US20050267087A1 - Inflammatory eye disease - Google Patents
Inflammatory eye disease Download PDFInfo
- Publication number
- US20050267087A1 US20050267087A1 US11/115,687 US11568705A US2005267087A1 US 20050267087 A1 US20050267087 A1 US 20050267087A1 US 11568705 A US11568705 A US 11568705A US 2005267087 A1 US2005267087 A1 US 2005267087A1
- Authority
- US
- United States
- Prior art keywords
- hsp90
- geldanamycin
- inhibitor
- uveitis
- analog
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002757 inflammatory effect Effects 0.000 title description 6
- 208000030533 eye disease Diseases 0.000 title description 2
- 206010046851 Uveitis Diseases 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 26
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 claims description 55
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 claims description 54
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 claims description 44
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 claims description 43
- 239000003112 inhibitor Substances 0.000 claims description 26
- AYUNIORJHRXIBJ-TXHRRWQRSA-N tanespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCC=C)C(=O)C=C1C2=O AYUNIORJHRXIBJ-TXHRRWQRSA-N 0.000 claims description 23
- 230000001225 therapeutic effect Effects 0.000 claims description 20
- AECPBJMOGBFQDN-YMYQVXQQSA-N radicicol Chemical compound C1CCCC(=O)C[C@H]2[C@H](Cl)C(=O)CC(=O)[C@H]2C(=O)O[C@H](C)C[C@H]2O[C@@H]21 AECPBJMOGBFQDN-YMYQVXQQSA-N 0.000 claims description 14
- 150000003384 small molecules Chemical class 0.000 claims description 11
- VYGYNVZNSSTDLJ-HKCOAVLJSA-N monorden Natural products CC1CC2OC2C=C/C=C/C(=O)CC3C(C(=CC(=C3Cl)O)O)C(=O)O1 VYGYNVZNSSTDLJ-HKCOAVLJSA-N 0.000 claims description 10
- 229930192524 radicicol Natural products 0.000 claims description 10
- ATEBXHFBFRCZMA-VXTBVIBXSA-N rifabutin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC(=C2N3)C(=O)C=4C(O)=C5C)C)OC)C5=C1C=4C2=NC13CCN(CC(C)C)CC1 ATEBXHFBFRCZMA-VXTBVIBXSA-N 0.000 claims description 10
- 229960000885 rifabutin Drugs 0.000 claims description 9
- PLTGBUPHJAKFMA-UHFFFAOYSA-N Macbecin I Natural products N1C(=O)C(C)=CC=CC(C)C(OC(N)=O)C(C)=CC(C)C(OC)C(OC)CC(C)C(OC)C2=CC(=O)C=C1C2=O PLTGBUPHJAKFMA-UHFFFAOYSA-N 0.000 claims description 8
- AFFSZNHAULCEKY-WBYSVDBMSA-N Geldanamycin Analog Chemical compound N1C(=O)\C(C)=C/C=C/C(OC)C(OC(N)=O)\C(C)=C\C(C)C(O)C(OC)CC(C)CC2=C(O)C1=CC(=O)C2=O AFFSZNHAULCEKY-WBYSVDBMSA-N 0.000 claims description 7
- PLTGBUPHJAKFMA-BMJWZTMLSA-N [(2r,3s,5s,6r,7s,8e,10r,11s,12z,14e)-2,5,6-trimethoxy-3,7,9,11,15-pentamethyl-16,20,22-trioxo-17-azabicyclo[16.3.1]docosa-1(21),8,12,14,18-pentaen-10-yl] carbamate Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](C)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](OC)[C@@H](OC)C[C@H](C)[C@@H](OC)C2=CC(=O)C=C1C2=O PLTGBUPHJAKFMA-BMJWZTMLSA-N 0.000 claims description 7
- MCAHMSDENAOJFZ-BVXDHVRPSA-N herbimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](OC)[C@@H](OC)C[C@H](C)[C@@H](OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-BVXDHVRPSA-N 0.000 claims description 6
- SVSFCSOFEPJFSF-UHFFFAOYSA-N Macbecin II Natural products N1C(=O)C(C)=CC=CC(C)C(OC(N)=O)C(C)=CC(C)C(OC)C(OC)CC(C)C(OC)C2=CC(O)=CC1=C2O SVSFCSOFEPJFSF-UHFFFAOYSA-N 0.000 claims description 4
- SVSFCSOFEPJFSF-OEPVMNMSSA-N [(2r,3s,5r,6s,7r,8e,11s,12z,14e)-20,22-dihydroxy-2,5,6-trimethoxy-3,7,9,11,15-pentamethyl-16-oxo-17-azabicyclo[16.3.1]docosa-1(21),8,12,14,18(22),19-hexaen-10-yl] carbamate Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](C)C(OC(N)=O)\C(C)=C\[C@@H](C)[C@H](OC)[C@H](OC)C[C@H](C)[C@@H](OC)C2=CC(O)=CC1=C2O SVSFCSOFEPJFSF-OEPVMNMSSA-N 0.000 claims description 4
- 229930193320 herbimycin Natural products 0.000 claims description 4
- OWPMENVYXDJDOW-UHFFFAOYSA-N CCT-018159 Chemical group C1=C(O)C(CC)=CC(C2=C(C(C)=NN2)C=2C=C3OCCOC3=CC=2)=C1O OWPMENVYXDJDOW-UHFFFAOYSA-N 0.000 claims description 3
- 229950007866 tanespimycin Drugs 0.000 claims description 3
- 239000003481 heat shock protein 90 inhibitor Substances 0.000 abstract description 34
- 108090000623 proteins and genes Proteins 0.000 description 22
- 239000002158 endotoxin Substances 0.000 description 21
- 210000001508 eye Anatomy 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 20
- 230000000694 effects Effects 0.000 description 19
- 238000011282 treatment Methods 0.000 description 19
- 229920006008 lipopolysaccharide Polymers 0.000 description 16
- 241000700159 Rattus Species 0.000 description 15
- 210000000265 leukocyte Anatomy 0.000 description 15
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 14
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 14
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 230000027455 binding Effects 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- 230000002207 retinal effect Effects 0.000 description 13
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 12
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 12
- 108010057466 NF-kappa B Proteins 0.000 description 11
- 102000003945 NF-kappa B Human genes 0.000 description 11
- 210000001525 retina Anatomy 0.000 description 11
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 10
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 229960003699 evans blue Drugs 0.000 description 9
- 238000002560 therapeutic procedure Methods 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 206010061218 Inflammation Diseases 0.000 description 8
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 8
- 102000003896 Myeloperoxidases Human genes 0.000 description 8
- 108090000235 Myeloperoxidases Proteins 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 230000004054 inflammatory process Effects 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 description 6
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 102000040945 Transcription factor Human genes 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 230000004378 blood-retinal barrier Effects 0.000 description 6
- 210000004155 blood-retinal barrier Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000007943 implant Substances 0.000 description 6
- 230000010412 perfusion Effects 0.000 description 6
- 150000003431 steroids Chemical class 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 108010006519 Molecular Chaperones Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- -1 benzoquinone ansamycin analogs Chemical class 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 210000004240 ciliary body Anatomy 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 210000000554 iris Anatomy 0.000 description 5
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 230000003827 upregulation Effects 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 208000002691 Choroiditis Diseases 0.000 description 4
- 108010062580 Concanavalin A Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000005431 Molecular Chaperones Human genes 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 208000003971 Posterior uveitis Diseases 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 210000003161 choroid Anatomy 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 101710113864 Heat shock protein 90 Proteins 0.000 description 3
- MCAHMSDENAOJFZ-UHFFFAOYSA-N Herbimycin A Natural products N1C(=O)C(C)=CC=CC(OC)C(OC(N)=O)C(C)=CC(C)C(OC)C(OC)CC(C)C(OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-UHFFFAOYSA-N 0.000 description 3
- 229930195248 Macbecin Natural products 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007979 citrate buffer Substances 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 230000003500 cycloplegic effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 238000011552 rat model Methods 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- KUFRQPKVAWMTJO-QSTRRNJOSA-N 17-dmag Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(NCCN(C)C)C(=O)C=C1C2=O KUFRQPKVAWMTJO-QSTRRNJOSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 208000004142 Acute Retinal Necrosis Syndrome Diseases 0.000 description 2
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 206010015866 Extravasation Diseases 0.000 description 2
- 208000024160 Fuchs heterochromic iridocyclitis Diseases 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 206010022941 Iridocyclitis Diseases 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 208000004788 Pars Planitis Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 2
- 208000033464 Reiter syndrome Diseases 0.000 description 2
- 206010039705 Scleritis Diseases 0.000 description 2
- 108010085012 Steroid Receptors Proteins 0.000 description 2
- 102000007451 Steroid Receptors Human genes 0.000 description 2
- 201000005485 Toxoplasmosis Diseases 0.000 description 2
- 208000001445 Uveomeningoencephalitic Syndrome Diseases 0.000 description 2
- 208000034705 Vogt-Koyanagi-Harada syndrome Diseases 0.000 description 2
- 102100023038 WD and tetratricopeptide repeats protein 1 Human genes 0.000 description 2
- 208000027207 Whipple disease Diseases 0.000 description 2
- 201000004612 anterior uveitis Diseases 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000003560 cancer drug Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 239000000634 cycloplegic agent Substances 0.000 description 2
- 229940009976 deoxycholate Drugs 0.000 description 2
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000036251 extravasation Effects 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000002637 mydriatic agent Substances 0.000 description 2
- 230000009826 neoplastic cell growth Effects 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 208000015385 phacoanaphylactic uveitis Diseases 0.000 description 2
- 238000009520 phase I clinical trial Methods 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 235000008476 powdered milk Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 208000002574 reactive arthritis Diseases 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000011277 treatment modality Methods 0.000 description 2
- 201000008827 tuberculosis Diseases 0.000 description 2
- 210000001745 uvea Anatomy 0.000 description 2
- WVAKRQOMAINQPU-UHFFFAOYSA-N 2-[4-[2-[5-(2,2-dimethylbutyl)-1h-imidazol-2-yl]ethyl]phenyl]pyridine Chemical compound N1C(CC(C)(C)CC)=CN=C1CCC1=CC=C(C=2N=CC=CC=2)C=C1 WVAKRQOMAINQPU-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 201000002909 Aspergillosis Diseases 0.000 description 1
- 208000036641 Aspergillus infections Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 101150033765 BAG1 gene Proteins 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 206010005098 Blastomycosis Diseases 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 241001598984 Bromius obscurus Species 0.000 description 1
- 206010006500 Brucellosis Diseases 0.000 description 1
- FDTWRHLZCFQIJZ-PNLUPOAMSA-N C=CCNC1C(=O)C=C2NC(=O)/C(C)=C/C=C\C(C=O)C(OC#N)/C(C)=C/C(C)C(O)C(C=O)CC(C)CC1C2=O.O Chemical compound C=CCNC1C(=O)C=C2NC(=O)/C(C)=C/C=C\C(C=O)C(OC#N)/C(C)=C/C(C)C(O)C(C=O)CC(C)CC1C2=O.O FDTWRHLZCFQIJZ-PNLUPOAMSA-N 0.000 description 1
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 1
- 101100311260 Caenorhabditis elegans sti-1 gene Proteins 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 206010007134 Candida infections Diseases 0.000 description 1
- 208000008516 Capsule Opacification Diseases 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 241000223205 Coccidioides immitis Species 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 206010011715 Cyclitis Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 201000000077 Cysticercosis Diseases 0.000 description 1
- 206010058202 Cystoid macular oedema Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 102100020977 DnaJ homolog subfamily A member 1 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010015084 Episcleritis Diseases 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241001539473 Euphoria Species 0.000 description 1
- 206010015535 Euphoric mood Diseases 0.000 description 1
- 201000010479 Fuchs' heterochromic uveitis Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 description 1
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 description 1
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 208000032456 Hemorrhagic Shock Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000003809 Herpes Zoster Ophthalmicus Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 101000931227 Homo sapiens DnaJ homolog subfamily A member 1 Proteins 0.000 description 1
- 101000654725 Homo sapiens Histone-lysine N-methyltransferase SETD2 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 101150065069 Hsp90b1 gene Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 208000019025 Hypokalemia Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000000521 Immunophilins Human genes 0.000 description 1
- 108010016648 Immunophilins Proteins 0.000 description 1
- 206010022557 Intermediate uveitis Diseases 0.000 description 1
- 208000010038 Ischemic Optic Neuropathy Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 206010024238 Leptospirosis Diseases 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000001344 Macular Edema Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000010164 Multifocal Choroiditis Diseases 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 241000187681 Nocardia sp. Species 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 241000243985 Onchocerca volvulus Species 0.000 description 1
- 108010058765 Oncogene Protein pp60(v-src) Proteins 0.000 description 1
- 206010030865 Ophthalmic herpes zoster Diseases 0.000 description 1
- 206010030924 Optic ischaemic neuropathy Diseases 0.000 description 1
- 206010031264 Osteonecrosis Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 201000010183 Papilledema Diseases 0.000 description 1
- 206010033708 Papillitis Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 201000002154 Pterygium Diseases 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 208000032398 Retinal pigment epitheliopathy Diseases 0.000 description 1
- 206010038895 Retinal scar Diseases 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 241000277289 Salmo salar Species 0.000 description 1
- 241000608343 Sarcophaga crassipalpis Species 0.000 description 1
- 201000000860 Secondary syphilis Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 208000014286 Serpiginous choroiditis Diseases 0.000 description 1
- 206010049771 Shock haemorrhagic Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 206010041736 Sporotrichosis Diseases 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 1
- 241000187180 Streptomyces sp. Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010042742 Sympathetic ophthalmia Diseases 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 241000278713 Theora Species 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 241000244031 Toxocara Species 0.000 description 1
- 206010044269 Toxocariasis Diseases 0.000 description 1
- 102100024180 Transmembrane emp24 domain-containing protein 10 Human genes 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 208000034700 Vitreous opacities Diseases 0.000 description 1
- 208000029977 White Dot Syndromes Diseases 0.000 description 1
- 0 [1*]C1/C=C\C=C(/C)C(=O)NC2=CC(=O)C([4*])=C(C2=O)C([3*])C(C)CC(OC)C([2*])C(C)/C=C(\C)C1OC(N)=O Chemical compound [1*]C1/C=C\C=C(/C)C(=O)NC2=CC(=O)C([4*])=C(C2=O)C([3*])C(C)CC(OC)C([2*])C(C)/C=C(\C)C1OC(N)=O 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 208000037855 acute anterior uveitis Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003732 agents acting on the eye Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 208000002205 allergic conjunctivitis Diseases 0.000 description 1
- 108010048418 alpha Subunit Hypoxia-Inducible Factor 1 Proteins 0.000 description 1
- 102000009120 alpha Subunit Hypoxia-Inducible Factor 1 Human genes 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 102000001307 androgen receptors Human genes 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 201000007058 anterior ischemic optic neuropathy Diseases 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003972 antineoplastic antibiotic Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000024998 atopic conjunctivitis Diseases 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 108091006004 biotinylated proteins Proteins 0.000 description 1
- 206010072959 birdshot chorioretinopathy Diseases 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 201000003984 candidiasis Diseases 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- 201000004709 chorioretinitis Diseases 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000001886 ciliary effect Effects 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 201000003486 coccidioidomycosis Diseases 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 229940124570 cycloplegic agent Drugs 0.000 description 1
- 201000010206 cystoid macular edema Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 230000004090 etiopathogenesis Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 201000010476 glaucomatocyclitic crisis Diseases 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000000687 hydroquinonyl group Chemical class C1(O)=C(C=C(O)C=C1)* 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 239000000815 hypotonic solution Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000006028 immune-suppresssive effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000002134 immunopathologic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 201000006334 interstitial nephritis Diseases 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 208000002042 onchocerciasis Diseases 0.000 description 1
- 229940023490 ophthalmic product Drugs 0.000 description 1
- 201000002166 optic papillitis Diseases 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000007407 panuveitis Diseases 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 208000011906 peptic ulcer disease Diseases 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 208000007232 portal hypertension Diseases 0.000 description 1
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 208000024896 potassium deficiency disease Diseases 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 230000004063 proteosomal degradation Effects 0.000 description 1
- 201000004421 pseudomembranous conjunctivitis Diseases 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 208000009169 relapsing polychondritis Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 108010051423 streptavidin-agarose Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 238000009121 systemic therapy Methods 0.000 description 1
- 208000004441 taeniasis Diseases 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 206010044325 trachoma Diseases 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
Definitions
- This invention relates to methods of treating inflammatory eye disease.
- Uveitis is one of the leading causes of blindness in the world (Nussenblatt, Int. Ophthalmol. 14:303-308 (1990)). It has been estimated that uveitis accounts for 10-15% of all cases of total blindness in the USA, with the majority of patients of working age (20-50 years old). Severe vision-threatening complications include cystoid macular edema, secondary glaucoma, secondary cataract, vitreous opacities, and retinal scars (Nussenblatt et al., Uveitis, Fundamentals and Clinical Practice, 2nd ed. (Mosby, St. Louis, 1996)).
- the invention described herein is based, in part, on the discovery that administration of an inhibitor of Heat shock protein 90 (Hsp90), e.g., geldanamycin, in a rat model of endotoxin-induced uveitis (EIU) decreases leukocyte infiltration of the retinal tissue, decreases Vascular Endothelial Growth Factor (VEGF), Nuclear Factor Kappa B (NF- ⁇ B), and Tumor Necrosis Factor alpha (TNF- ⁇ ) levels, and consequently reduces the breakdown of the blood-retinal barrier that is a common result of uveitis.
- Hsp90 Heat shock protein 90
- EIU endotoxin-induced uveitis
- the invention provides methods for treating uveitis in a subject, by administering to the subject a therapeutically effective amount of an inhibitor of Hsp90.
- “treating” includes any therapy that is administered either after the disease is diagnosed, or before the subject is diagnosed in a subject at risk for getting uveitis, that can, e.g., ameliorate a symptom of, prevent, and/or delay the development or progression of, uveitis.
- Risk factors for development of uveitis include a history of an autoimmune disease, infection, or toxin exposure. Uveitis in one eye may be a risk factor for development of uveitis in the other eye.
- the invention also provides therapeutic compositions that include one or more inhibitors of Hsp90 and a carrier, and are specially formulated for administration in the eye. Also included are kits including the therapeutic compositions and instructions for administering the inhibitor to an individual to treat uveitis.
- Hsp90 inhibitor is a compound that disrupts the structure and/or function of an Hsp90 chaperone protein and/or a protein that is dependent on Hsp90.
- an Hsp90 inhibitor can be a member of the ansamycin family, e.g., an ansamycin antibiotic such as geldanamycin or a geldanamycin analog such as 17-Allylamino-17-demethoxygeldanamycin (17AAG); a macbecin such as macbecin I or macbecin II or an analog thereof; herbimycin or an analog thereof, radicicol or a radicicol analog; or a derivative or analog thereof.
- an ansamycin antibiotic such as geldanamycin or a geldanamycin analog such as 17-Allylamino-17-demethoxygeldanamycin (17AAG)
- a macbecin such as macbecin I or macbecin II or an analog thereof
- herbimycin or an analog thereof, radicicol or a radicicol analog or a derivative or analog thereof.
- the inhibitor of Hsp90 is administered intravenously, orally, intravitreally, transclerally, subtenons, subcutaneously, or topically.
- the inhibitor of Hsp90 is administered in conjunction with a second therapeutic modality, e.g., systemic or local steroid therapy, or an immune suppressive therapy.
- a second therapeutic modality e.g., systemic or local steroid therapy, or an immune suppressive therapy.
- the inhibitor of Hsp90 is administered in conjunction with a cycloplegic or mydriatic agent.
- the inhibitor of Hsp90 is in a pharmaceutical composition further comprising a carrier.
- uveitis refers to inflammation within the eye.
- the uvea includes the iris at the front of the eye, the ciliary body, and the choroid toward the back of the eye.
- Uveitis includes, but is not limited to, ulceris (inflammation of the iris), cyclitis (inflammation of the ciliary body) anterior uveitis or iridocyclitis (both the iris and the ciliary body are involved), choroiditis or posterior uveitis (inflammation of the choroid), chorioretinitis (the retina is inflamed adjacent to the choroids), panuveitis (inflammation of the iris, ciliary body and choroid), and pars planitis (the inflammation is especially pronounced at the pars plana, an area just behind the ciliary body).
- a “geldanamycin analog” is an antineoplastic antibiotic drug that belongs to the family of drugs called ansamycins.
- the ansamycins cause disruption of Hsp90-client protein complexes and lead to proteosome-mediated degradation of client proteins.
- Exemplary analogs include macbecin I (see, e.g., Ono et al., Gann. 73(6):938-44 (1982); Tanida et al., J. Antibiot. (Tokyo) 33(2):199-204 (1980)) and 17-Allylamino-17-demethoxygeldanamycin (17AAG).
- a “derivative” of a parent compound is a compound that is structurally related to the parent compound, and retains Hsp90-binding and inhibition activity. Suitable derivatives can be prepared through chemical manipulation and/or genetic engineering. Compounds having improved solubility properties and compounds having conformations optimized to bind Hsp90 are also provided.
- An “analog” is structural derivative of a parent compound that differs from it by a single element.
- FIG. 1 is a Western blot showing that geldanamycin treatment does not affect total CD14 expression in leukocytes in rats with endotoxin-induced uveitis (ER;).
- LPS lipopolysaccharide
- DMSO dimethyl sulfoxide
- GA geldanamycin.
- FIG. 2 is a Western blot showing that geldanamycin treatment decreases expression of the membrane form of CD14 in leukocytes in rats with EIU.
- FIG. 3 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal hypoxia-inducible factor 1, alpha subunit (HIF-1a) levels in rats with EIU.
- FIG. 4 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal Nuclear Factor kappa B (NF- ⁇ B) levels in rats with EIU.
- NF- ⁇ B retinal Nuclear Factor kappa B
- FIG. 5 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of Vascular Endothelial Growth Factor (VEGF) levels in rats with EIU.
- VEGF Vascular Endothelial Growth Factor
- FIG. 6 is a bar graph illustrating that geldanamycin treatment decreases lipopolysaccharide (LPS)-induced upregulation of Tumor Necrosis Factor alpha (TNF- ⁇ ) levels in rats with EIU.
- LPS lipopolysaccharide
- FIG. 7 is a bar graph illustrating that geldanamycin reduces myeloperoxidase activity in leukocytes from rats with EIU. MPO, myeloperoxidase.
- FIG. 8 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal intercellular adhesion molecule 1 (ICAM-1) levels in rats with EIU.
- IAM-1 retinal intercellular adhesion molecule 1
- FIGS. 9-11 are bar graphs illustrating the effect of geldanamycin treatment on leukocyte adhesion in rats with EIU in both arteries and veins ( FIG. 9 ); veins ( FIG. 10 ); or arteries ( FIG. 11 ).
- GA geldanamycin.
- FIG. 12 is a bar graph illustrating that geldanamycin decreases blood-retinal barrier breakdown in EIU. GA, geldanamycin.
- Described herein are methods for treating uveitis using Hsp90 inhibitors, as well as compositions including such inhibitors that are specially formulated for use in the eye.
- Uveitis or inflammation of the uvea, includes, but is not limited to, uveitis associated with the diseases listed in Table 1.
- Uveitis may cause vague clinical signs that may include blinking, squinting, watery discharge from the eye, and/or light sensitivity (photophobia), without any obvious changes to the eye itself.
- the cornea which is normally clear, may appear dull or hazy blue due to uveitis. In some cases, the cornea becomes cloudy due to white blood cells accumulating on the inside of the cornea. The conjunctiva may become red and swollen. In some cases of uveitis, the iris may become red or change color.
- Uveitis is typically diagnosed by an examination of structures of the eye.
- Uveitis can include, but is not limited to, acute anterior uveitis, e.g., associated with ankylosing spondylitis, Reiter's syndrome, herpes zoster ophthalmicus or sarcoidosis; chronic uveitis, e.g., from Still's disease, or Fuch's heterochromic iridocyclitis; intermediate uveitis, e.g., from Whipple's disease or multiple sclerosis; posterior uveitis, e.g., associated with Bechet's disease, AIDS, CMV, toxoplasmosis, cryptococcidomycosis, secondary syphilis, atypical mycobacteria, toxocara, tuberculosis, or acute retinal necrosis; retinal pigment epitheliopathies (e.g., acute multifocal placoid epitheliopathy); Vogt-Koyanagi-Harada syndrome; sympathetic opt
- steroid therapy has various side effects such as increased intraocular pressure in “steroid responders,” and cataract formation from local therapy, to serious side effects from systemic therapy (severe infections, hyperglycemia, edema, osteonecrosis, myopathy, peptic ulcer disease, hypokalemia, osteoporosis, euphoria, psychosis, myasthenia gravis, and growth suppression).
- cycloplegics which paralyze the ciliary muscles and cause dilatation of the pupil, useful in providing pain relief.
- immunosuppressants can be used, such as cyclosporin A or azathioprine (Rosenbaum and George, Current Ocular Therapy 5:519-21 (2000)).
- present treatments are successful in some cases, success is often limited by the required long term use, resistance in some patients, and significant side effects (Id.).
- the methods described herein include identifying a subject with uveitis, and administering a therapeutically effective amount of an Hsp90 inhibitor to the subject.
- the administration is ocular, e.g., for application into or around the eye, e.g., by injection into the eye, or by eye drops.
- the methods include co-administration of an Hsp90 inhibitor with a conventional treatment, e.g., a steroid.
- the experiments described herein utilized geldanamycin in a rat model of endotoxin-induced uveitis (EIU) and found that it decreased leukocyte infiltration of the retinal tissue, it decreased NF- ⁇ B, VEGF and TNF- ⁇ levels and consequently reduced the breakdown of the blood-retinal barrier.
- EIU endotoxin-induced uveitis
- Geldanamycin a benzoquinone ansamycin antibiotic, is a natural inhibitor of Hsp90, a chaperone molecule that interacts with a variety of intracellular client proteins to facilitate their proper folding, prevent misfolding and preserve their 3-dimensional conformation in a functionally competent state (Isaacs et al., Cancer Cell 3:213-7 (2003)).
- Hsp90 a chaperone molecule that interacts with a variety of intracellular client proteins to facilitate their proper folding, prevent misfolding and preserve their 3-dimensional conformation in a functionally competent state
- geldanamycin Through its inhibitory effect on Hsp90 activity, geldanamycin affects several key growth factor-initiated signal transduction pathways, including suppression of cell surface receptors, induction of misfolding and subsequent proteasomal degradation and depletion of crucial kinases and transcription factors (Goetz et al., Ann Oncol. 14(8):1169-76 (2003).
- Geldanamycin represents a novel anti-inflammatory compound, that targets multiple intracellular pathways important for cellular immune response and inhibits the expression of inflammatory factors as TNF-alpha. It has also been shown that geldanamycin suppresses cardinal manifestations of autoimmune encephalomyelitis in an animal model by inhibiting key inflammatory mediators such as nitric oxide, and attenuates the oxidative injury in hemorrhagic shock by restoring a defective inflammatory response in vivo (Murphy et al., J. Neurosci. Res. 67(4):461-70 (2002); Pittet et al., J. Physiol. 538(Pt 2):583-97 (2002); Poulaki et al., Am J Pathol. 165(2):457-69 (2004)).
- 17AAG is in Phase II trials for various neoplasias and has demonstrated excellent efficacy below the maximum tolerable dose (Maloney and Workman, Expert Opin. Biol. Ther. 2(1):3-24 (2002)).
- 17AAG is a small molecule that can be administered intravenously, orally, intravitreally, transclerally, subtenons, subcutaneously, or topically, e.g., as an ointment. Also, it can be encapsulated in microspheres or liposomes or placed in a device for longer release, e.g., an ocular implant. As shown herein, 17AAG reduces the expression of permeability factors as VEGF and TNF- ⁇ ; these factors may cause the ocular damage consistent with uveitis (Rosenbaum and George, Uveitis. Current Ocular Therapy 5:519-21 (2000)).
- Hsp90s The eukaryotic heat shock protein 90s (Hsp90s) are ubiquitous chaperone proteins that bind and hydrolyze ATP. Hsp90s are believed to be involved in folding, activation and assembly of a number of client proteins, including proteins involved in signal transduction, cell cycle control, and transcriptional regulation.
- Hsp90 proteins are highly conserved in nature, and include Hsp90 alpha and beta, Grp94, and Trap-1.
- NCBI accession Nos. NP — 005339.2 and NP — 001014390.1 Homo sapiens alpha and beta Hsp90, respectively
- P07901 Mus musculus
- NP — 001004082.2 AAT99568.1
- Rattus norvegicus AAA36992.1
- Cricetulus griseus JC1468 and HHCH90 ( Gallus gallus );
- AAF69019.1 Sarcophaga crassipalpis ); AAC21566.1 ( Danio rerio ), AAD30275.1 ( Salmo salar ), NP — 999138.1 ( Sus scrofa ), NP — 015084.1 ( Saccharomyces cerevisiae ), and CAC29071 (frog).
- the Hsp90 inhibitors can be specifically directed against an Hsp90 of the specific host patient, or can be identified based on reactivity against an Hsp90 homolog from a different species, or an Hsp90 variant.
- the inhibitors can be, for example, ring-structured antibiotics, e.g., benzoquinone ansamycins, or other types of molecules, e.g., antisense nucleic acids, or molecules such as radicicol and analogs thereof.
- Hsp90 In vivo and in vitro studies indicate that without the aid of co-chaperones Hsp90is unable to fold or activate proteins.
- Hsp90 requires Hsp70 and p60/Hop/Sti1 (Caplan, Trends in Cell Biol., 9:262-68, (1999)).
- Hsp90 may interact with Hsp70 and its co-chaperones.
- Other co-chaperones associated with Hsp90s in higher eukaryotes include Hip, Bag1, Hsp40/Hdj2/Hsj1, immunophilins, p23, and p50 (Caplan, (1999) supra).
- the Hsp90 inhibitors are small molecules.
- small molecules refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. In general, small molecules useful for the invention have a molecular weight of less than 5,000 Daltons (Da).
- Small molecule inhibitors based on purine and pyrazole scaffolds are known in the art, e.g., the purine-based small molecules CCT018159 and analogs thereof (Aherne et al., Proc. AACR 44, Abstract #4002 (2004); Wright et al., Chem. Biol. 11(6):775-85 (2004)).
- Hsp90 inhibitors are known in the art, including compounds that bind to the ATP/ADP-binding pocket in the geldanamycin-binding domain of Hsp90that is highly conserved across species (residues 9-232, see Stebbins et al., Cell, 89:239-250 (1997); Schulte et al., Cell Stress Chaperones 3(2):100-8 (1998). This results in the depletion of Hsp90 client proteins, particularly kinases that are involved in signal transduction and oncogenesis (including c-Raf1, akt and cdk4) together with mutant p53.
- Hsp90 inhibitors Two main classes of Hsp90 inhibitors are the benzoquinone ansamycin antibiotics, including benzoquinone ansamycin analogs such as herbimycin A, macbecin I, geldanamycin and 17-amino derivatives of geldanamycin, e.g., 17-(allylamino)-17-desmethoxygeldana-mycin (17AAG), and another natural product, radicicol.
- benzoquinone ansamycin antibiotics including benzoquinone ansamycin analogs such as herbimycin A, macbecin I, geldanamycin and 17-amino derivatives of geldanamycin, e.g., 17-(allylamino)-17-desmethoxygeldana-mycin (17AAG), and another natural product, radicicol.
- Hsp90 inhibitors e.g., small molecule Hsp90 inhibitors
- target based screening structure-based rational design, and high throughput screening
- Methods for identifying Hsp90 inhibitors are known in the art. See, e.g., Neckers, Curr. Med. Chem. 10(9):733-9 (2003); Rowlands et al., Anal. Biochem. 327(2):176-83 (2004); Dymock et al., Exp. Op. Ther. Patents 14(6):837-847 (2004); Workman, Cancer Letters 206:149-157 (2004); Aherne et al., Methods. Mol. Med. 85:149-61 (2003); and Chiosis et al., Curr. Cancer Drug Targets 3(5):371-6 (2003).
- Geldanamycin is a benzoquinone ansamycin antibiotic produced by Streptomyces hygroscopicus that exhibits a potent antitumor activity.
- Geldanamycin binds specifically to heat shock protein 90 (Hsp90), leading to the destabilization and degradation of its client proteins (Whitesell et al., Proc. Natl. Acad. Sci. USA 91(18):8324-8 (1994)).
- Hsp90 acts as a molecular chaperone, and is critical for the folding, assembly and activity of multiple mutated and overexpressed signaling proteins that promote the growth and/or survival of tumor cells.
- Hsp90 client proteins destabilized by Geldanamycin and 17AAG include steroid receptors such as androgen and estrogen receptors; tyrosine kinases such as v-Src, Bcr-Ab1, erbB2; transcription factors such as p53, hypoxia-inducible factor 1a (HIF-1a), and EF-2; and serine/threonine kinases such as Raf-1, and Akt (Neckers, Trends Mol. Med. 8(4 Suppl):S55-61 (2002)).
- steroid receptors such as androgen and estrogen receptors
- tyrosine kinases such as v-Src, Bcr-Ab1, erbB2
- transcription factors such as p53, hypoxia-inducible factor 1a (HIF-1a), and EF-2
- serine/threonine kinases such as Raf-1, and Akt
- Geldanamycin analogs suitable for use in the methods described herein include, but are not limited to, geldanamycin and 17-amino derivatives of geldanamycin, e.g., 17AAG (see formula I, below). 17AAG and analogs thereof are described in U.S. Ser. Nos. 10/212,962 and 10/461,194; see also Sasaki et al., U.S. Pat. No. 4,261,989 for methods of synthesis of 17AAG.
- Other 17-amino derivatives of geldanamycin include 17-(2-dimethylaminoethyl)amino-17-desmethoxy-geldanamycin (17-DMAG), see Snader et al., U.S.
- 17AAG (see Formula II) is a less toxic and more stable analog of geldanamycin (GA) (Schulte and Neckers, Cancer Chemother. Pharmacol. 42(4):273-9 (1998)). Though 17AAG binding to Hsp90 is weaker than GA, 17AAG displays similar antitumor effects than GA and a better toxicity profile. 17AAG is currently in phase I clinical trials as an anti-tumor agent in several centers worldwide.
- Macbecin I and II were isolated from the culture broth of Nocardia sp. No. C-14919. Macbecins I and II belong to the ansamycin group and have a benzoquinone and hydroquinone nucleus, respectively. (Ono et al., Gann. 73(6):938-44 (1982); Muroi et al., J. Antibiot. (Tokyo) 33(2):205-12 (1980); Tanida et al., J Antibiot (Tokyo) 33(2):199-204 (1980)).
- Herbimycin A is a benzochinoid ansamycin antibiotic isolated from Streptomyces sp. MH237-CF8, which specifically inhibits the phosphorylation of tyrosine residues catalyzed by various protein kinases. Omura et al., J. Antibiot. (Tokyo) 32(4):255-61 (1979). Derivatives of herbimycin have also been described, including 8,9-Epoxide, 7,9-cyclic carbamate, 17 or 19-amino derivatives, halogenated and other related derivatives; see, e.g., Shibata et al., J. Antibiot.
- Radicicol is a macrocyclic antibiotic produced by fungi, was originally isolated many years ago, and was described as tyrosine kinase inhibitor. Radicicol depletes the Hsp90 client signaling molecules in cells, and thus inhibit the signal transduction pathway. Radicicol binds directly to the N terminal ATP/ADP binding site of Hsp90. Although radicicol itself has little or no activity in animals because of instability, a number of derivatives are known and have been shown to be active, including oxime derivatives, ester derivatives, palmitoyl derivatives, and biotinylated derivatives (Soga et al., Current Cancer Drug Targets, 3(5):359-369 (2003); Ki, J. Biol. Chem., 275(50):39231-39236 (2000)).
- the invention includes pharmaceutical compositions including a Hsp90 inhibitor and a pharmacologically acceptable carrier; in some embodiments, the composition is specially adapted for use in the eye.
- pharmaceutically acceptable carrier includes saline, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
- the Hsp90 inhibitor may not be soluble in saline alone, and can be prepared as a suspension, or in a hydrophobic solvent.
- a pharmaceutical composition is typically formulated to be compatible with its intended route of administration, e.g., intravenous, oral, intravitreal, transcleral, subtenon, subcutaneous, or topically, e.g., as an ocular ointment.
- Supplementary active compounds can also be incorporated into the compositions.
- the Hsp90inhibitor is administered in conjunction with another treatment modality, e.g., a known treatment modality including a systemic or local steroid, or an immunosuppressant agent, e.g., as described herein.
- the Hsp90 inhibitor is administrated with an agent that induces paralysis of the muscles of accommodation, e.g., cycloplegic and/or mydriatic agent.
- the pharmaceutical composition comprising the Hsp90 inhibitor is in a form suitable for local delivery to the uveal area, e.g., an injectable or implantable form.
- the composition is especially adapted for administration into or around the eye.
- a composition can be adapted to be used as eye drops, or injected into the eye, e.g., using peribulbar or intravitreal injection.
- Such compositions should be sterile and substantially endotoxin-free, and within an acceptable range of pH. Certain preservatives are thought not to be good for the eye, so that in some embodiments a non-preserved formulation is used.
- Formulation of eye medications is known in the art, see, e.g., Ocular Therapeutics and Drug Delivery: A Multi - Disciplinary Approach , Reddy, Ed. (CRC Press 1995); Kaur and Kanwar, Drug Dev. Ind. Pharm.
- An effective amount is a dosage of the Hsp90 inhibitor sufficient to provide a medically desirable result.
- the effective amount will vary with the particular condition being treated, the age and physical condition of the subject being treated, the severity of the condition, the duration of the treatment, the nature of the concurrent therapy (if any), the specific route of administration and the like factors within the knowledge and expertise of the health practitioner. For example, an effective amount can depend upon the degree of severity of the uveitis.
- the Hsp90 inhibitor are used to prevent the development or progression of uveitis, that is, they are used prophylactically in subjects at risk of developing uveitis, or in subjects that already have uveitis, but whose uveitis is likely to progress, e.g., to a more severe form of the disease.
- an effective amount is an amount that can lower the risk of, slow or prevent altogether the development or progression of uveitis, or can ameliorate a symptom of uveitis.
- doses of Hsp90 inhibitors can be from about 0.01 mg/kg per day to 1000 mg/kg per day. It is expected that doses ranging from 50-500 mg/kg will be suitable, when administered systemically; lower doses will likely be used when administered locally to the ocular or uveal area. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day can be used to achieve appropriate systemic levels of compounds.
- the dosage and schedule will depend on the Hsp90 inhibitor selected; a skilled practitioner would be able to select a regimen appropriate for the particular agent and individual.
- a number of Hsp90 inhibitors are known in the art, e.g., as described herein, and can be used in the methods described herein.
- a variety of administration routes are available. The particular mode selected will depend, of course, upon the particular drug selected, the severity of the condition being treated and the dosage required for therapeutic efficacy.
- the methods described herein, generally speaking, can be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects.
- modes of administration include oral, rectal, topical, nasal, transdermal, or parenteral routes.
- parenteral includes subcutaneous, intravenous, intraocular, intravitreal, intramuscular, or infusion. Local administration to the macular area can also be used.
- the invention includes the use of implantable formulations, e.g., Hsp90 inhibitors such as geldanamycin analogs that are contained in a slow-release formula that can be implanted at or near the uveal area.
- implantable formulations e.g., Hsp90 inhibitors such as geldanamycin analogs that are contained in a slow-release formula that can be implanted at or near the uveal area.
- Oral administration will typically be used for prophylactic treatment because of the convenience to the patient as well as the dosing schedule. Since geldanamycin itself is associated with serious side effects, local administration will likely be preferred when geldanamycin is used.
- the delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of the Hsp90inhibitor, increasing convenience to the subject and the physician.
- Many types of release delivery systems are available and known to those of ordinary skill in the art. They include polymer base systems such as poly(lactide-glycolide), copolyoxalates, polycaprolactones, polyesteramides, polyorthoesters, polyhydroxybutyric acid, and polyanhydrides. Microcapsules of the foregoing polymers containing drugs are described in, for example, U.S. Pat. No. 5,075,109.
- Delivery systems also include non-polymer systems that are: lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono- di- and tri-glycerides; hydrogel release systems; sylastic systems; peptide based systems; wax coatings; compressed tablets using conventional binders and excipients; partially fused implants; and the like.
- lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono- di- and tri-glycerides
- hydrogel release systems such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono- di- and tri-glycerides
- sylastic systems such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono- di- and tri-glycerides
- peptide based systems such as fatty acids
- wax coatings such as those described in U.S. Pat. Nos.
- Long-term sustained release implant may be particularly suitable for treatment of chronic conditions.
- Long-term release means that the implant is constructed and arranged to delivery therapeutic levels of the active ingredient for at least 30 days, e.g., 60 days.
- Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.
- kits including a Hsp90 inhibitor, e.g., a geldanamycin analog, and instructions (e.g., on a label or package insert such as instructions to the patient or to the clinician) for administering the Hsp90 inhibitor to an individual in order to treat, prevent, and/or delay the development or progression of uveitis.
- a Hsp90 inhibitor e.g., a geldanamycin analog
- instructions e.g., on a label or package insert such as instructions to the patient or to the clinician
- an Hsp90 inhibitor to treat uveitis can be confirmed using methods known in the art.
- the methods include administering an Hsp90 inhibitor, e.g., an Hsp90 inhibitor known in the art or identified by a method known in the art, to an animal model of uveitis.
- Hsp90 inhibitor e.g., an Hsp90 inhibitor known in the art or identified by a method known in the art
- Such models are known in the art and include endotoxin-induced uveitis (EIU), e.g., in mammals including rodents (such as rats and mice), lagomorphs, or pigs.
- EIU endotoxin-induced uveitis
- leukocyte adhesion which can be evaluated in vitro with quantitative endothelial cell-neutrophil adhesion assays and ex vivo with concanavalin A lectin staining of retinal flatmounts
- leukocyte activation which can be quantified with a myeloperoxidase (MPO) activity assay
- MPO myeloperoxidase
- Retinal levels of VEGF, TNF- ⁇ and leukocyte total levels of the LPS receptor CD14 can also be quantified, e.g., using an ELISA-based method; membranous CD14 levels can also be assessed, e.g., using membrane precipitations with subsequent immunoblotting.
- Retinal activity of NF- ⁇ B and HIF-1a can also be quantified, e.g., using a modified ELISA method as known in the art; see, e.g., Poulaki et al., Am. J. Pathol. 165(2):457-69 (2004); Poulaki et al., J. Clin. Invest. 109(6):805-15 (2002).
- Heat-shock protein 90 is the central component of a ubiquitous molecular chaperone complex that interacts with a variety of intracellular client proteins to facilitate their proper folding, prevent misfolding or aggregation, and preserve their 3-dimensional conformation to a functionally competent state.
- the object of the present study was to investigate the anti-inflammatory effects of GA in endotoxin-induced uveitis (EIU) in rats.
- leukocyte adhesion was evaluated in vitro with quantitative endothelial cell-neutrophil adhesion assays and ex vivo with concanavalin A lectin staining of retinal flatmounts, as follows. After the induction of deep anesthesia in the rat, the chest cavity was opened, and a 14-gauge perfusion cannula was introduced to the left ventricle. The right atrium was opened with a 12-gauge needle to achieve outflow. With the heart providing the motive force, 250 mL/kg PBS was administered from the perfusion cannula to remove erythrocytes and non-adherent leukocytes.
- Fixation was then achieved by perfusion with 1% paraformaldehyde and 0.5% glutaraldehyde at a pressure of 100 mm Hg. At this point, the heart stopped beating. A systemic blood pressure of 100 mm Hg was maintained by perfusing a total volume of 200 mL/kg over 3 minutes. Inhibition of nonspecific binding with 1% albumin in PBS (total volume 100 mL/kg) was followed by perfusion with FITC-coupled concanavalin A lectin (20 ⁇ g/mL in PBS [pH 7.4], total concentration, 5 mg/kg body weight; Vector Laboratories, Burlingame, Calif.), which stained adherent leukocytes and the vascular endothelium.
- Lectin staining was followed by 1% bovine serum albumin (BSA)/PBS perfusion for 1 minute, and PBS perfusion alone for 4 minutes, to remove excess concanavalin A.
- BSA bovine serum albumin
- the retinas were flatmounted in a water-based fluorescence anti-fading medium (Fluoromount; Southern Biotechnology, Birmingham, Ala.) and imaged by fluorescence microscopy (Axioplan, FITC filter, 40 ⁇ ; Carl Zeiss, Oberkochen, Germany). Only whole retinas in which the peripheral collecting vessels of the ora serrata were visible were used for analysis.
- Leukocyte location was scored as being either arteriolar, venular, or capillary. The total number of adherent leukocytes per retina was counted. All experiments were performed in a masked fashion.
- Leukocyte activation was quantified with a myeloperoxidase (MPO) activity assay and blood-retinal barrier breakdown was assessed by Evans Blue extravasation.
- Animals were anesthetized and Evans blue dye (Sigma) dissolved in normal saline (30 mg/ml) was injected through the tail vein at a dosage of 45 mg/kg body weight. After the dye had circulated for 120 minutes, the chest cavity was opened and blood samples were obtained from the left ventricle to assess the Evans blue plasma concentration. These blood samples were centrifuged at 16,000 g for 5 minutes. The supernatant was diluted to 1/10,000th of the initial concentration in formamide (Sigma). The absorbance of Evans blue was measured by spectrophotometry as described below.
- MPO myeloperoxidase
- the rats were perfused through the left ventricle with 20 ml citrate buffer (0.05 M, pH 3.5), 30 ml paraformaldehyde 4% in citrate buffer, and 20 ml citrate buffer at a physiological pressure of 120 mmHg.
- the retinas were then carefully dissected under an operating microscope. After measurement of the retinal dry weight, Evans blue was extracted by incubating each retina in 120 ⁇ l formamide for 18 hours at 70° C.
- the extract was filtered through a centrifugal filter tube (Ultrafree-MC 30,000 NMWL, Millipore) at 2,500 g for 2 hours at room temperature. Then, 70 ⁇ l of the extract were used for spectrophotometric measurement.
- Retinal levels of VEGF, TNF- ⁇ , and leukocyte total levels of the LPS receptor CD14 were quantified with an ELISA method, whereas membranous CD14 levels were assessed with membrane precipitation and subsequent immunoblotting.
- ELISA ELISA
- one day after the administration of the LPS rats were euthanized and retinal lysates were prepared on ice in RIPA lysis buffer (1% NP-40, 0,5% deoxycholate (DOC), 1% SDS, 150 mmol/L NaCl, 50 mmol/L Tris-HCl [pH 8.0]) containing sodium fluorid, NaVO5, phenylmethylsulfonylfluorid (PMSF), leupeptin and aprotinin.
- RIPA lysis buffer 1% NP-40, 0,5% deoxycholate (DOC), 1% SDS, 150 mmol/L NaCl, 50 mmol/L Tris-HCl [pH 8.0]
- Protein concentration was determined by Bradford assay (Protein Assay, Bio-Rad, Hercules, Calif.). Samples containing the same amount of protein were assayed for their VEGF, TNF- ⁇ and CD14 levels with a commercially available kit (R&D systems, Calif.) as per the instructions of the manufacturer.
- peripheral blood was obtained from diabetic and control rats anesthetized with 50 mg/kg pentobarbital via heart puncture with a 16-gauge EDTA flashed needle.
- Neutrophils were isolated from whole blood by density gradient centrifugation with Histopaque® 1083 cell separation media(Sigma, St Louis, Mo.) according to the manufacturer's instructions.
- the red blood cells were lysed with a hypotonic solution (ammonium sulphate).
- the preparations contained >85% monocytes as determined by eosin and methylene blue staining (Leukostat Staining System, Fisher Scientific, Pittsburgh, Pa.).
- cell surface proteins were biotinylated by incubating in 0.5 mg/ml Sulfo-NHS-LC-Biotin (Pierce, Rockford, Ill.) in PBS for 30 minutes at room temperature. Sulfo-NHS-LC-Biotin does not cross the cell membrane due to its negative charge, assuring that intracellular proteins are not biotinylated.
- the cells were washed 3 times in cold phosphate buffered saline (PBS), scraped, centrifuged briefly and lysed for 30 min on ice in a lysis buffer (50 mM Tris-HCl, pH 8, containing 120 mM NaCl, 1% Igepal), supplemented with the Complete-TM mixture of proteinase inhibitors (Boehringer-Mannheim).
- PBS cold phosphate buffered saline
- a lysis buffer 50 mM Tris-HCl, pH 8, containing 120 mM NaCl, 1% Igepal
- the samples were cleared by centrifugation (14,000 rpm, 30 min, 40° C.) and assessed for protein concentration.
- Biotinylated proteins, representing the cell surface proteins were immunoprecipitated with Streptavidin-agarose for 2 hours at 40° C., electrophoresed in an SDS-PAGE and CD14 levels were detected by Western Blotting as described.
- NF- ⁇ B activation was analyzed using the Trans-AM NF- ⁇ B c-jun transcription factor assay kit (Active Motif, Carlsbad, Calif.) according to the manufacturer's instructions, as previously described (Mitsiades et al., Proc. Natl. Acad. Sci.
- the nuclear extracts were incubated in 96-well plates coated with immobilized oligonucleotides containing consensus binding sites for the respective transcription factors. Transcription factor binding to the target oligonucleotide was detected by incubation with respective specific primary monoclonal antibodies, visualized by anti-IgG horseradish peroxidase conjugate and developing solution, and quantified at 450 nm with a reference wavelength of 655 nm.
- Binding Assays for HIF-1 ⁇ were performed as follows. The HIF-1 ⁇ -binding site and the HIF-1 ⁇ ancillary-binding site that exists in the VEGF promoter (sequence) was added at the 3′ end of a 100-bp random sequence chosen for the absence of the HIF-1 consensus sequence. The resulting 122-bp probe was produced by polymerase chain reaction using a biotinylated forward primer and for the reverse primer the HIF-1 ⁇ -binding sequence. The polymerase chain reaction product was purified on ultracentrifugation membranes.
- the 5′ extremity of the probe is biotinylated and was linked to streptavidin-coated 96-well plates (Roche Diagnostics): 2 pmol of probe per well were incubated for 1 hour at 37° C. in 50 ⁇ l of phosphate-buffered saline (PBS). Plates were subsequently washed to remove the excess probe. Fifty ⁇ l of binding buffer were subsequently incubated with 20 ⁇ l of nuclear extracts in the wells coated with the probe, for 1 hour at room temperature with mild agitation.
- PBS phosphate-buffered saline
- the wells were subsequently washed with PBS supplemented with 0.1% Tween-20 and were incubated with a monoclonal antibody against HIF-1 ⁇ (Alexis Biochemicals) at a 1/1000 dilution in PBS with 1% nonfat dried milk, for 1 hour at room temperature. After the washes, the wells were incubated with a peroxidase-conjugated anti-mouse antibody (Southern Biotechnologies, Birmingham, Ala.) at a 1/1000 dilution in PBS with 1% nonfat dried milk, for 1 hour at room temperature.
- a peroxidase-conjugated anti-mouse antibody Southern Biotechnologies, Birmingham, Ala.
- the peroxidase reaction was developed with tetramethylbenzidine (100 ⁇ l; Biosource, Camarillo, Calif.) that was incubated for 10 minutes at room temperature, it was stopped with 100 ⁇ l of stop solution (Biosource), and it was read at 450 nm.
- tetramethylbenzidine 100 ⁇ l; Biosource, Camarillo, Calif.
- stop solution 100 ⁇ l of stop solution (Biosource)
- HIF-la transcription factor assay six animals were used from each group and retinas were not pooled.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention provides methods, kits and compositions for treating uveitis in a subject using Hsp90 inhibitors.
Description
- This application claims priority under 35 USC § 119(e) to U.S. Provisional Patent Application Ser. No. 60/566,493, filed on Apr. 28, 2004, the entire contents of which are hereby incorporated by reference.
- This invention relates to methods of treating inflammatory eye disease.
- Uveitis is one of the leading causes of blindness in the world (Nussenblatt, Int. Ophthalmol. 14:303-308 (1990)). It has been estimated that uveitis accounts for 10-15% of all cases of total blindness in the USA, with the majority of patients of working age (20-50 years old). Severe vision-threatening complications include cystoid macular edema, secondary glaucoma, secondary cataract, vitreous opacities, and retinal scars (Nussenblatt et al., Uveitis, Fundamentals and Clinical Practice, 2nd ed. (Mosby, St. Louis, 1996)).
- The etiopathogenesis of this group of diseases is largely unknown, but disturbances of immune mechanisms have been hypothesized to play a central role, and immunological abnormalities have been detected in many uveitis patients. In cases of endogenous uveitis where no infectious etiology can be identified, immunopathological findings from enucleated eyes point to autoimmune inflammatory responses as a cause (Bloch-Michel and Nussenblatt, Am. J. Ophthalmol. 103(2):234-5 (1987)). The points at which the inflammatory response may be successfully inhibited generally depend on whether the immune response was directed against host or foreign antigen in the tissue. When no overt infectious or neoplastic etiology is found, treatment may be directed towards dampening the resulting inflammatory cascade and hopefully reducing tissue damage.
- The invention described herein is based, in part, on the discovery that administration of an inhibitor of Heat shock protein 90 (Hsp90), e.g., geldanamycin, in a rat model of endotoxin-induced uveitis (EIU) decreases leukocyte infiltration of the retinal tissue, decreases Vascular Endothelial Growth Factor (VEGF), Nuclear Factor Kappa B (NF-κB), and Tumor Necrosis Factor alpha (TNF-α) levels, and consequently reduces the breakdown of the blood-retinal barrier that is a common result of uveitis.
- Thus, the invention provides methods for treating uveitis in a subject, by administering to the subject a therapeutically effective amount of an inhibitor of Hsp90. As used herein, “treating” includes any therapy that is administered either after the disease is diagnosed, or before the subject is diagnosed in a subject at risk for getting uveitis, that can, e.g., ameliorate a symptom of, prevent, and/or delay the development or progression of, uveitis. Risk factors for development of uveitis include a history of an autoimmune disease, infection, or toxin exposure. Uveitis in one eye may be a risk factor for development of uveitis in the other eye.
- The invention also provides therapeutic compositions that include one or more inhibitors of Hsp90 and a carrier, and are specially formulated for administration in the eye. Also included are kits including the therapeutic compositions and instructions for administering the inhibitor to an individual to treat uveitis.
- An “inhibitor of Hsp90” (also referred to herein as a “Hsp90 inhibitor”) is a compound that disrupts the structure and/or function of an Hsp90 chaperone protein and/or a protein that is dependent on Hsp90. In some embodiments, an Hsp90 inhibitor can be a member of the ansamycin family, e.g., an ansamycin antibiotic such as geldanamycin or a geldanamycin analog such as 17-Allylamino-17-demethoxygeldanamycin (17AAG); a macbecin such as macbecin I or macbecin II or an analog thereof; herbimycin or an analog thereof, radicicol or a radicicol analog; or a derivative or analog thereof.
- In some embodiments, the inhibitor of Hsp90 is administered intravenously, orally, intravitreally, transclerally, subtenons, subcutaneously, or topically.
- In some embodiments, the inhibitor of Hsp90 is administered in conjunction with a second therapeutic modality, e.g., systemic or local steroid therapy, or an immune suppressive therapy. In some embodiments, the inhibitor of Hsp90 is administered in conjunction with a cycloplegic or mydriatic agent.
- In some embodiments, the inhibitor of Hsp90 is in a pharmaceutical composition further comprising a carrier.
- As used herein, “uveitis” refers to inflammation within the eye. The uvea includes the iris at the front of the eye, the ciliary body, and the choroid toward the back of the eye. Uveitis includes, but is not limited to, iritis (inflammation of the iris), cyclitis (inflammation of the ciliary body) anterior uveitis or iridocyclitis (both the iris and the ciliary body are involved), choroiditis or posterior uveitis (inflammation of the choroid), chorioretinitis (the retina is inflamed adjacent to the choroids), panuveitis (inflammation of the iris, ciliary body and choroid), and pars planitis (the inflammation is especially pronounced at the pars plana, an area just behind the ciliary body).
- As used herein, a “geldanamycin analog” is an antineoplastic antibiotic drug that belongs to the family of drugs called ansamycins. The ansamycins cause disruption of Hsp90-client protein complexes and lead to proteosome-mediated degradation of client proteins. Exemplary analogs include macbecin I (see, e.g., Ono et al., Gann. 73(6):938-44 (1982); Tanida et al., J. Antibiot. (Tokyo) 33(2):199-204 (1980)) and 17-Allylamino-17-demethoxygeldanamycin (17AAG).
- As used herein, a “derivative” of a parent compound is a compound that is structurally related to the parent compound, and retains Hsp90-binding and inhibition activity. Suitable derivatives can be prepared through chemical manipulation and/or genetic engineering. Compounds having improved solubility properties and compounds having conformations optimized to bind Hsp90 are also provided. An “analog” is structural derivative of a parent compound that differs from it by a single element.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
-
FIG. 1 is a Western blot showing that geldanamycin treatment does not affect total CD14 expression in leukocytes in rats with endotoxin-induced uveitis (ER;). LPS, lipopolysaccharide; DMSO, dimethyl sulfoxide (control); GA, geldanamycin. -
FIG. 2 is a Western blot showing that geldanamycin treatment decreases expression of the membrane form of CD14 in leukocytes in rats with EIU. -
FIG. 3 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal hypoxia-inducible factor 1, alpha subunit (HIF-1a) levels in rats with EIU. -
FIG. 4 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal Nuclear Factor kappa B (NF-κB) levels in rats with EIU. -
FIG. 5 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of Vascular Endothelial Growth Factor (VEGF) levels in rats with EIU. -
FIG. 6 is a bar graph illustrating that geldanamycin treatment decreases lipopolysaccharide (LPS)-induced upregulation of Tumor Necrosis Factor alpha (TNF-α) levels in rats with EIU. -
FIG. 7 is a bar graph illustrating that geldanamycin reduces myeloperoxidase activity in leukocytes from rats with EIU. MPO, myeloperoxidase. -
FIG. 8 is a bar graph illustrating that geldanamycin treatment decreases LPS-induced upregulation of retinal intercellular adhesion molecule 1 (ICAM-1) levels in rats with EIU. -
FIGS. 9-11 are bar graphs illustrating the effect of geldanamycin treatment on leukocyte adhesion in rats with EIU in both arteries and veins (FIG. 9 ); veins (FIG. 10 ); or arteries (FIG. 11 ). GA, geldanamycin. -
FIG. 12 is a bar graph illustrating that geldanamycin decreases blood-retinal barrier breakdown in EIU. GA, geldanamycin. - Described herein are methods for treating uveitis using Hsp90 inhibitors, as well as compositions including such inhibitors that are specially formulated for use in the eye.
- Uveitis
- Uveitis, or inflammation of the uvea, includes, but is not limited to, uveitis associated with the diseases listed in Table 1. Uveitis may cause vague clinical signs that may include blinking, squinting, watery discharge from the eye, and/or light sensitivity (photophobia), without any obvious changes to the eye itself. The cornea, which is normally clear, may appear dull or hazy blue due to uveitis. In some cases, the cornea becomes cloudy due to white blood cells accumulating on the inside of the cornea. The conjunctiva may become red and swollen. In some cases of uveitis, the iris may become red or change color. Uveitis is typically diagnosed by an examination of structures of the eye. In more advanced cases, changes are visible without magnification.
TABLE 1 Causes of Uveitis Infectious diseases Suspected immune-mediated diseases Viral Ankylosing spondylitis Human immunode- Behcet's disease ficiency virus-I Herpes simplex Crohn's disease Herpes zoster Drug or hypersensitivity reaction Cytomegalovirus Interstitial nephritis Bacterial or spirochetal Juvenile rheumatoid arthritis Tuberculosis Kawasaki's disease Leprosy Multiple sclerosis Proprionobacterium Psoriatic arthritis Syphilis Reiter's syndrome Whipple's disease Relapsing polychondritis Leptospirosis Sarcoidosis Brucellosis Sjogren's syndrome Lyme disease Systemic lupus erythematosus Parasitic (protozoan Ulcerative colitis or helminthic) Toxoplasmosis Vasculitis Acanthameba Vitiligo Toxocariasis Vogt Koyanagi Harada Syndrome Cysticercosis Onchocerciasis Fungal Histoplasmosis Coccidioidomycosis Candidiasis Aspergillosis Sporotrichosis Blastomycosis Cryptococcosis Masquerade syndromes Syndromes confined primarily to the eye Leukemia Acute multifocal placoid pigmentary Lymphoma epitheliopathy Retinitis pigmentosa Acute retinal necrosis Retinoblastoma Birdshot choroidopathy Fuch's heterochromic cyclitis Glaucomatocyclitic crisis Lens-induced uveitis Multifocal choroiditis Pars planitis Serpiginous choroiditis Sympathetic ophthalmia Trauma - Uveitis can include, but is not limited to, acute anterior uveitis, e.g., associated with ankylosing spondylitis, Reiter's syndrome, herpes zoster ophthalmicus or sarcoidosis; chronic uveitis, e.g., from Still's disease, or Fuch's heterochromic iridocyclitis; intermediate uveitis, e.g., from Whipple's disease or multiple sclerosis; posterior uveitis, e.g., associated with Bechet's disease, AIDS, CMV, toxoplasmosis, cryptococcidomycosis, secondary syphilis, atypical mycobacteria, toxocara, tuberculosis, or acute retinal necrosis; retinal pigment epitheliopathies (e.g., acute multifocal placoid epitheliopathy); Vogt-Koyanagi-Harada syndrome; sympathetic opthalmitis; birdshot chorioretinopathy; serpiginous or geographic choroiditis; phaco-anaphylactic uveitis; Stevens Johnson pseudomembranous conjunctivitis; allergic conjunctivitis; ischemic optic neuropathy due to temporal arteritis; episcleritis; scleritis; papillitis; pterygium; systemic lupus erythematosus; and trachoma.
- Current therapeutic algorithms for uveitis include the use of either local or systemic corticosteroids. Long term steroid therapy has various side effects such as increased intraocular pressure in “steroid responders,” and cataract formation from local therapy, to serious side effects from systemic therapy (severe infections, hyperglycemia, edema, osteonecrosis, myopathy, peptic ulcer disease, hypokalemia, osteoporosis, euphoria, psychosis, myasthenia gravis, and growth suppression).
- In combination with topical or systemic corticosteroids, current treatment methodologies often include the administration of cycloplegics, which paralyze the ciliary muscles and cause dilatation of the pupil, useful in providing pain relief. In patients with severe cases of uveitis who are unresponsive to steroids or in those patients with complications associated with the usual therapy, immunosuppressants can be used, such as cyclosporin A or azathioprine (Rosenbaum and George, Current Ocular Therapy 5:519-21 (2000)). Although present treatments are successful in some cases, success is often limited by the required long term use, resistance in some patients, and significant side effects (Id.).
- In general, the methods described herein include identifying a subject with uveitis, and administering a therapeutically effective amount of an Hsp90 inhibitor to the subject. In some embodiments, the administration is ocular, e.g., for application into or around the eye, e.g., by injection into the eye, or by eye drops. In some embodiments, the methods include co-administration of an Hsp90 inhibitor with a conventional treatment, e.g., a steroid.
- The experiments described herein utilized geldanamycin in a rat model of endotoxin-induced uveitis (EIU) and found that it decreased leukocyte infiltration of the retinal tissue, it decreased NF-κB, VEGF and TNF-α levels and consequently reduced the breakdown of the blood-retinal barrier.
- Geldanamycin (GA), a benzoquinone ansamycin antibiotic, is a natural inhibitor of Hsp90, a chaperone molecule that interacts with a variety of intracellular client proteins to facilitate their proper folding, prevent misfolding and preserve their 3-dimensional conformation in a functionally competent state (Isaacs et al., Cancer Cell 3:213-7 (2003)). Through its inhibitory effect on Hsp90 activity, geldanamycin affects several key growth factor-initiated signal transduction pathways, including suppression of cell surface receptors, induction of misfolding and subsequent proteasomal degradation and depletion of crucial kinases and transcription factors (Goetz et al., Ann Oncol. 14(8):1169-76 (2003).
- Geldanamycin represents a novel anti-inflammatory compound, that targets multiple intracellular pathways important for cellular immune response and inhibits the expression of inflammatory factors as TNF-alpha. It has also been shown that geldanamycin suppresses cardinal manifestations of autoimmune encephalomyelitis in an animal model by inhibiting key inflammatory mediators such as nitric oxide, and attenuates the oxidative injury in hemorrhagic shock by restoring a defective inflammatory response in vivo (Murphy et al., J. Neurosci. Res. 67(4):461-70 (2002); Pittet et al., J. Physiol. 538(Pt 2):583-97 (2002); Poulaki et al., Am J Pathol. 165(2):457-69 (2004)).
- The results described herein demonstrate that 17-Allylamino-17-demethoxygeldanamycin (17AAG), a semi-synthetic analog of geldanamycin, reduces the expression of vascular endothelial growth factor (VEGF), which plays a crucial role in the pathogenesis of uveitis. Administration of the parental compound, geldanamycin, exerts potent anti-inflammatory effects in animal models of autoimmune encephalomyelitis, toxic shock syndrome and portal hypertensions (Murphy et al., J. Neurosci. Res. 67(4):461-70 (2002); Pittet et al., J. Physiol. 538(Pt 2):583-97 (2002); Winklhofer et al., J. Biol. Chem. 276(48):45160-7 (2001)). 17AAG is in Phase II trials for various neoplasias and has demonstrated excellent efficacy below the maximum tolerable dose (Maloney and Workman, Expert Opin. Biol. Ther. 2(1):3-24 (2002)).
- 17AAG is a small molecule that can be administered intravenously, orally, intravitreally, transclerally, subtenons, subcutaneously, or topically, e.g., as an ointment. Also, it can be encapsulated in microspheres or liposomes or placed in a device for longer release, e.g., an ocular implant. As shown herein, 17AAG reduces the expression of permeability factors as VEGF and TNF-α; these factors may cause the ocular damage consistent with uveitis (Rosenbaum and George, Uveitis. Current Ocular Therapy 5:519-21 (2000)). Phase I trials in various neoplasias showed that 17AAG has a favorable pharmacokinetic profile with transient and manageable side effects (Maloney and Workman, Expert Opin. Biol. Ther. 2(1):3-24 (2002)). Therefore, geldanamycin and other Hsp90 inhibitors represent a potential safe and effective treatments for uveitis.
- Hsp90 Inhibitors
- The eukaryotic heat shock protein 90s (Hsp90s) are ubiquitous chaperone proteins that bind and hydrolyze ATP. Hsp90s are believed to be involved in folding, activation and assembly of a number of client proteins, including proteins involved in signal transduction, cell cycle control, and transcriptional regulation.
- Hsp90 proteins are highly conserved in nature, and include Hsp90 alpha and beta, Grp94, and Trap-1. For exemplary protein sequences see, e.g., NCBI accession Nos. NP—005339.2 and NP—001014390.1 (Homo sapiens alpha and beta Hsp90, respectively); P07901 (Mus musculus); NP—001004082.2, AAT99568.1 (Rattus norvegicus); AAA36992.1 (Cricetulus griseus); JC1468 and HHCH90 (Gallus gallus); AAF69019.1 (Sarcophaga crassipalpis); AAC21566.1 (Danio rerio), AAD30275.1 (Salmo salar), NP—999138.1 (Sus scrofa), NP—015084.1 (Saccharomyces cerevisiae), and CAC29071 (frog).
- The Hsp90 inhibitors can be specifically directed against an Hsp90 of the specific host patient, or can be identified based on reactivity against an Hsp90 homolog from a different species, or an Hsp90 variant. The inhibitors can be, for example, ring-structured antibiotics, e.g., benzoquinone ansamycins, or other types of molecules, e.g., antisense nucleic acids, or molecules such as radicicol and analogs thereof.
- In vivo and in vitro studies indicate that without the aid of co-chaperones Hsp90is unable to fold or activate proteins. For steroid receptor conformation and association in vitro, Hsp90 requires Hsp70 and p60/Hop/Sti1 (Caplan, Trends in Cell Biol., 9:262-68, (1999)). In vivo Hsp90 may interact with Hsp70 and its co-chaperones. Other co-chaperones associated with Hsp90s in higher eukaryotes include Hip, Bag1, Hsp40/Hdj2/Hsj1, immunophilins, p23, and p50 (Caplan, (1999) supra). The binding of ansamycins to Hsp90 has been reported to inhibit protein refolding and to cause the proteasome dependent degradation of a select group of cellular proteins (Sepp-Lorenzino, et al., J. Biol. Chem., 270:16580-16587 (1995); Whitesell, et al., Proc. Natl. Acad. Sci. USA, 91: 8324-8328 (1994)).
- In some embodiments, the Hsp90 inhibitors are small molecules. As used herein, “small molecules” refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. In general, small molecules useful for the invention have a molecular weight of less than 5,000 Daltons (Da). Small molecule inhibitors based on purine and pyrazole scaffolds are known in the art, e.g., the purine-based small molecules CCT018159 and analogs thereof (Aherne et al., Proc. AACR 44, Abstract #4002 (2004); Wright et al., Chem. Biol. 11(6):775-85 (2004)).
- A number of suitable Hsp90 inhibitors are known in the art, including compounds that bind to the ATP/ADP-binding pocket in the geldanamycin-binding domain of Hsp90that is highly conserved across species (residues 9-232, see Stebbins et al., Cell, 89:239-250 (1997); Schulte et al., Cell Stress Chaperones 3(2):100-8 (1998). This results in the depletion of Hsp90 client proteins, particularly kinases that are involved in signal transduction and oncogenesis (including c-Raf1, akt and cdk4) together with mutant p53. Two main classes of Hsp90 inhibitors are the benzoquinone ansamycin antibiotics, including benzoquinone ansamycin analogs such as herbimycin A, macbecin I, geldanamycin and 17-amino derivatives of geldanamycin, e.g., 17-(allylamino)-17-desmethoxygeldana-mycin (17AAG), and another natural product, radicicol.
- Methods for identifying Hsp90 inhibitors, e.g., small molecule Hsp90 inhibitors, using target based screening, structure-based rational design, and high throughput screening, are known in the art. See, e.g., Neckers, Curr. Med. Chem. 10(9):733-9 (2003); Rowlands et al., Anal. Biochem. 327(2):176-83 (2004); Dymock et al., Exp. Op. Ther. Patents 14(6):837-847 (2004); Workman, Cancer Letters 206:149-157 (2004); Aherne et al., Methods. Mol. Med. 85:149-61 (2003); and Chiosis et al., Curr. Cancer Drug Targets 3(5):371-6 (2003).
- Benzoquinone Ansamycin Antibiotics and Analogs
- Geldanamycin and Geldanamycin Analogs
- Geldanamycin (GA) is a benzoquinone ansamycin antibiotic produced by Streptomyces hygroscopicus that exhibits a potent antitumor activity. Geldanamycin binds specifically to heat shock protein 90 (Hsp90), leading to the destabilization and degradation of its client proteins (Whitesell et al., Proc. Natl. Acad. Sci. USA 91(18):8324-8 (1994)). Hsp90 acts as a molecular chaperone, and is critical for the folding, assembly and activity of multiple mutated and overexpressed signaling proteins that promote the growth and/or survival of tumor cells. Hsp90 client proteins destabilized by Geldanamycin and 17AAG include steroid receptors such as androgen and estrogen receptors; tyrosine kinases such as v-Src, Bcr-Ab1, erbB2; transcription factors such as p53, hypoxia-
inducible factor 1a (HIF-1a), and EF-2; and serine/threonine kinases such as Raf-1, and Akt (Neckers, Trends Mol. Med. 8(4 Suppl):S55-61 (2002)). - Geldanamycin analogs suitable for use in the methods described herein include, but are not limited to, geldanamycin and 17-amino derivatives of geldanamycin, e.g., 17AAG (see formula I, below). 17AAG and analogs thereof are described in U.S. Ser. Nos. 10/212,962 and 10/461,194; see also Sasaki et al., U.S. Pat. No. 4,261,989 for methods of synthesis of 17AAG. Other 17-amino derivatives of geldanamycin include 17-(2-dimethylaminoethyl)amino-17-desmethoxy-geldanamycin (17-DMAG), see Snader et al., U.S. 2004/0053909 A1 (2004) for synthesis of 17-DMAG; 11-oxogeldanamycin, and 5,6-dihydrogeldanamycin, both disclosed in U.S. Pat. Nos. 4,261,989, 5,387,584 and 5,932,566; 11-O-methyl-17-(2-(1-azetidinyl)ethyl)amino-17-demethoxygeldanamycin (A), 11 -O-methyl-17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin (B), and 11-O-methyl-17-(2-(1-pyrrolidinyl)ethyl)amino-17-demethoxygeldanamycin (C), described in U.S. Ser. No. 10/825,788, and PCT Application No. PCT/US04/11638; additional geldanamycin derivatives are described in Santi et al., U.S. 2003/0114450 A1 (2003).
Formula I R1 R2 R3 R4 Herbimycin A —OCH3 —OCH3 —OCH3 —H Macbecin I —CH3 —OCH3 —OCH3 —H Geldanamycin —OCH3 —OH —H —OCH3
17AAG - 17AAG (see Formula II) is a less toxic and more stable analog of geldanamycin (GA) (Schulte and Neckers, Cancer Chemother. Pharmacol. 42(4):273-9 (1998)). Though 17AAG binding to Hsp90 is weaker than GA, 17AAG displays similar antitumor effects than GA and a better toxicity profile. 17AAG is currently in phase I clinical trials as an anti-tumor agent in several centers worldwide.
- Macbecins
- Macbecin I and II were isolated from the culture broth of Nocardia sp. No. C-14919. Macbecins I and II belong to the ansamycin group and have a benzoquinone and hydroquinone nucleus, respectively. (Ono et al., Gann. 73(6):938-44 (1982); Muroi et al., J. Antibiot. (Tokyo) 33(2):205-12 (1980); Tanida et al., J Antibiot (Tokyo) 33(2):199-204 (1980)).
- Herbimycins
- Herbimycin A is a benzochinoid ansamycin antibiotic isolated from Streptomyces sp. MH237-CF8, which specifically inhibits the phosphorylation of tyrosine residues catalyzed by various protein kinases. Omura et al., J. Antibiot. (Tokyo) 32(4):255-61 (1979). Derivatives of herbimycin have also been described, including 8,9-Epoxide, 7,9-cyclic carbamate, 17 or 19-amino derivatives, halogenated and other related derivatives; see, e.g., Shibata et al., J. Antibiot. (Tokyo) 39(3):415-23 (1986); Shibata et al., J. Antibiot. (Tokyo) 39(11):1630-3 (1986); and Oikawa et al., Biol Pharm Bull 17(10):1430-2 (1994).
- Radicicol and Radicicol Analogs
- Radicicol is a macrocyclic antibiotic produced by fungi, was originally isolated many years ago, and was described as tyrosine kinase inhibitor. Radicicol depletes the Hsp90 client signaling molecules in cells, and thus inhibit the signal transduction pathway. Radicicol binds directly to the N terminal ATP/ADP binding site of Hsp90. Although radicicol itself has little or no activity in animals because of instability, a number of derivatives are known and have been shown to be active, including oxime derivatives, ester derivatives, palmitoyl derivatives, and biotinylated derivatives (Soga et al., Current Cancer Drug Targets, 3(5):359-369 (2003); Ki, J. Biol. Chem., 275(50):39231-39236 (2000)).
- Therapeutic Compositions and Methods of Administration
- The invention includes pharmaceutical compositions including a Hsp90 inhibitor and a pharmacologically acceptable carrier; in some embodiments, the composition is specially adapted for use in the eye. As used herein, “pharmaceutically acceptable carrier” includes saline, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. In some embodiments, the Hsp90 inhibitor may not be soluble in saline alone, and can be prepared as a suspension, or in a hydrophobic solvent.
- A pharmaceutical composition is typically formulated to be compatible with its intended route of administration, e.g., intravenous, oral, intravitreal, transcleral, subtenon, subcutaneous, or topically, e.g., as an ocular ointment. Supplementary active compounds can also be incorporated into the compositions. In some embodiments, the Hsp90inhibitor is administered in conjunction with another treatment modality, e.g., a known treatment modality including a systemic or local steroid, or an immunosuppressant agent, e.g., as described herein. In some embodiments, the Hsp90 inhibitor is administrated with an agent that induces paralysis of the muscles of accommodation, e.g., cycloplegic and/or mydriatic agent. In some embodiments, the pharmaceutical composition comprising the Hsp90 inhibitor is in a form suitable for local delivery to the uveal area, e.g., an injectable or implantable form.
- In some embodiments, the composition is especially adapted for administration into or around the eye. For example, a composition can be adapted to be used as eye drops, or injected into the eye, e.g., using peribulbar or intravitreal injection. Such compositions should be sterile and substantially endotoxin-free, and within an acceptable range of pH. Certain preservatives are thought not to be good for the eye, so that in some embodiments a non-preserved formulation is used. Formulation of eye medications is known in the art, see, e.g., Ocular Therapeutics and Drug Delivery: A Multi-Disciplinary Approach, Reddy, Ed. (CRC Press 1995); Kaur and Kanwar, Drug Dev. Ind. Pharm. May;28(5):473-93 (2002); Clinical Ocular Pharmacology, Bartlett et al. (Butterworth-Heinemann; 4th edition (March 15, 2001)); and Ophthalmic Drug Delivery Systems (Drugs and the Pharmaceutical Sciences: a Series of Textbooks and Monographs), Mitra (Marcel Dekker; 2nd Rev&Ex edition (Mar. 1, 2003)).
- An effective amount is a dosage of the Hsp90 inhibitor sufficient to provide a medically desirable result. The effective amount will vary with the particular condition being treated, the age and physical condition of the subject being treated, the severity of the condition, the duration of the treatment, the nature of the concurrent therapy (if any), the specific route of administration and the like factors within the knowledge and expertise of the health practitioner. For example, an effective amount can depend upon the degree of severity of the uveitis. In some embodiments, the Hsp90 inhibitor are used to prevent the development or progression of uveitis, that is, they are used prophylactically in subjects at risk of developing uveitis, or in subjects that already have uveitis, but whose uveitis is likely to progress, e.g., to a more severe form of the disease. Thus, an effective amount is an amount that can lower the risk of, slow or prevent altogether the development or progression of uveitis, or can ameliorate a symptom of uveitis.
- Generally, doses of Hsp90 inhibitors, e.g., geldanamycin analogs, can be from about 0.01 mg/kg per day to 1000 mg/kg per day. It is expected that doses ranging from 50-500 mg/kg will be suitable, when administered systemically; lower doses will likely be used when administered locally to the ocular or uveal area. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day can be used to achieve appropriate systemic levels of compounds. The dosage and schedule will depend on the Hsp90 inhibitor selected; a skilled practitioner would be able to select a regimen appropriate for the particular agent and individual. A number of Hsp90 inhibitors are known in the art, e.g., as described herein, and can be used in the methods described herein.
- A variety of administration routes are available. The particular mode selected will depend, of course, upon the particular drug selected, the severity of the condition being treated and the dosage required for therapeutic efficacy. The methods described herein, generally speaking, can be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects. Such modes of administration include oral, rectal, topical, nasal, transdermal, or parenteral routes. The term “parenteral” includes subcutaneous, intravenous, intraocular, intravitreal, intramuscular, or infusion. Local administration to the macular area can also be used. In some embodiments, the invention includes the use of implantable formulations, e.g., Hsp90 inhibitors such as geldanamycin analogs that are contained in a slow-release formula that can be implanted at or near the uveal area. Oral administration will typically be used for prophylactic treatment because of the convenience to the patient as well as the dosing schedule. Since geldanamycin itself is associated with serious side effects, local administration will likely be preferred when geldanamycin is used.
- The delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of the Hsp90inhibitor, increasing convenience to the subject and the physician. Many types of release delivery systems are available and known to those of ordinary skill in the art. They include polymer base systems such as poly(lactide-glycolide), copolyoxalates, polycaprolactones, polyesteramides, polyorthoesters, polyhydroxybutyric acid, and polyanhydrides. Microcapsules of the foregoing polymers containing drugs are described in, for example, U.S. Pat. No. 5,075,109. Delivery systems also include non-polymer systems that are: lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono- di- and tri-glycerides; hydrogel release systems; sylastic systems; peptide based systems; wax coatings; compressed tablets using conventional binders and excipients; partially fused implants; and the like. Specific examples include, but are not limited to: (a) erosional systems in which the Hsp90inhibitor is contained in a form within a matrix such as those described in U.S. Pat. Nos. 4,452,775, 4,667,014, 4,748,034 and 5,239,660 and (b) diffusional systems in which an active component permeates at a controlled rate from a polymer such as described in U.S. Pat. Nos. 3,832,253, and 3,854,480. Pump-based hardware delivery systems can be used, some of which are adapted for implantation; e.g., the Alzet® osmotic pump (DURECT Corporation, Cupertino, Calif.), which has been used to deliver therapeutic compounds to the eye. In addition, U.S. Pat. No. 6,331,313 describes a biocompatible ocular drug delivery implant device that can be used to deliver one or more Hsp90 inhibitors directly to the uveal region.
- Use of a long-term sustained release implant may be particularly suitable for treatment of chronic conditions. Long-term release means that the implant is constructed and arranged to delivery therapeutic levels of the active ingredient for at least 30 days, e.g., 60 days. Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.
- The invention further provides kits including a Hsp90 inhibitor, e.g., a geldanamycin analog, and instructions (e.g., on a label or package insert such as instructions to the patient or to the clinician) for administering the Hsp90 inhibitor to an individual in order to treat, prevent, and/or delay the development or progression of uveitis.
- The ability of an Hsp90 inhibitor to treat uveitis can be confirmed using methods known in the art. Generally, the methods include administering an Hsp90 inhibitor, e.g., an Hsp90 inhibitor known in the art or identified by a method known in the art, to an animal model of uveitis. Such models are known in the art and include endotoxin-induced uveitis (EIU), e.g., in mammals including rodents (such as rats and mice), lagomorphs, or pigs. An effect on a clinically relevant parameter of uveitis is then evaluated, e.g., leukocyte adhesion (which can be evaluated in vitro with quantitative endothelial cell-neutrophil adhesion assays and ex vivo with concanavalin A lectin staining of retinal flatmounts); leukocyte activation (which can be quantified with a myeloperoxidase (MPO) activity assay); and blood-retinal barrier breakdown (which can be assessed by Evans Blue extravasation). Retinal levels of VEGF, TNF-α and leukocyte total levels of the LPS receptor CD14 can also be quantified, e.g., using an ELISA-based method; membranous CD14 levels can also be assessed, e.g., using membrane precipitations with subsequent immunoblotting. Retinal activity of NF-κB and HIF-1a can also be quantified, e.g., using a modified ELISA method as known in the art; see, e.g., Poulaki et al., Am. J. Pathol. 165(2):457-69 (2004); Poulaki et al., J. Clin. Invest. 109(6):805-15 (2002).
- Additional methods for evaluating each of these effects are known in the art. For example, ability to modulate expression of a protein can be evaluated at the gene or protein level, e.g., using quantitative PCR or immunoassay methods. In some embodiments, high throughput methods, e.g., protein or gene chips as are known in the art, can be used to detect an effect on protein levels (see, e.g., Ch. 12, Genomics, in Griffiths et al., Eds. Modern genetic Analysis, 1999,W. H. Freeman and Company; Ekins and Chu, Trends in Biotechnology, 1999, 17:217-218; MacBeath and Schreiber, Science 2000, 289(5485): 1760-1763; Simpson, Proteins and Proteomics: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 2002; Hardiman, Microarrays Methods and Applications: Nuts & Bolts, DNA Press, 2003).
- The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
- Background: Heat-shock protein 90 (Hsp90) is the central component of a ubiquitous molecular chaperone complex that interacts with a variety of intracellular client proteins to facilitate their proper folding, prevent misfolding or aggregation, and preserve their 3-dimensional conformation to a functionally competent state.
- Objective: The object of the present study was to investigate the anti-inflammatory effects of GA in endotoxin-induced uveitis (EIU) in rats.
- Materials and Methods: Female Lewis rats received a single intraperitoneal injection of 1 mg/kg GA or vehicle (DMSO). ETU was induced 24 hours later by a footpad injection of 200 mg/kg lipopolysaccharide (LPS).
- Twenty-four hours after the administration of LPS, leukocyte adhesion was evaluated in vitro with quantitative endothelial cell-neutrophil adhesion assays and ex vivo with concanavalin A lectin staining of retinal flatmounts, as follows. After the induction of deep anesthesia in the rat, the chest cavity was opened, and a 14-gauge perfusion cannula was introduced to the left ventricle. The right atrium was opened with a 12-gauge needle to achieve outflow. With the heart providing the motive force, 250 mL/kg PBS was administered from the perfusion cannula to remove erythrocytes and non-adherent leukocytes. Fixation was then achieved by perfusion with 1% paraformaldehyde and 0.5% glutaraldehyde at a pressure of 100 mm Hg. At this point, the heart stopped beating. A systemic blood pressure of 100 mm Hg was maintained by perfusing a total volume of 200 mL/kg over 3 minutes. Inhibition of nonspecific binding with 1% albumin in PBS (
total volume 100 mL/kg) was followed by perfusion with FITC-coupled concanavalin A lectin (20 μg/mL in PBS [pH 7.4], total concentration, 5 mg/kg body weight; Vector Laboratories, Burlingame, Calif.), which stained adherent leukocytes and the vascular endothelium. Lectin staining was followed by 1% bovine serum albumin (BSA)/PBS perfusion for 1 minute, and PBS perfusion alone for 4 minutes, to remove excess concanavalin A. The retinas were flatmounted in a water-based fluorescence anti-fading medium (Fluoromount; Southern Biotechnology, Birmingham, Ala.) and imaged by fluorescence microscopy (Axioplan, FITC filter, 40×; Carl Zeiss, Oberkochen, Germany). Only whole retinas in which the peripheral collecting vessels of the ora serrata were visible were used for analysis. Leukocyte location was scored as being either arteriolar, venular, or capillary. The total number of adherent leukocytes per retina was counted. All experiments were performed in a masked fashion. - Leukocyte activation was quantified with a myeloperoxidase (MPO) activity assay and blood-retinal barrier breakdown was assessed by Evans Blue extravasation. Animals were anesthetized and Evans blue dye (Sigma) dissolved in normal saline (30 mg/ml) was injected through the tail vein at a dosage of 45 mg/kg body weight. After the dye had circulated for 120 minutes, the chest cavity was opened and blood samples were obtained from the left ventricle to assess the Evans blue plasma concentration. These blood samples were centrifuged at 16,000 g for 5 minutes. The supernatant was diluted to 1/10,000th of the initial concentration in formamide (Sigma). The absorbance of Evans blue was measured by spectrophotometry as described below. Following blood taking, the rats were perfused through the left ventricle with 20 ml citrate buffer (0.05 M, pH 3.5), 30 ml paraformaldehyde 4% in citrate buffer, and 20 ml citrate buffer at a physiological pressure of 120 mmHg. The retinas were then carefully dissected under an operating microscope. After measurement of the retinal dry weight, Evans blue was extracted by incubating each retina in 120 μl formamide for 18 hours at 70° C. The extract was filtered through a centrifugal filter tube (Ultrafree-MC 30,000 NMWL, Millipore) at 2,500 g for 2 hours at room temperature. Then, 70 μl of the extract were used for spectrophotometric measurement. The background-subtracted absorbance was determined by measuring each sample at 620 nm (absorbance maximum for Evans blue in formamide) and 740 nm (absorbance minimum). The concentrations of dye in the extracts and the blood samples were calculated using a standard curve of Evans blue in formamide. Blood-ocular barrier breakdown was calculated using the following equation, with results being expressed in microliters of plasma per gram of retina dry weight times hours of dye circulating time. Intraocular Evans blue leakage [μl /(g*h)]=(Evans blue [μg]/retina dry weight [g])*(Evans blue [μg]/plasma [μl])−1*(dye circulation time [hr])−1.
- Retinal levels of VEGF, TNF-α, and leukocyte total levels of the LPS receptor CD14 were quantified with an ELISA method, whereas membranous CD14 levels were assessed with membrane precipitation and subsequent immunoblotting. For the ELISA, one day after the administration of the LPS rats were euthanized and retinal lysates were prepared on ice in RIPA lysis buffer (1% NP-40, 0,5% deoxycholate (DOC), 1% SDS, 150 mmol/L NaCl, 50 mmol/L Tris-HCl [pH 8.0]) containing sodium fluorid, NaVO5, phenylmethylsulfonylfluorid (PMSF), leupeptin and aprotinin. Protein concentration was determined by Bradford assay (Protein Assay, Bio-Rad, Hercules, Calif.). Samples containing the same amount of protein were assayed for their VEGF, TNF-α and CD14 levels with a commercially available kit (R&D systems, Calif.) as per the instructions of the manufacturer.
- For the CD4 membranous assay, peripheral blood was obtained from diabetic and control rats anesthetized with 50 mg/kg pentobarbital via heart puncture with a 16-gauge EDTA flashed needle. Neutrophils were isolated from whole blood by density gradient centrifugation with Histopaque® 1083 cell separation media(Sigma, St Louis, Mo.) according to the manufacturer's instructions. The red blood cells were lysed with a hypotonic solution (ammonium sulphate). The preparations contained >85% monocytes as determined by eosin and methylene blue staining (Leukostat Staining System, Fisher Scientific, Pittsburgh, Pa.). Subsequently, cell surface proteins were biotinylated by incubating in 0.5 mg/ml Sulfo-NHS-LC-Biotin (Pierce, Rockford, Ill.) in PBS for 30 minutes at room temperature. Sulfo-NHS-LC-Biotin does not cross the cell membrane due to its negative charge, assuring that intracellular proteins are not biotinylated. Then, the cells were washed 3 times in cold phosphate buffered saline (PBS), scraped, centrifuged briefly and lysed for 30 min on ice in a lysis buffer (50 mM Tris-HCl, pH 8, containing 120 mM NaCl, 1% Igepal), supplemented with the Complete-TM mixture of proteinase inhibitors (Boehringer-Mannheim). The samples were cleared by centrifugation (14,000 rpm, 30 min, 40° C.) and assessed for protein concentration. Biotinylated proteins, representing the cell surface proteins, were immunoprecipitated with Streptavidin-agarose for 2 hours at 40° C., electrophoresed in an SDS-PAGE and CD14 levels were detected by Western Blotting as described.
- Retinal activities of NF-κB and HIF-1α were quantified with a modified ELISA method as described in Poulaki et al., Am. J. Pathol. 165(2):457-69 (2004) and Poulaki et al., J. Clin. Invest. 109(6):805-15 (2002). NF-κB activation was analyzed using the Trans-AM NF-κB c-jun transcription factor assay kit (Active Motif, Carlsbad, Calif.) according to the manufacturer's instructions, as previously described (Mitsiades et al., Proc. Natl. Acad. Sci. USA, 99:14374-14379 (2002); Mitsiades et al., Blood, 99:4525-4530 (2002)). The nuclear extracts were incubated in 96-well plates coated with immobilized oligonucleotides containing consensus binding sites for the respective transcription factors. Transcription factor binding to the target oligonucleotide was detected by incubation with respective specific primary monoclonal antibodies, visualized by anti-IgG horseradish peroxidase conjugate and developing solution, and quantified at 450 nm with a reference wavelength of 655 nm. Background binding was calculated by adding in selected wells the respective consensus oligonucleotides in excess (20 pmol/well) as soluble competitors that prevented transcription factor binding to the probe immobilized on the plate. The resulting values were subtracted from the values obtained in wells with immobilized oligonucleotides alone. The ELISA format of this assay allowed for repeated measurements of each specimen and resulted in high sensitivity and reproducibility. For the NF-κB transcription factor assays, six animals were used from each group and retinas were not pooled.
- Binding Assays for HIF-1α were performed as follows. The HIF-1α-binding site and the HIF-1α ancillary-binding site that exists in the VEGF promoter (sequence) was added at the 3′ end of a 100-bp random sequence chosen for the absence of the HIF-1 consensus sequence. The resulting 122-bp probe was produced by polymerase chain reaction using a biotinylated forward primer and for the reverse primer the HIF-1α-binding sequence. The polymerase chain reaction product was purified on ultracentrifugation membranes. The 5′ extremity of the probe is biotinylated and was linked to streptavidin-coated 96-well plates (Roche Diagnostics): 2 pmol of probe per well were incubated for 1 hour at 37° C. in 50 μl of phosphate-buffered saline (PBS). Plates were subsequently washed to remove the excess probe. Fifty μl of binding buffer were subsequently incubated with 20 μl of nuclear extracts in the wells coated with the probe, for 1 hour at room temperature with mild agitation. The wells were subsequently washed with PBS supplemented with 0.1% Tween-20 and were incubated with a monoclonal antibody against HIF-1α (Alexis Biochemicals) at a 1/1000 dilution in PBS with 1% nonfat dried milk, for 1 hour at room temperature. After the washes, the wells were incubated with a peroxidase-conjugated anti-mouse antibody (Southern Biotechnologies, Birmingham, Ala.) at a 1/1000 dilution in PBS with 1% nonfat dried milk, for 1 hour at room temperature. The peroxidase reaction was developed with tetramethylbenzidine (100 μl; Biosource, Camarillo, Calif.) that was incubated for 10 minutes at room temperature, it was stopped with 100 μl of stop solution (Biosource), and it was read at 450 nm. For the HIF-la transcription factor assay, six animals were used from each group and retinas were not pooled.
- Results: Geldanamycin treatment significantly suppressed the LPS-induced increase in leukocyte adhesion both in vitro and ex vivo (see
FIGS. 9-11 ), as well as MPO activity (seeFIG. 7 ), vascular leakage (FIG. 12 ), and the LPS-induced increase of NF-κB (FIG. 4 ) and HIF-1a (FIG. 3 ) activity and VEGF (FIG. 5 ) and TNF-alpha (FIG. 6 ) levels in the retina. Although GA treatment did not reduce the LPS-induced increase in total CD14 levels in the leukocytes (FIG. 1 ), it significantly decreased membrane CD14 levels (FIG. 2 ). - Conclusions: Geldanamycin treatment suppresses the inflammatory changes in the LPS-induced uveitis model by decreasing leukocyte adhesion and activation, blood-retinal barrier breakdown and the increase in crucial proinflammatory cytokines such as VEGF and TNF-α, most likely through the observed effect on NF-κB and HIF-1a activation. Hsp90 inhibitors such as GA and its analogs, such as 17-AAG, which has demonstrated a favorable profile in phase I clinical trials in cancer patients, represent therapeutic agents for the reduction of ocular inflammation.
- It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (19)
1. A method of treating uveitis in a subject, the method comprising administering to the subject a therapeutically effective amount of an inhibitor of Hsp90.
2. The method of claim 1 , wherein the inhibitor of Hsp90 is a member of the ansamycin family.
3. The method of claim 1 , wherein the inhibitor of Hsp90 is geldanamycin or a geldanamycin analog.
4. The method of claim 3 , wherein the geldanamycin analog is 17AAG.
5. The method of claim 1 , wherein the inhibitor of Hsp90 is macbecin I, macbecin II, herbimycin, or a derivative or analog thereof.
6. The method of claim 1 , wherein the inhibitor of Hsp90 is radicicol or a radicicol analog.
7. The method of claim 1 , wherein the inhibitor of Hsp90 is a small molecule.
8. The method of claim 7 , wherein the small molecule is CCT018159 or an analog thereof.
9. The method of claim 1 , wherein the inhibitor of Hsp90 is administered intravenously, orally, intravitreally, transclerally, subtenons, subcutaneously, or topically.
10. A therapeutic composition comprising an inhibitor of Hsp90, wherein the therapeutic composition is specially adapted for administration in or around the eye.
11. The therapeutic composition of claim 10 , wherein the inhibitor of Hsp90 is a member of the ansamycin family.
12. The therapeutic composition of claim 10 , wherein the inhibitor of Hsp90 is geldanamycin or a geldanamycin analog.
13. The therapeutic composition of claim 12 , wherein the geldanamycin analog is 17AAG
14. The therapeutic composition of claim 10 , wherein the inhibitor of Hsp90 is macbecin I, macbecin II, or herbimycin, or a derivative or analog thereof.
15. The therapeutic composition of claim 10 , wherein the inhibitor of Hsp90 is radicicol or a radicicol analog.
16. The therapeutic composition of claim 10 , wherein the inhibitor of Hsp90 is a small molecule.
17. The therapeutic composition of claim 16 , wherein the small molecule is CCT018159 or an analog thereof.
18. The therapeutic composition of claim 10 , wherein the therapeutic composition is adapted for administration intravitreally, transclerally, subtenons, or topically to the eye.
19. The therapeutic composition of claim 10 , further comprising a carrier.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/115,687 US20050267087A1 (en) | 2004-04-28 | 2005-04-27 | Inflammatory eye disease |
US13/293,748 US20120165383A1 (en) | 2004-04-28 | 2011-11-10 | Inflammatory eye disease |
US13/916,207 US20140088182A1 (en) | 2004-04-28 | 2013-06-12 | Inflammatory eye disease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56649304P | 2004-04-28 | 2004-04-28 | |
US11/115,687 US20050267087A1 (en) | 2004-04-28 | 2005-04-27 | Inflammatory eye disease |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/293,748 Continuation US20120165383A1 (en) | 2004-04-28 | 2011-11-10 | Inflammatory eye disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050267087A1 true US20050267087A1 (en) | 2005-12-01 |
Family
ID=35241418
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/115,687 Abandoned US20050267087A1 (en) | 2004-04-28 | 2005-04-27 | Inflammatory eye disease |
US13/293,748 Abandoned US20120165383A1 (en) | 2004-04-28 | 2011-11-10 | Inflammatory eye disease |
US13/916,207 Abandoned US20140088182A1 (en) | 2004-04-28 | 2013-06-12 | Inflammatory eye disease |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/293,748 Abandoned US20120165383A1 (en) | 2004-04-28 | 2011-11-10 | Inflammatory eye disease |
US13/916,207 Abandoned US20140088182A1 (en) | 2004-04-28 | 2013-06-12 | Inflammatory eye disease |
Country Status (2)
Country | Link |
---|---|
US (3) | US20050267087A1 (en) |
WO (1) | WO2005105077A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070191917A1 (en) * | 2006-02-16 | 2007-08-16 | Vassiliki Poulaki | Methods and compositions for treating conditions of the eye |
US20080146545A1 (en) * | 2006-08-11 | 2008-06-19 | Nicolas Winssinger | Macrocyclic compounds useful as inhibitors of kinases and HSP90 |
US20100280032A1 (en) * | 2006-10-26 | 2010-11-04 | Synta Pharmaceuticals Corp. | Method for treating inflammatory disorders |
US20110190237A1 (en) * | 2008-01-15 | 2011-08-04 | Nexgenix Pharmaceuticals | Macrocyclic Prodrug Compounds Useful as Therapeutics |
US8642067B2 (en) | 2007-04-02 | 2014-02-04 | Allergen, Inc. | Methods and compositions for intraocular administration to treat ocular conditions |
US9205086B2 (en) | 2010-04-19 | 2015-12-08 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of a Hsp90 inhibitory compounds and a EGFR inhibitor |
US9402831B2 (en) | 2011-11-14 | 2016-08-02 | Synta Pharmaceutical Corp. | Combination therapy of HSP90 inhibitors with BRAF inhibitors |
US9439899B2 (en) | 2011-11-02 | 2016-09-13 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of HSP90 inhibitors with topoisomerase I inhibitors |
US10500193B2 (en) | 2011-11-02 | 2019-12-10 | Synta Pharmaceuticals Corporation | Combination therapy of HSP90 inhibitors with platinum-containing agents |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080031474A (en) * | 2005-07-27 | 2008-04-08 | 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. | Use of heat shock to treat ocular disease |
JP2018008922A (en) * | 2015-08-04 | 2018-01-18 | わかもと製薬株式会社 | Prevention and treatment of steroid cataracts |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4261989A (en) * | 1979-02-19 | 1981-04-14 | Kaken Chemical Co. Ltd. | Geldanamycin derivatives and antitumor drug |
US5968921A (en) * | 1997-10-24 | 1999-10-19 | Orgegon Health Sciences University | Compositions and methods for promoting nerve regeneration |
US20050013854A1 (en) * | 2003-04-09 | 2005-01-20 | Mannino Raphael J. | Novel encochleation methods, cochleates and methods of use |
US20080318338A1 (en) * | 2001-12-12 | 2008-12-25 | Conforma Therapeutics Corp. | Assays and Implements for Determining and Modulating HSP90 Binding Activity |
US20090039811A1 (en) * | 2004-07-27 | 2009-02-12 | Patrick Chene | Inhibitors of HSP90 |
US20090042847A1 (en) * | 2005-11-23 | 2009-02-12 | Kosan Biosciences Incorporated | 17-allylamino-17-demethoxygeldanamycin polymorphs and formulations |
-
2005
- 2005-04-27 WO PCT/US2005/014475 patent/WO2005105077A1/en active Application Filing
- 2005-04-27 US US11/115,687 patent/US20050267087A1/en not_active Abandoned
-
2011
- 2011-11-10 US US13/293,748 patent/US20120165383A1/en not_active Abandoned
-
2013
- 2013-06-12 US US13/916,207 patent/US20140088182A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4261989A (en) * | 1979-02-19 | 1981-04-14 | Kaken Chemical Co. Ltd. | Geldanamycin derivatives and antitumor drug |
US5968921A (en) * | 1997-10-24 | 1999-10-19 | Orgegon Health Sciences University | Compositions and methods for promoting nerve regeneration |
US20080318338A1 (en) * | 2001-12-12 | 2008-12-25 | Conforma Therapeutics Corp. | Assays and Implements for Determining and Modulating HSP90 Binding Activity |
US20050013854A1 (en) * | 2003-04-09 | 2005-01-20 | Mannino Raphael J. | Novel encochleation methods, cochleates and methods of use |
US20090039811A1 (en) * | 2004-07-27 | 2009-02-12 | Patrick Chene | Inhibitors of HSP90 |
US20090042847A1 (en) * | 2005-11-23 | 2009-02-12 | Kosan Biosciences Incorporated | 17-allylamino-17-demethoxygeldanamycin polymorphs and formulations |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070191917A1 (en) * | 2006-02-16 | 2007-08-16 | Vassiliki Poulaki | Methods and compositions for treating conditions of the eye |
US8658633B2 (en) | 2006-02-16 | 2014-02-25 | Massachusetts Eye And Ear Infirmary | Methods and compositions for treating conditions of the eye |
US20080146545A1 (en) * | 2006-08-11 | 2008-06-19 | Nicolas Winssinger | Macrocyclic compounds useful as inhibitors of kinases and HSP90 |
US8067412B2 (en) | 2006-08-11 | 2011-11-29 | Universite De Strasbourg | Macrocyclic compounds useful as inhibitors of kinases and HSP90 |
US8450305B2 (en) | 2006-08-11 | 2013-05-28 | Universite De Strasbourg | Macrocyclic compounds useful as inhibitors of kinases and HSP90 |
US20100280032A1 (en) * | 2006-10-26 | 2010-11-04 | Synta Pharmaceuticals Corp. | Method for treating inflammatory disorders |
US8642067B2 (en) | 2007-04-02 | 2014-02-04 | Allergen, Inc. | Methods and compositions for intraocular administration to treat ocular conditions |
US20110190237A1 (en) * | 2008-01-15 | 2011-08-04 | Nexgenix Pharmaceuticals | Macrocyclic Prodrug Compounds Useful as Therapeutics |
US9205086B2 (en) | 2010-04-19 | 2015-12-08 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of a Hsp90 inhibitory compounds and a EGFR inhibitor |
US9439899B2 (en) | 2011-11-02 | 2016-09-13 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of HSP90 inhibitors with topoisomerase I inhibitors |
US10500193B2 (en) | 2011-11-02 | 2019-12-10 | Synta Pharmaceuticals Corporation | Combination therapy of HSP90 inhibitors with platinum-containing agents |
US9402831B2 (en) | 2011-11-14 | 2016-08-02 | Synta Pharmaceutical Corp. | Combination therapy of HSP90 inhibitors with BRAF inhibitors |
Also Published As
Publication number | Publication date |
---|---|
US20120165383A1 (en) | 2012-06-28 |
WO2005105077A1 (en) | 2005-11-10 |
US20140088182A1 (en) | 2014-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140088182A1 (en) | Inflammatory eye disease | |
US20220184057A1 (en) | Combination treatment of ocular inflammatory disorders and diseases | |
US6579901B2 (en) | Pharmaceutical compositions and methods for treating immune-response associated diseases of the surface and the anterior segment of the eye | |
JP2568962B2 (en) | Composition for treating eye inflammation | |
US9017725B2 (en) | Topical drug delivery systems for ophthalmic use | |
Bertelmann et al. | Immunomodulatory therapy in ophthalmology–is there a place for topical application? | |
RU2355399C2 (en) | Anti-tumor compositions containing rapamicine derivative and aromatase inhibitor | |
US20060211725A1 (en) | Use | |
Silva et al. | Exogenous fungal endophthalmitis: an analysis of isolates and susceptibilities to antifungal agents over a 20-year period (1990–2010) | |
US6919317B2 (en) | Pharmaceutical composition comprising squalene epoxidase inhibitor and macrolide immunomodulator | |
US20130252997A1 (en) | Treating unwanted ocular condition using an ascomycin macrolactam | |
US20240216315A1 (en) | Methods and compositions for treatment of diabetic retinopathy and related conditions | |
US20190247302A1 (en) | Materials and methods for treating ophthalmic inflammation | |
AU2004289213B2 (en) | CCI-779 for treating mantle cell lymphoma | |
US20020127273A1 (en) | Liposomal nystatin treatment of fungal infection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASSACHUSETTS EYE & EAR INFIRMARY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POULAKI, VASSILIKI;MILLER, JOAN W.;REEL/FRAME:016730/0330;SIGNING DATES FROM 20050812 TO 20050831 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |