US20050228299A1 - Patch sensor for measuring blood pressure without a cuff - Google Patents

Patch sensor for measuring blood pressure without a cuff Download PDF

Info

Publication number
US20050228299A1
US20050228299A1 US10/906,315 US90631505A US2005228299A1 US 20050228299 A1 US20050228299 A1 US 20050228299A1 US 90631505 A US90631505 A US 90631505A US 2005228299 A1 US2005228299 A1 US 2005228299A1
Authority
US
United States
Prior art keywords
patient
system
blood pressure
component
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/906,315
Inventor
Matthew Banet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sotera Wireless Inc
Original Assignee
Sotera Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/709,014 priority Critical patent/US7179228B2/en
Application filed by Sotera Wireless Inc filed Critical Sotera Wireless Inc
Priority to US10/906,315 priority patent/US20050228299A1/en
Assigned to TRIAGE WIRELESS, INC. reassignment TRIAGE WIRELESS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANET, MATTHEW JOHN
Priority claimed from US11/160,957 external-priority patent/US20050261598A1/en
Publication of US20050228299A1 publication Critical patent/US20050228299A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • A61B2560/0412Low-profile patch shaped housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/06Arrangements of multiple sensors of different types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Measuring bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0408Electrodes specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Abstract

A monitoring device, method and system for monitoring vital signs of a patient over a wireless network are disclosed herein. The monitoring device includes an adhesive patch sensor, typically mounted on a patient's head, and a processing component. The adhesive patch sensor typically includes an optical system that generates an optical waveform, and an electrode that generates an electrical waveform. The processing component processes the optical and electrical waveforms, along with a calibration table, to determine the patient's vital signs.

Description

  • This application is a continuation-in-part application of U.S. patent application Ser. No. 10/709,014, filed on Apr. 7, 2004.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a device, method and system for measuring vital signs, particularly blood pressure.
  • 2. Description of Related Art
  • Pulse oximeters are medical devices featuring an optical module, typically worn on a patient's finger or ear lobe, and a processing module that analyzes data generated by the optical module. The optical module typically includes first and second light sources (e.g., light-emitting diodes, or LEDs) that transmit optical radiation at, respectively, red (X 630-670 nm) and infrared (λ˜800-1200 nm) wavelengths. The optical module also features a photodetector that detects radiation transmitted or reflected by an underlying artery. Typically the red and infrared LEDs sequentially emit radiation that is partially absorbed by blood flowing in the artery. The photodetector is synchronized with the LEDs to detect transmitted or reflected radiation. In response, the photodetector generates a separate radiation-induced signal for each wavelength. The signal, called a plethysmograph, varies in a time-dependent manner as each heartbeat varies the volume of arterial blood and hence the amount of transmitted or reflected radiation. A microprocessor in the pulse oximeter processes the relative absorption of red and infrared radiation to determine the oxygen saturation in the patient's blood. A number between 94%-100% is considered normal, while a value below 85% typically indicates the patient requires hospitalization. In addition, the microprocessor analyzes time-dependent features in the plethysmograph to determine the patient's heart rate.
  • Pulse oximeters work best when the appendage they attach to (e.g., a finger) is at rest. If the finger is moving, for example, the light source and photodetector within the optical module typically move relative to the underlying artery. This generates ‘noise’ in the plethysmograph, which in turn can lead to motion-related artifacts in data describing pulse oximetry and heart rate. Ultimately this reduces the accuracy of the measurement. Another medical device, called a sphygmomanometer, measures a patient's blood pressure using an inflatable cuff and a sensor (e.g., a stethoscope) that detects blood flow by listening for sounds called the Korotkoff sounds. During a measurement, a medical professional typically places the cuff around the patient's arm and inflates it to a pressure that exceeds the systolic blood pressure. The medical professional then incrementally reduces pressure in the cuff while listening for flowing blood with the stethoscope. The pressure value at which blood first begins to flow past the deflating cuff, indicated by a Korotkoff sound, is the systolic pressure. The stethoscope monitors this pressure by detecting strong, periodic acoustic ‘beats’ or ‘taps’ indicating that the blood is flowing past the cuff (i.e., the systolic pressure barely exceeds the cuff pressure). The minimum pressure in the cuff that restricts blood flow, as detected by the stethoscope, is the diastolic pressure. The stethoscope monitors this pressure by detecting another Korotkoff sound, in this case a ‘leveling off’ or disappearance in the acoustic magnitude of the periodic beats, indicating that the cuff no longer restricts blood flow (i.e., the diastolic pressure barely exceeds the cuff pressure).
  • Low-cost, automated devices measure blood pressure using an inflatable cuff and an automated acoustic or pressure sensor that measures blood flow. These devices typically feature cuffs fitted to measure blood pressure in a patient's wrist, arm or finger. During a measurement, the cuff automatically inflates and then incrementally deflates while the automated sensor monitors blood flow. A microcontroller in the automated device then calculates blood pressure. Cuff-based blood-pressure measurements such as these typically only determine the systolic and diastolic blood pressures; they do not measure dynamic, time-dependent blood pressure.
  • Data indicating blood pressure are most accurately measured during a patient's appointment with a medical professional, such as a doctor or a nurse. Once measured, the medical professional can manually record these data in either a written or electronic file. Appointments typically take place a few times each year. Unfortunately, in some cases, patients experience ‘white coat syndrome’ where anxiety during the appointment affects the blood pressure that is measured. For example, white coat syndrome can elevate a patient's heart rate and blood pressure; this, in turn, can lead to an inaccurate diagnoses.
  • Various methods have been disclosed for using pulse oximeters to obtain arterial blood pressure. One such method is disclosed in U.S. Pat. No. 5,140,990 to Jones et al., for a ‘Method Of Measuring Blood Pressure With a Photoplethysmograph’. The '990 Patent discloses using a pulse oximeter with a calibrated auxiliary blood pressure to generate a constant that is specific to a patient's blood pressure. Another method for using a pulse oximeter to measure blood pressure is disclosed in U.S. Pat. No. 6,616,613 to Goodman for a ‘Physiological Signal Monitoring System’. The '613 Patent discloses processing a pulse oximetry signal in combination with information from a calibrating device to determine a patient's blood pressure.
  • Chen et al, U.S. Pat. No. 6,599,251, discloses a system and method for monitoring blood pressure by detecting pulse signals at two different locations on a subject's body, preferably on the subject's finger and earlobe. The pulse signals are preferably detected using pulse oximetry devices, and then processed to determine blood pressure.
  • Schulze et al., U.S. Pat. No. 6,556,852, discloses an earpiece having an embedded pulse oximetry device and thermopile to monitor and measure physiological variables of a user.
  • Jobsis et al., U.S. Pat. No. 4,380,240, discloses an optical probe featuring a light source and a light detector incorporated into channels within a deformable mounting structure which is adhered to a strap. The light source and the light detector are secured to the patient's body by adhesive tapes and pressure induced by closing the strap around a portion of the body.
  • Tan et al., U.S. Pat. No. 4,825,879, discloses an optical probe with a T-shaped wrap having a vertical stem and a horizontal cross bar, which is utilized to secure a light source and an optical sensor in optical contact with a finger. A metallic material is utilized to reflect heat back to the patient's body and to provide opacity to interfering ambient light. The sensor is secured to the patient's body using an adhesive or hook-and-loop material.
  • Modgil et al., U.S. Pat. No. 6,681,454, discloses a strap composed of an elastic material that wraps around the outside of a pulse oximeter probe and is secured to the oximeter probe by attachment mechanisms such as Velcro.
  • Diab et al., U.S. Pat. Nos. 6,813,511 and 6,678,543, discloses a disposable optical probe that reduces noise during a measurement. The probe is adhesively secured to a patient's finger, toe, forehead, earlobe or lip, and can include reusable and disposable portions.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a cuffless, blood-pressure monitor, featuring an adhesive patch. The patch is disposable and is typically used for 24-72 hours. The blood pressure monitor makes a transdermal, optical measurement of the time-dependent dynamics of blood flowing in an underlying artery. A processor analyzes this information, typically with a calibration table, to determine blood pressure. Once determined, the processor sends it to a hand-held wireless component (e.g., a cellular phone or wireless PDA). The processing component preferably features an embedded, short-range wireless transceiver and a software platform that displays, analyzes, and then transmits the information through a wireless network to an Internet-based system. With this system a medical professional can continuously monitor a patient's blood pressure during their day-to-day activities. Monitoring patients in this manner minimizes erroneous measurements due to ‘white coat syndrome’ and increases the accuracy of a blood-pressure measurement.
  • The invention has many advantages. In particular, one aspect of the invention provides a system that continuously monitors a patient's blood pressure using a cuffless blood pressure monitor and an off-the-shelf mobile communication device. Information describing the blood pressure can be viewed using an Internet-based website, using a personal computer, or simply by viewing a display on the mobile device. Blood-pressure information measured continuously throughout the day provides a relatively comprehensive data set compared to that measured during isolated medical appointments. This approach identifies trends in a patient's blood pressure, such as a gradual increase or decrease, which may indicate a medical condition that requires treatment. The invention also minimizes effects of ‘white coat syndrome’ since the monitor automatically and continuously makes measurements away from a medical office with basically no discomfort to the patient. Real-time, automatic blood pressure measurements, followed by wireless transmission of the data, are only practical with a non-invasive, cuffless monitor like that of the present invention. Measurements can be made completely unobtrusive to the patient.
  • The monitor can also characterize the patient's heart rate and blood oxygen saturation using the same optical system for the blood-pressure measurement. This information can be wirelessly transmitted along with blood-pressure information and used to further diagnose the patient's cardiac condition.
  • The monitor is small, easily worn by the patient during periods of exercise or day-to-day activities, and makes a non-invasive blood-pressure measurement in a matter of seconds. The resulting information has many uses for patients, medical professional, insurance companies, pharmaceutical agencies conducting clinical trials, and organizations for home-health monitoring.
  • Having briefly described the present invention, the above and further objects, features and advantages thereof will be recognized by those skilled in the pertinent art from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A is a schematic top view of an adhesive patch sensor that measures blood pressure according to the invention;
  • FIG. 1B is a schematic, cross-sectional view of the patch sensor of FIG. 1A;
  • FIG. 2 is a graph of time-dependent optical and electrical waveforms generated by the patch sensor of FIG. 1A;
  • FIG. 3 is a schematic diagram of the electrical components of a processing module connected to the patch sensor of FIG. 1A;
  • FIGS. 4A and 4B are schematic diagrams of the patch sensor of FIG. 1A attached to, respectively, a patient's forehead and ear;
  • FIG. 5 is a schematic diagram of a head-mounted sensor similar to that shown in FIG. 4A connected to a belt-mounted processing module using a wireless link;
  • FIG. 6 is a schematic view of an Internet-based system used to send vital-sign information from a patient to an Internet-accessible website.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1A and 1B show an adhesive patch sensor 20 according to the invention that features a pair of LEDs 10, 12 and photodetector 14 that, when attached to a patient, generate an optical waveform (31 in FIG. 2). A horseshoe-shaped metal electrode 17 surrounds these optical components and generates an electrical waveform (32 in FIG. 2). The electrical and optical waveforms, once generated, pass through a cable 18 to a processing module, which analyzes them as described in detail below to measure a patient's systolic and diastolic blood pressure, heart rate, and pulse oximetry. The patch sensor 20 features an adhesive component 19 that adheres to the patient's skin and secures the LEDs 10, 12, photodetector 14, and electrode 17 in place to minimize the effects of motion. During operation, the cable 18 snaps into a plastic header 16 disposed on a top portion of the patch sensor 20. Both the cable 18 and header 16 include matched electrical leads that supply power and ground to the LEDs 10, 12, photodetector 14, and electrode 19. The cable 18 and header 16 additionally supply a high-frequency electrical signal to the electrode that helps generate the electrical waveform. When the patch sensor 20 is not measuring optical and electrical waveforms (e.g., when the patient is sleeping), the cable 18 unsnaps from the header 16, while the sensor 20 remains adhered to the patient's skin. In this way a single sensor can be used for several days. After use, the patient removes and then discards the sensor 20.
  • To measure blood pressure, heart rate, and pulse oximetry, the LEDs 10, 12 generate, respectively, red and infrared radiation that irradiates an underlying artery. Blood volume increases and then decreases as the heart pumps blood through the patient's artery. Blood cells within the blood absorb and transmit varying amounts of the red and infrared radiation depending the on the blood volume and how much oxygen binds to the cells' hemoglobin. The photodetector 14 detects a portion of the radiation that reflects off an underlying artery, and in response sends a radiation-induced photocurrent to an analog-to-digital converter embedded within the processing module. The analog-to-digital converter digitizes the photocurrent to generate a time-dependent optical waveform for each wavelength. In addition, the microprocessor analyzes waveforms generated at both red and infrared wavelengths, and compares a ratio of the relative absorption to a calibration table coded in its firmware to determine pulse oximetry. The microprocessor additionally analyzes the time-dependent properties of one of the optical waveforms to determine the patient's heart rate.
  • Concurrent with measurement of the optical waveform, the electrode 19 detects an electrical impulse from the patient's skin that the microprocessor processes to generate an electrical waveform. The electrical impulse is generated each time the patient's heart beats.
  • The patch sensor 20 preferably has a diameter, ‘D’, ranging from 0.5 centimeter (‘cm’) to 10 cm, more preferably from 1.5 cm to 3.0 cm, and most preferably 2.5 cm. The patch sensor 20 preferably has a thickness, ‘T’, ranging from 1.0 millimeter (“mm”) to 3 mm, more preferably from 1.0 mm to 1.5 mm, and most preferably 1.25 mm. The patch sensor 20 preferably includes a body composed of a polymeric material such as a neoprene rubber. The body is preferably colored to match a patient's skin color, and is preferably opaque to reduce the affects of ambient light. The body is preferably circular in shape, but can also be non-circular, e.g. an oval, square, rectangular, triangular or other shape.
  • FIG. 2 shows both optical 31 and electrical 32 waveforms generated by the patch sensor of FIGS. 1A and 1B. Following a heartbeat, the electrical impulse travels essentially instantaneously from the patient's heart to the patch sensor, where the electrode detects it to generate the electrical waveform 32. At a later time, a pressure wave induced by the same heartbeat propagates through the patient's arteries and arrives at the sensor, where the LEDs and photodetector detect it as described above to generate the optical waveform 31. The propagation time of the electrical impulse is independent of blood pressure pressure, whereas the propagation time of the pressure wave depends strongly on pressure, as well as mechanical properties of the patient's arteries (e.g., arterial size, stiffness). The microprocessor runs an algorithm that analyzes the time difference AT between the arrivals of these signals, i.e. the relative occurrence of the optical 31 and electrical 32 waveforms as measured by the patch sensor. Calibrating the measurement (e.g., with a conventional blood pressure cuff) accounts for patient-to-patient variations in arterial properties, and correlates ΔT to both systolic and diastolic blood pressure. This results in a calibration table. During an actual measurement, the calibration source is removed, and the microprocessor analyzes ΔT along with other properties of the optical and electrical waveforms and the calibration table to calculate the patient's real-time blood pressure.
  • The microprocessor can analyze other properties of the optical waveform 31 to augment the above-mentioned measurement of blood pressure. For example, the waveform can be ‘fit’ using a mathematical function that accurately describes the waveform's features, and an algorithm (e.g., the Marquardt-Levenberg algorithm) that iteratively varies the parameters of the function until it best matches the time-dependent features of the waveform. In this way, blood pressure-dependent properties of the waveform, such as its width, rise time, fall time, and area, can be calibrated as described above. After the calibration source is removed, the patch sensor measures these properties along with ΔT to determine the patient's blood pressure.
  • Methods for processing the optical and electrical waveform to determine blood pressure are described in the following co-pending patent applications, the entire contents of which are incorporated by reference: 1) CUFFLESS BLOOD-PRESSURE MONITOR AND ACCOMPANYING WIRELESS, INTERNET-BASED SYSTEM (U.S. Ser. No. 10/709,015; filed Apr. 7, 2004); 2) CUFFLESS SYSTEM FOR MEASURING BLOOD PRESSURE (U.S. Ser. No. 10/709,014; filed Apr. 7, 2004); 3) CUFFLESS BLOOD PRESSURE MONITOR AND ACCOMPANYING WEB SERVICES INTERFACE (U.S. Ser. No. 10/810,237; filed Mar. 26, 2004); 4) VITAL-SIGN MONITOR FOR ATHLETIC APPLICATIONS (U.S. Ser. No.; filed Sep. 13, 2004); 5) CUFFLESS BLOOD PRESSURE MONITOR AND ACCOMPANYING WIRELESS MOBILE DEVICE (U.S. Ser. No. 10/967,511; filed Oct. 18, 2004); and 6) BLOOD PRESSURE MONITORING DEVICE FEATURING A CALIBRATION-BASED ANALYSIS (U.S. Ser. No. 10/967,610; filed Oct. 18, 2004).
  • FIG. 3 shows a preferred configuration of electronic components featured within the processing module 50. A data-processing circuit 17 connects to an optical signal processing circuit 35 that powers both the LEDs and the photodetector, and additionally processes radiation-induced photocurrent generated by the photodetector. The data-processing circuit 17 typically includes a microprocessor 45, which in turn includes an embedded analog-to-digital converter 46 that digitizes signals to generate both the electrical and optical waveforms. In a similar manner, the data-processing circuit 17 controls an RF source 18 for the electrode. To receive inputs from wireless devices, the processing module 50 includes a Bluetooth™ wireless transceiver 38 that receives information through an antenna 26 from a matched transceiver embedded within an external component. The processing module 50 can also include a liquid crystal display (‘LCD’) 42 that displays blood-pressure information for the user or patient. In another embodiment, the data-processing circuit 17 avails calculated information through a serial port 40 to an external personal computer, which then displays and analyzes the information using a client-side software application. A battery 37 powers all the electrical components within the processing module, and is preferably a metal hydride battery (generating 3-7V) that can be recharged through a battery-recharge interface 44.
  • Referring to FIGS. 4A and 4B, in embodiments the patch sensor 20 is head-mounted and attaches through a cable 18 to a processing module 50 worn on the patient's belt. Preferably the sensor attaches to the patent's forehead 52, underneath the patient's ear, on the back of the patient's neck, or to any other location on the patient's head that is on or near an artery. Typically the patient's head undergoes relatively little motion compared to other parts of the patient's body (e.g., the hands), and thus attaching the sensor to this region reduces the negative affects of motion-related artifacts.
  • In another embodiment, shown in FIG. 5, the sensor 20 includes a wireless transceiver 70 (e.g., a Bluetooth transceiver) that communicates with a matched wireless transceiver 71 in the processing module 50 through a wireless link 24. In this embodiment the sensor 20 additionally includes a battery 73 that powers the wireless transceiver 70 and all the sensing components therein. During operation, the battery-powered sensor 20 collects the optical and electrical waveforms as described above, and transmits these with the wireless transceiver 70 to the transceiver 71 in the processing component 50. The processing module 50 then processes the waveforms as described above to determine the patient's vital signs.
  • FIG. 6 shows a preferred embodiment of an Internet-based system 53 that operates in concert with the adhesive patch sensor 20 and processing module 50 to send information from a patient to a hand-held wireless device 15. The wireless device 15 then sends the information through a wireless network 54 to a web site 66 hosted on an Internet-based host computer system 57. A secondary computer system 69 accesses the website 66 through the Internet 67. The system 53 functions in a bidirectional manner, i.e. the processing module 50 can both send and receive data. Most data flows from the processing module 20 to the website 66; using the same network, however, the device can also receive data (e.g., ‘requests’ to measure data or text messages) and software upgrades.
  • A wireless gateway 55 connects to the wireless network 54 and receives data from one or more wireless devices 15, as discussed below. The wireless gateway 55 additionally connects to a host computer system 57 that includes a database 63 and a data-processing component 68 for, respectively, storing and analyzing the data. The host computer system 57, for example, may include multiple computers, software pieces, and other signal-processing and switching equipment, such as routers and digital signal processors. The wireless gateway 55 preferably connects to the wireless network 54 using a TCP/IP-based connection, or with a dedicated, digital leased line (e.g., a frame-relay circuit or a digital line running an X.25 or other protocols). The host computer system 57 also hosts the web site 66 using conventional computer hardware (e.g. computer servers for both a database and the web site) and software (e.g., web server and database software).
  • During typical operation, the patient continuously wears the patch sensor 20 for a period of time ranging from a 1-2 days to weeks. Alternatively, the patient may wear the sensor 20 for shorter periods of time, e.g. just a few hours. For example, the patient may wear the sensor during a brief hospital stay, or during a medical checkup. To view information sent from the processing module, the patient or medical professional accesses a user interface hosted on the web site 66 through the Internet 67 from the secondary computer system 69. The system 53 may also include a call center, typically staffed with medical professionals such as doctors, nurses, or nurse practioners, whom access a care-provider interface hosted on the same website 66.
  • In an alternate embodiment, the host computer system 57 includes a web services interface 70 that sends information using an XML-based web services link to a secondary, web-based computer application 71. This application 71, for example, could be a data-management system operating at a hospital.
  • The processing module 50 can optionally be used to determine the patient's location using embedded position-location technology (e.g., GPS, network-assisted GPS, or 802.11-based location system). In situations requiring immediate medical assistance, the patient's location, along with relevant medical data collected by the blood pressure monitoring system, can be relayed to emergency response personnel.
  • In a related embodiment, the processing module 50 and wireless device may use a ‘store and forward’ protocol wherein the processing module 50 stores information when the wireless device is out of wireless coverage, and then sends this information to the wireless device when it roams back into wireless coverage.
  • In an alternate embodiment of the invention, the processing module and patch sensor are used within a hospital, and the processing module includes a short-range wireless link (e.g., a module operating Bluetooth™, 802.11a, 802.11b, 802.1g, or 802.15.4 wireless protocols) that sends vital-sign information to an in-hospital network. In this embodiment, a nurse working at a central nursing station can quickly view the vital signs of the patient using a simple computer interface.
  • Still other embodiments are within the scope of the following claims.

Claims (18)

1. A system for monitoring blood pressure, the system comprising:
a monitoring device comprising an adhesive patch sensor component that generates an optical signal and a processing component for processing the optical signal with calibration information to obtain blood pressure information; and a computer system configured to receive and display the blood-pressure information.
2. The system of claim 1, wherein the optical system comprises at least one LED and a photodiode.
3. The system of claim 2, wherein the processing component comprises a microprocessor that processes the optical waveform along with the calibration information to determine the blood-pressure information.
4. The system of claim 1, wherein the adhesive patch sensor component further comprises an electrode that measures an electrical waveform.
5. The system of claim 4, wherein the processing component further comprises a microprocessor that processes both the optical and electrical waveforms to determine the blood-pressure information.
6. The system of claim 1, wherein the adhesive patch sensor further comprises a short-range wireless transmitter.
7. The system of claim 6, wherein the short-range wireless transmitter is a transmitter that operates a protocol based on Bluetooth™, 802.11a, 802.11b, 802.1g, or 802.15.4.
8. The system of claim 1, wherein the monitoring device further comprises a short-range wireless component that operates a wireless protocol based on Bluetooth™, 802.11a, 802.11b, 802.1g, or 802.15.4.
9. The system of claim 1, wherein the processing component further comprises a wireless transmitter that wirelessly transmits the blood pressure information over a terrestrial wireless network.
10. The system of claim 1, wherein the processing component further analyzes the optical signal to determine pulse oximetry and heart rate.
11. The system of claim 1, where in adhesive patch sensor component comprises and adhesive component configured to attach to a patient's head.
12. A monitoring device for monitoring a patient's blood pressure, the monitoring device comprising: a head-mounted component comprising a body and an optical device positioned within the body for measuring blood pressure from the patient's artery, the body having an adhesive on an exterior surface for adhesively securing the body to the patient's head; and, means for wirelessly transmitting a signal representative of the patient's blood pressure.
13. The monitoring device according to claim 12, further comprising means for transmitting the signal to a network.
14. The monitoring device according to claim 12, wherein the optical device comprises a first LED capable of radiating light at a wavelength of approximately 600-800 nanometers, a second LED capable of radiating light at a wavelength of approximately 900-1200 nanometers, and a photodetector capable of detecting reflected light originating from the first LED and the second LED.
15. A method for measuring blood pressure from a patient, the method comprising: attaching a head-mounted component of a monitoring device to the head of a patient; generating light from a light source within the head-mounted component, the light directed at an artery of the patient; absorbing reflected light originating from the light source with a photodetector positioned within the head-mounted component; sending a signal representative of the absorption rate of the reflected light, the signal sent from the photodetector to a processing component; and processing the signal with the processing component to determine a blood pressure value for the patient.
16. The method according to claim 15 wherein sending the signal comprises transmitting a wireless signal from the head-mounted component to a wireless transceiver within the processing component.
17. The method according to claim 15 further comprising wirelessly sending blood pressure information over a wireless network.
18. The method according to claim 15 wherein the head-mounted monitoring component comprises a polymer body with adhesive on an exterior surface for adhesively attaching the head-mounted monitoring component to the patient's head, the light source and the photodetector positioned within the polymer body.
US10/906,315 2004-04-07 2005-02-14 Patch sensor for measuring blood pressure without a cuff Abandoned US20050228299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/709,014 US7179228B2 (en) 2004-04-07 2004-04-07 Cuffless system for measuring blood pressure
US10/906,315 US20050228299A1 (en) 2004-04-07 2005-02-14 Patch sensor for measuring blood pressure without a cuff

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/906,315 US20050228299A1 (en) 2004-04-07 2005-02-14 Patch sensor for measuring blood pressure without a cuff
US11/160,912 US20050245831A1 (en) 2004-04-07 2005-07-14 Patch sensor for measuring blood pressure without a cuff
US11/160,957 US20050261598A1 (en) 2004-04-07 2005-07-18 Patch sensor system for measuring vital signs

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/709,014 Continuation-In-Part US7179228B2 (en) 2004-04-07 2004-04-07 Cuffless system for measuring blood pressure
US10/709,014 Continuation US7179228B2 (en) 2004-04-07 2004-04-07 Cuffless system for measuring blood pressure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/160,912 Continuation US20050245831A1 (en) 2004-04-07 2005-07-14 Patch sensor for measuring blood pressure without a cuff
US11/160,957 Continuation-In-Part US20050261598A1 (en) 2004-04-07 2005-07-18 Patch sensor system for measuring vital signs

Publications (1)

Publication Number Publication Date
US20050228299A1 true US20050228299A1 (en) 2005-10-13

Family

ID=35061470

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/709,014 Active US7179228B2 (en) 2004-04-07 2004-04-07 Cuffless system for measuring blood pressure
US10/906,315 Abandoned US20050228299A1 (en) 2004-04-07 2005-02-14 Patch sensor for measuring blood pressure without a cuff
US11/160,912 Abandoned US20050245831A1 (en) 2004-04-07 2005-07-14 Patch sensor for measuring blood pressure without a cuff

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/709,014 Active US7179228B2 (en) 2004-04-07 2004-04-07 Cuffless system for measuring blood pressure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/160,912 Abandoned US20050245831A1 (en) 2004-04-07 2005-07-14 Patch sensor for measuring blood pressure without a cuff

Country Status (1)

Country Link
US (3) US7179228B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060122517A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital signs monitor using an optical ear-based module
US20060247505A1 (en) * 2005-04-28 2006-11-02 Siddiqui Waqaas A Wireless sensor system
US20070100218A1 (en) * 2005-10-27 2007-05-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US20070142715A1 (en) * 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US20070260131A1 (en) * 2006-05-02 2007-11-08 Chin Rodney P Clip-style medical sensor and technique for using the same
US20080077021A1 (en) * 2006-09-27 2008-03-27 Fka Distributing Co. D/B/A Homedics, Inc. Blood Pressure Monitor Calibration Device And Method For Calibrating A Blood Pressure Monitor
US20080221419A1 (en) * 2005-12-08 2008-09-11 Cardio Art Technologies Ltd. Method and system for monitoring a health condition
WO2008154643A1 (en) 2007-06-12 2008-12-18 Triage Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical, and pressure waveforms
US20090018409A1 (en) * 2007-07-11 2009-01-15 Triage Wireless, Inc. Device for determining respiratory rate and other vital signs
US20090131774A1 (en) * 2005-10-27 2009-05-21 Smiths Medical Pm, Inc Single use pulse oximeter
US20090187167A1 (en) * 2007-12-17 2009-07-23 New World Pharmaceuticals, Llc Integrated intra-dermal delivery, diagnostic and communication system
US20090221882A1 (en) * 2005-12-08 2009-09-03 Dan Gur Furman Implantable Biosensor Assembly and Health Monitoring system and Method including same
US20100081904A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Device And Method For Securing A Medical Sensor to An Infant's Head
US20100217102A1 (en) * 2009-02-25 2010-08-26 Leboeuf Steven Francis Light-Guiding Devices and Monitoring Devices Incorporating Same
US20100249552A1 (en) * 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc System And Method For Wirelessly Powering Medical Devices
US7860557B2 (en) 2001-07-17 2010-12-28 Lifesync Corporation Radiolucent chest assembly
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20110034783A1 (en) * 2009-08-10 2011-02-10 Nellcor Puritan Bennett Llc Systems and methods for balancing power consumption and utility of wireless medical sensors
US20120029309A1 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. Vital-signs patch having a strain relief
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8323188B2 (en) 2006-05-16 2012-12-04 Bao Tran Health monitoring appliance
US8323189B2 (en) 2006-05-12 2012-12-04 Bao Tran Health monitoring appliance
US8328718B2 (en) 2006-05-12 2012-12-11 Bao Tran Health monitoring appliance
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8449471B2 (en) 2006-05-24 2013-05-28 Bao Tran Health monitoring appliance
US8461988B2 (en) 2005-10-16 2013-06-11 Bao Tran Personal emergency response (PER) system
US8500636B2 (en) 2006-05-12 2013-08-06 Bao Tran Health monitoring appliance
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8688187B2 (en) 2010-10-20 2014-04-01 Welch Allyn, Inc. Pulse oximeter
US8684922B2 (en) 2006-05-12 2014-04-01 Bao Tran Health monitoring system
US8684900B2 (en) 2006-05-16 2014-04-01 Bao Tran Health monitoring appliance
US8721557B2 (en) 2011-02-18 2014-05-13 Covidien Lp Pattern of cuff inflation and deflation for non-invasive blood pressure measurement
US8750971B2 (en) 2007-05-24 2014-06-10 Bao Tran Wireless stroke monitoring
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
WO2014147554A1 (en) 2013-03-22 2014-09-25 Murata Manufacturing Co., Ltd. An improved blood pressure monitoring method
WO2014147553A1 (en) 2013-03-22 2014-09-25 Murata Manufacturing Co., Ltd. An improved monitoring system
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US8968195B2 (en) 2006-05-12 2015-03-03 Bao Tran Health monitoring appliance
WO2015029043A1 (en) * 2013-09-02 2015-03-05 Life Beam Technologies Ltd. Bodily worn multiple optical sensors heart rate measuring device and method
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9044180B2 (en) 2007-10-25 2015-06-02 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9060683B2 (en) 2006-05-12 2015-06-23 Bao Tran Mobile wireless appliance
WO2015092753A1 (en) 2013-12-20 2015-06-25 Murata Manufacturing Co., Ltd. An improved blood pressure monitoring method
US9072433B2 (en) 2011-02-18 2015-07-07 Covidien Lp Method and apparatus for noninvasive blood pressure measurement using pulse oximetry
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US20160331257A1 (en) * 2015-05-15 2016-11-17 Eric Baumann Electrical Patch for Physiological Measurements
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor
US9801552B2 (en) 2011-08-02 2017-10-31 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US9820658B2 (en) 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US9865176B2 (en) 2012-12-07 2018-01-09 Koninklijke Philips N.V. Health monitoring system
US9872087B2 (en) 2010-10-19 2018-01-16 Welch Allyn, Inc. Platform for patient monitoring
US10015582B2 (en) 2014-08-06 2018-07-03 Valencell, Inc. Earbud monitoring devices
US10076253B2 (en) 2013-01-28 2018-09-18 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US10226187B2 (en) 2015-08-31 2019-03-12 Masimo Corporation Patient-worn wireless physiological sensor
US10258243B2 (en) 2006-12-19 2019-04-16 Valencell, Inc. Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US10368758B2 (en) * 2004-08-11 2019-08-06 University Of Florida Research Foundation, Inc. Methods and devices for central photoplethysmographic monitoring
US10413197B2 (en) 2006-12-19 2019-09-17 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60334007D1 (en) 2002-10-01 2010-10-14 Nellcor Puritan Bennett Inc Use of headband for voltage indication and system of oximeter and headband
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
CN1852676A (en) * 2003-10-09 2006-10-25 日本电信电话株式会社 Organism information detection device and sphygmomanometer
US7625344B1 (en) 2007-06-13 2009-12-01 Impact Sports Technologies, Inc. Monitoring device, method and system
US7470234B1 (en) 2004-09-28 2008-12-30 Impact Sports Technology, Inc. Monitoring device, method and system
US7468036B1 (en) 2004-09-28 2008-12-23 Impact Sports Technology, Inc. Monitoring device, method and system
US7648463B1 (en) 2005-12-15 2010-01-19 Impact Sports Technologies, Inc. Monitoring device, method and system
US8287725B2 (en) * 2006-06-07 2012-10-16 Gambro Lundia Ab Prediction of rapid symptomatic blood pressure decrease
US8602997B2 (en) * 2007-06-12 2013-12-10 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
WO2008154647A1 (en) * 2007-06-12 2008-12-18 Triage Wireless, Inc. Vital sign monitor for cufflessly measuring blood pressure corrected for vascular index
US20090105556A1 (en) * 2007-09-28 2009-04-23 Tiax Llc Measurement of physiological signals
US20090118628A1 (en) * 2007-11-01 2009-05-07 Triage Wireless, Inc. System for measuring blood pressure featuring a blood pressure cuff comprising size information
AT506185B1 (en) * 2008-01-09 2012-01-15 Nanoident Technologies Ag Detection device for vital signs
US20100130875A1 (en) * 2008-06-18 2010-05-27 Triage Wireless, Inc. Body-worn system for measuring blood pressure
CH699319A2 (en) * 2008-08-15 2010-02-15 Stbl Medical Res Gmbh Method and apparatus for monitoring purposes for continuously measuring blood pressure.
US20100081946A1 (en) * 2008-09-26 2010-04-01 Qualcomm Incorporated Method and apparatus for non-invasive cuff-less blood pressure estimation using pulse arrival time and heart rate with adaptive calibration
TWI543746B (en) * 2008-10-20 2016-08-01 Wei Kung Wang A ready detection apparatus that is tied with the physiological
US20100305412A1 (en) * 2009-03-23 2010-12-02 Darrah Mark I Device and system for wireless monitoring of the vital signs of patients
US8956294B2 (en) 2009-05-20 2015-02-17 Sotera Wireless, Inc. Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
US20100298650A1 (en) 2009-05-20 2010-11-25 Triage Wireless, Inc. Vital sign monitoring system featuring 3 accelerometers
US10085657B2 (en) 2009-06-17 2018-10-02 Sotera Wireless, Inc. Body-worn pulse oximeter
US20110066008A1 (en) 2009-09-14 2011-03-17 Matt Banet Body-worn monitor for measuring respiration rate
US8527038B2 (en) 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
US8364250B2 (en) 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US10420476B2 (en) 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US9357933B2 (en) * 2010-01-19 2016-06-07 Donna Baldwin Continuous, non-invasive, optical blood pressure monitoring system
US8706464B2 (en) * 2010-01-31 2014-04-22 Vladimir Shusterman Health data dynamics, its sources and linkage with genetic/molecular tests
US9801607B2 (en) 2010-01-31 2017-10-31 Vladimir Shusterman Evaluating arterial pressure, vasomotor activity and their response to diagnostic tests
US10206570B2 (en) * 2010-02-28 2019-02-19 Covidien Lp Adaptive wireless body networks
US20110224498A1 (en) 2010-03-10 2011-09-15 Sotera Wireless, Inc. Body-worn vital sign monitor
US9339209B2 (en) 2010-04-19 2016-05-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173593B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173594B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8747330B2 (en) 2010-04-19 2014-06-10 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8888700B2 (en) 2010-04-19 2014-11-18 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
CN101828908A (en) * 2010-05-10 2010-09-15 上海理工大学 Cuff-free portable device for monitoring human physiological parameters and method
US20120029313A1 (en) * 2010-07-27 2012-02-02 Alison Burdett System and method for tracking vital-signs monitor patches
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US20120029320A1 (en) * 2010-07-30 2012-02-02 Nellcor Puritan Bennett Llc Systems and methods for processing multiple physiological signals
JP5459406B2 (en) * 2010-08-31 2014-04-02 株式会社島津製作所 Light transmitting probe, light receiving probe, light transmitting / receiving probe, and light measurement apparatus using the same
US20140249433A1 (en) 2010-12-28 2014-09-04 Matt Banet Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure
US9195799B2 (en) * 2011-02-08 2015-11-24 Aulisa Medtech International, Inc. Wireless patient monitoring system
CN103582449B (en) 2011-02-18 2017-06-09 索泰拉无线公司 For the modularization wrist wearing type processor of patient monitoring
SG192835A1 (en) 2011-02-18 2013-09-30 Sotera Wireless Inc Optical sensor for measuring physiological properties
US9795362B2 (en) 2011-07-21 2017-10-24 Brian Kelleher Method, system, and apparatus for cranial anatomy evaluation
ITRM20130384A1 (en) * 2013-06-28 2014-12-29 Diagnostic Engineering Solutions S R L wearable device for the measurement of blood flow, and relative system.
US20150051463A1 (en) * 2013-08-16 2015-02-19 Guy P. Curtis Oximetry Signal, Pulse-Pressure Correlator
WO2016009315A1 (en) * 2014-07-14 2016-01-21 Sensifree Ltd. Systems and methods for contactless arterial pressure estimator
US9610016B2 (en) 2014-08-27 2017-04-04 Vladimir Shusterman Wireless health monitoring in the setting of X-ray, magnetic resonance imaging and other sources of electromagnetic interference
US10235737B2 (en) 2015-05-11 2019-03-19 Elwha Llc Interactive surgical drape, system, and related methods
US10226219B2 (en) 2015-05-11 2019-03-12 Elwha Llc Interactive surgical drape, system, and related methods
KR20170040034A (en) * 2015-10-02 2017-04-12 삼성전자주식회사 Blood pressure measurement apparatus, and Blood pressure measurement apparatus using a process to choose light sources
US10398324B2 (en) 2016-03-03 2019-09-03 Board Of Trustees Of Michigan State University Method and apparatus for cuff-less blood pressure measurement in a mobile device
WO2017152098A1 (en) * 2016-03-03 2017-09-08 Board Of Trustees Of Michigan State University Method and apparatus for cuff-less blood pressure measurement
WO2019053276A1 (en) 2017-09-18 2019-03-21 Koninklijke Philips N.V. Device for determining diastolic blood pressure of a subject
EP3456254A1 (en) * 2017-09-18 2019-03-20 Koninklijke Philips N.V. Device for determining diastolic blood pressure of a subject

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132643A (en) * 1960-08-18 1964-05-12 Melpar Inc Blood pressure measurement
US3412729A (en) * 1965-08-30 1968-11-26 Nasa Usa Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer
US4063551A (en) * 1976-04-06 1977-12-20 Unisen, Inc. Blood pulse sensor and readout
US4080966A (en) * 1976-08-12 1978-03-28 Trustees Of The University Of Pennsylvania Automated infusion apparatus for blood pressure control and method
US4245648A (en) * 1978-09-20 1981-01-20 Trimmer Gordon A Method and apparatus for measuring blood pressure and pulse rate
US4320767A (en) * 1980-04-07 1982-03-23 Villa Real Antony Euclid C Pocket-size electronic cuffless blood pressure and pulse rate calculator with optional temperature indicator, timer and memory
US4367752A (en) * 1980-04-30 1983-01-11 Biotechnology, Inc. Apparatus for testing physical condition of a subject
US4380240A (en) * 1977-06-28 1983-04-19 Duke University, Inc. Apparatus for monitoring metabolism in body organs
US4425920A (en) * 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4681118A (en) * 1984-06-11 1987-07-21 Fukuda Denshi Co., Ltd. Waterproof electrode assembly with transmitter for recording electrocardiogram
US4777954A (en) * 1986-06-30 1988-10-18 Nepera Inc. Conductive adhesive medical electrode assemblies
US4825879A (en) * 1987-10-08 1989-05-02 Critkon, Inc. Pulse oximeter sensor
US4846189A (en) * 1987-06-29 1989-07-11 Shuxing Sun Noncontactive arterial blood pressure monitor and measuring method
US4869261A (en) * 1987-03-27 1989-09-26 University J.E. Purkyne V Brne Automatic noninvasive blood pressure monitor
US4917108A (en) * 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US5002055A (en) * 1988-04-13 1991-03-26 Mic Medical Instruments Corporation Apparatus for the biofeedback control of body functions
US5038792A (en) * 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US5111817A (en) * 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US5140990A (en) * 1990-09-06 1992-08-25 Spacelabs, Inc. Method of measuring blood pressure with a photoplethysmograph
US5178155A (en) * 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US5179958A (en) * 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US5213099A (en) * 1991-09-30 1993-05-25 The United States Of America As Represented By The Secretary Of The Air Force Ear canal pulse/oxygen saturation measuring device
US5237997A (en) * 1988-03-09 1993-08-24 Vectron Gesellschaft Fur Technologieentwicklung und Systemforschung mbH Method of continuous measurement of blood pressure in humans
US5309916A (en) * 1990-07-18 1994-05-10 Avl Medical Instruments Ag Blood pressure measuring device and method
US5316008A (en) * 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
US5368039A (en) * 1993-07-26 1994-11-29 Moses; John A. Method and apparatus for determining blood pressure
US5435315A (en) * 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
US5485848A (en) * 1991-01-31 1996-01-23 Jackson; Sandra R. Portable blood pressure measuring device and method of measuring blood pressure
US5632272A (en) * 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5649543A (en) * 1994-06-06 1997-07-22 Nihon Kohden Corporation Pulse-wave propagation time basis blood pressure monitor
US5743857A (en) * 1995-01-17 1998-04-28 Colin Corporation Blood pressure monitor apparatus
US5788634A (en) * 1993-12-07 1998-08-04 Nihon Kohden Corporation Multi purpose sensor
US5836300A (en) * 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US5857975A (en) * 1996-10-11 1999-01-12 Dxtek, Inc. Method and apparatus for non-invasive, cuffless continuous blood pressure determination
US5865758A (en) * 1997-01-24 1999-02-02 Nite Q Ltd System for obtaining hemodynamic information
US5891042A (en) * 1997-09-09 1999-04-06 Acumen, Inc. Fitness monitoring device having an electronic pedometer and a wireless heart rate monitor
US5921936A (en) * 1995-12-22 1999-07-13 Colin Corporation System and method for evaluating the circulatory system of a living subject
US6002952A (en) * 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6004274A (en) * 1995-09-11 1999-12-21 Nolan; James A. Method and apparatus for continuous non-invasive monitoring of blood pressure parameters
US6013009A (en) * 1996-03-12 2000-01-11 Karkanen; Kip Michael Walking/running heart rate monitoring system
US6050940A (en) * 1996-06-17 2000-04-18 Cybernet Systems Corporation General-purpose medical instrumentation
US6061584A (en) * 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6176831B1 (en) * 1998-07-20 2001-01-23 Tensys Medical, Inc. Apparatus and method for non-invasively monitoring a subject's arterial blood pressure
US6224548B1 (en) * 1998-05-26 2001-05-01 Ineedmd.Com, Inc. Tele-diagnostic device
US6245014B1 (en) * 1999-11-18 2001-06-12 Atlantic Limited Partnership Fitness for duty testing device and method
US6272936B1 (en) * 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
US6280390B1 (en) * 1999-12-29 2001-08-28 Ramot University Authority For Applied Research And Industrial Development Ltd. System and method for non-invasively monitoring hemodynamic parameters
US6334065B1 (en) * 1998-06-03 2001-12-25 Masimo Corporation Stereo pulse oximeter
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6364842B1 (en) * 1993-01-07 2002-04-02 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US6398727B1 (en) * 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6413223B1 (en) * 1999-06-01 2002-07-02 Massachussetts Institute Of Technology Cuffless continuous blood pressure monitor
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6432061B1 (en) * 1997-09-12 2002-08-13 Polar Electro Oy Method and arrangement for measuring venous pressure
US6443906B1 (en) * 2000-10-09 2002-09-03 Healthstats International Pte Ltd. Method and device for monitoring blood pressure
US6443905B1 (en) * 1997-09-12 2002-09-03 Polar Electro Oy Method and arrangement for blood pressure measurement
US6475146B1 (en) * 2001-09-24 2002-11-05 Siemens Medical Solutions Usa, Inc. Method and system for using personal digital assistants with diagnostic medical ultrasound systems
US6475153B1 (en) * 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
US6477397B1 (en) * 1999-05-20 2002-11-05 Polar Electro Oy Electrode structure
US20020183627A1 (en) * 2001-05-31 2002-12-05 Katsuyoshi Nishii Method and apparatus for monitoring biological abnormality and blood pressure
US6511436B1 (en) * 1999-06-16 2003-01-28 Roland Asmar Device for assessing cardiovascular function, physiological condition, and method thereof
US6514211B1 (en) * 1999-06-29 2003-02-04 Tensys Medical, Inc. Method and apparatus for the noninvasive determination of arterial blood pressure
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6533729B1 (en) * 2000-05-10 2003-03-18 Motorola Inc. Optical noninvasive blood pressure sensor and method
US6546269B1 (en) * 1998-05-13 2003-04-08 Cygnus, Inc. Method and device for predicting physiological values
US6553247B1 (en) * 1999-10-04 2003-04-22 Polar Electro Oy Electrode belt of heart rate monitor
US6556852B1 (en) * 2001-03-27 2003-04-29 I-Medik, Inc. Earpiece with sensors to measure/monitor multiple physiological variables
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6571200B1 (en) * 1999-10-08 2003-05-27 Healthetech, Inc. Monitoring caloric expenditure resulting from body activity
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US6599251B2 (en) * 2000-01-26 2003-07-29 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US6605044B2 (en) * 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
US6609023B1 (en) * 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
US6612984B1 (en) * 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6645154B2 (en) * 2001-04-27 2003-11-11 Colin Corporation Blood-pressure-waveform monitoring apparatus
US6645155B2 (en) * 2000-05-26 2003-11-11 Colin Corporation Blood pressure monitor apparatus
US6652466B2 (en) * 2001-03-01 2003-11-25 Nihon Kohden Corporation Blood flow volume measurement method and vital sign monitoring apparatus
US6678543B2 (en) * 1995-06-07 2004-01-13 Masimo Corporation Optical probe and positioning wrap
US6681454B2 (en) * 2000-02-17 2004-01-27 Udt Sensors, Inc. Apparatus and method for securing an oximeter probe to a patient
US20040030261A1 (en) * 2002-08-09 2004-02-12 Borje Rantala Measuring blood pressure
US6723054B1 (en) * 1998-08-24 2004-04-20 Empirical Technologies Corporation Apparatus and method for measuring pulse transit time
US6733447B2 (en) * 1996-11-13 2004-05-11 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters
US6740045B2 (en) * 2001-04-19 2004-05-25 Seiko Epson Corporation Central blood pressure waveform estimation device and peripheral blood pressure waveform detection device
US6775566B2 (en) * 2000-10-18 2004-08-10 Polar Electro Oy Electrode structure and heart rate measuring arrangement
US6808473B2 (en) * 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6813511B2 (en) * 1991-03-21 2004-11-02 Masimo Corporation Low-noise optical probes for reducing ambient noise
US6814705B2 (en) * 2002-09-27 2004-11-09 Colin Medical Technology Corporation Arteriosclerosis-degree evaluating apparatus
US20040260186A1 (en) * 2002-02-22 2004-12-23 Dekker Andreas Lubbertus Aloysius Johannes Monitoring physiological parameters based on variations in a photoplethysmographic signal
US6871084B1 (en) * 2000-07-03 2005-03-22 Srico, Inc. High-impedance optical electrode
US20050131282A1 (en) * 2003-12-11 2005-06-16 Brodnick Donald E. Apparatus and method for acquiring oximetry and electrocardiogram signals

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669485A (en) * 1984-02-17 1987-06-02 Cortronic Corporation Apparatus and method for continuous non-invasive cardiovascular monitoring
US4869262A (en) * 1987-02-02 1989-09-26 Pulse Time Products Limited Device for displaying blood pressure
US4960126A (en) * 1988-01-15 1990-10-02 Criticare Systems, Inc. ECG synchronized pulse oximeter
US4917099A (en) * 1988-07-13 1990-04-17 Physio-Control Corporation Method and apparatus for differential lead impedance comparison
GB8909491D0 (en) * 1989-04-26 1989-06-14 Glynn Christopher J Device for real-time monitoring of human or animal bodily functions
US5054494A (en) * 1989-12-26 1991-10-08 U.S. Medical Corporation Oscillometric blood pressure device
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5766131A (en) * 1995-08-04 1998-06-16 Seiko Epson Corporation Pulse-wave measuring apparatus
US5727558A (en) 1996-02-14 1998-03-17 Hakki; A-Hamid Noninvasive blood pressure monitor and control device
US5752920A (en) * 1996-08-01 1998-05-19 Colin Corporation Blood pressure monitor apparatus
JP3856477B2 (en) * 1996-10-24 2006-12-13 マサチューセッツ・インスティテュート・オブ・テクノロジー Patient monitoring ring sensor
US6700174B1 (en) * 1997-09-25 2004-03-02 Integrated Micromachines, Inc. Batch fabricated semiconductor thin-film pressure sensor and method of making same
JP3213278B2 (en) * 1998-05-12 2001-10-02 日本コーリン株式会社 Non-invasive continuous blood pressure estimation device
US6093146A (en) * 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
US6331162B1 (en) * 1999-02-01 2001-12-18 Gary F. Mitchell Pulse wave velocity measuring device
IL136079D0 (en) * 2000-04-19 2001-05-20 Cheetah Medical Inc C O Pepper Method and apparatus for monitoring the cardiovascular condition, particularly the degree of arteriosclerosis in individuals
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness

Patent Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132643A (en) * 1960-08-18 1964-05-12 Melpar Inc Blood pressure measurement
US3412729A (en) * 1965-08-30 1968-11-26 Nasa Usa Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer
US4063551A (en) * 1976-04-06 1977-12-20 Unisen, Inc. Blood pulse sensor and readout
US4080966A (en) * 1976-08-12 1978-03-28 Trustees Of The University Of Pennsylvania Automated infusion apparatus for blood pressure control and method
US4380240A (en) * 1977-06-28 1983-04-19 Duke University, Inc. Apparatus for monitoring metabolism in body organs
US4245648A (en) * 1978-09-20 1981-01-20 Trimmer Gordon A Method and apparatus for measuring blood pressure and pulse rate
US4320767A (en) * 1980-04-07 1982-03-23 Villa Real Antony Euclid C Pocket-size electronic cuffless blood pressure and pulse rate calculator with optional temperature indicator, timer and memory
US4367752A (en) * 1980-04-30 1983-01-11 Biotechnology, Inc. Apparatus for testing physical condition of a subject
US4425920A (en) * 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4681118A (en) * 1984-06-11 1987-07-21 Fukuda Denshi Co., Ltd. Waterproof electrode assembly with transmitter for recording electrocardiogram
US4777954A (en) * 1986-06-30 1988-10-18 Nepera Inc. Conductive adhesive medical electrode assemblies
US4869261A (en) * 1987-03-27 1989-09-26 University J.E. Purkyne V Brne Automatic noninvasive blood pressure monitor
US4846189A (en) * 1987-06-29 1989-07-11 Shuxing Sun Noncontactive arterial blood pressure monitor and measuring method
US4825879A (en) * 1987-10-08 1989-05-02 Critkon, Inc. Pulse oximeter sensor
US5237997A (en) * 1988-03-09 1993-08-24 Vectron Gesellschaft Fur Technologieentwicklung und Systemforschung mbH Method of continuous measurement of blood pressure in humans
US5002055A (en) * 1988-04-13 1991-03-26 Mic Medical Instruments Corporation Apparatus for the biofeedback control of body functions
US4917108A (en) * 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US5178155A (en) * 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US5179958A (en) * 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US5038792A (en) * 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US5111817A (en) * 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US5316008A (en) * 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
US5309916A (en) * 1990-07-18 1994-05-10 Avl Medical Instruments Ag Blood pressure measuring device and method
US5140990A (en) * 1990-09-06 1992-08-25 Spacelabs, Inc. Method of measuring blood pressure with a photoplethysmograph
US5485848A (en) * 1991-01-31 1996-01-23 Jackson; Sandra R. Portable blood pressure measuring device and method of measuring blood pressure
US5632272A (en) * 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US6813511B2 (en) * 1991-03-21 2004-11-02 Masimo Corporation Low-noise optical probes for reducing ambient noise
US5213099A (en) * 1991-09-30 1993-05-25 The United States Of America As Represented By The Secretary Of The Air Force Ear canal pulse/oxygen saturation measuring device
US6364842B1 (en) * 1993-01-07 2002-04-02 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US5368039A (en) * 1993-07-26 1994-11-29 Moses; John A. Method and apparatus for determining blood pressure
US5551438A (en) * 1993-07-26 1996-09-03 Moses; John A. Method and apparatus for determining blood pressure
US5788634A (en) * 1993-12-07 1998-08-04 Nihon Kohden Corporation Multi purpose sensor
US5435315A (en) * 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US5649543A (en) * 1994-06-06 1997-07-22 Nihon Kohden Corporation Pulse-wave propagation time basis blood pressure monitor
US5743857A (en) * 1995-01-17 1998-04-28 Colin Corporation Blood pressure monitor apparatus
US6678543B2 (en) * 1995-06-07 2004-01-13 Masimo Corporation Optical probe and positioning wrap
US6004274A (en) * 1995-09-11 1999-12-21 Nolan; James A. Method and apparatus for continuous non-invasive monitoring of blood pressure parameters
US5921936A (en) * 1995-12-22 1999-07-13 Colin Corporation System and method for evaluating the circulatory system of a living subject
US5836300A (en) * 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6013009A (en) * 1996-03-12 2000-01-11 Karkanen; Kip Michael Walking/running heart rate monitoring system
US6050940A (en) * 1996-06-17 2000-04-18 Cybernet Systems Corporation General-purpose medical instrumentation
US6375614B1 (en) * 1996-06-17 2002-04-23 Cybernet Systems Corporation General-purpose medical istrumentation
US5865755A (en) * 1996-10-11 1999-02-02 Dxtek, Inc. Method and apparatus for non-invasive, cuffless, continuous blood pressure determination
US5857975A (en) * 1996-10-11 1999-01-12 Dxtek, Inc. Method and apparatus for non-invasive, cuffless continuous blood pressure determination
US6733447B2 (en) * 1996-11-13 2004-05-11 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters
US5865758A (en) * 1997-01-24 1999-02-02 Nite Q Ltd System for obtaining hemodynamic information
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6002952A (en) * 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US5891042A (en) * 1997-09-09 1999-04-06 Acumen, Inc. Fitness monitoring device having an electronic pedometer and a wireless heart rate monitor
US6432061B1 (en) * 1997-09-12 2002-08-13 Polar Electro Oy Method and arrangement for measuring venous pressure
US6443905B1 (en) * 1997-09-12 2002-09-03 Polar Electro Oy Method and arrangement for blood pressure measurement
US6272936B1 (en) * 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
US6546269B1 (en) * 1998-05-13 2003-04-08 Cygnus, Inc. Method and device for predicting physiological values
US6224548B1 (en) * 1998-05-26 2001-05-01 Ineedmd.Com, Inc. Tele-diagnostic device
US6334065B1 (en) * 1998-06-03 2001-12-25 Masimo Corporation Stereo pulse oximeter
US6714804B2 (en) * 1998-06-03 2004-03-30 Masimo Corporation Stereo pulse oximeter
US6176831B1 (en) * 1998-07-20 2001-01-23 Tensys Medical, Inc. Apparatus and method for non-invasively monitoring a subject's arterial blood pressure
US6723054B1 (en) * 1998-08-24 2004-04-20 Empirical Technologies Corporation Apparatus and method for measuring pulse transit time
US6061584A (en) * 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6398727B1 (en) * 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6477397B1 (en) * 1999-05-20 2002-11-05 Polar Electro Oy Electrode structure
US6413223B1 (en) * 1999-06-01 2002-07-02 Massachussetts Institute Of Technology Cuffless continuous blood pressure monitor
US6511436B1 (en) * 1999-06-16 2003-01-28 Roland Asmar Device for assessing cardiovascular function, physiological condition, and method thereof
US6514211B1 (en) * 1999-06-29 2003-02-04 Tensys Medical, Inc. Method and apparatus for the noninvasive determination of arterial blood pressure
US6553247B1 (en) * 1999-10-04 2003-04-22 Polar Electro Oy Electrode belt of heart rate monitor
US6571200B1 (en) * 1999-10-08 2003-05-27 Healthetech, Inc. Monitoring caloric expenditure resulting from body activity
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6245014B1 (en) * 1999-11-18 2001-06-12 Atlantic Limited Partnership Fitness for duty testing device and method
US6612984B1 (en) * 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6280390B1 (en) * 1999-12-29 2001-08-28 Ramot University Authority For Applied Research And Industrial Development Ltd. System and method for non-invasively monitoring hemodynamic parameters
US6599251B2 (en) * 2000-01-26 2003-07-29 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US6681454B2 (en) * 2000-02-17 2004-01-27 Udt Sensors, Inc. Apparatus and method for securing an oximeter probe to a patient
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6533729B1 (en) * 2000-05-10 2003-03-18 Motorola Inc. Optical noninvasive blood pressure sensor and method
US6475153B1 (en) * 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
US6645155B2 (en) * 2000-05-26 2003-11-11 Colin Corporation Blood pressure monitor apparatus
US6871084B1 (en) * 2000-07-03 2005-03-22 Srico, Inc. High-impedance optical electrode
US6443906B1 (en) * 2000-10-09 2002-09-03 Healthstats International Pte Ltd. Method and device for monitoring blood pressure
US6775566B2 (en) * 2000-10-18 2004-08-10 Polar Electro Oy Electrode structure and heart rate measuring arrangement
US6652466B2 (en) * 2001-03-01 2003-11-25 Nihon Kohden Corporation Blood flow volume measurement method and vital sign monitoring apparatus
US6556852B1 (en) * 2001-03-27 2003-04-29 I-Medik, Inc. Earpiece with sensors to measure/monitor multiple physiological variables
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US6740045B2 (en) * 2001-04-19 2004-05-25 Seiko Epson Corporation Central blood pressure waveform estimation device and peripheral blood pressure waveform detection device
US6808473B2 (en) * 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6645154B2 (en) * 2001-04-27 2003-11-11 Colin Corporation Blood-pressure-waveform monitoring apparatus
US20020183627A1 (en) * 2001-05-31 2002-12-05 Katsuyoshi Nishii Method and apparatus for monitoring biological abnormality and blood pressure
US6605044B2 (en) * 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
US6475146B1 (en) * 2001-09-24 2002-11-05 Siemens Medical Solutions Usa, Inc. Method and system for using personal digital assistants with diagnostic medical ultrasound systems
US20040260186A1 (en) * 2002-02-22 2004-12-23 Dekker Andreas Lubbertus Aloysius Johannes Monitoring physiological parameters based on variations in a photoplethysmographic signal
US20040030261A1 (en) * 2002-08-09 2004-02-12 Borje Rantala Measuring blood pressure
US6609023B1 (en) * 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
US6814705B2 (en) * 2002-09-27 2004-11-09 Colin Medical Technology Corporation Arteriosclerosis-degree evaluating apparatus
US20050131282A1 (en) * 2003-12-11 2005-06-16 Brodnick Donald E. Apparatus and method for acquiring oximetry and electrocardiogram signals

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8255041B2 (en) 2001-07-17 2012-08-28 Lifesync Corporation Wireless ECG system
US7860557B2 (en) 2001-07-17 2010-12-28 Lifesync Corporation Radiolucent chest assembly
US7933642B2 (en) 2001-07-17 2011-04-26 Rud Istvan Wireless ECG system
US9795300B2 (en) 2002-03-25 2017-10-24 Masimo Corporation Wearable portable patient monitor
US9872623B2 (en) 2002-03-25 2018-01-23 Masimo Corporation Arm mountable portable patient monitor
US10213108B2 (en) 2002-03-25 2019-02-26 Masimo Corporation Arm mountable portable patient monitor
US10219706B2 (en) 2002-03-25 2019-03-05 Masimo Corporation Physiological measurement device
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor
US10335033B2 (en) 2002-03-25 2019-07-02 Masimo Corporation Physiological measurement device
US10368758B2 (en) * 2004-08-11 2019-08-06 University Of Florida Research Foundation, Inc. Methods and devices for central photoplethysmographic monitoring
US20060122517A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital signs monitor using an optical ear-based module
US7658716B2 (en) * 2004-12-07 2010-02-09 Triage Wireless, Inc. Vital signs monitor using an optical ear-based module
US20060247505A1 (en) * 2005-04-28 2006-11-02 Siddiqui Waqaas A Wireless sensor system
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8747336B2 (en) 2005-10-16 2014-06-10 Bao Tran Personal emergency response (PER) system
US8461988B2 (en) 2005-10-16 2013-06-11 Bao Tran Personal emergency response (PER) system
US8531291B2 (en) 2005-10-16 2013-09-10 Bao Tran Personal emergency response (PER) system
AU2006306630B2 (en) * 2005-10-27 2012-04-19 Smiths Medical Asd, Inc. Single use pulse oximeter
US20090131774A1 (en) * 2005-10-27 2009-05-21 Smiths Medical Pm, Inc Single use pulse oximeter
US8457704B2 (en) 2005-10-27 2013-06-04 Smiths Medical Asd, Inc. Single use pulse oximeter
US7486977B2 (en) 2005-10-27 2009-02-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US8903467B2 (en) 2005-10-27 2014-12-02 Smiths Medical Asd, Inc. Single use pulse oximeter
WO2007050269A3 (en) * 2005-10-27 2007-10-04 Smiths Medical Pm Inc Single use pulse oximeter
US20070100218A1 (en) * 2005-10-27 2007-05-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US8298148B2 (en) 2005-12-08 2012-10-30 Cardio Art Technologies Ltd Integrated heart monitoring device and method of using same
US20090221882A1 (en) * 2005-12-08 2009-09-03 Dan Gur Furman Implantable Biosensor Assembly and Health Monitoring system and Method including same
US20080249379A1 (en) * 2005-12-08 2008-10-09 Cardio Art Technologies Ltd. Integrated heart monitoring device and method of using same
US9037208B2 (en) 2005-12-08 2015-05-19 Cardio Art Technologies, Ltd. Method and system for monitoring a health condition
US20080221419A1 (en) * 2005-12-08 2008-09-11 Cardio Art Technologies Ltd. Method and system for monitoring a health condition
US20070142715A1 (en) * 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20070260131A1 (en) * 2006-05-02 2007-11-08 Chin Rodney P Clip-style medical sensor and technique for using the same
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8323189B2 (en) 2006-05-12 2012-12-04 Bao Tran Health monitoring appliance
US8968195B2 (en) 2006-05-12 2015-03-03 Bao Tran Health monitoring appliance
US8708903B2 (en) 2006-05-12 2014-04-29 Bao Tran Patient monitoring appliance
US8500636B2 (en) 2006-05-12 2013-08-06 Bao Tran Health monitoring appliance
US8475368B2 (en) 2006-05-12 2013-07-02 Bao Tran Health monitoring appliance
US9060683B2 (en) 2006-05-12 2015-06-23 Bao Tran Mobile wireless appliance
US8328718B2 (en) 2006-05-12 2012-12-11 Bao Tran Health monitoring appliance
US9801542B2 (en) 2006-05-12 2017-10-31 Koninklijke Philips N.V. Health monitoring appliance
US9820657B2 (en) 2006-05-12 2017-11-21 Koninklijke Philips N.V. Mobile wireless appliance
US9215980B2 (en) 2006-05-12 2015-12-22 Empire Ip Llc Health monitoring appliance
US8652038B2 (en) 2006-05-12 2014-02-18 Bao Tran Health monitoring appliance
US8747313B2 (en) 2006-05-12 2014-06-10 Bao Tran Health monitoring appliance
US8425415B2 (en) 2006-05-12 2013-04-23 Bao Tran Health monitoring appliance
US8727978B2 (en) 2006-05-12 2014-05-20 Bao Tran Health monitoring appliance
US8684922B2 (en) 2006-05-12 2014-04-01 Bao Tran Health monitoring system
US8684900B2 (en) 2006-05-16 2014-04-01 Bao Tran Health monitoring appliance
US9028405B2 (en) 2006-05-16 2015-05-12 Bao Tran Personal monitoring system
US8323188B2 (en) 2006-05-16 2012-12-04 Bao Tran Health monitoring appliance
US8449471B2 (en) 2006-05-24 2013-05-28 Bao Tran Health monitoring appliance
US8764651B2 (en) 2006-05-24 2014-07-01 Bao Tran Fitness monitoring
US9107586B2 (en) 2006-05-24 2015-08-18 Empire Ip Llc Fitness monitoring
US9820658B2 (en) 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US9775520B2 (en) 2006-06-30 2017-10-03 Empire Ip Llc Wearable personal monitoring system
US9351640B2 (en) 2006-06-30 2016-05-31 Koninklijke Philips N.V. Personal emergency response (PER) system
US8525687B2 (en) 2006-06-30 2013-09-03 Bao Tran Personal emergency response (PER) system
US9204796B2 (en) 2006-06-30 2015-12-08 Empire Ip Llc Personal emergency response (PER) system
US8525673B2 (en) 2006-06-30 2013-09-03 Bao Tran Personal emergency response appliance
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US20080077021A1 (en) * 2006-09-27 2008-03-27 Fka Distributing Co. D/B/A Homedics, Inc. Blood Pressure Monitor Calibration Device And Method For Calibrating A Blood Pressure Monitor
US8442606B2 (en) 2006-12-10 2013-05-14 Cardio Art Technologies Ltd. Optical sensor apparatus and method of using same
US20080275321A1 (en) * 2006-12-10 2008-11-06 Cardio Art Technologies Ltd. Optical sensor apparatus and method of using same
US20080287800A1 (en) * 2006-12-10 2008-11-20 Cardio Art Technologies Ltd. Doppler motion sensor apparatus and method of using same
US10413197B2 (en) 2006-12-19 2019-09-17 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals
US10258243B2 (en) 2006-12-19 2019-04-16 Valencell, Inc. Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
US9549691B2 (en) 2007-05-24 2017-01-24 Bao Tran Wireless monitoring
US8750971B2 (en) 2007-05-24 2014-06-10 Bao Tran Wireless stroke monitoring
WO2008154643A1 (en) 2007-06-12 2008-12-18 Triage Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical, and pressure waveforms
US8419649B2 (en) 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
US20090018453A1 (en) * 2007-06-12 2009-01-15 Triage Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
US8506480B2 (en) 2007-07-11 2013-08-13 Sotera Wireless, Inc. Device for determining respiratory rate and other vital signs
US20090018409A1 (en) * 2007-07-11 2009-01-15 Triage Wireless, Inc. Device for determining respiratory rate and other vital signs
US9044180B2 (en) 2007-10-25 2015-06-02 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US9808204B2 (en) 2007-10-25 2017-11-07 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US10384005B2 (en) 2007-12-17 2019-08-20 New World Pharmaceuticals, Llc Integrated intra-dermal delivery, diagnostic and communication system
US20090187167A1 (en) * 2007-12-17 2009-07-23 New World Pharmaceuticals, Llc Integrated intra-dermal delivery, diagnostic and communication system
US9022973B2 (en) 2007-12-17 2015-05-05 New World Pharmaceuticals, Llc Integrated intra-dermal delivery, diagnostic and communication system
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US20100081904A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Device And Method For Securing A Medical Sensor to An Infant's Head
US10448840B2 (en) 2009-02-25 2019-10-22 Valencell, Inc. Apparatus for generating data output containing physiological and motion-related information
US8923941B2 (en) 2009-02-25 2014-12-30 Valencell, Inc. Methods and apparatus for generating data output containing physiological and motion-related information
WO2010098912A3 (en) * 2009-02-25 2010-11-18 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8989830B2 (en) 2009-02-25 2015-03-24 Valencell, Inc. Wearable light-guiding devices for physiological monitoring
US8934952B2 (en) 2009-02-25 2015-01-13 Valencell, Inc. Wearable monitoring devices having sensors and light guides
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US8929966B2 (en) 2009-02-25 2015-01-06 Valencell, Inc. Physiological monitoring methods
US8929965B2 (en) 2009-02-25 2015-01-06 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9131312B2 (en) 2009-02-25 2015-09-08 Valencell, Inc. Physiological monitoring methods
US8886269B2 (en) 2009-02-25 2014-11-11 Valencell, Inc. Wearable light-guiding bands for physiological monitoring
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9289135B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Physiological monitoring methods and apparatus
US9289175B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8942776B2 (en) 2009-02-25 2015-01-27 Valencell, Inc. Physiological monitoring methods
US9314167B2 (en) 2009-02-25 2016-04-19 Valencell, Inc. Methods for generating data output containing physiological and motion-related information
US10092245B2 (en) 2009-02-25 2018-10-09 Valencell, Inc. Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals
US9955919B2 (en) 2009-02-25 2018-05-01 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8700111B2 (en) 2009-02-25 2014-04-15 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9301696B2 (en) 2009-02-25 2016-04-05 Valencell, Inc. Earbud covers
US20100217102A1 (en) * 2009-02-25 2010-08-26 Leboeuf Steven Francis Light-Guiding Devices and Monitoring Devices Incorporating Same
US10076282B2 (en) 2009-02-25 2018-09-18 Valencell, Inc. Wearable monitoring devices having sensors and light guides
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US20100249552A1 (en) * 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc System And Method For Wirelessly Powering Medical Devices
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US20110034783A1 (en) * 2009-08-10 2011-02-10 Nellcor Puritan Bennett Llc Systems and methods for balancing power consumption and utility of wireless medical sensors
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US20120029309A1 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. Vital-signs patch having a strain relief
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9585620B2 (en) * 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9872087B2 (en) 2010-10-19 2018-01-16 Welch Allyn, Inc. Platform for patient monitoring
US8688187B2 (en) 2010-10-20 2014-04-01 Welch Allyn, Inc. Pulse oximeter
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US8721557B2 (en) 2011-02-18 2014-05-13 Covidien Lp Pattern of cuff inflation and deflation for non-invasive blood pressure measurement
US9700217B2 (en) 2011-02-18 2017-07-11 Covidien Lp Method and apparatus for noninvasive blood pressure measurement using pulse oximetry
US9072433B2 (en) 2011-02-18 2015-07-07 Covidien Lp Method and apparatus for noninvasive blood pressure measurement using pulse oximetry
US9788785B2 (en) 2011-07-25 2017-10-17 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9521962B2 (en) 2011-07-25 2016-12-20 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9801552B2 (en) 2011-08-02 2017-10-31 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US10188296B2 (en) 2012-02-09 2019-01-29 Masimo Corporation Wireless patient monitoring device
US9865176B2 (en) 2012-12-07 2018-01-09 Koninklijke Philips N.V. Health monitoring system
US10076253B2 (en) 2013-01-28 2018-09-18 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
WO2014147554A1 (en) 2013-03-22 2014-09-25 Murata Manufacturing Co., Ltd. An improved blood pressure monitoring method
WO2014147553A1 (en) 2013-03-22 2014-09-25 Murata Manufacturing Co., Ltd. An improved monitoring system
WO2015029043A1 (en) * 2013-09-02 2015-03-05 Life Beam Technologies Ltd. Bodily worn multiple optical sensors heart rate measuring device and method
WO2015092753A1 (en) 2013-12-20 2015-06-25 Murata Manufacturing Co., Ltd. An improved blood pressure monitoring method
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
US10015582B2 (en) 2014-08-06 2018-07-03 Valencell, Inc. Earbud monitoring devices
US10382839B2 (en) 2014-09-27 2019-08-13 Valencell, Inc. Methods for improving signal quality in wearable biometric monitoring devices
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US20160331257A1 (en) * 2015-05-15 2016-11-17 Eric Baumann Electrical Patch for Physiological Measurements
US10383527B2 (en) 2015-08-31 2019-08-20 Masimo Corporation Wireless patient monitoring systems and methods
US10448844B2 (en) 2015-08-31 2019-10-22 Masimo Corporation Systems and methods for patient fall detection
US10226187B2 (en) 2015-08-31 2019-03-12 Masimo Corporation Patient-worn wireless physiological sensor

Also Published As

Publication number Publication date
US7179228B2 (en) 2007-02-20
US20050228296A1 (en) 2005-10-13
US20050245831A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
Hung et al. Wearable medical devices for tele-home healthcare
US10456038B2 (en) Cloud-based physiological monitoring system
US10188296B2 (en) Wireless patient monitoring device
US8313439B2 (en) Calibration of pulse transit time measurements to arterial blood pressure using external arterial pressure applied along the pulse transit path
JP3656088B2 (en) Calorie expenditure measuring device
CN1257699C (en) Method and device for monitoring blood pressure
US8442607B2 (en) Hand-held vital signs monitor
CN101400296B (en) Biometric monitor with electronics disposed on or in a neck collar
US8956294B2 (en) Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
EP2544584B1 (en) Body-worn vital sign monitor
US6790178B1 (en) Physiological monitor and associated computation, display and communication unit
Kang et al. A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare
US8574161B2 (en) Vital sign monitor for cufflessly measuring blood pressure using a pulse transit time corrected for vascular index
US8449469B2 (en) Two-part patch sensor for monitoring vital signs
KR20140069055A (en) Wearable pulse oximetry device
EP2658440B1 (en) Method for continuous non-invasive measurement of cardiac output and stroke volume of a subject
US6491647B1 (en) Physiological sensing device
Anliker et al. AMON: a wearable multiparameter medical monitoring and alert system
US20170035305A1 (en) Cable system for generating signals for detecting motion and measuring vital signs
JP2015536692A (en) Portable heart health monitoring
US20090182204A1 (en) Body composition, circulation, and vital signs monitor and method
US8506480B2 (en) Device for determining respiratory rate and other vital signs
US8398556B2 (en) Systems and methods for non-invasive continuous blood pressure determination
CN101264011B (en) Method and apparatus for cufflessly and non-invasively measuring wrist blood pressure
US20060079794A1 (en) Monitoring device, method and system

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRIAGE WIRELESS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BANET, MATTHEW JOHN;REEL/FRAME:015682/0830

Effective date: 20050214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION