • [0037]
    When a user selects to remove a category from his user preferences via the user interface 80, the server 116 can transmit this information to the computing device 104. In response, the computing device can purge some or all of the words associated only with the removed category. Where a word in the predictive text dictionary associated with the category to be removed has been used by the user according to the metrics maintained by the dictionary, the word can be left in the dictionary.
  • [0038]
    Further, when a user has selected to receive location-specific words, and has brought the computing device 104 to a new location, the server can direct the computing device to purge all of the words associated with a prior location from the predictive text dictionary. Where a word in the predictive text dictionary associated with the previous location to be removed has been used by the user according to the metrics maintained by the dictionary, the word can be left in the dictionary.
  • [0039]
    While the invention has been described with specificity to mobile devices, other types of computing devices with which the invention can be used will occur to those of skill in the art. For example, a personal computer can benefit from the invention, as the predictive text dictionary of an application executing thereon could be populated with words relevant to the interests, profession, etc. of the user of the personal computer to provide for enhanced word completion capabilities. Further, where the computing device is a wireless device that occasionally connects to a networked computer via a cable or other local networking means such as WiFi or Bluetooth, the invention can benefit from reduced rates for data communications via landline by connecting to the server at least partially exclusively through the networked computer.
  • [0040]
    While the illustrated embodiment discusses the use of user options, these user options may be implicit or provided in some other manner. For example, upon subscribing to a wireless access service, a user may be asked if he would like to receive location-specific information. The computing device he receives can be preconfigured to always receive location-specific words upon detection that he is in a different location.
  • [0041]
    The user can be provided the option of updating the predictive text dictionary for a location to which the computing device has yet to go. This can be advantageous where a user is preparing for a business trip.
  • [0042]
    Words in the word database can be selected to correspond to a specific category and location at the same time. As a result, the predictive text dictionary of a computing device may only be updated with the appropriate words when a user of the device selected the appropriate category and is in the specific location.
  • [0043]
    The server can be a cluster of servers in a single location or can be two or more servers situated in a number of locations.
  • [0044]
    Where a computing device is memory-restricted, the server can selectively forward words to the computing device. Also, the computing device can delete a group of words from the predictive text dictionary to allow for newer words. Also, the words can be forwarded to the computing device via other means of communication apart from a proprietary protocol, such as email, MMS, WAP push and the like.
  • [0045]
    While the location of the computing device is determined by determining which cell tower the computing device is connected through, other methods of locating the computing device known to those skilled in the art can be used. For example, the computing device can, in some circumstances, be located by determining the node on the Internet closest to the cell tower, generally associated with a wireless gateway for the cellular service provider. Cellular triangulation can also be used. Further, if the computing device is equipped with a GPS receiver, the device can communicate the GPS-received location along with the request for new words.
  • [0046]
    The words provided to the computing device for population of its predictive text dictionary can be set to expire after a period of time and/or period of non-use. This could be advantageous with current event items. In such a case, the server can selectively retransmit a word previously transmitted to a computing device if it is believed the word will be used again. Additionally, location-specific words could be set to expire upon relocation of the computing device.
  • [0047]
    The user database can alternatively reside either on the computing device and be transmitted to the server when requesting updates or can reside on a computer associated with the computing device.
  • [0048]
    Additionally, the words can be provided to the computing device by other means. For example, the words can be placed on a subscriber identity module (“SIM”) card which are incorporated in the predictive text dictionary upon insertion of the SIM card and initialization of the computing device or predictive text application thereon. Other methods will occur to those skilled in the art.
  • [0049]
    The above-described embodiments of the invention are intended to be examples of the invention and alterations and modifications may be effected thereto, by those of skill in the art, without departing from the scope of the invention which is defined solely by the claims appended hereto.

Claims (20)

1. A method of populating a predictive text dictionary of a handheld electronic device, comprising:
detecting a connection between said handheld electronic device and a server, said handheld electronic device having a predictive text dictionary and being operable to allow a user to enter text and to receive and place words in said predictive text dictionary;
retrieving user preferences corresponding to a list of categories for said handheld electronic device;
selecting a set of words from a word database at least partially based on said user preferences; and
providing said set of words to said handheld electronic device for placement in said predictive text dictionary, said set of words being at least partially based on said user preferences.
2. A method of populating a predictive text dictionary according to claim 1, further comprising:
determining whether a modification has been made to said user preferences,
and wherein said set of words selected from said word database corresponds to said modification.
3. A method of populating a predictive text dictionary according to claim 1, wherein subsets of the words in said word database are associated with each of said categories.
4. A method of populating a predictive text dictionary according to claim 3, further comprising:
determining whether a modification has been made to said subsets of the words in said word database associated with said user preferences,
and wherein said set of words selected from the words in said word database corresponds to said modification.
5. A method of populating a predictive text dictionary according to claim 1, further comprising:
discarding at least one of the words in said predictive text dictionary of said handheld electronic device.
6. A method of populating a predictive text dictionary according to claim 5, further comprising:
determining said at least one of the words in said predictive text dictionary based on usage by said user.
7. A method of populating a predictive text dictionary according to claim 5, further comprising:
determining said at least one of said words in said predictive text dictionary based on an expiry date associated with the words.
8. A system for populating a predictive text dictionary on a handheld electronic device having a predictive text dictionary and being operable to receive and place sets of words in said predictive text dictionary, comprising:
a word database of words associated with a list of categories;
a user manager for retrieving user preferences of a user of said handheld electronic device corresponding to said categories;
a user database for storing said user preferences;
a query module for retrieving a subset of said words from said word database at least partially based on said user preferences; and
a communications module for communicating said at least one of said words to said handheld electronic device for inclusion in said predictive text dictionary.
9. A system for populating a predictive text dictionary according to claim 8, wherein said user preferences are selected by said user.
10. A system for populating a predictive text dictionary according to claim 8, wherein said subset of said words from said word database is selected by said query module has not been previously communicated to said handheld electronic device.
11. A system for populating a predictive text dictionary according to claim 10, wherein said user database is also operable to store historical user preferences.
12. A system for populating a predictive text dictionary according to claim 8, wherein said word database is also operable to store effective dates for each of said words.
13. A method of populating a predictive text dictionary, comprising:
detecting a location of a handheld electronic device operable to allow a user to enter text, said handheld electronic device having a predictive text dictionary and being operable to repeatedly receive and place words in said predictive text dictionary;
providing said handheld electronic device with a set of words specific to said location of said handheld electronic device for placement in said predictive text dictionary.
14. A method of populating a predictive text dictionary according to claim 13, wherein said handheld electronic device is a wireless handheld electronic device and said detecting is comprised of:
determining a wireless gateway with which said handheld electronic device is associated.
15. A method of populating a predictive text dictionary according to claim 13, wherein said handheld electronic device is capable of cellular communications and said detecting is comprised of determining a cellular tower with which said handheld electronic device is in communication.
16. A method of populating a predictive text dictionary according to claim 13, wherein said handheld electronic device is capable of cellular communications and said detecting is comprised of:
determining said location of said handheld electronic device based on cellular triangulation.
17. A method of populating a predictive text dictionary according to claim 13, wherein said handheld electronic device has a GPS receiver and said detecting is comprised of:
determining a latitude and a longitude for said handheld electronic device.
18. A method of populating a predictive text dictionary according to claim 13, further comprising:
comparing said location of said handheld electronic device to a previous location of said handheld electronic device to determine said set of words.
19. A method of populating a predictive text dictionary according to claim 18, wherein said comparing further comprises:
retrieving a previous location of said handheld electronic device from a user database.
20. A method of populating a predictive text dictionary according to claim 13, further comprising:
directing said handheld electronic device to discard at least one word in said predictive text dictionary associated with a previous location.
US10870035 2004-06-18 2004-06-18 Predictive text dictionary population Abandoned US20050283724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10870035 US20050283724A1 (en) 2004-06-18 2004-06-18 Predictive text dictionary population

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10870035 US20050283724A1 (en) 2004-06-18 2004-06-18 Predictive text dictionary population
EP20040102889 EP1607882A1 (en) 2004-06-18 2004-06-22 Predictive text dictionary population
US11080444 US8112708B2 (en) 2004-06-18 2005-03-16 Predictive text dictionary population
CA 2510217 CA2510217C (en) 2004-06-18 2005-06-20 Predictive text dictionary population
US13341029 US20120101811A1 (en) 2004-06-18 2011-12-30 Predictive text dictionary population

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11080444 Continuation US8112708B2 (en) 2004-06-18 2005-03-16 Predictive text dictionary population

Publications (1)

Publication Number Publication Date
US20050283724A1 true true US20050283724A1 (en) 2005-12-22

Family

ID=34929233

Family Applications (3)

Application Number Title Priority Date Filing Date
US10870035 Abandoned US20050283724A1 (en) 2004-06-18 2004-06-18 Predictive text dictionary population
US11080444 Active 2028-12-04 US8112708B2 (en) 2004-06-18 2005-03-16 Predictive text dictionary population
US13341029 Pending US20120101811A1 (en) 2004-06-18 2011-12-30 Predictive text dictionary population

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11080444 Active 2028-12-04 US8112708B2 (en) 2004-06-18 2005-03-16 Predictive text dictionary population
US13341029 Pending US20120101811A1 (en) 2004-06-18 2011-12-30 Predictive text dictionary population

Country Status (2)

Country Link
US (3) US20050283724A1 (en)
EP (1) EP1607882A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060122838A1 (en) * 2004-07-30 2006-06-08 Kris Schindler Augmentative communications device for the speech impaired using commerical-grade technology
US20070155369A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Replay Recommendations in a Text Entry Interface
US20070155434A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Telephone Interface for a Portable Communication Device
US20070152979A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Text Entry Interface for a Portable Communication Device
US20070226649A1 (en) * 2006-03-23 2007-09-27 Agmon Jonathan Method for predictive typing
US20070233463A1 (en) * 2006-04-03 2007-10-04 Erik Sparre On-line predictive text dictionary
US20070240045A1 (en) * 2006-04-05 2007-10-11 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US20080276168A1 (en) * 2006-10-13 2008-11-06 Philip Andrew Mansfield Method, device, and graphical user interface for dialing with a click wheel
US20090128370A1 (en) * 2006-06-08 2009-05-21 Research In Motion Limited Angular keyboard for a handheld mobile communication device
GB2460204A (en) * 2007-04-13 2009-11-25 Research In Motion Ltd Method of providing language objects by identifying an occupation of a user of a handheld electronic device and a handheld electronic device
US20100317336A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Context-based limitation of mobile device operation
US20100318903A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Customizable and predictive dictionary
US20100319052A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Dynamic content preference and behavior sharing between computing devices
US20100317408A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Power conservation for mobile device displays
US20100318656A1 (en) * 2009-06-16 2010-12-16 Intel Corporation Multiple-channel, short-range networking between wireless devices
US20100324899A1 (en) * 2007-03-14 2010-12-23 Kiyoshi Yamabana Voice recognition system, voice recognition method, and voice recognition processing program
US20110087961A1 (en) * 2009-10-11 2011-04-14 A.I Type Ltd. Method and System for Assisting in Typing
US20120029910A1 (en) * 2009-03-30 2012-02-02 Touchtype Ltd System and Method for Inputting Text into Electronic Devices
US20130085747A1 (en) * 2011-09-29 2013-04-04 Microsoft Corporation System, Method and Computer-Readable Storage Device for Providing Cloud-Based Shared Vocabulary/Typing History for Efficient Social Communication
WO2013163715A1 (en) * 2012-04-30 2013-11-07 Research In Motion Limited Methods and systems for a locally and temporally adaptive text prediction
US8756052B2 (en) 2012-04-30 2014-06-17 Blackberry Limited Methods and systems for a locally and temporally adaptive text prediction
US8904164B2 (en) 2009-06-16 2014-12-02 Intel Corporation Multi-mode handheld wireless device to provide data utilizing combined context awareness and situational awareness
US9046932B2 (en) 2009-10-09 2015-06-02 Touchtype Ltd System and method for inputting text into electronic devices based on text and text category predictions
US9189472B2 (en) 2009-03-30 2015-11-17 Touchtype Limited System and method for inputting text into small screen devices
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
US9424246B2 (en) 2009-03-30 2016-08-23 Touchtype Ltd. System and method for inputting text into electronic devices
US20160252972A1 (en) * 2015-02-28 2016-09-01 Samsung Electronics Co., Ltd. Synchronization of text data among a plurality of devices

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835470B2 (en) * 2004-09-29 2006-10-18 コニカミノルタビジネステクノロジーズ株式会社 Display control device and an image forming apparatus provided with the display control device
US20060095842A1 (en) * 2004-11-01 2006-05-04 Nokia Corporation Word completion dictionary
US20060156233A1 (en) * 2005-01-13 2006-07-13 Nokia Corporation Predictive text input
US7620540B2 (en) * 2005-04-29 2009-11-17 Research In Motion Limited Method for generating text in a handheld electronic device and a handheld electronic device incorporating the same
KR100954413B1 (en) * 2005-07-27 2010-04-26 노키아 코포레이션 Method and device for entering text
US9842143B2 (en) * 2005-11-21 2017-12-12 Zi Corporation Of Canada, Inc. Information delivery system and method for mobile appliances
GB0612627D0 (en) * 2006-06-26 2006-08-02 Symbian Software Ltd Contextual prediction
US20080126075A1 (en) * 2006-11-27 2008-05-29 Sony Ericsson Mobile Communications Ab Input prediction
KR100724141B1 (en) * 2006-12-29 2007-05-31 주식회사 네오패드 Apparatus for Hangul output and method thereof
US20080243737A1 (en) * 2007-03-29 2008-10-02 Nokia Corporation Club dictionaries
US20080243738A1 (en) * 2007-03-29 2008-10-02 Nokia Corporation Game dictionaries
US7797269B2 (en) * 2007-03-29 2010-09-14 Nokia Corporation Method and apparatus using a context sensitive dictionary
US20100070921A1 (en) * 2007-03-29 2010-03-18 Nokia Corporation Dictionary categories
WO2008120043A1 (en) * 2007-03-29 2008-10-09 Nokia Corporation Method, apparatus, system, user interface and computer program product for use with managing content
US20080255846A1 (en) * 2007-04-13 2008-10-16 Vadim Fux Method of providing language objects by indentifying an occupation of a user of a handheld electronic device and a handheld electronic device incorporating the same
US20080313182A1 (en) * 2007-06-15 2008-12-18 Sony Ericsson Mobile Communications Ab Methods, devices, and computer program products for predictive text entry in mobile terminals using multiple databases
US20100265181A1 (en) * 2009-04-20 2010-10-21 ShoreCap LLC System, method and computer readable media for enabling a user to quickly identify and select a key on a touch screen keypad by easing key selection
US9213704B2 (en) * 2010-09-20 2015-12-15 Microsoft Technology Licensing, Llc Dictionary service
US20140025367A1 (en) * 2012-07-18 2014-01-23 Htc Corporation Predictive text engine systems and related methods
US9218333B2 (en) 2012-08-31 2015-12-22 Microsoft Technology Licensing, Llc Context sensitive auto-correction
US8965754B2 (en) 2012-11-20 2015-02-24 International Business Machines Corporation Text prediction using environment hints
US9244905B2 (en) 2012-12-06 2016-01-26 Microsoft Technology Licensing, Llc Communication context based predictive-text suggestion
US9703394B2 (en) * 2015-03-24 2017-07-11 Google Inc. Unlearning techniques for adaptive language models in text entry
US20170154030A1 (en) * 2015-11-30 2017-06-01 Citrix Systems, Inc. Providing electronic text recommendations to a user based on what is discussed during a meeting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875443A (en) * 1996-01-30 1999-02-23 Sun Microsystems, Inc. Internet-based spelling checker dictionary system with automatic updating
US5898836A (en) * 1997-01-14 1999-04-27 Netmind Services, Inc. Change-detection tool indicating degree and location of change of internet documents by comparison of cyclic-redundancy-check(CRC) signatures
US20020095621A1 (en) * 2000-10-02 2002-07-18 Lawton Scott S. Method and system for modifying search criteria based on previous search date
US20020143655A1 (en) * 2001-04-02 2002-10-03 Stephen Elston Remote ordering system for mobile commerce
US20030038735A1 (en) * 1999-01-26 2003-02-27 Blumberg Marvin R. Speed typing apparatus and method
US20030104839A1 (en) * 2001-11-27 2003-06-05 Christian Kraft Communication terminal having a text editor application with a word completion feature
US20030119561A1 (en) * 2001-12-21 2003-06-26 Richard Hatch Electronic device
US20040030540A1 (en) * 2002-08-07 2004-02-12 Joel Ovil Method and apparatus for language processing
US20040102197A1 (en) * 1999-09-30 2004-05-27 Dietz Timothy Alan Dynamic web page construction based on determination of client device location
US20040203900A1 (en) * 2000-06-06 2004-10-14 Mats Cedervall Anonymous positioning of a wireless unit for data network location-based services

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141664A (en) * 1996-11-13 2000-10-31 Puma Technology, Inc. Synchronization of databases with date range
JP3556425B2 (en) * 1997-03-18 2004-08-18 株式会社東芝 Share dictionary update method and the dictionary server
US6061686A (en) * 1997-06-26 2000-05-09 Digital Equipment Corporation Updating a copy of a remote document stored in a local computer system
US6298228B1 (en) * 1998-11-12 2001-10-02 Ericsson Inc. Lazy updates of profiles in a system of communication devices
US6785869B1 (en) * 1999-06-17 2004-08-31 International Business Machines Corporation Method and apparatus for providing a central dictionary and glossary server
US6505214B1 (en) * 1999-09-28 2003-01-07 Microsoft Corporation Selective information synchronization based on implicit user designation
US6456234B1 (en) * 2000-06-07 2002-09-24 William J. Johnson System and method for proactive content delivery by situation location
US6968179B1 (en) * 2000-07-27 2005-11-22 Microsoft Corporation Place specific buddy list services
US20020126097A1 (en) * 2001-03-07 2002-09-12 Savolainen Sampo Jussi Pellervo Alphanumeric data entry method and apparatus using reduced keyboard and context related dictionaries
WO2004010332B1 (en) * 2002-07-24 2004-06-24 Casio Computer Co Ltd Electronic dictionary client, electronic dictionary server, and recording medium
US7548863B2 (en) * 2002-08-06 2009-06-16 Apple Inc. Adaptive context sensitive analysis
US7570943B2 (en) * 2002-08-29 2009-08-04 Nokia Corporation System and method for providing context sensitive recommendations to digital services
JP4398144B2 (en) * 2002-12-24 2010-01-13 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Maschines Corporation Dictionary updating system, updating processing server, the terminal, a control method, program and recording medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875443A (en) * 1996-01-30 1999-02-23 Sun Microsystems, Inc. Internet-based spelling checker dictionary system with automatic updating
US5898836A (en) * 1997-01-14 1999-04-27 Netmind Services, Inc. Change-detection tool indicating degree and location of change of internet documents by comparison of cyclic-redundancy-check(CRC) signatures
US20030038735A1 (en) * 1999-01-26 2003-02-27 Blumberg Marvin R. Speed typing apparatus and method
US20040102197A1 (en) * 1999-09-30 2004-05-27 Dietz Timothy Alan Dynamic web page construction based on determination of client device location
US20040203900A1 (en) * 2000-06-06 2004-10-14 Mats Cedervall Anonymous positioning of a wireless unit for data network location-based services
US20020095621A1 (en) * 2000-10-02 2002-07-18 Lawton Scott S. Method and system for modifying search criteria based on previous search date
US20020143655A1 (en) * 2001-04-02 2002-10-03 Stephen Elston Remote ordering system for mobile commerce
US20030104839A1 (en) * 2001-11-27 2003-06-05 Christian Kraft Communication terminal having a text editor application with a word completion feature
US20030119561A1 (en) * 2001-12-21 2003-06-26 Richard Hatch Electronic device
US20040030540A1 (en) * 2002-08-07 2004-02-12 Joel Ovil Method and apparatus for language processing

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8065154B2 (en) * 2004-07-30 2011-11-22 The Research Foundation of State Univesity of New York Augmentative communications device for the speech impaired using commercial-grade technology
US20060122838A1 (en) * 2004-07-30 2006-06-08 Kris Schindler Augmentative communications device for the speech impaired using commerical-grade technology
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
US20070155369A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Replay Recommendations in a Text Entry Interface
US20070155434A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Telephone Interface for a Portable Communication Device
US20070152979A1 (en) * 2006-01-05 2007-07-05 Jobs Steven P Text Entry Interface for a Portable Communication Device
US8918736B2 (en) * 2006-01-05 2014-12-23 Apple Inc. Replay recommendations in a text entry interface
US7860536B2 (en) 2006-01-05 2010-12-28 Apple Inc. Telephone interface for a portable communication device
US7574672B2 (en) 2006-01-05 2009-08-11 Apple Inc. Text entry interface for a portable communication device
US20070226649A1 (en) * 2006-03-23 2007-09-27 Agmon Jonathan Method for predictive typing
US7912706B2 (en) * 2006-04-03 2011-03-22 Sony Ericsson Mobile Communications Ab On-line predictive text dictionary
US20070233463A1 (en) * 2006-04-03 2007-10-04 Erik Sparre On-line predictive text dictionary
US7996769B2 (en) * 2006-04-05 2011-08-09 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US20070240045A1 (en) * 2006-04-05 2007-10-11 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US9058320B2 (en) * 2006-04-05 2015-06-16 Blackberry Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US20110258539A1 (en) * 2006-04-05 2011-10-20 Research In Motion Limited Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
US20090128370A1 (en) * 2006-06-08 2009-05-21 Research In Motion Limited Angular keyboard for a handheld mobile communication device
US8175664B2 (en) 2006-06-08 2012-05-08 Research In Motion Limited Angular keyboard for a handheld mobile communication device
US7667148B2 (en) 2006-10-13 2010-02-23 Apple Inc. Method, device, and graphical user interface for dialing with a click wheel
US20080276168A1 (en) * 2006-10-13 2008-11-06 Philip Andrew Mansfield Method, device, and graphical user interface for dialing with a click wheel
US20100324899A1 (en) * 2007-03-14 2010-12-23 Kiyoshi Yamabana Voice recognition system, voice recognition method, and voice recognition processing program
US8676582B2 (en) * 2007-03-14 2014-03-18 Nec Corporation System and method for speech recognition using a reduced user dictionary, and computer readable storage medium therefor
GB2460204A (en) * 2007-04-13 2009-11-25 Research In Motion Ltd Method of providing language objects by identifying an occupation of a user of a handheld electronic device and a handheld electronic device
US9189472B2 (en) 2009-03-30 2015-11-17 Touchtype Limited System and method for inputting text into small screen devices
US20120029910A1 (en) * 2009-03-30 2012-02-02 Touchtype Ltd System and Method for Inputting Text into Electronic Devices
US9659002B2 (en) * 2009-03-30 2017-05-23 Touchtype Ltd System and method for inputting text into electronic devices
US9424246B2 (en) 2009-03-30 2016-08-23 Touchtype Ltd. System and method for inputting text into electronic devices
US20100317336A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Context-based limitation of mobile device operation
US8254957B2 (en) 2009-06-16 2012-08-28 Intel Corporation Context-based limitation of mobile device operation
US20100319052A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Dynamic content preference and behavior sharing between computing devices
US20100318903A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Customizable and predictive dictionary
US20100317408A1 (en) * 2009-06-16 2010-12-16 Bran Ferren Power conservation for mobile device displays
US20100318656A1 (en) * 2009-06-16 2010-12-16 Intel Corporation Multiple-channel, short-range networking between wireless devices
US8776177B2 (en) 2009-06-16 2014-07-08 Intel Corporation Dynamic content preference and behavior sharing between computing devices
US8803868B2 (en) 2009-06-16 2014-08-12 Intel Corporation Power conservation for mobile device displays
US8904164B2 (en) 2009-06-16 2014-12-02 Intel Corporation Multi-mode handheld wireless device to provide data utilizing combined context awareness and situational awareness
US9092069B2 (en) * 2009-06-16 2015-07-28 Intel Corporation Customizable and predictive dictionary
US8446398B2 (en) 2009-06-16 2013-05-21 Intel Corporation Power conservation for mobile device displays
US8909915B2 (en) 2009-06-16 2014-12-09 Intel Corporation Multi-mode handheld wireless device with shared mode to support cross-mode communications
US9046932B2 (en) 2009-10-09 2015-06-02 Touchtype Ltd System and method for inputting text into electronic devices based on text and text category predictions
US20110087961A1 (en) * 2009-10-11 2011-04-14 A.I Type Ltd. Method and System for Assisting in Typing
US9785628B2 (en) * 2011-09-29 2017-10-10 Microsoft Technology Licensing, Llc System, method and computer-readable storage device for providing cloud-based shared vocabulary/typing history for efficient social communication
US20130085747A1 (en) * 2011-09-29 2013-04-04 Microsoft Corporation System, Method and Computer-Readable Storage Device for Providing Cloud-Based Shared Vocabulary/Typing History for Efficient Social Communication
US8756052B2 (en) 2012-04-30 2014-06-17 Blackberry Limited Methods and systems for a locally and temporally adaptive text prediction
GB2505270A (en) * 2012-04-30 2014-02-26 Blackberry Ltd Methods and systems for a locally and temporally adaptive text prediction
WO2013163715A1 (en) * 2012-04-30 2013-11-07 Research In Motion Limited Methods and systems for a locally and temporally adaptive text prediction
US20160252972A1 (en) * 2015-02-28 2016-09-01 Samsung Electronics Co., Ltd. Synchronization of text data among a plurality of devices

Also Published As

Publication number Publication date Type
US20120101811A1 (en) 2012-04-26 application
US20050283725A1 (en) 2005-12-22 application
US8112708B2 (en) 2012-02-07 grant
EP1607882A1 (en) 2005-12-21 application

Similar Documents

Publication Publication Date Title
US6223059B1 (en) Communication terminal having a predictive editor application
US7091885B2 (en) Handheld electronic device with text disambiguation
US20010047428A1 (en) Method and system for simplified access to internet content on a wireless device
US20060044277A1 (en) Handheld electronic device with text disambiguation
US20090306969A1 (en) Systems and Methods for an Automated Personalized Dictionary Generator for Portable Devices
US20050283540A1 (en) Handheld electronic device with text disambiguation
US20060058995A1 (en) Handheld electronic device with text disambiguation
US7475004B2 (en) Handheld electronic device with text disambiguation
US20040068724A1 (en) Server processing for updating dataset versions resident on a wireless device
US20070233463A1 (en) On-line predictive text dictionary
US20070156747A1 (en) Mobile Device Retrieval and Navigation
US20020021311A1 (en) Data entry using a reduced keyboard
US20070112739A1 (en) Intelligent mobile search client
EP1085401A1 (en) Input of symbols
US20080301102A1 (en) Store product locating system
US20090055732A1 (en) Human-to-mobile interfaces
US20050246365A1 (en) Systems and methods of building and using custom word lists
US7218249B2 (en) Hand-held communication device having navigation key-based predictive text entry
US7477165B2 (en) Handheld electronic device and method for learning contextual data during disambiguation of text input
EP1480421A1 (en) Automatic setting of a keypad input mode in response to an incoming text message
US20020072379A1 (en) Method and system for locating position for a mobile communication device
US20100161733A1 (en) Contact-specific and location-aware lexicon prediction
US8266528B1 (en) Spelling suggestions based on an input sequence including accidental “delete”
US20070240045A1 (en) Handheld electronic device and method for performing spell checking during text entry and for providing a spell-check learning feature
EP1603020A1 (en) Handheld electronic device with text disambiguation

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESEARCH IN MOTION LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRIFFIN, JASON;REEL/FRAME:015876/0746

Effective date: 20040616

AS Assignment

Owner name: BLACKBERRY LIMITED, ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:033987/0576

Effective date: 20130709