Connect public, paid and private patent data with Google Patents Public Datasets

Microstimulator treatment for sleep apnea or snoring

Download PDF

Info

Publication number
US20050267547A1
US20050267547A1 US11197054 US19705405A US2005267547A1 US 20050267547 A1 US20050267547 A1 US 20050267547A1 US 11197054 US11197054 US 11197054 US 19705405 A US19705405 A US 19705405A US 2005267547 A1 US2005267547 A1 US 2005267547A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
palate
soft
method
microstimulator
snoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11197054
Inventor
Mark Knudson
Robert Nickoloff
Timothy Conrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Restore Medical Inc
Original Assignee
Medtronic Restore Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3601Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula

Abstract

The present disclosure relates to methods and apparatuses for treating snoring by implanting a stimulating electrode into a patient. The electrode is placed in stimulating contact with an airway passage-controlling muscle of the patient. The electrode is energized to contract the muscle and alter the airway passage.

Description

    BACKGROUND
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention is directed to method and apparatus for treating snoring.
  • [0003]
    2. Description of the Prior Art
  • [0004]
    Snoring has received increased scientific and academic attention. One publication estimates that up to 20% of the adult population snores habitually. Huang, et al., “Biomechanics of Snoring”, Endeavour, Vol. 19, No. 3, pp. 96-100 (1995). Snoring can be a serious cause of marital discord. In addition, snoring can present a serious health risk to the snorer. In 10% of habitual snorers, collapse of the airway during sleep can lead to obstructive sleep apnea syndrome. Id.
  • [0005]
    Notwithstanding numerous efforts to address snoring, effective treatment of snoring has been elusive. Such treatment may include mouth guards or other appliances worn by the snorer during sleep. However, patients find such appliances uncomfortable and frequently discontinue use (presumably adding to marital stress).
  • [0006]
    Surgical treatments have been employed. One such treatment is uvulopalatopharyngoplasty. In this procedure, so-called laser ablation is used to remove about 2 cm of the trailing edge of the soft palate thereby reducing the soft palate's ability to flutter between the tongue and the pharyngeal wall of the throat. The procedure is frequently effective to abate snoring but is painful and frequently results in undesirable side effects. Namely, removal of the soft palate trailing edge comprises the soft palate's ability to seal off nasal passages during swallowing and speech. In an estimated 25% of uvulopalatopharyngoplasty patients, fluid escapes from the mouth into the nose while drinking. Huang, et al., supra at 99. Uvulopalatopharyngoplasty (UPPP) is also described in Harries, et al., “The Surgical treatment of snoring”, Journal of Laryngology and Otology, pp. 1105-1106 (1996) which describes removal of up to 1.5 cm of the soft palate. Assessment of snoring treatment is discussed in Cole, et al., “Snoring: A review and a Reassessment”, Journal of Otolaryngology, pp. 303-306 (1995).
  • [0007]
    Huang, et al., supra, describe the soft palate and palatal snoring as an oscillating system which responds to airflow over the soft palate. Resulting flutter of the soft palate (rapidly opening and closing air passages) is a dynamic response generating sounds associated with snoring. Huang, et al., propose an alternative to uvulopalatopharyngoplasty. The proposal includes using a surgical laser to create scar tissue on the surface of the soft palate. The scar is to reduce flexibility of the soft palate to reduce palatal flutter. Huang, et al., report initial results of complete or near-complete reduction in snoring and reduced side effects.
  • [0008]
    Surgical procedures such as uvulopalatopharyngoplasty and those proposed by Huang, et al., continue to have problems. The area of surgical treatment (i.e., removal of palatal tissue or scarring of palatal tissue) may be more than is necessary to treat the patient's condition. Surgical lasers are expensive. The proposed procedures are painful with drawn out and uncomfortable healing periods. The procedures have complications and side effects and variable efficacy (e.g., Huang, et al., report promising results in 75% of patients suggesting a full quarter of patients are not effectively treated after painful surgery). The procedures may involve lasting discomfort. For example, scar tissue on the soft palate may present a continuing irritant to the patient. Importantly, the procedures are not reversible in the event they happen to induce adverse side effects not justified by the benefits of the surgery.
  • [0009]
    Electrical stimulation of the soft palate has been suggested to treat snoring and obstructive sleep apnea. See, e.g., Schwartz, et al., “Effects of electrical stimulation to the soft palate on snoring and obstructive sleep apnea”, J. Prosthetic Dentistry, pp. 273-281 (1996). Devices to apply such stimulation are described in U.S. Pat. Nos. 5,284,161 and 5,792,067. Such devices are appliances requiring patient adherence to a regimen of use as well as subjecting the patient to discomfort during sleep. Alternatively, these devices must be used during the day for a period of time causing disruption of daily activity, interference with daily life. This may generally be assumed to cause them to be prone to a significant risk of non-compliance by the wearer. Such devices, though have met with some success in treating disorders such as snoring and Obstructive Sleep Apnea.
  • SUMMARY OF THE INVENTION
  • [0010]
    According to a preferred embodiment of the present invention, a method and apparatus are disclosed for treating snoring of a patient. The invention includes implanting a stimulating electrode into a patient. The electrode is placed in stimulating contact with an airway passage-controlling muscle of the patient. The electrode is energized to contract the muscle and alter the airway passage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0011]
    FIG. 1 is a side sectional view of a portion of a human head showing a soft palate in a relaxed state and in relation in adjacent anatomical features;
  • [0012]
    FIG. 2 is a portion of the view of FIG. 1 showing the soft palate in a flexed state;
  • [0013]
    FIG. 3 is a front view of an interior of the mouth shown in FIG. 1 and showing an area to be ablated according to a first prior art surgical procedure;
  • [0014]
    FIG. 4 is the view of FIG. 3 and showing an area to be scarred according to a second prior art surgical procedure;
  • [0015]
    FIG. 5 is a schematic representation of a spring-mass system model of the soft palate;
  • [0016]
    FIG. 6 is the view of FIG. 1 showing electrodes placed in the muscles of the soft palate, tongue and throat; and
  • [0017]
    FIG. 7 is a schematic representation of a pacing electrode inductively coupled to a control device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0018]
    For ease of understanding the present invention, the dynamics of snoring are explained with reference to FIGS. 1-5. The hard palate HP overlies the tongue T and forms the roof of the mouth M. The hard palate HP includes a bone support B and does not materially deform during breathing. The soft palate SP is soft and is made up of mucous membrane, fibrous and muscle tissue extending rearward from the hard palate HP. A leading end LE of the soft palate SP is anchored to the trailing end of the hard palate HP. A trailing end TE of the soft palate SP is unattached. Since the soft palate SP is not structurally supported by bone or hard cartilage, the soft palate SP droops down from the plane of the hard palate HP in an arcuate geometry of repose.
  • [0019]
    The pharyngeal airway passes air from the mouth M and the nasal passages N into the trachea TR. The portion of the pharyngeal airway defined between opposing surfaces of the upper surface of the soft palate SP and the wall of the throat is the nasopharynx NP.
  • [0020]
    During normal breathing, the soft palate SP is in the relaxed state shown in FIG. 1 with the nasopharynx NP unobstructed and with air free to flow into the trachea TR from both the mouth M and the nostrils N.
  • [0021]
    During swallowing, the soft palate SP flexes and extends (as shown in FIG. 2) to close the nasopharynx NP thereby preventing fluid flow from the mouth M to the nasal passages N. Simultaneously, the epiglottis EP closes the trachea TR so that food and drink pass only into the esophagus ES and not the trachea TR. The soft palate SP is a valve to prevent regurgitation of food into the nose N. The soft palate SP also regulates airflow through the nose N while talking. Since the soft palate SP performs such important functions, prior art techniques for surgically altering the soft palate SP can compromise these functions.
  • [0022]
    The majority of snoring is caused by the soft palate SP flapping back and forth. If breathing is solely through the nose N with the mouth closed, the trailing edge TE of the soft palate SP is sucked into the nasopharyngeal space NP obstructing the airway and subsequently falls opening the airway in a repeating cycle. When the mouth is open, air flows over the upper and lower surfaces of the soft palate SP causing the soft palate SP to flap up and down alternating in obstructing the oral and nasal passageways M, N. The snoring sound is generated by impulses caused by rapid obstruction and opening of airways. Huang, et al., state the airway passage opening and closing occurs 50 times per second during a snore. Huang, et al., utilizing a spring-mass model (FIG. 5) to illustrate oscillation of the soft palate in response to airflow (where the soft palate is the ball B of mass depending by a spring S from a fixed anchor A).
  • [0023]
    Huang, et al., analogize the shortening of the soft palate SP in uvulopalatopharyngoplasty as effectively raising the critical air flow speed at which soft palate flutter will occur. The shaded area SA in FIG. 3 shows the area of the trailing end TE of the soft palate SP to be removed during this procedure. The alternative procedure proposed by Huang, et al., reduces the flexibility of the soft palate SP through surface scarring which is asserted as effecting the critical flow speed. The shaded area SA′ in FIG. 4 shows the area to be scarred by this alternate procedure. In FIG. 4, dashed line L shows the demarcation between the soft and hard palates.
  • [0024]
    The present invention is directed to a method and apparatus for altering the dynamic response of the soft palate by altering airflow past the soft palate. With reference to the spring-mass model (FIG. 5), the soft palate is moved by airflow. Airflow through an orifice varies in response to the orifice size. The present invention alters the size of the air passage through a minimally invasive surgical implant to allow stimulation of airway defining muscles of the oro-pharynx (i.e., mouth and throat).
  • [0025]
    The present invention stimulates muscles of one or more of the soft palate SP, tongue T and back of the throat. In the soft palate SP, these muscles include, but are not limited to, the Levator veli paltini, the dextera, the Palatopharyngeous and the Palatoglossus muscles. At the back of the throat, these muscles include, but are not limited to, the Superior, Middle and Inferior pharyngeal constrictor, the Salpingopharyngeous and the Stylopharyngeous muscles. In the tongue T, these muscles include, but are not limited to, the Genioglossus and Geniohyoid muscles.
  • [0026]
    Stimulating the muscles of the soft palate, tongue and throat is intended to alter the dynamic response of the soft palate to airflow. Namely, stimulation of the soft palate SP causes the soft palate to move away from the tongue T, stimulation of the tongue T causes the tongue T to move away from the soft palate SP, and stimulation of the back of the throat causes the throat to move rearwardly. Alone or in combination, these actions increase the size of the airway thereby decreasing air velocity and the disrupting force which would otherwise cause oscillation of the soft palate SP.
  • [0027]
    Stimulation of the muscles is accomplished by implanted electrodes 10, 10′ and 10″ placed in the airway passage-defining muscles (identified above) of the soft palate SP, tongue T and back of throat (as illustrated in FIG. 6). Implantable muscle stimulating electrodes are well known and may be such as those used in cardiac pacing.
  • [0028]
    The implant 10, 10′, 10″ can be positioned and stimulated in a plurality of ways to alter the shape of the airway, to change the dynamic response of the airway tissues or a combination of both. Unlike the prior art surgical techniques, the electrodes 10, 10′, 10″ that will be described are easy to insert in a small incision resulting in reduced patient discomfort and are not exposed to the interior of the mouth (such as the surface scarring of Huang, et al.) as a patient irritant. Also, as will be described, the degree of dynamic remodeling and stimulation pattern can be fine tuned avoiding the need for excessive anatomical modification and are reversible in the event of adverse consequences.
  • [0029]
    The present invention permits the surgeon to apply stimulation to various muscles until the desired alteration in airway area and tone is achieved so that snoring inducing oscillation is abated at normal airflow. The individual electrodes 10, 10′, 10″ may be placed into the soft palate, tongue or throat muscles through small individual incisions closed by sutures which is much less traumatic than the gross anatomical destruction of uvulopalatopharyngoplasty or the large surface area scarring proposed by Huang, et al.
  • [0030]
    A control device 20 is provided for controlling the electrodes 10, 10′, 10″. The control device 20 is shown as a removable appliance (schematically shown in FIG. 6 with it being appreciated that appliances for placement in the mouth are well known) which fits the form of the hard palate or sub-lingual spaces.
  • [0031]
    The control device 20 is electrically coupled to the electrodes 10, 10′, 10″ through electromagnetic coupling which avoids the need for electrode leads being exposed from the implants 10, 10′, 10″. Specifically, the electrode 10 (shown in FIG. 7 and it being appreciated that electrodes 10′, 10″ are of similar construction) includes a pacing electrode 12 for stimulating muscle in response to a signal through the electrode 10. Leads 14 connect the pacing electrode 12 to an inductive winding 16. In use, the entire electrode 10 (i.e., each of the components of the pacing electrode 12, leads 14 and winding 16) are imbedded in the patient and not exposed.
  • [0032]
    The control device 20 is shown schematically and includes an inductive winding 22 connected to a control circuit 24. Control circuit 24 is only shown schematically. Control circuits for pacing electrodes are well known and widely used in cardiac pacing. In the present invention, preferably none of the components of the control device 20 (i.e., the winding 22 and circuit 24) are implanted. Instead, preferably such components are contained in the removable oral appliance control device 20 although some elements (e.g., a battery may be worn externally by the patient).
  • [0033]
    The control winding 22 is positioned on the control device 20 to be inductively coupled to the electrode winding 16 when the control device 20 is in place. In the event multiple electrodes 10, 10′, 10″ are placed in multiple muscles, the control device 20 may contain a plurality of windings 22 each uniquely tuned to the windings of the electrodes 10, 10′, 10″ such that each electrode 10, 10′, 10″ may be uniquely paced. Also, each of the electrodes 10, 10′, 10″ can be provided with filter circuits to pass only desired signals to the pacing electrodes.
  • [0034]
    The control device 20 sends a pulsitile signal to the electrode 10 through the inductive coupling of windings 16 and 22. In response, the electrode 10 causes pacing contraction of the muscle. Preferably, the pacing is selected to contract the muscle up to and including tetanic contraction.
  • [0035]
    With the present invention, the muscle is contracted to increase the size of the airway and reduce palatal flutter. The amount of pacing can be tuned to the unique physiology of the patient. The control device need only be used during sleep. It is anticipated that regular use of the control device 20 results in improved tone of the paced muscles reducing or eliminating future need to use the control device 20. Unlike the appliances of U.S. Pat. Nos. 5,284,161 and 5,792,067, the present device has more effective pacing since muscles are being paced directly by implanted electrodes rather than through less efficient surface stimulation. Further, the present invention contemplates pacing of all muscles defining the airway passage and not just the soft palate.
  • [0036]
    Having described the invention, alternatives and embodiments may occur to one of skill in the art. It is intended that such modifications and equivalents shall be included within the scope of the following claims.

Claims (54)

1-12. (canceled)
13. A method of treating snoring comprising: a) monitoring the airway passage of a patient during sleep to identify at least one anatomical structure in the airway passage that vibrates during snoring; b) implanting at least one microstimulator in the proximity of the at least one anatomical structure identified in step a); c) energizing the microstimulator to deliver an electrical stimulation to the anatomical structure to cause at least one muscle to contract and reduce the vibrations of the airway passage.
14. The method of claim 13, further including inserting a distal end of a scope such that the distal end is located in an upper airway of the patient and monitoring the airway passage during sleep.
15. The method of claim 13, further including inserting a distal tip of an insertion tool into the anatomical structure, wherein the microstimulator is located in a lumen of the insertion tool, and activating the insertion tool to eject the microstimulator from the insertion tool, and removing the insertion tool from the anatomical structure.
16. The method of claim 13, further comprising delivering an electrical stimulation to the anatomical structure prior to step b), and observing the anatomical structure for decrease in vibration.
17. The method of claim 16, further comprising inserting a distal tip of an insertion tool into an anatomical structure, applying an electrical current to at least the distal tip of the insertion tool, and delivering an electrical current to the anatomical structure.
18. The method of claim 16, further including inserting a distal tip of an insertion tool into the anatomical structure, wherein the microstimulator is located in a lumen of the insertion tool, and energizing the microstimulator located within the lumen of an insertion tool.
19. The method of claim 13, further comprising testing the microstimulator by emitting electrical stimulations at a plurality of intensities, and observing the anatomical structure to determine the intensity which decreases the vibration of the anatomical structure.
20. The method of claim 19, wherein the electrical stimulation is of an intensity from about 8 to about 800 nC.
21. The method of claim 13, further comprising energizing the microstimulator at a selected frequency to deliver an electrical stimulation to the anatomical structure to cause at least one muscle to contract and reduce the vibrations of the airway passage.
22. The method of claim 21, wherein the frequency is about 1 to about 30 pulses per second.
23. The method of claim 21, further comprising providing interruptions of a selected duration and period in the electrical stimulation to permit the at least one muscle to relax.
24. The method of claim 23 wherein the duration of the interruption is from about 0.2 to about 2 seconds and the selected period is from about 5 to about 20 seconds.
25. The method of claim 13, further comprising: a) sensing when snoring is occurring; and b) generating an electrical stimulus from the microstimulator to contract an oropharyngeal muscle, in response to sensing snoring in step a).
26. The method of claim 25, wherein snoring is sensed by detecting mechanical vibrations of at least one anatomical structure.
27. The method of claim 25, wherein snoring is sensed by acoustically detecting sounds generated by vibrating at least one anatomical structure in the airway passages.
28. The method of claim 13, wherein the energizing includes delivering a control signal to a pair of electrodes, wherein the microstimulator includes the pair of electrodes.
29. The method of claim 13, wherein the anatomical structure is selected from the group comprising: the soft palate or the uvula.
30. The method of claim 13, wherein the anatomical structure is a muscle selected from the group comprising: palatoglossus, palatopharyngeal, musculus uvulae, genioglossus, geniohyoid, levator palati or tensor palati.
31. The method of claim 13, wherein the anatomical structure is a branch or terminal of a nerve selected from the group comprising: vagus X, hypoglossal, vagus pharyngeal branch, V3 branch trigeminal nerve.
32. The method of claim 13, further comprising implanting a second microstimulator proximate to at least a second anatomical structure, different than the at least one anatomical structure.
33. The method of claim 32, wherein at least one anatomical structure and a second anatomical structure are muscle pairs selected from the group comprising: geniohyoid and genioglossus; tensor palati and palatoglossus; tensor palati and musculus uvulae.
34. The method of claim 32, wherein at least one of the microstimulators includes a sensor and a telemeter configured to generate a signal indicative of a sensed condition, and at least one of the microstimulators includes a circuitry configured to generate an electrical stimulation pulse.
35. The method of treating snoring comprising: a) implanting a microstimulator within at least one of the soft palate or the uvula; and b) activating the microstimulator to deliver an electrical stimulation to at least one of the soft palate or the uvula to cause at least one muscle to contract.
36. The method of claim 35, wherein the microstimulator includes an electrical circuit configured to generate an electrical stimulus and a pair of electrodes configured to apply the electrical stimulus to the at least one of the soft palate or uvula.
37. The method of claim 35, further comprising transmitting from a controller to the microstimulator power, control signals, or power and control signals.
38. The method of claim 35, further comprising transmitting an acknowledgement signal from the microstimulator to a controller, wherein the acknowledgement signal indicates that the microstimulator has received a control signal from a controller.
39. The method of claim 35, further comprising activating the microstimulator in a temporal pattern to deliver the electrical stimulation to the at least one of the soft palate or the uvula to cause at least one muscle to contract, wherein the temporal pattern includes periods of an absence of electrical stimulation to permit the at least one muscle to cease from contracting.
40. The method of claim 35, further comprising testing the microstimulator by emitting electrical stimulations at a plurality of intensities, and observing at least one of the uvula or soft palate to determine the intensity which decreases the vibration of the uvula or soft palate.
41. The method of claim 40, wherein the electrical stimulation is of an intensity from about 8 to about 800 nC.
42. The method of claim 35, further comprising sensing when snoring is occurring; and electrically stimulating at least one microstimulator implanted within the soft palate or the uvula in response to sensing snoring.
43. The method of claim 42, wherein snoring is sensed by detecting mechanical vibrations of at least on anatomical structure.
44. The method of claim 42, wherein snoring is sensed by acoustically detecting sounds generated by at least one vibrating anatomical structure in the airway passages.
45. The method of claim 35, wherein the microstimulator is implanted in a muscle selected from the group comprising: palatoglossus, palatopharyngeal, or musculus uvulae.
46. The method of claim 35, wherein the microstimulator is implanted proximate to a branch or terminal of the vagus X nerve.
47. The method of claim 35 further comprising implanting a second microstimulator in the proximity of an anatomical structure selected from the group comprising: palatoglossus, palatopharyngeal, musculus uvulae, genioglossus, geniohyoid, levator palate, tensor palati, vagus X, hypoglossal, vagus pharyngeal branch, V3 branch trigeminal nerve.
48. The method of claim 35, further comprising: a) inserting a distal tip of an insertion tool including a microstimulator through the oral mucosa of the soft palate; b) inserting the distal tip of the insertion tool into the uvula; c) activating the insertion tool to deposit the microstimulator from the insertion tool; and d) removing the insertion tool from the uvula.
49. The method of claim 48, further including positioning the microstimulator in or in the proximity of the musculus uvulae.
50. The method of claim 48, further including positioning the microstimulator in the proximity of the terminal branches of the motor axons to the musculus uvulae, wherein the microstimulator includes a cathode and an anode; and positioning the microstimulator cathode in the proximity of the terminal branches of the motor axons to the musculus uvulae.
51. The method of claim 48, further comprising advancing a distal tip of an insertion tool through the oral mucosa to the soft palate to the uvula, wherein the distal tip of the insertion tool includes a microstimulator within a lumen of the distal tip; and testing microstimulator by emitting electrical stimulation from the microstimulator within the lumen of the distal tip; and withdrawing the insertion tool leaving the microstimulator within the uvula.
52. The method of implanting a microstimulator into the genioglossus muscle comprising: a) inserting a distal tip of an insertion tool through the epidermis under the mandible b) passing the distal tip of the insertion tool through the geniohyoid muscle; c) inserting the distal tip of the insertion tool into the genioglossus muscle; d) depositing the microstimulator in the genioglossus muscle; and e) removing the insertion tool from the body.
53. The method of claim 52, further including positioning the microstimulator in the proximity of the endplate zone of the radially oriented sagittal muscle fibers of the genioglossus muscle, wherein the microstimulator includes a cathode and an anode; and positioning the microstimulator cathode in the proximity of the endplate-zone of the radially oriented sagittal muscle fibers of the genioglossus muscle.
54. The method of claim 52, further comprising advancing a distal tip of an insertion tool through the geniohyoid muscle to the genioglossus muscle, wherein the distal tip of the insertion tool includes a microstimulator within a lumen of the distal tip; and testing microstimulator by emitting electrical stimulation from the microstimulator within the lumen of the distal tip; and withdrawing the insertion tool leaving the microstimulator within the genioglossus.
55. The method treating snoring in a patient comprising alternately stimulating at least a first and second muscle in the oropharynx to contract so that an airway passage remain substantially free of vibrating soft tissue during sleep.
56. The method treating snoring in a patient comprising alternately stimulating at least a first and second muscle in the oropharynx to contract so that an airway passage remains substantially free of vibrating soft tissue during sleep, and selecting a pattern of stimulation such that while the first muscle is being contracted the second muscle may have a period of relaxation, and while the second muscle is being contracted, the first muscle may have a period of relaxation.
57. The method of claim 43 wherein the first and second muscles are selected from the group comprising: palatoglossus, palatopharyngeal, musculus uvulae, genioglossus, geniohyoid, levator palati, tensor palati.
58. The method of claim 55, wherein the first and second muscles are selected from the groups of pairs comprising: tensor palati and palatoglossus; tensor palati and musculus uvulae; and geniohyoid and genioglossus.
59. The method of claim 55, further comprising monitoring an airway passage of the patient during sleep to identify at least one anatomical structure in the airway passage that vibrates during snoring.
60. The method of claim 55, further comprising: a) sensing when snoring is occurring; and b) generating an electrical stimulus from the microstimulator to contract an oropharyngeal muscle, in response to sensing snoring in step a).
61. The method of claim 60, wherein snoring is sensed by detecting mechanical vibrations of at least one anatomical structure.
62. The method of claim 60, wherein snoring is sensed by acoustically detecting sounds generated by at least one vibrating anatomical structure in the airway passages.
63. The method of claim 60, further including implanting at least a first microstimulator and a second microstimulator, and wherein the first and second microstimulators are alternately activated to cause the contraction of the at least first and second muscle in the oropharynx
64. The method of claim 63, further comprising alternately applying electrical stimulations of an intensity from about 8 to about 800 nC to stimulate at least the first and second muscle in the oropharynx to contract.
65. The method of claim 55, further comprising applying electrical stimulations for a selected duration to stimulate at least the first muscle in the oropharynx to contract, and interrupting the electrical stimulation for a selected duration at a selected period to permit the first muscle in the oropharynx to relax.
US11197054 1999-09-29 2005-08-03 Microstimulator treatment for sleep apnea or snoring Abandoned US20050267547A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09409018 US6636767B1 (en) 1999-09-29 1999-09-29 Implanatable stimulation device for snoring treatment
US10665746 US20040073272A1 (en) 1999-09-29 2003-09-19 Implantable stimulation device for snoring treatment
US11197054 US20050267547A1 (en) 1999-09-29 2005-08-03 Microstimulator treatment for sleep apnea or snoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11197054 US20050267547A1 (en) 1999-09-29 2005-08-03 Microstimulator treatment for sleep apnea or snoring

Publications (1)

Publication Number Publication Date
US20050267547A1 true true US20050267547A1 (en) 2005-12-01

Family

ID=23618725

Family Applications (3)

Application Number Title Priority Date Filing Date
US09409018 Active US6636767B1 (en) 1999-09-29 1999-09-29 Implanatable stimulation device for snoring treatment
US10665746 Abandoned US20040073272A1 (en) 1999-09-29 2003-09-19 Implantable stimulation device for snoring treatment
US11197054 Abandoned US20050267547A1 (en) 1999-09-29 2005-08-03 Microstimulator treatment for sleep apnea or snoring

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09409018 Active US6636767B1 (en) 1999-09-29 1999-09-29 Implanatable stimulation device for snoring treatment
US10665746 Abandoned US20040073272A1 (en) 1999-09-29 2003-09-19 Implantable stimulation device for snoring treatment

Country Status (2)

Country Link
US (3) US6636767B1 (en)
WO (1) WO2001023039A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US7809442B2 (en) 2006-10-13 2010-10-05 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8096303B2 (en) 2005-02-08 2012-01-17 Koninklijke Philips Electronics N.V Airway implants and methods and devices for insertion and retrieval
US8371307B2 (en) 2005-02-08 2013-02-12 Koninklijke Philips Electronics N.V. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US8386046B2 (en) 2011-01-28 2013-02-26 Apnex Medical, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US8412338B2 (en) 2008-11-18 2013-04-02 Setpoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US8612002B2 (en) 2009-12-23 2013-12-17 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8729129B2 (en) 2004-03-25 2014-05-20 The Feinstein Institute For Medical Research Neural tourniquet
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8886339B2 (en) 2009-06-09 2014-11-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US8938299B2 (en) 2008-11-19 2015-01-20 Inspire Medical Systems, Inc. System for treating sleep disordered breathing
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
WO2016115170A1 (en) * 2015-01-12 2016-07-21 Theodore R. Kucklick Device and method for treatment of sleep apnea
US9486628B2 (en) 2009-03-31 2016-11-08 Inspire Medical Systems, Inc. Percutaneous access for systems and methods of treating sleep apnea
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US9643022B2 (en) 2013-06-17 2017-05-09 Nyxoah SA Flexible control housing for disposable patch
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US9849289B2 (en) 2009-10-20 2017-12-26 Nyxoah SA Device and method for snoring detection and control
US9855032B2 (en) 2012-07-26 2018-01-02 Nyxoah SA Transcutaneous power conveyance device
US9867733B2 (en) 2013-08-01 2018-01-16 Cook Medical Technologies Llc Tissue adjustment implant

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962904B1 (en) * 1998-03-13 2005-11-08 Connective Tissue Imagineering Elastin peptide analogs and uses thereof
US6502574B2 (en) 1999-09-17 2003-01-07 Pi Medical, Inc. Lateral stiffening snoring treatment
US6636767B1 (en) * 1999-09-29 2003-10-21 Restore Medical, Inc. Implanatable stimulation device for snoring treatment
US6431174B1 (en) 2000-08-10 2002-08-13 Pi Medical, Inc. Method and apparatus to treat conditions of the naso-pharyngeal area
GB0104692D0 (en) * 2001-02-26 2001-04-11 Optinose As Nasal delivery device
US6642334B2 (en) 2001-07-09 2003-11-04 Carlsberg A/S Beaded polyethylene glycol-based resins
US7017582B2 (en) 2002-02-04 2006-03-28 Restore Medical Inc. Stiffening pharyngeal wall treatment
US7146981B2 (en) * 2002-02-04 2006-12-12 Restore Medical, Inc. Pharyngeal wall treatment
DE10239321B3 (en) * 2002-08-27 2004-04-08 Pari GmbH Spezialisten für effektive Inhalation Aerosol therapy device
US7481224B2 (en) * 2003-01-22 2009-01-27 Koninklijke Philips Electronics N.V. Magnetic force device, systems, and methods for resisting tissue collapse within the pharyngeal conduit
US8511315B2 (en) 2002-09-06 2013-08-20 Koninklijke Philips N.V. Devices, systems and methods using magnetic force systems in the upper airway
US8807137B2 (en) * 2002-09-06 2014-08-19 Koninklijke Philips N.V. Self-anchoring magnetic force implant devices, systems, and methods
US8522790B2 (en) 2002-09-06 2013-09-03 Koninklijke Philips N.V. Stabilized magnetic force devices, systems and methods
US7188627B2 (en) * 2002-09-06 2007-03-13 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngeal conduit
CA2545651A1 (en) * 2003-11-20 2005-06-09 Apneon, Inc. Devices systems, and methods to fixate tissue within the regions of the body, such as the pharyngeal conduit
US8001971B2 (en) * 2002-09-06 2011-08-23 Koninklijke Philips Electronics N.V. Devices, systems, and methods for stabilization or fixation of magnetic force devices used in or on a body
US8590537B2 (en) * 2002-09-06 2013-11-26 Koninklijke Philips N.V. Devices, systems and methods using magnetic force systems in the tongue
US7360542B2 (en) * 2002-09-06 2008-04-22 Apneon, Inc. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US20060289014A1 (en) * 2002-09-06 2006-12-28 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on tissue in an airway
US8020560B2 (en) * 2002-09-06 2011-09-20 Koninklijke Philips Electronics N.V. Devices, systems and methods using magnetic force systems affecting the tongue or hyoid muscles in the upper airway
US8528564B2 (en) * 2002-09-06 2013-09-10 Koninklijke Philips N.V. Devices, systems and methods using magnetic force systems affecting both the tongue and the soft palate/uvula in the upper airway
US20070256693A1 (en) * 2002-09-06 2007-11-08 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on soft palate tissue
US7441559B2 (en) * 2002-09-06 2008-10-28 Koninklijke Philips Electronics N.V. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US8047206B2 (en) 2002-09-06 2011-11-01 Koninklijke Philips Electronics N.V. Magnetic devices, systems, and methods placed in or on a tongue
US7721740B2 (en) * 2002-09-06 2010-05-25 Koninklijke Philips Electronics N.V. Devices, systems, and methods using magnetic force systems in or on tissue
CA2635955A1 (en) * 2002-10-04 2004-04-22 Pavad Medical, Inc. System and method for preventing closure of passageways
US7992566B2 (en) 2002-12-30 2011-08-09 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US7647931B2 (en) 2002-12-30 2010-01-19 Quiescence Medical, Inc. Stent for maintaining patency of a body region
EP1596805A2 (en) * 2003-01-15 2005-11-23 Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California Treatments for snoring using injectable neuromuscular stimulators
US7237554B2 (en) * 2003-10-31 2007-07-03 Restore Medical, Inc. Airway implant
US7213599B2 (en) * 2003-10-31 2007-05-08 Restore Medical, Inc. Airway implant
CA2544301A1 (en) * 2003-11-05 2005-05-26 Pavad Medical, Inc. Altering the stiffness, size, and/or shape of tissues for breathing disorders and other conditions
US7697990B2 (en) * 2004-02-20 2010-04-13 Resmed Limited Method and apparatus for detection and treatment of respiratory disorder by implantable device
EP2617457A3 (en) * 2004-02-26 2013-11-20 Linguaflex, Inc. A method and device for the treatment of obstructive sleep apnea and snoring
US7540699B2 (en) * 2004-04-15 2009-06-02 Stafast Products, Inc. Adjustable threshold fastener with flanges
US8578937B2 (en) 2004-09-21 2013-11-12 Medtronic Xomed, Inc. Smart mandibular repositioning system
US8813753B2 (en) * 2004-09-21 2014-08-26 Medtronic Xomed, Inc. Implantable obstructive sleep apnea sensor
US7882842B2 (en) 2004-09-21 2011-02-08 Pavad Medical, Inc. Airway implant sensors and methods of making and using the same
US7836888B2 (en) 2004-09-21 2010-11-23 Pavad Medical, Incorporated Airway implant and methods of making and using
US7322356B2 (en) * 2005-02-24 2008-01-29 Restore Medical, Inc. Combination sleep apnea treatment
US7680538B2 (en) * 2005-03-31 2010-03-16 Case Western Reserve University Method of treating obstructive sleep apnea using electrical nerve stimulation
DE102006001113B3 (en) * 2006-01-09 2007-06-28 Pari GmbH Spezialisten für effektive Inhalation Aerosol therapy device comprises an atomizer, an aerosol generator, a nosepiece for delivering aerosol to one nostril, a device for creating flow resistance in the other nostril, and a connector that imparts pressure fluctuations
CA2641821C (en) 2006-02-16 2017-10-10 Imthera Medical, Inc. An rfid-based apparatus, system, and method for therapeutic treatment of a patient
EP2037850A2 (en) 2006-07-06 2009-03-25 Quiescence Medical Inc Apparatus and methods for treating sleep apnea
US8657172B2 (en) 2006-11-06 2014-02-25 Avery Dennison Corporation Device for dispensing plastic fasteners
DE502007002037D1 (en) * 2007-04-11 2009-12-31 Pari Gmbh Aerosol therapy device
CA2697822A1 (en) 2007-10-09 2009-04-16 Imthera Medical, Inc. Apparatus, system, and method for selective stimulation
US8167787B2 (en) 2008-01-03 2012-05-01 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US8707960B2 (en) 2008-05-12 2014-04-29 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US20100055041A1 (en) * 2008-08-28 2010-03-04 Dong June Ahn Nanotracer for in-situ gastric cancer detection
JP5547200B2 (en) * 2008-10-01 2014-07-09 インスパイア・メディカル・システムズ・インコーポレイテッドInspire Medical Systems, Inc. Transvenous method for the treatment of sleep apnea
WO2010042404A1 (en) 2008-10-09 2010-04-15 Imthera Medical, Inc. Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US20110230727A1 (en) * 2008-10-16 2011-09-22 Linguaflex , Inc. Methods and Devices for Treating Sleep Apnea
US9415216B2 (en) 2009-10-20 2016-08-16 Nyxoah SA Devices for treatment of sleep apnea
US9409013B2 (en) 2009-10-20 2016-08-09 Nyxoah SA Method for controlling energy delivery as a function of degree of coupling
CA2780096A1 (en) 2009-11-10 2011-05-19 Imthera Medical, Inc. System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue
US8733363B2 (en) 2010-03-19 2014-05-27 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
EP2547296A4 (en) 2010-03-19 2014-08-06 Revent Medical Inc Systems and methods for treatment of sleep apnea
WO2011146930A3 (en) 2010-05-21 2012-04-05 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9707122B2 (en) 2010-07-26 2017-07-18 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US8844537B1 (en) 2010-10-13 2014-09-30 Michael T. Abramson System and method for alleviating sleep apnea
WO2012082791A3 (en) 2010-12-13 2012-09-13 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US8934992B2 (en) 2011-09-01 2015-01-13 Inspire Medical Systems, Inc. Nerve cuff
CN104066476A (en) 2011-09-30 2014-09-24 尼科索亚股份有限公司 Apparatus and method to control an implant
US9439801B2 (en) 2012-06-29 2016-09-13 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20150190630A1 (en) * 2014-01-07 2015-07-09 Invicta Medical, Inc. Method and apparatus for treating sleep apnea

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998209A (en) * 1975-12-16 1976-12-21 Macvaugh Gilbert S Snoring deconditioning system and method
US4637405A (en) * 1983-04-01 1987-01-20 Biosonics, Inc. Apparatus for stimulating salivation
US4830008A (en) * 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
US4978323A (en) * 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5046512A (en) * 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5052409A (en) * 1989-05-08 1991-10-01 Tepper Harry W Oral appliance for tongue thrust correction
US5133354A (en) * 1990-11-08 1992-07-28 Medtronic, Inc. Method and apparatus for improving muscle tone
US5158080A (en) * 1990-11-08 1992-10-27 Medtronic, Inc. Muscle tone
US5176618A (en) * 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
US5178156A (en) * 1989-06-20 1993-01-12 Chest Corporation Apnea preventive stimulating device
US5190053A (en) * 1991-02-28 1993-03-02 Jeffrey A. Meer, Revocable Living Trust Method and apparatus for electrical sublingual stimulation
US5212476A (en) * 1990-09-28 1993-05-18 Maloney Sean R Wireless intraoral controller disposed in oral cavity with electrodes to sense E.M.G. signals produced by contraction of the tongue
US5281219A (en) * 1990-11-23 1994-01-25 Medtronic, Inc. Multiple stimulation electrodes
US5284161A (en) * 1992-11-12 1994-02-08 Karell Manuel L Snopper-the snoring stopper anti-snoring mouth device
US5456662A (en) * 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5540733A (en) * 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5674191A (en) * 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5792067A (en) * 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
US5843021A (en) * 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5897579A (en) * 1994-09-15 1999-04-27 Mount Sinai School Of Medicine Method of relieving airway obstruction in patients with bilateral vocal impairment
US5922006A (en) * 1996-08-12 1999-07-13 Sugerman; Joseph H. Nasal appliance
US5979456A (en) * 1996-04-22 1999-11-09 Magovern; George J. Apparatus and method for reversibly reshaping a body part
US6212435B1 (en) * 1998-11-13 2001-04-03 Respironics, Inc. Intraoral electromuscular stimulation device and method
US6216702B1 (en) * 1994-12-14 2001-04-17 Camtech As Internal registration of gas/air—and other fluid flows in a human body and use of pressure sensors for such registration
US6240316B1 (en) * 1998-08-14 2001-05-29 Advanced Bionics Corporation Implantable microstimulation system for treatment of sleep apnea
US20020049479A1 (en) * 2000-10-20 2002-04-25 Pitts Walter C. Method and apparatus for creating afferents to prevent obstructive sleep apnea
US6636767B1 (en) * 1999-09-29 2003-10-21 Restore Medical, Inc. Implanatable stimulation device for snoring treatment
US6658301B2 (en) * 2000-09-13 2003-12-02 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus for conditioning muscles during sleep
US20040045556A1 (en) * 2002-09-06 2004-03-11 Swan Medical Systems and methods for moving and/or restraining tissue in the upper respiratory system
US6748950B2 (en) * 2001-04-30 2004-06-15 Closure Medical Corporation Compositions and medical procedure to treat snoring
US20040134491A1 (en) * 2002-12-30 2004-07-15 Quiescence Medical Apparatus and methods for treating sleep apnea
US20040153127A1 (en) * 2003-01-15 2004-08-05 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern Californ Treatments for snoring using injectable neuromuscular stimulators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549655A (en) 1994-09-21 1996-08-27 Medtronic, Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US5922066A (en) * 1997-02-24 1999-07-13 Samsung Electronics Co., Ltd. Multifunction data aligner in wide data width processor
US5988171A (en) * 1997-06-26 1999-11-23 Influence Medical Technologies, Ltd. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US6216703B1 (en) * 1998-05-08 2001-04-17 Thermatrx, Inc. Therapeutic prostatic thermotherapy

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998209A (en) * 1975-12-16 1976-12-21 Macvaugh Gilbert S Snoring deconditioning system and method
US4637405A (en) * 1983-04-01 1987-01-20 Biosonics, Inc. Apparatus for stimulating salivation
US4830008A (en) * 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
US5046512A (en) * 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5052409A (en) * 1989-05-08 1991-10-01 Tepper Harry W Oral appliance for tongue thrust correction
US5178156A (en) * 1989-06-20 1993-01-12 Chest Corporation Apnea preventive stimulating device
US5176618A (en) * 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
US4978323A (en) * 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5212476A (en) * 1990-09-28 1993-05-18 Maloney Sean R Wireless intraoral controller disposed in oral cavity with electrodes to sense E.M.G. signals produced by contraction of the tongue
US5158080A (en) * 1990-11-08 1992-10-27 Medtronic, Inc. Muscle tone
US5133354A (en) * 1990-11-08 1992-07-28 Medtronic, Inc. Method and apparatus for improving muscle tone
US5281219A (en) * 1990-11-23 1994-01-25 Medtronic, Inc. Multiple stimulation electrodes
US5190053A (en) * 1991-02-28 1993-03-02 Jeffrey A. Meer, Revocable Living Trust Method and apparatus for electrical sublingual stimulation
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5718702A (en) * 1992-08-12 1998-02-17 Somnus Medical Technologies, Inc. Uvula, tonsil, adenoid and sinus tissue treatment device and method
US5284161A (en) * 1992-11-12 1994-02-08 Karell Manuel L Snopper-the snoring stopper anti-snoring mouth device
USRE36120E (en) * 1992-11-12 1999-03-02 Karell; Manuel L. Snopper--the snoring stopper anti-snoring mouth device
US5456662A (en) * 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5843021A (en) * 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5674191A (en) * 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5897579A (en) * 1994-09-15 1999-04-27 Mount Sinai School Of Medicine Method of relieving airway obstruction in patients with bilateral vocal impairment
US5540733A (en) * 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US6216702B1 (en) * 1994-12-14 2001-04-17 Camtech As Internal registration of gas/air—and other fluid flows in a human body and use of pressure sensors for such registration
US5591216A (en) * 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5792067A (en) * 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
US5979456A (en) * 1996-04-22 1999-11-09 Magovern; George J. Apparatus and method for reversibly reshaping a body part
US5922006A (en) * 1996-08-12 1999-07-13 Sugerman; Joseph H. Nasal appliance
US6345202B2 (en) * 1998-08-14 2002-02-05 Advanced Bionics Corporation Method of treating obstructive sleep apnea using implantable electrodes
US6240316B1 (en) * 1998-08-14 2001-05-29 Advanced Bionics Corporation Implantable microstimulation system for treatment of sleep apnea
US6212435B1 (en) * 1998-11-13 2001-04-03 Respironics, Inc. Intraoral electromuscular stimulation device and method
US6636767B1 (en) * 1999-09-29 2003-10-21 Restore Medical, Inc. Implanatable stimulation device for snoring treatment
US6658301B2 (en) * 2000-09-13 2003-12-02 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Method and apparatus for conditioning muscles during sleep
US20020049479A1 (en) * 2000-10-20 2002-04-25 Pitts Walter C. Method and apparatus for creating afferents to prevent obstructive sleep apnea
US6748950B2 (en) * 2001-04-30 2004-06-15 Closure Medical Corporation Compositions and medical procedure to treat snoring
US20040045556A1 (en) * 2002-09-06 2004-03-11 Swan Medical Systems and methods for moving and/or restraining tissue in the upper respiratory system
US20040134491A1 (en) * 2002-12-30 2004-07-15 Quiescence Medical Apparatus and methods for treating sleep apnea
US20040153127A1 (en) * 2003-01-15 2004-08-05 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern Californ Treatments for snoring using injectable neuromuscular stimulators

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914114B2 (en) 2000-05-23 2014-12-16 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US8729129B2 (en) 2004-03-25 2014-05-20 The Feinstein Institute For Medical Research Neural tourniquet
US8757163B2 (en) 2005-02-08 2014-06-24 Koninklijke Philips N.V. Airway implants and methods and devices for insertion and retrieval
US8096303B2 (en) 2005-02-08 2012-01-17 Koninklijke Philips Electronics N.V Airway implants and methods and devices for insertion and retrieval
US8371307B2 (en) 2005-02-08 2013-02-12 Koninklijke Philips Electronics N.V. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US8498712B2 (en) 2006-10-13 2013-07-30 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8417343B2 (en) 2006-10-13 2013-04-09 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8428727B2 (en) 2006-10-13 2013-04-23 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8311645B2 (en) 2006-10-13 2012-11-13 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8744589B2 (en) 2006-10-13 2014-06-03 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8626304B2 (en) 2006-10-13 2014-01-07 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8639354B2 (en) 2006-10-13 2014-01-28 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8718783B2 (en) 2006-10-13 2014-05-06 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US7809442B2 (en) 2006-10-13 2010-10-05 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
US8391970B2 (en) 2007-08-27 2013-03-05 The Feinstein Institute For Medical Research Devices and methods for inhibiting granulocyte activation by neural stimulation
US9211409B2 (en) 2008-03-31 2015-12-15 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation of T-cell activity
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
US8412338B2 (en) 2008-11-18 2013-04-02 Setpoint Medical Corporation Devices and methods for optimizing electrode placement for anti-inflamatory stimulation
US8938299B2 (en) 2008-11-19 2015-01-20 Inspire Medical Systems, Inc. System for treating sleep disordered breathing
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9486628B2 (en) 2009-03-31 2016-11-08 Inspire Medical Systems, Inc. Percutaneous access for systems and methods of treating sleep apnea
US9849286B2 (en) 2009-05-01 2017-12-26 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9174041B2 (en) 2009-06-09 2015-11-03 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US9700716B2 (en) 2009-06-09 2017-07-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US8886339B2 (en) 2009-06-09 2014-11-11 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US9849289B2 (en) 2009-10-20 2017-12-26 Nyxoah SA Device and method for snoring detection and control
US8996116B2 (en) 2009-10-30 2015-03-31 Setpoint Medical Corporation Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction
US8612002B2 (en) 2009-12-23 2013-12-17 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8855767B2 (en) 2009-12-23 2014-10-07 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US9162064B2 (en) 2009-12-23 2015-10-20 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
US8386046B2 (en) 2011-01-28 2013-02-26 Apnex Medical, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9113838B2 (en) 2011-01-28 2015-08-25 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9555247B2 (en) 2011-01-28 2017-01-31 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US8788034B2 (en) 2011-05-09 2014-07-22 Setpoint Medical Corporation Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
US9757564B2 (en) 2011-05-12 2017-09-12 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9833621B2 (en) 2011-09-23 2017-12-05 Setpoint Medical Corporation Modulation of sirtuins by vagus nerve stimulation
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US9855032B2 (en) 2012-07-26 2018-01-02 Nyxoah SA Transcutaneous power conveyance device
US9643022B2 (en) 2013-06-17 2017-05-09 Nyxoah SA Flexible control housing for disposable patch
US9867733B2 (en) 2013-08-01 2018-01-16 Cook Medical Technologies Llc Tissue adjustment implant
WO2016115170A1 (en) * 2015-01-12 2016-07-21 Theodore R. Kucklick Device and method for treatment of sleep apnea

Also Published As

Publication number Publication date Type
US6636767B1 (en) 2003-10-21 grant
US20040073272A1 (en) 2004-04-15 application
WO2001023039A1 (en) 2001-04-05 application

Similar Documents

Publication Publication Date Title
Riley et al. Maxillary, mandibular, and hyoid advancement for treatment of obstructive sleep apnea: a review of 40 patients
US5987359A (en) Method for treating dysphagia with electrical stimulation
US5897579A (en) Method of relieving airway obstruction in patients with bilateral vocal impairment
US7213599B2 (en) Airway implant
US7697990B2 (en) Method and apparatus for detection and treatment of respiratory disorder by implantable device
US20090173351A1 (en) Control system for a tongue stabilization device
US7237554B2 (en) Airway implant
US20050085874A1 (en) Method and system for treating sleep apnea
US7322356B2 (en) Combination sleep apnea treatment
US6314324B1 (en) Vestibular stimulation system and method
US7669603B2 (en) Pharyngeal wall treatment
US6899105B2 (en) Airway implant cartridge and kit
US6212435B1 (en) Intraoral electromuscular stimulation device and method
US20090044814A1 (en) Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20080066764A1 (en) Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US7845356B2 (en) Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20080066765A1 (en) Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20040215236A1 (en) Vestibular stimulation system and method
US20080066766A1 (en) Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20070246052A1 (en) Tethered Airway Implants and Methods of Using the Same
US20100137905A1 (en) Implant systems and methods for treating obstructive sleep apnea
US20100108077A1 (en) Implant systems and methods for treating obstructive sleep apnea
US20070261701A1 (en) Methods and Devices for Treating Sleep Apnea and Snoring
US20100094379A1 (en) Method of Stimulating a Hypoglossal Nerve for Controlling the Position of a Patient's Tongue
US7277749B2 (en) Treatments for snoring using injectable neuromuscular stimulators