US20050264320A1 - Logic circuits having linear and cellular gate transistors - Google Patents

Logic circuits having linear and cellular gate transistors Download PDF

Info

Publication number
US20050264320A1
US20050264320A1 US10/709,784 US70978404A US2005264320A1 US 20050264320 A1 US20050264320 A1 US 20050264320A1 US 70978404 A US70978404 A US 70978404A US 2005264320 A1 US2005264320 A1 US 2005264320A1
Authority
US
United States
Prior art keywords
inverter
logic circuit
capacitive load
plurality
gate transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/709,784
Other versions
US6975133B1 (en
Inventor
Victor Chan
Hsing-Jen Wann
Shih-Fen Huang
Oleg Gluschenkov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US10/709,784 priority Critical patent/US6975133B1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLUSCHENKOV, OLEG, CHAN, VICTOR WING CHUNG, HUANG, SHIH-FEN, WANN, HSING-JEN C.
Publication of US20050264320A1 publication Critical patent/US20050264320A1/en
Application granted granted Critical
Publication of US6975133B1 publication Critical patent/US6975133B1/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits

Abstract

A logic circuit is provided with a first inverter having a plurality of linear gate transistors driving a first capacitive load and a second inverter having a plurality of cellular gate transistors driving a second capacitive load. The first inverter is serially connected to the second inverter. The second capacitive load is larger than the first capacitive load.

Description

    BACKGROUND OF INVENTION
  • The present invention relates to logic circuits. More particularly, the present invention relates to logic circuits having linear and cellular gate transistors.
  • The use of complementary metal oxide silicone (MOS) transistors to perform logic functions in digital systems is common. Such logic circuits commonly require two or more inverters connected in series. For example, buffer circuits, oscillator circuits, digital circuits, memory circuits, and other logic circuits require two or more serial inverters. More complex logic circuits also use two or more inverters connected in series, but further expand the circuit to combine inverters in a partially series, partially parallel structure.
  • Inverters typically include a P-channel type MOS transistor (PMOS) and an N-channel type MOS transistor (NMOS). The design of the transistor can have an effect of the time delay of the logic circuit, the area or size of the circuit, and the current drive required by the circuit. The commercial success of many electronic consumer devices having such logic circuits can be dependent on, among other factors, the size, speed, and battery usage rate of the device.
  • Accordingly, there is a continuing need for logic circuits that are useful to reduce the size of the circuit, reduce the current drive required by the circuit, and/or increase the speed of the circuit as compared to the prior art logic circuits.
  • SUMMARY OF INVENTION
  • A logic circuit is provided having two or more inverters in series with one another, where one of the inverters drives a smaller load than the other inverter. The inverter driving the smaller load has a plurality of linear gate transistors, while the inverter driving the larger load has a plurality of cellular gate transistors.
  • In one embodiment of the present invention, a logic circuit is provided with a first inverter having a plurality of linear gate transistors driving a first capacitive load and a second inverter having a plurality of cellular gate transistors driving a second capacitive load. The first inverter is serially connected to the second inverter. The second capacitive load is larger than the first capacitive load.
  • A logic circuit is also provided with a first inverter having a plurality of linear gate transistors with a first input capacitance and a second inverter having a plurality of cellular gate transistors with a second input capacitance. The first inverter is connected in series to the second inverter. The second input capacitance is at least about one and one-half times larger than the first input capacitance.
  • In a further embodiment, a logic circuit is provided with a first inverter having a plurality of linear gate transistors with a first drain capacitance and a second inverter having a plurality of cellular gate transistors with a second drain capacitance. The first inverter is connected in series to the second inverter. The second drain capacitance is at least about one and one-half times larger than the first drain capacitance.
  • The above-described and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic view of a first prior art inverter having linear gate transistors;
  • FIGS. 2 and 3 are schematic views of a second prior art inverter having cellular gate transistors;
  • FIG. 4 is a graph according to the present invention illustrating the time delay per threshold voltage of the transistors of FIGS. 1, 2, and 3;
  • FIG. 5 is a graph according to the present invention illustrating the time delay per current of the transistors of FIGS. 1, 2, and 3; and
  • FIG. 6 is an exemplary embodiment of a logic circuit according to the present invention having linear and cellular gate transistors.
  • DETAILED DESCRIPTION
  • Referring now to the drawings, and in particular to FIG. 1 a first type of prior art inverter is illustrated by way of reference numeral 10. First inverter 10 has a PMOS transistor 12 and an NMOS transistor 14. Transistors 12, 14 have a plurality of source regions 16, a plurality of drain regions 18, and one or more linearly disposed gate structures 20. Source and drain regions 16, 18 are formed in alternating rows. For example, first inverter 10 is illustrated having two source regions 16 and one center drain region 18. First inverter 10 includes only one metal source interconnect (not shown) to properly bias source regions 16 and only one metal drain interconnect (not shown) to properly bias drain regions 18.
  • Transistors 12, 14 having linearly disposed gates structures 20 are referred to herein as “linear gate transistors”. In linear gate transistors 12, 14, carriers flow from each source region 16 to one drain region 18 under gate structures 20.
  • In FIGS. 2 and 3, a second type of prior art inverter is illustrated by way of reference numeral 22. Second inverter 22 has a PMOS transistor 24 and an NMOS transistor 26. Transistors 24, 26 have a plurality of source regions 28, a plurality of drain regions 30, and one or more intersecting gate structures 32. Source and drain regions 28, 30 are formed in a checker board pattern, of alternating columns and rows. Second inverter 22 includes only one metal source interconnect 34 to properly bias source regions 28 and one metal drain interconnect 36 to properly bias drain regions 30.
  • Transistors 24, 26 having intersecting gates structures 32 are referred to herein as “cellular gate transistors”. Specifically, intersecting gate structures 32 define a plurality of cell-shaped areas about each source and drain region 28, 30. In illustrated embodiment, intersecting gate structures 32 are a plurality of intersecting horizontal and vertical conductors, which together define a plurality of square-shaped cells defined around source and drain regions 28, 30. Of course, it is contemplated by the present invention for intersecting gate structures 32 to define other non-square shapes, such as, but not limited to, a diamond shape, a rectangular shape, a triangular shape, an octagonal shape, and other polygonal shapes.
  • The cellular gate transistors 24, 26 of FIG. 2 include three columns of source and drain regions 28, 30, while the cellular gate transistors of FIG. 3 include four columns of source and drain regions. In each embodiment, carriers flow from source regions 28 to drain regions 30 under gates 32. However, each source region 28 is in electrical communication with two or more drain regions 30 due to the checker pattern of the source and drain regions and the intersecting gates 32.
  • The time delay of the first inverter 10 of FIG. 1 was compared to that of second inverters 22 of FIGS. 2 and 3, where the inverters all had similar layout areas. The ring delay in picoseconds per stage at different threshold voltages is shown in FIG. 4. Further, the ring delay in picoseconds per stage at different currents is shown in FIG. 5.
  • From the data of FIG. 4, it was determined that second inverters 22 have a longer delay (i.e., slower) as compared to first inverter 10. However, it was determined from the data of FIG. 5 that second inverters 22 provide higher total drive current as compared to first inverter 10.
  • Importantly, it was determined that the speed decrease and the high current in second inverters 22 are due to the extra capacitance available from the cellular gate transistors 24, 26. Specifically, cellular gate transistors 24, 26 provide between about 20% to about 80% higher drive current, more particularly about 55% higher drive current than linear gate transistors 12,14. It can also be seen from FIG. 4 that cellular gate transistors 24, 26 have a delay that is about 15% slower than linear gate transistors 12, 14. Since the delay is equal to the capacitance times the voltage divided by the current, it was found that second inverters 22 have about 1.5 to about 3 times higher load capacitance than similar sized first inverter 10.
  • An exemplary embodiment of a logic circuit 40 taking advantage of the above data is illustrated in FIG. 6. In this embodiment, logic circuit 40 is illustrated as a buffer circuit. Advantageously, logic circuit 40 combines one or more first inverters 10 having linear gate transistors 12, 14 with one or more second inverters 22 having cellular gate transistors 24, 26. In addition, logic circuit 40 is configured so that the delay time is minimized.
  • By way of example, the steps for configuring logic circuit 40 to minimize the delay time is illustrated below in comparison to conventional (e.g., having only first inverter 10). During design of conventional buffer circuits, Cload is the load capacitance of the circuit, Cg is the input capacitance, Cd is the drain capacitance, N the number of inverter stages, Ttotal is the total delay time, T0 is the initial time delay, and k is the constant scale factor for the inverters in the chain. It can be assumed that the load capacitance of the circuit is as follows:
    C load =k N+1 Cg  (Equation 1)
  • Where the total delay time from the input terminal to the load capacitance node is defined by: T total = ( N + 1 ) T o ( Cd + kCg ) ( Cd + Cg ) ( Equation 2 )
  • By combining Equations 1 and 2, it can be seen that: T total = ln ( Cl / Cg ) ( ln k ) T o ( Cd + kCg ) ( Cd + Cg ) ( Equation 3 )
  • To minimize the delay, the total delay divided by the scale factor can be set to zero such that:
    Delta(T total)/Delta(k)=0  (Equation 4)
  • By combining Equations 3 and 4, it can be seen that: T 0 ln ( Cl / Cg ) [ - 1 / k ( ln k ) 2 ( Cd + kcg Cd + Cg ) + ( Cg Cd + Cg ) ] = 0 ( Equation 5 )
  • The solution to Equation 5 results in:
    k(ln k−1)=Cd/Cg  (Equation 6)
  • Assuming for the conventional buffer circuit that Cd=5 fF (femto Farads), Cg=10 fF (femto Farads), and Cload=50 pF (pico Farads), k=3.18 and N=6.36. Since N is the number of inverters, this value is rounded up to the largest whole number, namely 7.
  • In contrast, for logic circuit 40 having first and second inverters 10, 22, Cd is about 1.5 to about 2 times higher than for the linear gate transistors as estimated based on the layout area of the logic circuit, and Cg is about 1.5 to about 3 times higher than the linear gate transistors as estimated based on the layout area of the logic circuit. Thus, where Cd is 2 times larger (5 fF×2=10 fF), Cg is 3 times larger (10 fF×3=30 fF), and where Cload remains 50 pF. In this example, k=3.03 and N=6.68, which is again rounded up to the largest whole number 7. As can be seen from the above comparison, the number of inverter stages (i.e., N) and the constant scale factor (i.e., k) differ in logic circuit 40 having first and second inverters 10, 22 as compared to similar sized circuits having only one type of inverter.
  • Accordingly, logic circuit 40 takes unique advantage of the benefits of cellular and liner gate transistors to improve the function of the logic circuit. Here, logic circuit 40 has two or more inverters in series with one another, where one of the inverters drives a smaller load than the other inverter. The inverter driving the smaller load has linear gate transistors, while the inverter driving the larger load has cellular gate transistors.
  • In addition, it should be noted that the terms “first”, “second”, “third”, “upper”, “lower”, and the like may be used herein to modify various elements. These modifiers do not imply a spatial, sequential, or hierarchical order to the modified elements unless specifically stated.
  • While the present invention has been described with reference to one or more exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the present invention not be limited to the particular embodiment(s) disclosed as the best mode contemplated, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (19)

1. A logic circuit comprising:
a first inverter having a plurality of linear gate transistors driving a first capacitive load; and
a second inverter having a plurality of cellular gate transistors driving a second capacitive load, said second inverter being connected in series with said second inverter, wherein said second capacitive load is larger than said first capacitive load.
2. The logic circuit as in claim 1, wherein said second capacitive load is between about 1.5 to about 3 times larger than said first capacitive load.
3. The logic circuit as in claim 1, further comprising a plurality of first inverters and/or a plurality of second inverters.
4. The logic circuit as in claim 1, wherein the logic circuit is a circuit selected from the group consisting of a buffer circuit, an oscillator circuit, a digital circuit, and a memory circuit.
5. The logic circuit as in claim 1, wherein said plurality of cellular gate transistors comprise a plurality of cells each having a shape selected from the group consisting of a diamond, a square, a rectangle, a triangle, an octagon, and any combinations thereof.
6. A logic circuit comprising:
a first inverter having a plurality of linear gate transistors with a first input capacitance; and
a second inverter being connected in series to said first inverter, said second inverter having a plurality of cellular gate transistors with a second input capacitance, wherein said second input capacitance is at least about one and one-half times larger than said first input capacitance.
7. The logic circuit as in claim 6, wherein said second input capacitance is about three times larger than said first input capacitance.
8. The logic circuit as in claim 6, wherein said first inverter has a first drain capacitance and said second inverter has a second drain capacitance, wherein said second drain capacitance is at least about one and one-half times larger than said first drain capacitance.
9. The logic circuit as in claim 8, wherein said second drain capacitance is about two times larger than said first drain capacitance.
10. The logic circuit as in claim 6, wherein said plurality of cellular gate transistors comprise a plurality of cells each having a shape selected from the group consisting of a diamond, a square, a rectangle, a triangle, an octagon, and any combinations thereof.
11. The logic circuit as in claim 6, wherein said first inverter drives a first capacitive load and said second inverter drives a second capacitive load, said second capacitive load being larger than said first capacitive load.
12. The logic circuit as in claim 11, wherein said second capacitive load is between about 1.5 to about 3 times larger than said first capacitive load.
13. A logic circuit comprising:
a first inverter having a plurality of linear gate transistors with a first drain capacitance; and
a second inverter being connected in series to said first inverter, said second inverter having a plurality of cellular gate transistors with a second drain capacitance, wherein said second drain capacitance is at least about one and one-half times larger than said first drain capacitance.
14. The logic circuit as in claim 13, wherein said second drain capacitance is about two times larger than said first drain capacitance.
15. The logic circuit as in claim 14, wherein said first inverter has a first input capacitance and said second inverter has a second input capacitance, said second input capacitance being at least about one and one-half times larger than said first input capacitance.
16. The logic circuit as in claim 15, wherein said second input capacitance is about three times larger than said first input capacitance.
17. The logic circuit as in claim 13, wherein said first inverter drives a first capacitive load and said second inverter drives a second capacitive load, said second capacitive load being larger than said first capacitive load.
18. The logic circuit as in claim 17, wherein said second capacitive load is between about 1.5 to about 3 times larger than said first capacitive load.
19. The logic circuit as in claim 18, wherein the logic circuit is a circuit selected from the group consisting of a buffer circuit, an oscillator circuit, digital circuits, and memory circuits.
US10/709,784 2004-05-27 2004-05-27 Logic circuits having linear and cellular gate transistors Expired - Fee Related US6975133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/709,784 US6975133B1 (en) 2004-05-27 2004-05-27 Logic circuits having linear and cellular gate transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/709,784 US6975133B1 (en) 2004-05-27 2004-05-27 Logic circuits having linear and cellular gate transistors

Publications (2)

Publication Number Publication Date
US20050264320A1 true US20050264320A1 (en) 2005-12-01
US6975133B1 US6975133B1 (en) 2005-12-13

Family

ID=35424531

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/709,784 Expired - Fee Related US6975133B1 (en) 2004-05-27 2004-05-27 Logic circuits having linear and cellular gate transistors

Country Status (1)

Country Link
US (1) US6975133B1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033459A1 (en) * 2007-01-12 2010-02-11 Panasonic Corporation Plasma display device and driving method of plasma display panel
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8549455B2 (en) 2007-08-02 2013-10-01 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8552508B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US8680626B2 (en) 2007-10-26 2014-03-25 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US8701071B2 (en) 2008-01-31 2014-04-15 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8756551B2 (en) 2007-08-02 2014-06-17 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US8759985B2 (en) 2008-03-27 2014-06-24 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US8823062B2 (en) 2006-03-09 2014-09-02 Tela Innovations, Inc. Integrated circuit with offset line end spacings in linear gate electrode level
US20140253179A1 (en) * 2013-03-08 2014-09-11 Jayderep P. Kulkarni Low voltage swing repeater
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636825A (en) * 1985-10-04 1987-01-13 Fairchild Semiconductor Corporation Distributed field effect transistor structure
US5355008A (en) * 1993-11-19 1994-10-11 Micrel, Inc. Diamond shaped gate mesh for cellular MOS transistor array
US5532969A (en) * 1994-10-07 1996-07-02 International Business Machines Corporation Clocking circuit with increasing delay as supply voltage VDD
US6084266A (en) * 1998-03-02 2000-07-04 Vanguard International Semiconductor Corporation Layout of semiconductor devices to increase the packing density of a wafer
US6121657A (en) * 1996-08-23 2000-09-19 Rohm Co. Ltd. Semiconductor integrated circuit device having gates arranged in a lattice
US6140687A (en) * 1996-11-28 2000-10-31 Matsushita Electric Industrial Co., Ltd. High frequency ring gate MOSFET
US6359477B1 (en) * 1999-06-03 2002-03-19 Texas Instruments Incorporated Low power driver design
US6388292B1 (en) * 1997-09-16 2002-05-14 Winbond Electronics Corporation Distributed MOSFET structure with enclosed gate for improved transistor size/layout area ratio and uniform ESD triggering
US6407601B1 (en) * 1999-05-28 2002-06-18 Kendin Communications Delay cell
US6548839B1 (en) * 2002-02-20 2003-04-15 National Semiconductor Corporation LDMOS transistor structure using a drain ring with a checkerboard pattern for improved hot carrier reliability
US6624679B2 (en) * 2000-01-31 2003-09-23 Stmicroelectronics S.R.L. Stabilized delay circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242364A (en) 1986-04-15 1987-10-22 Matsushita Electronics Corp Mos type output circuit element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636825A (en) * 1985-10-04 1987-01-13 Fairchild Semiconductor Corporation Distributed field effect transistor structure
US5355008A (en) * 1993-11-19 1994-10-11 Micrel, Inc. Diamond shaped gate mesh for cellular MOS transistor array
US5447876A (en) * 1993-11-19 1995-09-05 Micrel, Inc. Method of making a diamond shaped gate mesh for cellular MOS transistor array
US5532969A (en) * 1994-10-07 1996-07-02 International Business Machines Corporation Clocking circuit with increasing delay as supply voltage VDD
US6121657A (en) * 1996-08-23 2000-09-19 Rohm Co. Ltd. Semiconductor integrated circuit device having gates arranged in a lattice
US6140687A (en) * 1996-11-28 2000-10-31 Matsushita Electric Industrial Co., Ltd. High frequency ring gate MOSFET
US6388292B1 (en) * 1997-09-16 2002-05-14 Winbond Electronics Corporation Distributed MOSFET structure with enclosed gate for improved transistor size/layout area ratio and uniform ESD triggering
US6084266A (en) * 1998-03-02 2000-07-04 Vanguard International Semiconductor Corporation Layout of semiconductor devices to increase the packing density of a wafer
US6407601B1 (en) * 1999-05-28 2002-06-18 Kendin Communications Delay cell
US6359477B1 (en) * 1999-06-03 2002-03-19 Texas Instruments Incorporated Low power driver design
US6624679B2 (en) * 2000-01-31 2003-09-23 Stmicroelectronics S.R.L. Stabilized delay circuit
US6548839B1 (en) * 2002-02-20 2003-04-15 National Semiconductor Corporation LDMOS transistor structure using a drain ring with a checkerboard pattern for improved hot carrier reliability

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186523B2 (en) 2006-03-09 2019-01-22 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features formed in part from rectangular layout shapes on gate horizontal grid and first-metal structures formed in part from rectangular layout shapes on at least eight first-metal gridlines of first-metal vertical grid
US8952425B2 (en) 2006-03-09 2015-02-10 Tela Innovations, Inc. Integrated circuit including at least four linear-shaped conductive structures having extending portions of different length
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US9711495B2 (en) 2006-03-09 2017-07-18 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US10230377B2 (en) 2006-03-09 2019-03-12 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9673825B2 (en) 2006-03-09 2017-06-06 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8921896B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit including linear gate electrode structures having different extension distances beyond contact
US10141334B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first-metal structures
US9589091B2 (en) 2006-03-09 2017-03-07 Tela Innovations, Inc. Scalable meta-data objects
US9859277B2 (en) 2006-03-09 2018-01-02 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires
US9741719B2 (en) 2006-03-09 2017-08-22 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US10217763B2 (en) 2006-03-09 2019-02-26 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features of rectangular shape on gate horizontal grid and first-metal structures of rectangular shape on at least eight first-metal gridlines of first-metal vertical grid
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US8946781B2 (en) 2006-03-09 2015-02-03 Tela Innovations, Inc. Integrated circuit including gate electrode conductive structures with different extension distances beyond contact
US9443947B2 (en) 2006-03-09 2016-09-13 Tela Innovations, Inc. Semiconductor chip including region having integrated circuit transistor gate electrodes formed by various conductive structures of specified shape and position and method for manufacturing the same
US9425273B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including at least five gate level conductive structures having particular spatial and electrical relationship and method for manufacturing the same
US9425145B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9425272B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including four transistors of first transistor type and four transistors of second transistor type with electrical connections between various transistors and methods for manufacturing the same
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US10141335B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor CIP including region having rectangular-shaped gate structures and first metal structures
US9905576B2 (en) 2006-03-09 2018-02-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first metal structures
US9336344B2 (en) 2006-03-09 2016-05-10 Tela Innovations, Inc. Coarse grid design methods and structures
US8823062B2 (en) 2006-03-09 2014-09-02 Tela Innovations, Inc. Integrated circuit with offset line end spacings in linear gate electrode level
US9917056B2 (en) 2006-03-09 2018-03-13 Tela Innovations, Inc. Coarse grid design methods and structures
US9240413B2 (en) 2006-03-09 2016-01-19 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US8921897B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit with gate electrode conductive structures having offset ends
US20100033459A1 (en) * 2007-01-12 2010-02-11 Panasonic Corporation Plasma display device and driving method of plasma display panel
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US10074640B2 (en) 2007-03-05 2018-09-11 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US9633987B2 (en) 2007-03-05 2017-04-25 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US9595515B2 (en) 2007-03-07 2017-03-14 Tela Innovations, Inc. Semiconductor chip including integrated circuit defined within dynamic array section
US9424387B2 (en) 2007-03-07 2016-08-23 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9910950B2 (en) 2007-03-07 2018-03-06 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8966424B2 (en) 2007-03-07 2015-02-24 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8756551B2 (en) 2007-08-02 2014-06-17 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US8549455B2 (en) 2007-08-02 2013-10-01 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8759882B2 (en) 2007-08-02 2014-06-24 Tela Innovations, Inc. Semiconductor device with dynamic array sections defined and placed according to manufacturing assurance halos
US8680626B2 (en) 2007-10-26 2014-03-25 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9818747B2 (en) 2007-12-13 2017-11-14 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8951916B2 (en) 2007-12-13 2015-02-10 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9281371B2 (en) 2007-12-13 2016-03-08 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9202779B2 (en) 2008-01-31 2015-12-01 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8701071B2 (en) 2008-01-31 2014-04-15 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US9530734B2 (en) 2008-01-31 2016-12-27 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8872283B2 (en) 2008-03-13 2014-10-28 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature
US8866197B2 (en) 2008-03-13 2014-10-21 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two gate electrodes electrically connected to each other through another transistor forming gate level feature
US8853793B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit including gate electrode level region including cross-coupled transistors having gate contacts located over inner portion of gate electrode level region and offset gate level feature line ends
US8847331B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Semiconductor chip including region having cross-coupled transistor configuration with offset electrical connection areas on gate electrode forming conductive structures and at least two different inner extension distances of gate electrode forming conductive structures
US8853794B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit within semiconductor chip including cross-coupled transistor configuration
US8847329B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Cross-coupled transistor circuit defined having diffusion regions of common node on opposing sides of same gate electrode track with at least two non-inner positioned gate contacts
US8835989B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate electrode placement specifications
US9081931B2 (en) 2008-03-13 2015-07-14 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track and gate node connection through single interconnect layer
US9117050B2 (en) 2008-03-13 2015-08-25 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position and offset specifications
US10020321B2 (en) 2008-03-13 2018-07-10 Tela Innovations, Inc. Cross-coupled transistor circuit defined on two gate electrode tracks
US8816402B2 (en) 2008-03-13 2014-08-26 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate level feature layout channel including single transistor
US8785979B2 (en) 2008-03-13 2014-07-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with two inside positioned gate contacts and two outside positioned gate contacts and electrical connection of cross-coupled transistors through same interconnect layer
US9208279B2 (en) 2008-03-13 2015-12-08 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including linear-shaped conductive structures having electrical connection areas located within inner region between transistors of different type and associated methods
US9213792B2 (en) 2008-03-13 2015-12-15 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US8772839B2 (en) 2008-03-13 2014-07-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset and aligned relationships and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8742462B2 (en) 2008-03-13 2014-06-03 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position specifications
US9245081B2 (en) 2008-03-13 2016-01-26 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least nine linear-shaped conductive structures collectively forming gate electrodes of at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US8742463B2 (en) 2008-03-13 2014-06-03 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with outer positioned gate contacts
US8735995B2 (en) 2008-03-13 2014-05-27 Tela Innovations, Inc. Cross-coupled transistor circuit defined on three gate electrode tracks with diffusion regions of common node on opposing sides of same gate electrode track
US8735944B2 (en) 2008-03-13 2014-05-27 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with serially connected transistors
US8729606B2 (en) 2008-03-13 2014-05-20 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels
US8729643B2 (en) 2008-03-13 2014-05-20 Tela Innovations, Inc. Cross-coupled transistor circuit including offset inner gate contacts
US8581303B2 (en) 2008-03-13 2013-11-12 Tela Innovations, Inc. Integrated circuit including cross-coupled trasistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset relationships and electrical connection of cross-coupled transistors through same interconnect layer
US8680583B2 (en) 2008-03-13 2014-03-25 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within at least nine gate level feature layout channels
US8669595B2 (en) 2008-03-13 2014-03-11 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position, alignment, and offset specifications
US8669594B2 (en) 2008-03-13 2014-03-11 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within at least twelve gate level feature layout channels
US8587034B2 (en) 2008-03-13 2013-11-19 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US9871056B2 (en) 2008-03-13 2018-01-16 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US9536899B2 (en) 2008-03-13 2017-01-03 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US8581304B2 (en) 2008-03-13 2013-11-12 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset and aligned relationships
US8575706B2 (en) 2008-03-13 2013-11-05 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two different gate level features inner extensions beyond gate electrode
US8569841B2 (en) 2008-03-13 2013-10-29 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least one gate level feature extending into adjacent gate level feature layout channel
US8564071B2 (en) 2008-03-13 2013-10-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two different gate level feature extensions beyond contact
US8558322B2 (en) 2008-03-13 2013-10-15 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two gate electrodes electrically connected to each other through gate level feature
US8552509B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with other transistors positioned between cross-coupled transistors
US8552508B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8785978B2 (en) 2008-03-13 2014-07-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with electrical connection of cross-coupled transistors through same interconnect layer
US8836045B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track
US8592872B2 (en) 2008-03-13 2013-11-26 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors with two transistors of different type having gate electrodes formed by common gate level feature with shared diffusion regions on opposite sides of common gate level feature
US9390215B2 (en) 2008-03-27 2016-07-12 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US8759985B2 (en) 2008-03-27 2014-06-24 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9779200B2 (en) 2008-03-27 2017-10-03 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US9530795B2 (en) 2009-10-13 2016-12-27 Tela Innovations, Inc. Methods for cell boundary encroachment and semiconductor devices implementing the same
US9269702B2 (en) 2009-10-13 2016-02-23 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the same
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9704845B2 (en) 2010-11-12 2017-07-11 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US8847633B1 (en) * 2013-03-08 2014-09-30 Intel Corporation Low voltage swing repeater
US20140253179A1 (en) * 2013-03-08 2014-09-11 Jayderep P. Kulkarni Low voltage swing repeater

Also Published As

Publication number Publication date
US6975133B1 (en) 2005-12-13

Similar Documents

Publication Publication Date Title
Suzuki et al. Clocked CMOS calculator circuitry
US6333656B1 (en) Flip-flops
US5289021A (en) Basic cell architecture for mask programmable gate array with 3 or more size transistors
US6980033B2 (en) Pseudo CMOS dynamic logic with delayed clocks
KR100581010B1 (en) Monotonic dynamic-static pseudo-NMOS logic circuit and method of forming a logic gate array
EP0175501B1 (en) Delay circuit for gate-array lsi
US5663662A (en) Library group and semiconductor integrated circuit structured thereof
JP4036688B2 (en) Standard for automatic placement and routing cell library and a semiconductor integrated device
US5793246A (en) High voltage pump scheme incorporating an overlapping clock
US6876572B2 (en) Programmable logic devices with stabilized configuration cells for reduced soft error rates
US8683414B2 (en) Semiconductor integrated circuit device with independent power domains
US8173491B2 (en) Standard cell architecture and methods with variable design rules
JP3758545B2 (en) Sampling level converter circuit and the two-phase and multiphase expanding circuit and a display device
US8166440B1 (en) Basic cell architecture for structured application-specific integrated circuits
US7538368B2 (en) Standard cell, standard cell library, and semiconductor integrated circuit with suppressed variation in characteristics
US6140686A (en) Semiconductor integrated circuit device
US6455901B2 (en) Semiconductor integrated circuit
KR920010348B1 (en) Semiconductor integrated circuit device
KR100898192B1 (en) Semiconductor integrated circuit, the semiconductor designing method and the program for designing the same
US7737472B2 (en) Semiconductor integrated circuit device
US5051917A (en) Method of combining gate array and standard cell circuits on a common semiconductor chip
JP2005167184A (en) Semiconductor integrated circuit device
US7310008B1 (en) Configurable delay chain with stacked inverter delay elements
US20030025527A1 (en) Digital logic devices with extremely skewed trip points and reset circuitry for rapidly propagating signal edges and methods, circuits and systems including same
US7336100B2 (en) Single supply level converter

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, VICTOR WING CHUNG;WANN, HSING-JEN C.;HUANG, SHIH-FEN;AND OTHERS;REEL/FRAME:014666/0325;SIGNING DATES FROM 20040526 TO 20040527

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20171213