New! View global litigation for patent families

US20050226067A1 - Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material - Google Patents

Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material Download PDF

Info

Publication number
US20050226067A1
US20050226067A1 US11148530 US14853005A US2005226067A1 US 20050226067 A1 US20050226067 A1 US 20050226067A1 US 11148530 US11148530 US 11148530 US 14853005 A US14853005 A US 14853005A US 2005226067 A1 US2005226067 A1 US 2005226067A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
memory
diode
cell
semiconductor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11148530
Inventor
S. Herner
Abhijit Bandyopadhyay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/36Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using diodes, e.g. as threshold elements, i.e. diodes assuming a stable ON-stage when driven above their threshold (S- or N-characteristic)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/39Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using thyristors or the avalanche or negative resistance type, e.g. PNPN, SCR, SCS, UJT
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/06Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using diode elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only

Abstract

A nonvolatile memory cell is described, the memory cell comprising a semiconductor diode. The semiconductor material making up the diode is formed with significant defect density, and allows very low current flow at a typical read voltage. Application of a programming voltage permanently changes the nature of the semiconductor material, resulting in an improved diode. The programmed diode allows much higher current flow, in some embodiments one, two or three orders of magnitude higher, at the same read voltage. The difference in current allows a programmed memory cell to be distinguished from an unprogrammed memory cell. Fabrication techniques to generate an advantageous unprogrammed defect density are described. The memory cell of the present invention can be formed in a monolithic three dimensional memory array, having multiple stacked memory levels formed above a single substrate.

Description

    RELATED APPLICATIONS
  • [0001]
    This application is a continuation-in-part of Herner et al., U.S. patent application Ser. No. 10/955,549, “Nonvolatile Memory Cell Without a Dielectric Antifuse Having High- and Low-Impedance States,” filed Sep. 29, 2004 and hereinafter the '549 application; itself a continuation-in-part of Herner et al., U.S. patent application Ser. No. 10/855,784, “An Improved Method for Making High-Density Nonvolatile Memory,” filed May 26, 2004; which is a continuation of Herner et al., U.S. patent application Ser. No. 10/326,470, “An Improved Method for Making High-Density Nonvolatile Memory,” filed Dec. 19, 2002 (since abandoned) and hereinafter the '470 application, all assigned to the assignee of the present invention and hereby incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The invention relates to a nonvolatile one-time-programmable memory cell.
  • [0003]
    Prior art nonvolatile memories, such as Johnson et al., U.S. Pat. No. 6,034,882, “Vertically Stacked Field Programmable Nonvolatile Memory and Method of Fabrication,” have been based on a memory cell pairing a semiconductor junction diode with a dielectric antifuse layer, the diode and the dielectric antifuse layer disposed between conductors. When the memory cell is formed, the dielectric antifuse layer (typically a layer of silicon dioxide) acts as an insulator, and when a read voltage is applied between the conductors, very little current flows between the conductors. When a sufficiently large voltage is applied between the conductors, however, the dielectric antifuse layer suffers dielectric breakdown and ruptures, and a permanent conductive path is formed through the dielectric antifuse layer. In a programmed cell, when a read voltage is applied between conductors, a significantly higher current flows than in the unprogrammed cell, allowing the unprogrammed and programmed cells to be distinguished. The memory state is stored in the state of the dielectric antifuse layer, which may be intact or ruptured.
  • [0004]
    Memory cells based on rupture of a dielectric antifuse layer, however, suffer some disadvantages. If the dielectric antifuse layer is too thin, leakage current can be a severe problem. Disturb can also be a problem: Every time the memory cell is read, the dielectric antifuse layer is exposed to some stress, and may eventually break down and be inadvertently programmed. This is avoided by making the dielectric antifuse layer thicker, but a thicker dielectric antifuse layer requires higher programming voltage to rupture. Higher voltages in electronic devices, for example in portable devices, are generally disadvantageous. If the dielectric antifuse layer is an oxide layer formed by oxidation, a thicker antifuse layer calls for either higher temperatures or slower fabrication time, both disadvantageous in forming a commercial device.
  • [0005]
    There is a need, therefore, for a one-time programmable memory cell which does not rely on rupture of a dielectric antifuse layer.
  • SUMMARY OF THE PREFERRED EMBODIMENTS
  • [0006]
    The present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims. In general, the invention is directed to a nonvolatile memory cell comprising a diode, the memory state stored in the state of the diode.
  • [0007]
    A first aspect of the invention provides for a nonvolatile memory cell comprising: a first conductor; a diode comprising amorphous or polycrystalline semiconductor material; and a second conductor, the semiconductor diode disposed between the first conductor and the second conductor, wherein before application of a programming voltage the diode has a first maximum barrier height, and after application of the programming voltage the diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height.
  • [0008]
    Another aspect of the invention provides for a nonvolatile memory cell comprising: a first conductor; a second conductor; and a polycrystalline semiconductor junction diode disposed between the first and second conductors, wherein a data state of the memory cell is determined by a state of an antifuse, and wherein the polycrystalline semiconductor junction diode is the antifuse.
  • [0009]
    Yet another aspect of the invention provides for a method for forming and programming a nonvolatile memory cell, the method comprising: forming a first conductor; forming a second conductor; depositing and doping semiconductor material to form a semiconductor junction diode, the semiconductor junction diode disposed between the first and second conductors; crystallizing the semiconductor material such that the semiconductor junction diode is polycrystalline, wherein, during the crystallizing step, the semiconductor material is not in contact with a template material having a lattice mismatch of less than 12 percent with the semiconductor material; and programming the memory cell by applying a programming voltage between the first and second conductors, wherein no resistance-switching element having its resistance changed by application of the programming voltage by more than a factor of two is disposed between the semiconductor junction diode and the first conductor or between the semiconductor junction diode and the second conductor.
  • [0010]
    A preferred embodiment of the invention provides for a monolithic three dimensional memory array comprising: a) a first memory level above a substrate, the first memory level comprising: i) a first plurality of substantially parallel conductors; ii) a second plurality of substantially parallel conductors above the first conductors; iii) a first plurality of semiconductor junction diodes, each first diode disposed between one of the first conductors and one of the second conductors; and iv) a first plurality of one-time-programmable memory cells, each first memory cell adapted to be programmed by application of a programming voltage, each memory cell comprising a portion of one of the first conductors, a portion of one of the second conductors, and one of the first diodes, wherein before programming, each first diode has a first maximum barrier height, and after programming, each first diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height; and b) a second memory level monolithically formed above the first memory level.
  • [0011]
    Another preferred embodiment of the invention provides for a monolithic three dimensional memory array comprising: a) a first memory level comprising: i) a plurality of bottom conductors; ii) a plurality of top conductors; and iii) a plurality of first polycrystalline semiconductor junction diodes, each diode disposed between one of the bottom and one of the top conductors; and iv) a first memory cell comprising one of the first diodes, wherein the data state of the first memory cells is determined by the state of an antifuse, and wherein the diode of the first memory cell is the antifuse; and b) a second memory level monolithically formed above the first memory level.
  • [0012]
    A final aspect of the invention provides for a nonvolatile memory cell comprising: a first conductor; a diode comprising amorphous or polycrystalline semiconductor material; and a second conductor, the semiconductor diode disposed between the first conductor and the second conductor, wherein before application of a programming voltage the diode has a first rectification ratio at a read voltage between about 0.5 and about 2.5 volts, and after application of the programming voltage the diode has a second rectification ratio at the read voltage, the second rectification ratio at least 10 times the first rectification ratio.
  • [0013]
    Each of the aspects and embodiments of the invention described herein can be used alone or in combination with one another.
  • [0014]
    The preferred aspects and embodiments will now be described with reference to the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0015]
    FIG. 1 is a perspective view of a memory cell formed according to the present invention.
  • [0016]
    FIG. 2 is a graph showing I-V curves for an unprogrammed cell and a programmed cell formed like the cell of FIG. 1.
  • [0017]
    FIG. 3 is a graph showing barrier height between 0 and 2.5 bias volts for a programmed and an unprogrammed memory cell formed according to the present invention.
  • [0018]
    FIG. 4 is a graph showing unprogrammed and programmed current for a cell according to the present invention at an applied read voltage.
  • [0019]
    FIG. 5 is a perspective view of a memory level according to the present invention.
  • [0020]
    FIGS. 6 a-6 c are cross-sectional views showing stages in formation of a memory level according to the present invention.
  • [0021]
    FIG. 7 is a dark field TEM image showing crystal defects in silicon in a memory cell according to the present invention, shown in cross-section.
  • [0022]
    FIGS. 8 a-8 b are cross-sectional views showing stages in formation of a memory level with a silicide contact described in U.S. application Ser. No. 10/955,387.
  • [0023]
    FIG. 9 is a dark field TEM image showing relatively defect-free silicon in the memory cell described in U.S. application Ser. No. 10/955,387, shown in cross-section.
  • [0024]
    FIG. 10 is a graph showing barrier height between 0 and 2.5 bias volts for a memory cell described in U.S. application Ser. No. 10/955,387.
  • [0025]
    FIG. 11 is a SEM image showing preferential etching of unprogrammed diodes in a memory level of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0026]
    A preferred embodiment of a memory cell described in the '549 application is shown in FIG. 1. A diode 30 is disposed between a bottom conductor 20 and a top conductor 40. Diode 30 is in electrical contact with bottom conductor 20 and top conductor 40, with no dielectric layer interposed between them. Titanium nitride layer 8 is a conductive barrier layer to prevent reaction between tungsten layer 6 and the silicon of diode 30. Titanium nitride layer 18 serves as an adhesion layer and as a barrier layer between diode 30 and tungsten layer 22. In preferred embodiments of the '549 application, the diode was formed by depositing and doping a silicon layer stack and patterning and etching the layer stack to form a pillar. Regions of the layer stack were doped (by in situ doping or by ion implantation) to form a p-i-n diode; in a preferred embodiment bottom region 10 was heavily doped n-type silicon, middle region 12 was intrinsic, undoped silicon, and top region 14 was heavily doped p-type silicon. This diode is a form of semiconductor junction diode; this term refers to a semiconductor device with the property of conducting current more easily in one direction than the other, having two terminal electrodes, and made of semiconducting material which is p-type at one electrode and n-type at the other. After formation of top conductor 40, the silicon of diode 30 was annealed (either in a separate anneal step or during subsequent thermal processing) to fully crystallize it. In preferred embodiments of the completed device of the '549 application, diode 30 is polycrystalline.
  • [0027]
    As formed, diode 30 has an I-V curve like the curve labeled “before programming) in the graph of FIG. 2, allowing little current to flow when a typical read voltage, for example 2 volts, is applied between bottom conductor 20 and top conductor 40. It was found that applying a programming voltage of, for example, about 8 volts between bottom conductor 20 and top conductor 40 permanently changes diode 30. The I-V curve labeled “after programming” in FIG. 2 shows current for the diode after programming. After programming, current increases sharply as the turn-on voltage is reached, and the programmed diode allows significantly more current to flow when a read voltage of 2 volts is applied between bottom conductor 20 and top conductor 40. The difference in current flow at an applied read voltage allows a programmed cell to be distinguished from an unprogrammed cell, and thus for the cell to store a memory state (data “0” or data “1”, for example.) This cell does not include a dielectric antifuse layer.
  • [0028]
    A material exhibiting ohmic behavior conducts with equal ease in both directions, and current increases linearly with voltage. A diode exhibits non-ohmic behavior: It conducts current more easily in one direction than the other, and has a non-linear relationship between voltage and current, as shown in FIG. 2. One measure of the effectiveness of a diode is its barrier height over a range of applied voltages.
  • [0029]
    In an ideal diode, the barrier height (roughly speaking, the barrier to current flow) is high at very low voltage, between about 0 and 0.2 volts, drops abruptly as the turn-on voltage is approached, and is very low above the turn-on voltage. FIG. 3 shows the barrier height of the diode of FIG. 1 before and after programming at an applied bias ranging from 0 to 2.5 volts. The maximum barrier height of a programmed diode (curve A in FIG. 3) is 0.218 electron-volts, nearly twice the maximum barrier height of an unprogrammed diode (curve B), which is 0.144 electron-volts.
  • [0030]
    The memory cell of the present invention is a nonvolatile memory cell comprising: a first conductor; a diode comprising amorphous or polycrystalline semiconductor material; and a second conductor, the semiconductor diode disposed between the first conductor and the second conductor, wherein before application of a programming voltage the diode has a first maximum barrier height, and after application of the programming voltage the diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height, in some embodiments 1.7 times the first maximum barrier height.
  • [0031]
    Read voltages are selected to be well above the turn-on voltage, which for silicon is theoretically at a bias voltage of 1.1 volts. As shown in FIG. 3, at voltages used for read, for example at 2.0 volts, the barrier height of a programmed diode is significantly less than that of an unprogrammed diode. Turning to FIG. 4, which is a probability plot showing current for a distribution of programmed and unprogrammed diodes, the median current for unprogrammed cells (curve C) at 2 volts is 1.2×10−8 amps, while the median current for programmed cells (curve D) at 2 volts is 4.8×10−5 amps, a difference of more than three orders of magnitude.
  • [0032]
    As described, a diode allows current to flow more easily in one direction than in the opposite direction; the diode is said to be rectifying. More current will flow through a diode when the diode is positively biased at a given voltage, for example 2 volts, than when the diode is negatively biased at the same voltage. The ratio of these currents is the rectification ratio and is another measure of diode quality. The diodes of the present invention show a large increase in rectification ratio after programming. When silicon diodes formed according to the present invention were measured using a voltage sweep, current through in an unprogrammed diode at −2 volts was about 8.1×10−13 amps, as compared to a current under positive bias of 2 volts of about 1.3×10−8 amps, yielding a rectification ratio at 2 volts of about 1.6×104. In the same population of diodes, current through the programmed diode at −2 volts was about 2.0×10—12 amps, while the current for programmed cells at 2 volts was about 1.8×10−5 amps, for a rectification ratio at two volts of about 9.2×106. In this example, the rectification ratio of a diode of the present invention after programming was about 575 times greater than its rectification ratio before programming.
  • [0033]
    When the diode is silicon, a programmed diode of the present invention will have a rectification ratio at 2 volts at least 100 times the rectification ratio at 2 volts of the unprogrammed diode. In less preferred embodiments, the rectification ratio at 2 volts will be at least 10 times higher after programming than before programming. For silicon, rectification ratio at 2 volts has been discussed. Two volts was selected because it is an advantageous read voltage. At positive voltage, an I-V curve for a diode has a characteristic shape: It is initially very low, rises abruptly as the turn-on voltage is reached, then stabilizes above the turn-on voltage. Two volts is an advantageous read voltage in the present invention because it is in the stable part of the curve, above the turn-on voltage. More generally, the diode of the present invention shows a large increase in rectification ratio, at least 10 times, in preferred embodiments 100 times, at a read voltage. A read voltage is a voltage in the stable part of the curve, above the diode's turn-on voltage. Read voltages for silicon may range between about 1.5 volts and about 2.5 volts.
  • [0034]
    For germanium diodes, an appropriate read voltage will be lower, between about 0.5 volts and about 2.0 volts, preferably about 1.2 volts. Semiconductor diodes formed of alloys comprising silicon and germanium will have intermediate read voltages, depending on the relative compositions of silicon and germanium, and will be between about 1.2 and about 2.0 volts. Memory cells formed according to the present invention having diodes formed of germanium or semiconductor alloys comprising silicon and germanium will have a first rectification ratio before programming and a second rectification ratio after programming, the second rectification ratio at least 10 times the first rectification ratio, and in preferred embodiments at least 100 times the first rectification ratio.
  • [0035]
    Many factors can affect the quality of a diode, including dopant concentration, doping profiles, dopant activation, and degree of crystallinity and of crystalline defects. It is believed that in the present invention, programming changes the diode by increasing the degree of order of crystallinity of the semiconductor material of the diode.
  • [0036]
    FIG. 5 shows a memory level of exemplary memory cells formed according to the present invention, including bottom conductors 200, pillars 300 (each pillar 300 comprising a diode), and top conductors 400. Fabrication of this memory level will be described. More detailed information regarding fabrication of such a memory level is provided in the '470 and '549 applications, previously incorporated. Additional information is found in Herner et al., U.S. patent application Ser. No. 11/015,824, “Nonvolatile Memory Cell Comprising a Reduced Height Vertical Diode,” filed Dec. 17, 2004; Herner et al., U.S. patent application Ser. No. 11/125,606, “High-Density Nonvolatile Memory Array Fabricated at Low Temperature Comprising Semiconductor Diodes,” filed May 9, 2005; and Herner et al., U.S. patent application Ser. No. 10/954,577, “Junction Diode Comprising Varying Semiconductor Compositions,” filed Sep. 29, 2004 and hereinafter the '577 application, all owned by the assignee of the present invention and hereby incorporated by reference. To avoid obscuring the invention, not all of this detail will be included in this description, but no teaching of these or other incorporated patents and applications is intended to be excluded.
  • [0037]
    Turning to FIG. 6 a, fabrication of a memory level comprising memory cells formed according to the present invention begins over a suitable substrate 100, for example a monocrystalline semiconductor wafer substrate. Circuitry, such as sense amplifiers and drivers, can be formed in substrate 100 before fabrication of the memory level begins. An insulating layer 102 is formed above substrate 100.
  • [0038]
    Conductive layers 104 and 106 are deposited. Layer 104 is an adhesion layer, preferably of titanium nitride. Layer 106 is a conductive material, for example tungsten. Other conductive materials may be preferred. Layers 104 and 106 are patterned and etched to form substantially parallel, substantially coplanar rail-shaped bottom conductors 200, shown here in cross-section extending out of the page.
  • [0039]
    A dielectric material 108 is deposited over and between conductors 200, filling gaps between them. A planarizing step, for example by chemical mechanical polishing (CMP), exposes tops of conductors 200 and creates a substantially planar surface.
  • [0040]
    Turning to FIG. 6 b, next a barrier layer 110 is deposited. (To save space, substrate 100 is omitted from FIG. 6 b; its presence should be assumed in this and subsequent figures.) This layer is preferably about 200 angstroms thick, and provides a chemical barrier between the conductive layer 106 and the semiconductor material to be deposited next. Barrier layer 110 is preferably titanium nitride, though other appropriate barrier materials, for example tantalum nitride, tantalum, titanium tungsten, tungsten nitride, or tungsten, could be used instead.
  • [0041]
    The diode to be formed will be a vertically oriented p-i-n diode, having a heavily doped p-type region at one end, an intrinsic middle region (not intentionally doped), and a heavily doped n-type region at the other end. In this example, the bottom region will be heavily doped n-type, the middle region will be intrinsic, and the top region will be heavily doped p-type. The conductivity types could be reversed if desired. Using conventional deposition techniques, intrinsic silicon (deposited with no dopants) has defects which tend to make it behave as if it were lightly doped with n-type dopants. If desired, this region could be lightly doped.
  • [0042]
    A semiconductor layer stack is deposited on barrier layer 110. The semiconductor material can be silicon, germanium, a silicon-germanium alloy, or any semiconductor alloy including silicon and/or germanium. In some embodiments, different parts of the layer stack comprise different semiconductor materials or alloys, as in the '577 application. In this example the semiconductor material is silicon, and bottom region 112 is heavily doped with an n-type dopant, for example phosphorus or arsenic, preferably by in situ doping. The silicon that will make up the rest of the diode, regions 114 and 116, is deposited next. The thickness of silicon that will form regions 114 and 116 is preferably deposited undoped. The top heavily doped p-type region 116 could be formed during deposition by in situ doping, but in preferred embodiments will be doped in a later implant step.
  • [0043]
    Silicon regions 116 (not yet doped), 114 and 112 and barrier layer 110 are patterned and etched to form pillars 300. The photolithography techniques described in Chen, U.S. patent application Ser. No. 10/728,436, “Photomask Features with Interior Nonprinting Window Using Alternating Phase Shifting,” filed Dec. 5, 2003; or Chen, U.S. patent application Ser. No. 10/815,312, Photomask Features with Chromeless Nonprinting Phase Shifting Window,” filed Apr. 1, 2004; and in Raghuram et al., U.S. patent application Ser. No. 11/061,952, “Method for Patterning Submicron Pillars,” filed Feb. 17, 2005, all three owned by the assignee of the present invention and hereby incorporated by reference, can advantageously be used to perform any photolithography step used in formation of a memory array according to the present invention.
  • [0044]
    Dielectric material 108 is deposited over and between pillars 300, filling gaps between them. A planarizing step, for example by CMP, exposes tops of pillars 300 and forms a substantially planar surface. After this CMP step, heavily doped p-type region 116 is preferably formed at the tops of pillars 300 by ion implantation of a p-type dopant, for example boron or BF2. Diodes 118, which are p-i-n diodes, have been formed. The height (silicon thickness) of completed diodes 118 can range from about 800 to about 4000 angstroms. (Some silicon thickness may be lost during the planarizing step; an extra thickness should be deposited to compensate.) Intrinsic region 114 can be from about 600 to about 3500 angstroms thick. The structure at this point is shown in FIG. 6 b.
  • [0045]
    Turning to FIG. 6 c, adhesion layer 120 and conductive layer 122 are deposited next. Adhesion layer 120 is preferably any of the materials used for barrier layer 110, for example titanium nitride. Conductive layer 122 can be any appropriate conductive material, for example tungsten. Layers 120 and 122 are patterned and etched to form substantially parallel, substantially coplanar top conductors 400. Bottom conductors 200 extended in a first direction; top conductors 400 extend in a second direction different from the first direction, preferably perpendicular to it. Each diode 118 is vertically disposed between one of bottom conductors 200 and one of top conductors 400.
  • [0046]
    What has been formed, shown in FIG. 6 c, is a first memory level. An interlevel dielectric can be formed above this first memory level, planarized, and a second memory level can be fabricated on this planarized dielectric surface as described. Multiple memory levels of the same type can be monolithically formed above the same substrate, each fabricated on a prior memory level, to form a monolithic three dimensional memory array like those described in the '549 and '470 applications. Each memory cell will be programmed by applying a programming voltage between about 3 and about 15 volts, preferably between about 6 and about 10 volts, preferably between about 7 and about 9 volts, for example about 8 volts. The programming voltage selected will depend on a variety of factors, including the volume of each diode, initial defect density, dopant profile, and the semiconductor material used to form the diodes. The read voltage will also vary, from about 0.5 to about 3 volts, for example between about 1 and about 2.5 volts, for example about 2 volts.
  • [0047]
    When the silicon that makes up diode 118 is deposited, it is generally amorphous, and crystallizes during a later crystallization step. FIG. 7 is a dark field transmission electron microscope (TEM) image of an unprogrammed cell formed according to the present invention, with titanium nitride layer 110, diode 118, titanium nitride layer 120, and conductive layer 122 labeled. The view of FIG. 7 is at ninety degrees to the view of FIG. 6 a. FIG. 7 shows that the resulting diode is polycrystalline, and typically has defects, including grain boundaries, dislocations, and twins, which are clearly visible. It is known that such defects can impede flow of charge carriers and decrease dopant activation, degrading device performance. Conventional semiconductor devices are generally formed in a monocrystalline silicon wafer surface rather than in polycrystalline silicon for this reason, and result in higher quality devices. In this discussion, polycrystalline silicon will be called polysilicon.
  • [0048]
    An alternative method of forming a memory cell having a vertical p-i-n diode formed of deposited and crystallized silicon is disclosed in Petti, U.S. application Ser. No. 10/955,387, “Fuse Memory Cell Comprising a Diode, the Diode Serving as the Fuse Element,” filed Sep. 29, 2004, hereinafter the '387 application, owned by the assignee of the present invention and hereby incorporated by reference. In one embodiment, a memory level of these cell is formed as described in FIGS. 6 a-6 c, except, as shown in FIG. 8 a, a thin layer 119 of titanium is deposited before titanium nitride layer 120. During an anneal step, where titanium layer 119 is in contact with pillars 300, it reacts with the silicon of heavily doped regions 116 to form titanium silicide contacts 121 in FIG. 8 b. For simplicity, in FIG. 8 b, titanium silicide contacts 121 are depicted as a continuous layer spanning each diode, but they may not actually take this form, and may form one or more discontinuous islands instead.
  • [0049]
    A resulting diode formed as in FIG. 8 b is shown in a dark field TEM image in FIG. 9. The view of FIG. 9 is at ninety degrees to the view of FIG. 8 b. Titanium silicide contact 121 does not form a continuous layer across the diode 118. The cell shown in FIG. 9 has far fewer defects and grain boundaries than the cell shown in FIG. 7. This diode has a more highly ordered degree of crystallinity. The barrier height of a cell having a titanium silicide contact is shown at bias voltages from 0 to 2.5 volts in FIG. 10. The barrier height curve shown by FIG. 10 is for the titanium-silicide-contact diode as formed, before the cell is subjected to a programming voltage.
  • [0050]
    Recall that the diode of FIG. 7 (of the present invention), with its barrier height before and after programming shown in FIG. 3, is formed with the semiconductor material contacting titanium nitride layer 110 and 120 (or another of the named barrier materials) at its top and bottom ends, while the diode of FIG. 9 (of the '387 application), its barrier height shown in FIG. 10, contacts titanium nitride layer 110 at its bottom end and titanium silicide contact 121 at its top end. In comparing FIG. 3 and FIG. 10, it is evident that the barrier height of the silicide-contact diode as formed strongly resembles that of the titanium-nitride-contact diode of the present invention after programming (curve A). The maximum barrier height of the silicide-contact diode of FIG. 9 is 0.235, close to 0.218, the maximum barrier height of the programmed titanium-nitride contact diode. Unlike the titanium-nitride-contact diode, when the silicide-contact diode of FIG. 9 is exposed to a programming voltage, for example of about 8 volts, the barrier height and current flow with applied read voltage are not appreciably changed. The silicide-contact diode is essentially a programmed diode as formed.
  • [0051]
    The difference between the titanium-nitride-contact diode, which has high defect density, and the silicide-contact diode, which is nearly defect-free, is believed to be due to the presence of titanium silicide during crystallization of the silicon that makes up the diode.
  • [0052]
    As described earlier, the silicon that forms the diodes of both FIG. 7 and FIG. 9 is generally amorphous as deposited, and crystallizes after the top and bottom conductors have been formed. Thus when the silicon of FIG. 7 crystallizes, it is in contact with titanium nitride layers 110 and 120 and with surrounding dielectric fill, generally silicon dioxide. When the silicon of FIG. 9 crystallizes, it is in contact with titanium nitride layer 110, surrounding silicon dioxide, and top titanium silicide contact 121.
  • [0053]
    Titanium nitride and titanium silicide each has a characteristic lattice structure. The lattice spacing of the most likely orientation of titanium nitride at the surface which will contact the silicon of the diode is 2.510 angstroms. A lattice spacing of titanium silicide in contact with silicon is 3.319 angstroms. The lattice spacing of silicon at its predominant orientation is 3.316 angstroms. At the interface, titanium nitride and silicon have a large lattice mismatch, 22.8 percent, while the lattices of titanium silicide and silicon are much more closely matched, with a lattice mismatch of only 1.7 percent. (This mismatch is for a lattice spacing of C49-phase titanium silicide rather than C54-phase titanium silicide. The C49-to-C54 phase transition has been shown to be difficult to achieve in features having line widths less than 250 nm. The diodes are isolated structures formed at even smaller dimension, so it is expected that titanium silicide in the diodes is C49 phase rather than C54 phase.) Titanium silicide contacts 121 in FIG. 8 b were formed by reacting titanium layer 119 with silicon layer 116. This silicide reaction happens at a temperature lower than the temperature at which amorphous silicon begins to crystallize, so titanium silicide contacts 121 are present before significant crystallization of the silicon begins.
  • [0054]
    It is believed that C49 titanium silicide contact 121 provides a good crystallization template for the silicon of the diode 118 as it crystallizes, leading to low defect density in the diode of FIG. 8 b, as is evident in the TEM image of FIG. 9. In contrast, in the diode of the present invention (in FIG. 6 c and FIG. 7), no titanium silicide lattice is present, only titanium nitride. The high lattice mismatch between titanium nitride (for the expected orientation) and silicon puts severe strains on the silicon lattice as it forms. For a very thin layer of silicon, high strain can be tolerated. The combined thickness of silicon layers 112, 114, and 116, however, is between about 800 and over 4000 angstroms, too thick to sustain such strain, and defects such as those apparent in the TEM image of FIG. 7 are generated.
  • [0055]
    In the present invention, then, a diode is formed having a certain defect density, which in its initial, unprogrammed state, causes the diode to have poor conductivity and low rectification ratio, and to permit a small current flow when a read voltage is applied. Application of a programming pulse improves conductivity, permanently improving the rectification ratio of the diode, so that when the same read voltage is applied, a much larger current flows. The diode remains a diode after programming, exhibiting non-ohmic conduction. When a read voltage is applied, the programmed current is preferably at least an order of magnitude greater than the unprogrammed current, most preferably at least two or three orders of magnitude greater. In this way the diode can store a memory state, and can behave as a nonvolatile, one-time-programmable memory cell. Diodes according to the present invention can also be formed of silicon-germanium alloys, germanium and other semiconductor alloys comprising germanium and/or silicon.
  • [0056]
    To store a memory state and function effectively as a memory cell, then, the diode is preferably formed with a certain advantageous defect density. In the example given, the defect density was achieved by crystallizing silicon in contact with a crystallization template apparently provided by adjacent titanium nitride contacts, and, more specifically, not in contact with a template material having a very small lattice mismatch, such as C49 phase titanium silicide. More generally, to form a memory cell which has a diode with the preferred defect density, it should be formed of a semiconductor material which, during crystallization, is not in contact with a template material having a lattice mismatch of less than about 3 or 4 percent with the semiconductor material. Preferably the semiconductor material, when crystallized, is not in contact with a template material having a lattice mismatch of less than about 12 percent with the semiconductor material.
  • [0057]
    If the semiconductor material is silicon, then, it should be crystallized not in contact with materials like titanium silicide, cobalt silicide, or nickel monosilicide (NiSi) which can have very small lattice mismatches with silicon. Many materials having an advantageous mismatch with silicon are known; among preferred materials for top and bottom contacts are titanium nitride, tantalum nitride, tantalum, titanium tungsten, tungsten nitride, or tungsten. These materials not only provide the necessary large lattice mismatch, but also are compatible with the device, as they are thermally compatible with silicon and can serve as relatively effective barrier materials. These materials also provide sufficient lattice mismatch for use with germanium, a silicon-germanium alloy, or most semiconductor alloys including silicon and/or germanium.
  • [0058]
    The phenomenon of changing the resistivity of polysilicon by subjecting it to a programming voltage has been described, for example in Malhotra et al., “Fundamentals of Memory Switching in Vertical Polycrystalline Silicon Structures,” IEEE Transactions on Electron Devices, ED-32 (11), 2441 (1985). In one study, large features, for example 1 micron in width, were formed of polysilicon having a relatively high resistivity, which were then exposed to a high-voltage pulse. After the voltage pulse was applied, a low-resitivity filament was formed through the polysilicon.
  • [0059]
    In the present invention, in preferred embodiments, the diameter of a diode in a memory cell like those of FIGS. 7 and 9 is very small, between about 45 nm and about 150 nm. The low-resistivity filaments observed by Malhotra et al. were substantially larger in diameter than the diodes of the present invention. It is expected that, due to the small diameter of the diodes of the present invention, no filament is formed, and that instead the entire volume of the diode experiences a high-resistivity-to-low-resistivity change.
  • [0060]
    Changing resistivity in polysilicon has been observed in polysilicon resistors. In a memory like that of the present invention, however, it is highly advantageous that diodes, rather than resistors, be formed between conductors. In a large memory array, with many cells on a bit line or a word line, when voltage is applied across a specific cell, neighboring cells may also be exposed to some voltage, possibly resulting in inadvertent programming of those cells. Leakage current across unselected cells is also a problem, increasing power consumption. The non-ohmic conduction characteristics of diodes allow for better electrical isolation of a cell from cells sharing one of its conductors, and thus a more robust memory array with lower power consumption.
  • [0061]
    The conversion of the semiconductor material making up the diode of the present invention is likely a thermal phenomenon. When a programming voltage is applied to a typical unprogrammed diode, resistance is initially relatively high, then drops very quickly, in a matter of nanoseconds, and then remains low. It is likely that during this brief programming time, some portion of the semiconductor material melts. The molten semiconductor material is highly conductive and presents very little resistance. The temperature of the semiconductor material decreases and the semiconductor material is quickly quenched.
  • [0062]
    To operate as a semiconductor junction diode, different regions of the diode must be doped with dopants of opposite conductivity types, like the n-type region 112 and the p-type region 116 of the diodes of FIG. 6 c. It might be expected that when the silicon of the diode 118 is melted, the dopants in these doped regions will diffuse, and the dopant profile necessary to maintain the diode will be lost.
  • [0063]
    In the present invention, however, the initial defect density, dopant profile, semiconductor volume, programming voltage, programming time, and other factors combine to form an advantageous and novel memory cell, in which the diode retains good non-ohmic behavior after programming, and remains a high-quality diode.
  • [0064]
    As described, titanium-nitride-contact diodes, which have been formed with high defect density, behave very differently before and after programming. A clear structural change after programming is not apparent in TEM images, however. Programmed titanium-nitride-contact diodes remain polycrystalline (not single-crystal) and do not appear nearly defect-free, as silicide-contact diodes do, as in FIG. 9.
  • [0065]
    To explore the degree of physical change in the programmable diode of the present invention, an array of cells was formed like the memory level of titanium-nitride contact cells shown in FIG. 6 c. The cells in the memory were programmed in a checkerboard pattern. The top conductors were removed by CMP, and the diodes and intervening dielectric exposed. It is known that a Secco solution etches silicon with defects faster than silicon without defects. The exposed diodes were exposed to a Secco solution for two seconds. Referring to the scanning electron microscope (SEM) image of FIG. 11, the unprogrammed cells were entirely etched away, while the programmed cells remain. It is apparent, then, that the physical structure of polysilicon of the diodes was changed by programming.
  • [0066]
    As noted earlier, the programmed titanium-nitride-contact diode has a barrier height profile strongly resembling that of the silicide-contact diode as formed, which has low defect density and a more highly ordered crystalline structure. After programming, the diode becomes more resistant to Secco solution, an etchant that prefers defective silicon. It is thus believed that the crystalline structure of the polycrystalline semiconductor material of the diode becomes more highly ordered after programming. These changes in crystallinity, while apparently too subtle or too localized to be evident in TEM images, make a large difference in diode performance.
  • [0067]
    An antifuse is an element in a circuit that initially impedes current flow until, when subjected to high voltage, it permanently changes its nature, allowing current flow; this is opposite the operation of a fuse. The device of Johnson et al. included a diode and a dielectric antifuse layer in series. The diode of Johnson et al. was generally crystallized in contact with titanium silicide, and thus was low-resistance as formed, so the device depended on dielectric rupture of the dielectric antifuse layer.
  • [0068]
    In both the cell of Johnson et al. and in the cell of the present invention, the data state of the memory cell is determined by a state of an antifuse. In Johnson et al., the antifuse was a dielectric antifuse layer, generally a silicon dioxide layer in series with a diode. In the present invention, in contrast, the polycrystalline semiconductor junction diode itself is the antifuse.
  • [0069]
    To improve uniformity, it may be preferred in some embodiments of the present invention to include a thin dielectric layer such as silicon dioxide or some other appropriate dielectric material disposed between the diode and the top or the bottom conductor. Nonetheless, in such a cell the memory state of the cell is determined by the state of the polycrystalline semiconductor material, which is either programmed or unprogrammed.
  • [0070]
    It is possible that other elements, such as barrier layers, etc., disposed between the diode of the present invention and the top or bottom conductor may experience some incidental change in resistivity when a programming voltage is applied between the top and bottom conductors. In preferred aspects of the invention, it is nonetheless the change in resistivity of the material of the diode that predominates. In these preferred aspects, a memory cell is formed by forming a first conductor; forming a second conductor; depositing and doping semiconductor material to form a semiconductor junction diode, the semiconductor junction diode disposed between the first and second conductors; crystallizing the semiconductor material such that the semiconductor junction diode is polycrystalline, wherein, during the crystallizing step, the semiconductor material is not in contact with a template material having a lattice mismatch of less than 12 percent with the semiconductor material; and programming the memory cell by applying a programming voltage between the first and second conductors, wherein no resistance-switching element having its resistance changed by application of the programming voltage by more than a factor of two is disposed between the semiconductor junction diode and the first conductor or between the semiconductor junction diode and the second conductor.
  • [0071]
    In preferred embodiments, the memory cell of the present invention does not comprise an additional resistance changing element, such as a dielectric antifuse layer or a chalcogenide material.
  • [0072]
    A monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a wafer, with no intervening substrates. The layers forming one memory level are deposited or grown directly over the layers of an existing level or levels. In contrast, stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Pat. No. 5,915,167, “Three dimensional structure memory.” The substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
  • [0073]
    A monolithic three dimensional memory array formed above a substrate comprises at least a first memory level formed at a first height above the substrate and a second memory level formed at a second height different from the first height. Three, four, eight, or indeed any number of memory levels can be formed above the substrate in such a multilevel array.
  • [0074]
    In preferred embodiments, a monolithic three dimensional memory array of the present invention comprises a) a first memory level above a substrate, the first memory level comprising: i) a first plurality of substantially parallel conductors; ii) a second plurality of substantially parallel conductors above the first conductors; iii) a first plurality of semiconductor junction diodes, each first diode disposed between one of the first conductors and one of the second conductors; and iv) a first plurality of one-time-programmable memory cells, each first memory cell adapted to be programmed by application of a programming voltage, each memory cell comprising a portion of one of the first conductors, a portion of one of the second conductors, and one of the first diodes, wherein before programming, each first diode has a first maximum barrier height, and after programming, each first diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height; and b) a second memory level monolithically formed above the first memory level.
  • [0075]
    Detailed methods of fabrication have been described herein, but any other methods that form the same structures can be used while the results fall within the scope of the invention.
  • [0076]
    The foregoing detailed description has described only a few of the many forms that this invention can take. For this reason, this detailed description is intended by way of illustration, and not by way of limitation. It is only the following claims, including all equivalents, which are intended to define the scope of this invention.

Claims (61)

  1. 1. A nonvolatile memory cell comprising:
    a first conductor;
    a diode comprising amorphous or polycrystalline semiconductor material; and
    a second conductor, the semiconductor diode disposed between the first conductor and the second conductor, wherein
    before application of a programming voltage the diode has a first maximum barrier height, and
    after application of the programming voltage the diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height.
  2. 2. The nonvolatile memory cell of claim 1 wherein the semiconductor material is silicon, germanium, or a silicon-germanium alloy.
  3. 3. The nonvolatile memory cell of claim 1 wherein the diode is a vertically oriented p-i-n diode.
  4. 4. The nonvolatile memory cell of claim 3 wherein the second conductor is above the first conductor, the first conductor extending in a first direction, the second conductor extending in a second direction different from the first direction, the diode vertically disposed between the first and second conductors.
  5. 5. The nonvolatile memory cell of claim 1 wherein the programming voltage is between about 3 and about 15 volts.
  6. 6. The nonvolatile memory cell of claim 5 wherein the programming voltage is between about 6 and about 9 volts.
  7. 7. The nonvolatile memory cell of claim 1 wherein the memory cell resides in a memory array.
  8. 8. The nonvolatile memory cell of claim 7 wherein the memory array is a monolithic three dimensional memory array.
  9. 9. A nonvolatile memory cell comprising:
    a first conductor;
    a second conductor; and
    a polycrystalline semiconductor junction diode disposed between the first and second conductors,
    wherein a data state of the memory cell is determined by a state of an antifuse, and
    wherein the polycrystalline semiconductor junction diode is the antifuse.
  10. 10. The nonvolatile memory cell of claim 9 wherein the polycrystalline semiconductor junction diode is a vertically oriented p-i-n diode.
  11. 11. The nonvolatile memory cell of claim 9 wherein the semiconductor junction diode comprises silicon, germanium, or a silicon-germanium alloy.
  12. 12. The nonvolatile memory cell of claim 9 wherein the second conductor is above the first conductor, the diode vertically disposed between the first and second conductors.
  13. 13. The nonvolatile memory cell of claim 9 wherein the memory cell is programmed by applying a programming voltage between the first conductor and the second conductor.
  14. 14. The nonvolatile memory cell of claim 13 wherein, before programming, upon application of a read voltage, a first current flows between the first conductor and the second conductor, and,
    after programming, upon application of the read voltage, a second current flows between the first conductor and the second conductor,
    the second current at least an order of magnitude greater than the first current.
  15. 15. The nonvolatile memory cell of claim 14 wherein the programming voltage is between about 3 and about 15 volts.
  16. 16. The nonvolatile memory cell of claim 15 wherein the programming voltage is between about 6 and about 10 volts.
  17. 17. The nonvolatile memory cell of claim 14 wherein the read voltage is between about 0.5 and about 3 volts.
  18. 18. The nonvolatile memory cell of claim 17 wherein the read voltage is between about 1 and about 2.5 volts.
  19. 19. The nonvolatile memory cell of claim 9 wherein the memory cell resides in a memory array.
  20. 20. The nonvolatile memory cell of claim 19 wherein the memory array is a monolithic three dimensional memory array.
  21. 21. A method for forming and programming a nonvolatile memory cell, the method comprising:
    forming a first conductor;
    forming a second conductor;
    depositing and doping semiconductor material to form a semiconductor junction diode, the semiconductor junction diode disposed between the first and second conductors;
    crystallizing the semiconductor material such that the semiconductor junction diode is polycrystalline,
    wherein, during the crystallizing step, the semiconductor material is not in contact with a template material having a lattice mismatch of less than 12 percent with the semiconductor material; and
    programming the memory cell by applying a programming voltage between the first and second conductors,
    wherein no resistance-switching element having its resistance changed by application of the programming voltage by more than a factor of two is disposed between the semiconductor junction diode and the first conductor or between the semiconductor junction diode and the second conductor.
  22. 22. The method of claim 21 wherein the semiconductor material is silicon, germanium, or a silicon-germanium alloy.
  23. 23. The method of claim 21 wherein the memory cell does not comprise a dielectric antifuse layer.
  24. 24. The method of claim 21 wherein the memory cell does not comprise a chalcogenide material.
  25. 25. The method of claim 21 wherein, during the crystallization step, the semiconductor material is not in contact with a template material having a lattice mismatch of less than 4 percent with the semiconductor material
  26. 26. The method of claim 21 wherein, during the crystallizing step, the semiconductor material is in contact with titanium nitride, tungsten nitride, tantalum nitride, tantalum, tungsten, or titanium tungsten.
  27. 27. The method of claim 21 wherein, during the crystallizing step, the semiconductor material is not in contact with titanium suicide, cobalt silicide, or nickel monosilicide.
  28. 28. The method of claim 21 wherein, before the programming step, the diode has a first maximum barrier height, and after the programming step, the diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height.
  29. 29. A monolithic three dimensional memory array comprising:
    a) a first memory level above a substrate, the first memory level comprising:
    i) a first plurality of substantially parallel conductors;
    ii) a second plurality of substantially parallel conductors above the first conductors;
    iii) a first plurality of semiconductor junction diodes, each first diode disposed between one of the first conductors and one of the second conductors; and
    iv) a first plurality of one-time-programmable memory cells, each first memory cell adapted to be programmed by application of a programming voltage, each memory cell comprising a portion of one of the first conductors, a portion of one of the second conductors, and one of the first diodes, wherein before programming, each first diode has a first maximum barrier height, and after programming, each first diode has a second maximum barrier height, the second maximum barrier height at least 1.5 times the first maximum barrier height; and
    b) a second memory level monolithically formed above the first memory level.
  30. 30. The monolithic three dimensional memory array of claim 29 wherein the substrate comprises monocrystalline semiconductor material.
  31. 31. The monolithic three dimensional memory array of claim 29 wherein the first diodes comprise silicon, germanium, or a silicon-germanium alloy.
  32. 32. The monolithic three dimensional memory array of claim 29 wherein the programming voltage is between about 3 and about 15 volts.
  33. 33. The monolithic three dimensional memory array of claim 32 wherein the programming voltage is between about 6 and about 10 volts.
  34. 34. The monolithic three dimensional memory array of claim 29 wherein the first diodes are vertically oriented p-i-n diodes.
  35. 35. The monolithic three dimensional memory array of claim 29 wherein the second memory level comprises a second plurality of semiconductor junction diodes.
  36. 36. A monolithic three dimensional memory array comprising:
    a) a first memory level comprising:
    i) a plurality of bottom conductors;
    ii) a plurality of top conductors; and
    iii) a plurality of first polycrystalline semiconductor junction diodes, each diode disposed between one of the bottom and one of the top conductors; and
    iv) a first memory cell comprising one of the first diodes, wherein the data state of the first memory cells is determined by the state of an antifuse, and wherein the diode of the first memory cell is the antifuse; and
    b) a second memory level monolithically formed above the first memory level.
  37. 37. The monolithic three dimensional memory array of claim 36 wherein the semiconductor junction diodes comprise silicon, germanium, or a silicon-germanium alloy.
  38. 38. The monolithic three dimensional memory array of claim 36 wherein the bottom conductors are substantially parallel and substantially coplanar and extend in a first direction.
  39. 39. The monolithic three dimensional memory array of claim 38 wherein the top conductors are substantially parallel and substantially coplanar and extend in a second direction different from the first direction.
  40. 40. The monolithic three dimensional memory array of claim 39 wherein the diodes are vertically oriented p-i-n diodes.
  41. 41. The monolithic three dimensional memory array of claim 36 wherein the first memory cell further comprises a portion of one of the bottom conductors and a portion of one of the top conductors, and the first memory cell is programmed by applying a programming voltage between the top conductor and the bottom conductor of the first memory cell.
  42. 42. The monolithic three dimensional memory array of claim 41 wherein,
    before programming, upon application of a read voltage, a first current flows between the top conductor and the bottom conductor of the first memory cell, and,
    after programming, upon application of the read voltage, a second current flows between the top conductor and the bottom conductor of the first memory cell,
    the second current at least an order of magnitude greater than the first current.
  43. 43. The monolithic three dimensional memory array of claim 42 wherein the programming voltage is between about 3 and about 15 volts.
  44. 44. The monolithic three dimensional memory array of claim 43 wherein the programming voltage is between about 6 and about 10 volts.
  45. 45. The monolithic three dimensional memory array of claim 42 wherein the read voltage is between about 0.5 and about 3 volts.
  46. 46. The monolithic three dimensional memory array of claim 45 wherein the read voltage is between about 1 and about 2.5 volts.
  47. 47. A nonvolatile memory cell comprising:
    a first conductor;
    a diode comprising amorphous or polycrystalline semiconductor material; and
    a second conductor, the semiconductor diode disposed between the first conductor and the second conductor, wherein
    before application of a programming voltage the diode has a first rectification ratio at a read voltage between about 0.5 and about 2.5 volts, and
    after application of the programming voltage the diode has a second rectification ratio at the read voltage, the second rectification ratio at least 10 times the first rectification ratio.
  48. 48. The nonvolatile memory cell of claim 47 wherein the second rectification ratio is at least 100 times the first rectification ratio.
  49. 49. The nonvolatile memory cell of claim 48 wherein semiconductor material is silicon, germanium, a silicon-germanium alloy, or a semiconductor alloy comprising silicon or germanium.
  50. 50. The nonvolatile memory cell of claim 47 wherein the semiconductor material is silicon and the read voltage is between about 1.5 volts and about 2.5 volts.
  51. 51. The nonvolatile memory cell of claim 50 wherein the read voltage is about 2 volts.
  52. 52. The nonvolatile memory cell of claim 47 wherein the semiconductor material is germanium and the read voltage is between about 0.5 volts and about 2.0 volts.
  53. 53. The nonvolatile memory cell of claim 52 wherein the read voltage is about 1.2 volts.
  54. 54. The nonvolatile memory cell of claim 47 wherein the semiconductor material is an alloy comprising silicon and germanium.
  55. 55. The nonvolatile memory cell of claim 54 wherein the read voltage is between about 1.2 volts and about 2.0 volts.
  56. 56. The nonvolatile memory cell of claim 47 wherein the diode is a vertically oriented p-i-n diode.
  57. 57. The nonvolatile memory cell of claim 56 wherein the second conductor is above the first conductor, the first conductor extending in a first direction, the second conductor extending in a second direction different from the first direction, the diode vertically disposed between the first and second conductors.
  58. 58. The nonvolatile memory cell of claim 47 wherein the programming voltage is between about 3 and about 15 volts.
  59. 59. The nonvolatile memory cell of claim 58 wherein the programming voltage is between about 6 and about 9 volts.
  60. 60. The nonvolatile memory cell of claim 47 wherein the memory cell resides in a memory array.
  61. 61. The nonvolatile memory cell of claim 60 wherein the memory array is a monolithic three dimensional memory array.
US11148530 2002-12-19 2005-06-08 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material Abandoned US20050226067A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US32647002 true 2002-12-19 2002-12-19
US10855784 US6952030B2 (en) 2002-12-19 2004-05-26 High-density three-dimensional memory cell
US10955549 US8637366B2 (en) 2002-12-19 2004-09-29 Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US11148530 US20050226067A1 (en) 2002-12-19 2005-06-08 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11148530 US20050226067A1 (en) 2002-12-19 2005-06-08 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
JP2008515846A JP2008546213A (en) 2005-06-08 2006-06-06 Programmable crosspoint memory at once with a diode as an antifuse
CN 200680027149 CN101390212A (en) 2005-06-08 2006-06-06 One-time programmable crosspoint memory with a diode as an antifuse
EP20060760714 EP1889294A1 (en) 2005-06-08 2006-06-06 One-time programmable crosspoint memory with a diode as an antifuse
KR20077029690A KR20080025688A (en) 2005-06-08 2006-06-06 One-time programmable crosspoint memory with a diode as an antifuse
PCT/US2006/022023 WO2007046883A1 (en) 2005-06-08 2006-06-06 One-time programmable crosspoint memory with a diode as an antifuse
US13074509 US8243509B2 (en) 2002-12-19 2011-03-29 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13568834 US8482973B2 (en) 2002-12-19 2012-08-07 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13925917 US8730720B2 (en) 2002-12-19 2013-06-25 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10955549 Continuation-In-Part US8637366B2 (en) 2002-12-19 2004-09-29 Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13074509 Division US8243509B2 (en) 2002-12-19 2011-03-29 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material

Publications (1)

Publication Number Publication Date
US20050226067A1 true true US20050226067A1 (en) 2005-10-13

Family

ID=36922119

Family Applications (4)

Application Number Title Priority Date Filing Date
US11148530 Abandoned US20050226067A1 (en) 2002-12-19 2005-06-08 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13074509 Active US8243509B2 (en) 2002-12-19 2011-03-29 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13568834 Active US8482973B2 (en) 2002-12-19 2012-08-07 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13925917 Active US8730720B2 (en) 2002-12-19 2013-06-25 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13074509 Active US8243509B2 (en) 2002-12-19 2011-03-29 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13568834 Active US8482973B2 (en) 2002-12-19 2012-08-07 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US13925917 Active US8730720B2 (en) 2002-12-19 2013-06-25 Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material

Country Status (6)

Country Link
US (4) US20050226067A1 (en)
EP (1) EP1889294A1 (en)
JP (1) JP2008546213A (en)
KR (1) KR20080025688A (en)
CN (1) CN101390212A (en)
WO (1) WO2007046883A1 (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052915A1 (en) * 2002-12-19 2005-03-10 Matrix Semiconductor, Inc. Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US20060087005A1 (en) * 2004-09-29 2006-04-27 Matrix Semiconductor, Inc. Deposited semiconductor structure to minimize N-type dopant diffusion and method of making
US20060189077A1 (en) * 2002-12-19 2006-08-24 Sandisk 3D Llc Method for making high-density nonvolatile memory
US20060250837A1 (en) * 2005-05-09 2006-11-09 Sandisk 3D, Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20070029607A1 (en) * 2000-08-14 2007-02-08 Sandisk 3D Llc Dense arrays and charge storage devices
US20070069217A1 (en) * 2003-12-03 2007-03-29 Herner S B P-i-n diode crystallized adjacent to a silicide in series with a dielectric anitfuse
US20070070690A1 (en) * 2005-09-28 2007-03-29 Scheuerlein Roy E Method for using a multi-use memory cell and memory array
WO2007046883A1 (en) * 2005-06-08 2007-04-26 Sandisk 3D Llc One-time programmable crosspoint memory with a diode as an antifuse
US20070104746A1 (en) * 2005-07-29 2007-05-10 Seishiro Fujii Methods and compositions for reducing skin damage
US20070105284A1 (en) * 2003-12-03 2007-05-10 Herner S B Method for forming a memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US20070102724A1 (en) * 2005-11-10 2007-05-10 Matrix Semiconductor, Inc. Vertical diode doped with antimony to avoid or limit dopant diffusion
US20070114509A1 (en) * 2005-11-23 2007-05-24 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
US20070114508A1 (en) * 2005-11-23 2007-05-24 Matrix Semiconductor, Inc. Reversible resistivity-switching metal oxide or nitride layer with added metal
US20070141858A1 (en) * 2005-12-16 2007-06-21 Matrix Semiconductor, Inc. Laser anneal of vertically oriented semiconductor structures while maintaining a dopant profile
US20070190722A1 (en) * 2002-12-19 2007-08-16 Herner S B Method to form upward pointing p-i-n diodes having large and uniform current
US20070228414A1 (en) * 2006-03-31 2007-10-04 Sandisk 3D, Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US20070236981A1 (en) * 2006-03-31 2007-10-11 Sandisk 3D, Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
WO2008005412A2 (en) * 2006-06-30 2008-01-10 Sandisk 3D Llc Ultrashallow semiconductor contact by outdiffusion from a solid source
US20080025118A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Method for using a mixed-use memory array
US20080025077A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for controlled pulse operations in non-volatile memory
US20080025062A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Method for using a mixed-use memory array with different data states
US20080025067A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for high bandwidth one time field-programmable memory
US20080025068A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Reverse bias trim operations in non-volatile memory
US20080025076A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Controlled pulse operations in non-volatile memory
US20080025061A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E High bandwidth one time field-programmable memory
US20080025078A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for reverse bias trim operations in non-volatile memory
US20080023790A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Mixed-use memory array
WO2008016844A2 (en) * 2006-07-31 2008-02-07 Sandisk 3D Llc Non-volatile memory capable of correcting overwritten cell
US20080094915A1 (en) * 2006-10-24 2008-04-24 Fasoli Luca G Method for controlling current during programming of memory cells
US20080094916A1 (en) * 2006-10-24 2008-04-24 Fasoli Luca G Memory device for controlling current during programming of memory cells
WO2008051840A1 (en) * 2006-10-24 2008-05-02 Sandisk Corporation Memory device and method for controlling current during programming of memory cells
US20080116441A1 (en) * 2006-11-16 2008-05-22 Usha Raghuram Nonvolatile phase change memory cell having a reduced contact area
US20080119007A1 (en) * 2006-11-16 2008-05-22 Usha Raghuram Method of making a nonvolatile phase change memory cell having a reduced contact area
US20080145994A1 (en) * 2006-12-13 2008-06-19 Herner S Brad Method for isotropic doping of a non-planar surface exposed in a void
US20080182367A1 (en) * 2007-01-31 2008-07-31 Petti Christopher J Embedded memory in a cmos circuit and methods of forming the same
US20080179685A1 (en) * 2007-01-31 2008-07-31 Petti Christopher J Embedded memory in a cmos circuit and methods of forming the same
US20080237599A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Memory cell comprising a carbon nanotube fabric element and a steering element
US20080239787A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Large array of upward pointing p-i-n diodes having large and uniform current
US20080239790A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Method to form a memory cell comprising a carbon nanotube fabric element and a steering element
US20080311722A1 (en) * 2007-06-15 2008-12-18 Sandisk 3D Llc Method for forming polycrystalline thin film bipolar transistors
US20080311710A1 (en) * 2007-06-15 2008-12-18 Herner S Brad Method to form low-defect polycrystalline semiconductor material for use in a transistor
US20080308903A1 (en) * 2007-06-15 2008-12-18 Sandisk 3D Llc Polycrystalline thin film bipolar transistors
US20080316796A1 (en) * 2007-06-25 2008-12-25 Sandisk 3D Llc Method of making high forward current diodes for reverse write 3D cell
US20080316809A1 (en) * 2007-06-25 2008-12-25 Sandisk 3D Llc High forward current diodes for reverse write 3D cell
WO2009002477A1 (en) 2007-06-25 2008-12-31 Sandisk 3D Llc High forward current diodes for reverse write 3d cell and method of making thereof
WO2009005614A2 (en) 2007-06-29 2009-01-08 Sandisk 3D Llc 3d r/w cell with diode and resistive semiconductor element and method of making thereof
US20090085154A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Vertical diode based memory cells having a lowered programming voltage and methods of forming the same
US20090086521A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same
US20090104756A1 (en) * 2007-06-29 2009-04-23 Tanmay Kumar Method to form a rewriteable memory cell comprising a diode and a resistivity-switching grown oxide
US20090155962A1 (en) * 2007-12-17 2009-06-18 Sandisk 3D Llc Method for fabricating pitch-doubling pillar structures
US20090168492A1 (en) * 2007-12-28 2009-07-02 Sandisk 3D Llc Two terminal nonvolatile memory using gate controlled diode elements
US20090168486A1 (en) * 2007-12-27 2009-07-02 Sandisk 3D Llc Large capacity one-time programmable memory cell using metal oxides
US20090166610A1 (en) * 2007-12-31 2009-07-02 April Schricker Memory cell with planarized carbon nanotube layer and methods of forming the same
US20090257266A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090258318A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Double patterning method
US20090256129A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Sidewall structured switchable resistor cell
US20090258489A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090258495A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Modified darc stack for resist patterning
US20090257265A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090258135A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing
US20090258501A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Double patterning method
US20090269932A1 (en) * 2008-04-28 2009-10-29 Sandisk 3D Llc Method for fabricating self-aligned complimentary pillar structures and wiring
US20090273022A1 (en) * 2006-05-31 2009-11-05 Sandisk 3D Llc Conductive hard mask to protect patterned features during trench etch
US20090278112A1 (en) * 2008-04-11 2009-11-12 Sandisk 3D Llc Methods for etching carbon nano-tube films for use in non-volatile memories
US20090283735A1 (en) * 2008-05-16 2009-11-19 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US20090321789A1 (en) * 2008-06-30 2009-12-31 Sandisk 3D Llc Triangle two dimensional complementary patterning of pillars
US20090323385A1 (en) * 2008-06-30 2009-12-31 ScanDisk 3D LLC Method for fabricating high density pillar structures by double patterning using positive photoresist
US20090323394A1 (en) * 2008-06-27 2009-12-31 Scheuerlein Roy E Pulse reset for non-volatile storage
US20100006811A1 (en) * 2008-07-08 2010-01-14 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US20100012912A1 (en) * 2008-07-15 2010-01-21 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100012914A1 (en) * 2008-07-18 2010-01-21 Sandisk 3D Llc Carbon-based resistivity-switching materials and methods of forming the same
US20100032638A1 (en) * 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US20100086875A1 (en) * 2008-10-06 2010-04-08 Sandisk 3D Llc Method of making sub-resolution pillar structures using undercutting technique
US7706177B2 (en) 2007-12-28 2010-04-27 Sandisk 3D Llc Method of programming cross-point diode memory array
US20100105210A1 (en) * 2008-10-27 2010-04-29 Sandisk 3D Llc Method of making pillars using photoresist spacer mask
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US20100108982A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US20100108981A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US20100127358A1 (en) * 2008-11-21 2010-05-27 Sandisk 3D Llc Integration of damascene type diodes and conductive wires for memory device
US20100136751A1 (en) * 2003-12-03 2010-06-03 Herner S Brad Method for making a p-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US20100157652A1 (en) * 2008-12-19 2010-06-24 Sandisk 3D Llc Programming a memory cell with a diode in series by applying reverse bias
US20100155784A1 (en) * 2008-12-24 2010-06-24 Scheuerlein Roy E Three-Dimensional Memory Structures Having Shared Pillar Memory Cells
US20100167502A1 (en) * 2008-12-31 2010-07-01 Sandisk 3D Llc Nanoimprint enhanced resist spacer patterning method
US20100167520A1 (en) * 2008-12-31 2010-07-01 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US20100176366A1 (en) * 2009-01-14 2010-07-15 Sandisk 3D Llc Nonvolatile memory cell including carbon storage element formed on a silicide layer
US20100181657A1 (en) * 2002-12-19 2010-07-22 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US20100193916A1 (en) * 2008-12-31 2010-08-05 Sandisk 3D Llc Methods for increased array feature density
US20100237346A1 (en) * 2009-03-17 2010-09-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US20100245029A1 (en) * 2009-03-31 2010-09-30 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US20100247669A1 (en) * 2009-03-30 2010-09-30 Cerulean Pharma Inc. Polymer-agent conjugates, particles, compositions, and related methods of use
WO2011034750A1 (en) 2009-09-17 2011-03-24 Sandisk 3D Llc Pin diode with sige low contact resistance and method for forming the same
US7923305B1 (en) 2010-01-12 2011-04-12 Sandisk 3D Llc Patterning method for high density pillar structures
US20110095258A1 (en) * 2009-10-23 2011-04-28 Huiwen Xu Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US20110095257A1 (en) * 2009-10-23 2011-04-28 Huiwen Xu Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US20110110149A1 (en) * 2005-01-19 2011-05-12 Scheuerlein Roy E Structure and method for biasing phase change memory array for reliable writing
US20110133151A1 (en) * 2009-12-07 2011-06-09 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7978496B2 (en) 2008-12-18 2011-07-12 Sandisk 3D Llc Method of programming a nonvolatile memory device containing a carbon storage material
US20110171815A1 (en) * 2010-01-12 2011-07-14 Sandisk 3D Llc Patterning method for high density pillar structures
US20110193042A1 (en) * 2010-02-11 2011-08-11 Steven Maxwell Memory cell formed using a recess and methods for forming the same
US20110204474A1 (en) * 2010-02-24 2011-08-25 Franz Kreupl Memory cell with silicon-containing carbon switching layer and methods for forming the same
US20110210306A1 (en) * 2010-02-26 2011-09-01 Yubao Li Memory cell that includes a carbon-based memory element and methods of forming the same
US20110210304A1 (en) * 2008-09-05 2011-09-01 Kenichi Murooka Storage device
US20120025160A1 (en) * 2010-07-30 2012-02-02 Kabushiki Kaisha Toshiba Nonvolatile memory device
US20120043517A1 (en) * 2010-08-17 2012-02-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device
US8395140B2 (en) 2010-07-09 2013-03-12 Micron Technology, Inc. Cross-point memory utilizing Ru/Si diode
US20130062590A1 (en) * 2011-09-08 2013-03-14 Kabushiki Kaisha Toshiba Method for manufacturing nonvolatile storage device and nonvolatile storage device
US8471360B2 (en) 2010-04-14 2013-06-25 Sandisk 3D Llc Memory cell with carbon switching material having a reduced cross-sectional area and methods for forming the same
US8605486B2 (en) 2009-04-03 2013-12-10 Sandisk 3D Llc Cross point non-volatile memory cell
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
KR101517913B1 (en) * 2007-03-27 2015-05-07 쌘디스크 3디 엘엘씨 Device comprising the upwardly oriented p-i-n diode having a large array of large and uniform current them, a method of forming the same, a method of forming the vertical alignment p-i-n diode and a short one-piece three-dimensional memory array,
US9472301B2 (en) 2013-02-28 2016-10-18 Sandisk Technologies Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US9478495B1 (en) 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof
WO2017222592A1 (en) * 2016-06-20 2017-12-28 Massachusetts Institute Of Technology Apparatus and methods for electrical switching

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222929A (en) * 2010-03-23 2011-11-04 Toshiba Corp Nonvolatile memory and manufacturing method of the same
US9397111B1 (en) 2015-10-30 2016-07-19 Sandisk Technologies Llc Select gate transistor with single crystal silicon for three-dimensional memory

Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185122B2 (en) *
US4499557A (en) * 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4665428A (en) * 1984-01-13 1987-05-12 The British Petroleum Company P.L.C. Semiconductor device
US5432729A (en) * 1993-04-23 1995-07-11 Irvine Sensors Corporation Electronic module comprising a stack of IC chips each interacting with an IC chip secured to the stack
US5559732A (en) * 1994-12-27 1996-09-24 Syracuse University Branched photocycle optical memory device
US5700737A (en) * 1996-02-26 1997-12-23 Taiwan Semiconductor Manufactured Company Ltd. PECVD silicon nitride for etch stop mask and ozone TEOS pattern sensitivity elimination
US5745407A (en) * 1994-05-05 1998-04-28 California Institute Of Technology Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same
US5751012A (en) * 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5792569A (en) * 1996-03-19 1998-08-11 International Business Machines Corporation Magnetic devices and sensors based on perovskite manganese oxide materials
US5835396A (en) * 1996-10-17 1998-11-10 Zhang; Guobiao Three-dimensional read-only memory
US5877538A (en) * 1995-06-02 1999-03-02 Silixonix Incorporated Bidirectional trench gated power MOSFET with submerged body bus extending underneath gate trench
US5915167A (en) * 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US5991193A (en) * 1997-12-02 1999-11-23 International Business Machines Corporation Voltage biasing for magnetic ram with magnetic tunnel memory cells
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6111784A (en) * 1997-09-18 2000-08-29 Canon Kabushiki Kaisha Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element
US6141241A (en) * 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US6236587B1 (en) * 1997-09-01 2001-05-22 Thin Film Electronics Asa Read-only memory and read-only memory devices
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6483736B2 (en) * 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US20030025176A1 (en) * 2000-08-14 2003-02-06 Vivek Subramanian Thermal processing for three dimensional circuits
US6525953B1 (en) * 2001-08-13 2003-02-25 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US6534841B1 (en) * 2001-12-14 2003-03-18 Hewlett-Packard Company Continuous antifuse material in memory structure
US6567301B2 (en) * 2001-08-09 2003-05-20 Hewlett-Packard Development Company, L.P. One-time programmable unit memory cell based on vertically oriented fuse and diode and one-time programmable memory using the same
US6584029B2 (en) * 2001-08-09 2003-06-24 Hewlett-Packard Development Company, L.P. One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells
US6611453B2 (en) * 2001-01-24 2003-08-26 Infineon Technologies Ag Self-aligned cross-point MRAM device with aluminum metallization layers
US20030164491A1 (en) * 2002-02-15 2003-09-04 Lee Thomas H. Diverse band gap energy level semiconductor device
US6627530B2 (en) * 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6635556B1 (en) * 2001-05-17 2003-10-21 Matrix Semiconductor, Inc. Method of preventing autodoping
US6664639B2 (en) * 2000-12-22 2003-12-16 Matrix Semiconductor, Inc. Contact and via structure and method of fabrication
US20040002186A1 (en) * 2002-06-27 2004-01-01 Vyvoda Michael A. Electrically isolated pillars in active devices
US6677220B2 (en) * 2002-01-16 2004-01-13 Hewlett-Packard Development Company, L.P. Antifuse structure and method of making
US6693823B2 (en) * 2002-01-02 2004-02-17 Intel Corporation Minimization of metal migration in magnetic random access memory
US6784517B2 (en) * 2000-04-28 2004-08-31 Matrix Semiconductor, Inc. Three-dimensional memory array incorporating serial chain diode stack
US20050012119A1 (en) * 2002-12-19 2005-01-20 Matrix Semiconductor Method for making high density nonvolatile memory
US6853049B2 (en) * 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US20050052915A1 (en) * 2002-12-19 2005-03-10 Matrix Semiconductor, Inc. Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US6879505B2 (en) * 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
US20050098800A1 (en) * 2002-12-19 2005-05-12 Matrix Semiconductor, Inc. Nonvolatile memory cell comprising a reduced height vertical diode
US20050121743A1 (en) * 2003-12-03 2005-06-09 Matrix Semiconductor, Inc. Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US6946719B2 (en) * 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US6951780B1 (en) * 2003-12-18 2005-10-04 Matrix Semiconductor, Inc. Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays
US20050221200A1 (en) * 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
US20060067117A1 (en) * 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
US7115967B2 (en) * 2002-06-27 2006-10-03 Sandisk 3D Llc Three-dimensional memory
US20060249753A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes
US7172840B2 (en) * 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
US7224013B2 (en) * 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US7238607B2 (en) * 2002-12-19 2007-07-03 Sandisk 3D Llc Method to minimize formation of recess at surface planarized by chemical mechanical planarization
US7265049B2 (en) * 2002-12-19 2007-09-04 Sandisk 3D Llc Ultrathin chemically grown oxide film as a dopant diffusion barrier in semiconductor devices
US7307013B2 (en) * 2004-06-30 2007-12-11 Sandisk 3D Llc Nonselective unpatterned etchback to expose buried patterned features
US7423304B2 (en) * 2003-12-05 2008-09-09 Sandisck 3D Llc Optimization of critical dimensions and pitch of patterned features in and above a substrate
US7474000B2 (en) * 2003-12-05 2009-01-06 Sandisk 3D Llc High density contact to relaxed geometry layers
US7511352B2 (en) * 2003-05-19 2009-03-31 Sandisk 3D Llc Rail Schottky device and method of making
US7517796B2 (en) * 2005-02-17 2009-04-14 Sandisk 3D Llc Method for patterning submicron pillars

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US432729A (en) * 1890-07-22 Screw-driver
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US5774378A (en) * 1993-04-21 1998-06-30 The Foxboro Company Self-validating sensors
FR2714764B1 (en) * 1993-12-30 1996-03-29 Pixel Int Sa A method of positioning and installation of spacers beads to flat screens such as fluorescent screens microtip and equipment associated with this method.
US5441907A (en) 1994-06-27 1995-08-15 Taiwan Semiconductor Manufacturing Company Process for manufacturing a plug-diode mask ROM
US5844297A (en) 1995-09-26 1998-12-01 Symbios, Inc. Antifuse device for use on a field programmable interconnect chip
US5926096A (en) * 1996-03-11 1999-07-20 The Foxboro Company Method and apparatus for correcting for performance degrading factors in a coriolis-type mass flowmeter
US5877954A (en) * 1996-05-03 1999-03-02 Aspen Technology, Inc. Hybrid linear-neural network process control
DE19621132A1 (en) * 1996-05-24 1997-11-27 Bailey Fischer & Porter Gmbh Method and device for magnetic-inductive flow measurement
US5804741A (en) * 1996-11-08 1998-09-08 Schlumberger Industries, Inc. Digital phase locked loop signal processing for coriolis mass flow meter
US6073495A (en) * 1997-03-21 2000-06-13 Endress + Hauser Flowtec Ag Measuring and operating circuit of a coriolis-type mass flow meter
US6185470B1 (en) * 1997-11-07 2001-02-06 Mcdonnell Douglas Corporation Neural network predictive control method and system
US6102846A (en) * 1998-02-26 2000-08-15 Eastman Kodak Company System and method of managing a psychological state of an individual using images
US6613823B1 (en) * 1998-10-21 2003-09-02 Phillips Petroleum Company Phosphite additives in polyolefins
US5969264A (en) * 1998-11-06 1999-10-19 Technology Commercialization Corp. Method and apparatus for total and individual flow measurement of a single-or multi-phase medium
US6303972B1 (en) 1998-11-25 2001-10-16 Micron Technology, Inc. Device including a conductive layer protected against oxidation
US6301973B1 (en) * 1999-04-30 2001-10-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-intrusive pressure/multipurpose sensor and method
US6879014B2 (en) 2000-03-20 2005-04-12 Aegis Semiconductor, Inc. Semitransparent optical detector including a polycrystalline layer and method of making
US6549447B1 (en) 2001-10-31 2003-04-15 Peter Fricke Memory cell structure
GB0127696D0 (en) 2001-11-20 2002-01-09 Zarlink Semiconductor Ltd Antifuses
US6911233B2 (en) 2002-08-08 2005-06-28 Toppoly Optoelectronics Corp. Method for depositing thin film using plasma chemical vapor deposition
US20050226067A1 (en) * 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US7767499B2 (en) 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US7397101B1 (en) 2004-07-08 2008-07-08 Luxtera, Inc. Germanium silicon heterostructure photodetectors
JP5439147B2 (en) 2009-12-04 2014-03-12 株式会社東芝 Resistance change memory

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185122B2 (en) *
US4499557A (en) * 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4665428A (en) * 1984-01-13 1987-05-12 The British Petroleum Company P.L.C. Semiconductor device
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US5432729A (en) * 1993-04-23 1995-07-11 Irvine Sensors Corporation Electronic module comprising a stack of IC chips each interacting with an IC chip secured to the stack
US5745407A (en) * 1994-05-05 1998-04-28 California Institute Of Technology Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same
US5559732A (en) * 1994-12-27 1996-09-24 Syracuse University Branched photocycle optical memory device
US5877538A (en) * 1995-06-02 1999-03-02 Silixonix Incorporated Bidirectional trench gated power MOSFET with submerged body bus extending underneath gate trench
US5751012A (en) * 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5700737A (en) * 1996-02-26 1997-12-23 Taiwan Semiconductor Manufactured Company Ltd. PECVD silicon nitride for etch stop mask and ozone TEOS pattern sensitivity elimination
US5792569A (en) * 1996-03-19 1998-08-11 International Business Machines Corporation Magnetic devices and sensors based on perovskite manganese oxide materials
US5835396A (en) * 1996-10-17 1998-11-10 Zhang; Guobiao Three-dimensional read-only memory
US5915167A (en) * 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6236587B1 (en) * 1997-09-01 2001-05-22 Thin Film Electronics Asa Read-only memory and read-only memory devices
US6111784A (en) * 1997-09-18 2000-08-29 Canon Kabushiki Kaisha Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element
US5991193A (en) * 1997-12-02 1999-11-23 International Business Machines Corporation Voltage biasing for magnetic ram with magnetic tunnel memory cells
US6141241A (en) * 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US6185122B1 (en) * 1998-11-16 2001-02-06 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) * 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6784517B2 (en) * 2000-04-28 2004-08-31 Matrix Semiconductor, Inc. Three-dimensional memory array incorporating serial chain diode stack
US20030025176A1 (en) * 2000-08-14 2003-02-06 Vivek Subramanian Thermal processing for three dimensional circuits
US6627530B2 (en) * 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6664639B2 (en) * 2000-12-22 2003-12-16 Matrix Semiconductor, Inc. Contact and via structure and method of fabrication
US6611453B2 (en) * 2001-01-24 2003-08-26 Infineon Technologies Ag Self-aligned cross-point MRAM device with aluminum metallization layers
US6635556B1 (en) * 2001-05-17 2003-10-21 Matrix Semiconductor, Inc. Method of preventing autodoping
US6584029B2 (en) * 2001-08-09 2003-06-24 Hewlett-Packard Development Company, L.P. One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells
US6567301B2 (en) * 2001-08-09 2003-05-20 Hewlett-Packard Development Company, L.P. One-time programmable unit memory cell based on vertically oriented fuse and diode and one-time programmable memory using the same
US6689644B2 (en) * 2001-08-13 2004-02-10 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US20050026334A1 (en) * 2001-08-13 2005-02-03 Matrix Semiconductor, Inc. Vertically stacked, field programmable, nonvolatile memory and method of fabrication
US6525953B1 (en) * 2001-08-13 2003-02-25 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US6534841B1 (en) * 2001-12-14 2003-03-18 Hewlett-Packard Company Continuous antifuse material in memory structure
US6693823B2 (en) * 2002-01-02 2004-02-17 Intel Corporation Minimization of metal migration in magnetic random access memory
US6677220B2 (en) * 2002-01-16 2004-01-13 Hewlett-Packard Development Company, L.P. Antifuse structure and method of making
US7038248B2 (en) * 2002-02-15 2006-05-02 Sandisk Corporation Diverse band gap energy level semiconductor device
US20030164491A1 (en) * 2002-02-15 2003-09-04 Lee Thomas H. Diverse band gap energy level semiconductor device
US6853049B2 (en) * 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US7115967B2 (en) * 2002-06-27 2006-10-03 Sandisk 3D Llc Three-dimensional memory
US20040002186A1 (en) * 2002-06-27 2004-01-01 Vyvoda Michael A. Electrically isolated pillars in active devices
US20050012119A1 (en) * 2002-12-19 2005-01-20 Matrix Semiconductor Method for making high density nonvolatile memory
US20050098800A1 (en) * 2002-12-19 2005-05-12 Matrix Semiconductor, Inc. Nonvolatile memory cell comprising a reduced height vertical diode
US7557405B2 (en) * 2002-12-19 2009-07-07 Sandisk 3D Llc High-density nonvolatile memory
US7285464B2 (en) * 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US6952030B2 (en) * 2002-12-19 2005-10-04 Matrix Semiconductor, Inc. High-density three-dimensional memory cell
US7265049B2 (en) * 2002-12-19 2007-09-04 Sandisk 3D Llc Ultrathin chemically grown oxide film as a dopant diffusion barrier in semiconductor devices
US7238607B2 (en) * 2002-12-19 2007-07-03 Sandisk 3D Llc Method to minimize formation of recess at surface planarized by chemical mechanical planarization
US7560339B2 (en) * 2002-12-19 2009-07-14 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US7026212B2 (en) * 2002-12-19 2006-04-11 Matrix Semiconductors, Inc. Method for making high density nonvolatile memory
US20050052915A1 (en) * 2002-12-19 2005-03-10 Matrix Semiconductor, Inc. Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US6879505B2 (en) * 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
US7511352B2 (en) * 2003-05-19 2009-03-31 Sandisk 3D Llc Rail Schottky device and method of making
US20050121743A1 (en) * 2003-12-03 2005-06-09 Matrix Semiconductor, Inc. Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US6946719B2 (en) * 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US7474000B2 (en) * 2003-12-05 2009-01-06 Sandisk 3D Llc High density contact to relaxed geometry layers
US7172840B2 (en) * 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
US7423304B2 (en) * 2003-12-05 2008-09-09 Sandisck 3D Llc Optimization of critical dimensions and pitch of patterned features in and above a substrate
US6951780B1 (en) * 2003-12-18 2005-10-04 Matrix Semiconductor, Inc. Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays
US20050221200A1 (en) * 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
US7307013B2 (en) * 2004-06-30 2007-12-11 Sandisk 3D Llc Nonselective unpatterned etchback to expose buried patterned features
US7224013B2 (en) * 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US20060067117A1 (en) * 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
US7517796B2 (en) * 2005-02-17 2009-04-14 Sandisk 3D Llc Method for patterning submicron pillars
US20060249753A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes

Cited By (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825455B2 (en) 2000-08-14 2010-11-02 Sandisk 3D Llc Three terminal nonvolatile memory device with vertical gated diode
US20090173985A1 (en) * 2000-08-14 2009-07-09 Sandisk 3D Llc Dense arrays and charge storage devices
US9171857B2 (en) 2000-08-14 2015-10-27 Sandisk 3D Llc Dense arrays and charge storage devices
US9559110B2 (en) 2000-08-14 2017-01-31 Sandisk Technologies Llc Dense arrays and charge storage devices
US20070029607A1 (en) * 2000-08-14 2007-02-08 Sandisk 3D Llc Dense arrays and charge storage devices
US8853765B2 (en) 2000-08-14 2014-10-07 Sandisk 3D Llc Dense arrays and charge storage devices
US8823076B2 (en) 2000-08-14 2014-09-02 Sandisk 3D Llc Dense arrays and charge storage devices
US8981457B2 (en) 2000-08-14 2015-03-17 Sandisk 3D Llc Dense arrays and charge storage devices
US8243509B2 (en) 2002-12-19 2012-08-14 Sandisk 3D Llc Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US7557405B2 (en) 2002-12-19 2009-07-07 Sandisk 3D Llc High-density nonvolatile memory
US8004033B2 (en) 2002-12-19 2011-08-23 Sandisk 3D Llc High-density nonvolatile memory
US20050052915A1 (en) * 2002-12-19 2005-03-10 Matrix Semiconductor, Inc. Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US20100288996A1 (en) * 2002-12-19 2010-11-18 Herner S Brad Memory arrays including memory levels that share conductors, and methods of forming such memory arrays
US8730720B2 (en) 2002-12-19 2014-05-20 Sandisk 3D Llc Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US7767499B2 (en) 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US20100181657A1 (en) * 2002-12-19 2010-07-22 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US8383478B2 (en) 2002-12-19 2013-02-26 Sandisk 3D Llc High-density nonvolatile memory and methods of making the same
US20070190722A1 (en) * 2002-12-19 2007-08-16 Herner S B Method to form upward pointing p-i-n diodes having large and uniform current
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US20090261343A1 (en) * 2002-12-19 2009-10-22 Sandisk 3D Llc High-density nonvolatile memory and methods of making the same
US8252644B2 (en) 2002-12-19 2012-08-28 Sandisk 3D Llc Method for forming a nonvolatile memory cell comprising a reduced height vertical diode
US20110176352A1 (en) * 2002-12-19 2011-07-21 Herner S Brad Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US9246089B2 (en) 2002-12-19 2016-01-26 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US20060189077A1 (en) * 2002-12-19 2006-08-24 Sandisk 3D Llc Method for making high-density nonvolatile memory
US8018025B2 (en) 2002-12-19 2011-09-13 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US8482973B2 (en) 2002-12-19 2013-07-09 Sandisk 3D Llc Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US8951861B2 (en) 2002-12-19 2015-02-10 Sandisk 3D Llc Methods of making a high-density nonvolatile memory
US20070105284A1 (en) * 2003-12-03 2007-05-10 Herner S B Method for forming a memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US8018024B2 (en) 2003-12-03 2011-09-13 Sandisk 3D Llc P-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US20070069217A1 (en) * 2003-12-03 2007-03-29 Herner S B P-i-n diode crystallized adjacent to a silicide in series with a dielectric anitfuse
US20100136751A1 (en) * 2003-12-03 2010-06-03 Herner S Brad Method for making a p-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US8330250B2 (en) * 2003-12-03 2012-12-11 Sandisk 3D Llc P-I-N diode crystallized adjacent to a silicide in series with a dielectric material
US8633567B2 (en) 2003-12-03 2014-01-21 Sandisk 3D Llc Devices including a P-I-N diode disposed adjacent a silicide in series with a dielectric material
US7833843B2 (en) 2003-12-03 2010-11-16 Sandisk 3D Llc Method for forming a memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US20120001296A1 (en) * 2003-12-03 2012-01-05 Herner S Brad P-i-n diode crystallized adjacent to a silicide in series with a dielectric material
US8030740B2 (en) 2004-09-29 2011-10-04 Sandisk 3D Llc Deposited semiconductor structure to minimize N-type dopant diffusion and method of making
US20100163831A1 (en) * 2004-09-29 2010-07-01 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US8766414B2 (en) 2004-09-29 2014-07-01 Sandisk 3D Llc Deposited semiconductor structure to minimize N-type dopant diffusion and method of making
US20090026582A1 (en) * 2004-09-29 2009-01-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US20060087005A1 (en) * 2004-09-29 2006-04-27 Matrix Semiconductor, Inc. Deposited semiconductor structure to minimize N-type dopant diffusion and method of making
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US7648896B2 (en) 2004-09-29 2010-01-19 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US8314477B2 (en) 2004-09-29 2012-11-20 Sandisk 3D Llc Deposited semiconductor structure to minimize N-type dopant diffusion and method of making
US8385141B2 (en) 2005-01-19 2013-02-26 Sandisk 3D Llc Structure and method for biasing phase change memory array for reliable writing
US8102698B2 (en) 2005-01-19 2012-01-24 Sandisk 3D Llc Structure and method for biasing phase change memory array for reliable writing
US20110110149A1 (en) * 2005-01-19 2011-05-12 Scheuerlein Roy E Structure and method for biasing phase change memory array for reliable writing
US20060250837A1 (en) * 2005-05-09 2006-11-09 Sandisk 3D, Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US8687410B2 (en) 2005-05-09 2014-04-01 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
WO2007046883A1 (en) * 2005-06-08 2007-04-26 Sandisk 3D Llc One-time programmable crosspoint memory with a diode as an antifuse
US20070104746A1 (en) * 2005-07-29 2007-05-10 Seishiro Fujii Methods and compositions for reducing skin damage
US20070070690A1 (en) * 2005-09-28 2007-03-29 Scheuerlein Roy E Method for using a multi-use memory cell and memory array
US20070069276A1 (en) * 2005-09-28 2007-03-29 Scheuerlein Roy E Multi-use memory cell and memory array
US7447056B2 (en) 2005-09-28 2008-11-04 Sandisk 3D Llc Method for using a multi-use memory cell and memory array
US20070102724A1 (en) * 2005-11-10 2007-05-10 Matrix Semiconductor, Inc. Vertical diode doped with antimony to avoid or limit dopant diffusion
US20070114508A1 (en) * 2005-11-23 2007-05-24 Matrix Semiconductor, Inc. Reversible resistivity-switching metal oxide or nitride layer with added metal
US7834338B2 (en) 2005-11-23 2010-11-16 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
US7816659B2 (en) 2005-11-23 2010-10-19 Sandisk 3D Llc Devices having reversible resistivity-switching metal oxide or nitride layer with added metal
US20070114509A1 (en) * 2005-11-23 2007-05-24 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
WO2007067448A1 (en) * 2005-12-09 2007-06-14 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US7615502B2 (en) * 2005-12-16 2009-11-10 Sandisk 3D Llc Laser anneal of vertically oriented semiconductor structures while maintaining a dopant profile
US20070141858A1 (en) * 2005-12-16 2007-06-21 Matrix Semiconductor, Inc. Laser anneal of vertically oriented semiconductor structures while maintaining a dopant profile
WO2007075568A2 (en) * 2005-12-16 2007-07-05 Sandisk 3D Llc Laser anneal of vertically oriented semiconductor structures while maintaining a dopant profile
WO2007075568A3 (en) * 2005-12-16 2007-08-30 Sandisk 3D Llc Laser anneal of vertically oriented semiconductor structures while maintaining a dopant profile
US7808810B2 (en) 2006-03-31 2010-10-05 Sandisk 3D Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US8592792B2 (en) 2006-03-31 2013-11-26 Sandisk 3D Llc Heterojunction device comprising a semiconductor oxide and a resistivity-switching oxide or nitride
US8227787B2 (en) 2006-03-31 2012-07-24 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US20110114913A1 (en) * 2006-03-31 2011-05-19 Tanmay Kumar Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US20070228414A1 (en) * 2006-03-31 2007-10-04 Sandisk 3D, Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US20070236981A1 (en) * 2006-03-31 2007-10-11 Sandisk 3D, Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US8722518B2 (en) 2006-05-31 2014-05-13 Sandisk 3D Llc Methods for protecting patterned features during trench etch
US20090273022A1 (en) * 2006-05-31 2009-11-05 Sandisk 3D Llc Conductive hard mask to protect patterned features during trench etch
US7754605B2 (en) 2006-06-30 2010-07-13 Sandisk 3D Llc Ultrashallow semiconductor contact by outdiffusion from a solid source
WO2008005412A2 (en) * 2006-06-30 2008-01-10 Sandisk 3D Llc Ultrashallow semiconductor contact by outdiffusion from a solid source
WO2008005412A3 (en) * 2006-06-30 2008-05-08 S Brad Herner Ultrashallow semiconductor contact by outdiffusion from a solid source
US20080023790A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Mixed-use memory array
US7486537B2 (en) 2006-07-31 2009-02-03 Sandisk 3D Llc Method for using a mixed-use memory array with different data states
US7450414B2 (en) 2006-07-31 2008-11-11 Sandisk 3D Llc Method for using a mixed-use memory array
WO2008016844A3 (en) * 2006-07-31 2008-03-27 Tanmay Kumar Non-volatile memory capable of correcting overwritten cell
US7492630B2 (en) 2006-07-31 2009-02-17 Sandisk 3D Llc Systems for reverse bias trim operations in non-volatile memory
WO2008016844A2 (en) * 2006-07-31 2008-02-07 Sandisk 3D Llc Non-volatile memory capable of correcting overwritten cell
US7495947B2 (en) 2006-07-31 2009-02-24 Sandisk 3D Llc Reverse bias trim operations in non-volatile memory
US20080025078A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for reverse bias trim operations in non-volatile memory
US20080025061A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E High bandwidth one time field-programmable memory
US7499304B2 (en) 2006-07-31 2009-03-03 Sandisk 3D Llc Systems for high bandwidth one time field-programmable memory
US20080025076A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Controlled pulse operations in non-volatile memory
US20080025068A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Reverse bias trim operations in non-volatile memory
US20080025062A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Method for using a mixed-use memory array with different data states
US7719874B2 (en) 2006-07-31 2010-05-18 Sandisk 3D Llc Systems for controlled pulse operations in non-volatile memory
US20080025077A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for controlled pulse operations in non-volatile memory
US20080025118A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Method for using a mixed-use memory array
US7499355B2 (en) 2006-07-31 2009-03-03 Sandisk 3D Llc High bandwidth one time field-programmable memory
US7522448B2 (en) 2006-07-31 2009-04-21 Sandisk 3D Llc Controlled pulse operations in non-volatile memory
US20080025067A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Systems for high bandwidth one time field-programmable memory
US7420851B2 (en) 2006-10-24 2008-09-02 San Disk 3D Llc Memory device for controlling current during programming of memory cells
US20080094915A1 (en) * 2006-10-24 2008-04-24 Fasoli Luca G Method for controlling current during programming of memory cells
US7420850B2 (en) 2006-10-24 2008-09-02 Sandisk 3D Llc Method for controlling current during programming of memory cells
US20080094916A1 (en) * 2006-10-24 2008-04-24 Fasoli Luca G Memory device for controlling current during programming of memory cells
WO2008051840A1 (en) * 2006-10-24 2008-05-02 Sandisk Corporation Memory device and method for controlling current during programming of memory cells
US20080119007A1 (en) * 2006-11-16 2008-05-22 Usha Raghuram Method of making a nonvolatile phase change memory cell having a reduced contact area
US8163593B2 (en) 2006-11-16 2012-04-24 Sandisk Corporation Method of making a nonvolatile phase change memory cell having a reduced contact area
US20080116441A1 (en) * 2006-11-16 2008-05-22 Usha Raghuram Nonvolatile phase change memory cell having a reduced contact area
US7728318B2 (en) 2006-11-16 2010-06-01 Sandisk Corporation Nonvolatile phase change memory cell having a reduced contact area
US20080145994A1 (en) * 2006-12-13 2008-06-19 Herner S Brad Method for isotropic doping of a non-planar surface exposed in a void
US7811916B2 (en) 2006-12-13 2010-10-12 Sandisk 3D Llc Method for isotropic doping of a non-planar surface exposed in a void
US20080182367A1 (en) * 2007-01-31 2008-07-31 Petti Christopher J Embedded memory in a cmos circuit and methods of forming the same
US7888200B2 (en) 2007-01-31 2011-02-15 Sandisk 3D Llc Embedded memory in a CMOS circuit and methods of forming the same
US7868388B2 (en) * 2007-01-31 2011-01-11 Sandisk 3D Llc Embedded memory in a CMOS circuit and methods of forming the same
US20080179685A1 (en) * 2007-01-31 2008-07-31 Petti Christopher J Embedded memory in a cmos circuit and methods of forming the same
US7924602B2 (en) 2007-03-27 2011-04-12 Sandisk 3D Llc Method to program a memory cell comprising a carbon nanotube fabric element and a steering element
KR101517913B1 (en) * 2007-03-27 2015-05-07 쌘디스크 3디 엘엘씨 Device comprising the upwardly oriented p-i-n diode having a large array of large and uniform current them, a method of forming the same, a method of forming the vertical alignment p-i-n diode and a short one-piece three-dimensional memory array,
US8059444B2 (en) 2007-03-27 2011-11-15 Sandisk 3D Llc Large array of upward pointing P-I-N diodes having large and uniform current
US20100142255A1 (en) * 2007-03-27 2010-06-10 Herner S Brad Method to program a memory cell comprising a carbon nanotube fabric element and a steering element
US9025372B2 (en) 2007-03-27 2015-05-05 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
US20080237599A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Memory cell comprising a carbon nanotube fabric element and a steering element
US20080239787A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Large array of upward pointing p-i-n diodes having large and uniform current
US8427858B2 (en) 2007-03-27 2013-04-23 Sandisk 3D Llc Large array of upward pointinig p-i-n diodes having large and uniform current
US20080239790A1 (en) * 2007-03-27 2008-10-02 Herner S Brad Method to form a memory cell comprising a carbon nanotube fabric element and a steering element
JP2010522990A (en) * 2007-03-27 2010-07-08 サンディスク スリーディー,エルエルシー Large and large array of upwardly pin diode having a uniform current methods of forming the same
US20110049466A1 (en) * 2007-03-27 2011-03-03 Herner S Brad Large array of upward pointing p-i-n diodes having large and uniform current
WO2009008919A3 (en) * 2007-03-27 2009-05-22 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current and methods of forming the same
US8847200B2 (en) 2007-03-27 2014-09-30 Sandisk 3D Llc Memory cell comprising a carbon nanotube fabric element and a steering element
US7667999B2 (en) 2007-03-27 2010-02-23 Sandisk 3D Llc Method to program a memory cell comprising a carbon nanotube fabric and a steering element
US7982209B2 (en) 2007-03-27 2011-07-19 Sandisk 3D Llc Memory cell comprising a carbon nanotube fabric element and a steering element
US7586773B2 (en) 2007-03-27 2009-09-08 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
US7830694B2 (en) 2007-03-27 2010-11-09 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
US8737110B2 (en) 2007-03-27 2014-05-27 Sandisk 3D Llc Large array of upward pointing P-I-N diodes having large and uniform current
US8203864B2 (en) 2007-03-27 2012-06-19 Sandisk 3D Llc Memory cell and methods of forming a memory cell comprising a carbon nanotube fabric element and a steering element
US7855119B2 (en) 2007-06-15 2010-12-21 Sandisk 3D Llc Method for forming polycrystalline thin film bipolar transistors
US20080311710A1 (en) * 2007-06-15 2008-12-18 Herner S Brad Method to form low-defect polycrystalline semiconductor material for use in a transistor
US7790534B2 (en) 2007-06-15 2010-09-07 Sandisk 3D Llc Method to form low-defect polycrystalline semiconductor material for use in a transistor
US20080311722A1 (en) * 2007-06-15 2008-12-18 Sandisk 3D Llc Method for forming polycrystalline thin film bipolar transistors
US8004013B2 (en) 2007-06-15 2011-08-23 Sandisk 3D Llc Polycrystalline thin film bipolar transistors
US20080308903A1 (en) * 2007-06-15 2008-12-18 Sandisk 3D Llc Polycrystalline thin film bipolar transistors
US7830697B2 (en) 2007-06-25 2010-11-09 Sandisk 3D Llc High forward current diodes for reverse write 3D cell
US7684226B2 (en) 2007-06-25 2010-03-23 Sandisk 3D Llc Method of making high forward current diodes for reverse write 3D cell
US20080316796A1 (en) * 2007-06-25 2008-12-25 Sandisk 3D Llc Method of making high forward current diodes for reverse write 3D cell
US20080316809A1 (en) * 2007-06-25 2008-12-25 Sandisk 3D Llc High forward current diodes for reverse write 3D cell
WO2009002477A1 (en) 2007-06-25 2008-12-31 Sandisk 3D Llc High forward current diodes for reverse write 3d cell and method of making thereof
US20090104756A1 (en) * 2007-06-29 2009-04-23 Tanmay Kumar Method to form a rewriteable memory cell comprising a diode and a resistivity-switching grown oxide
WO2009005614A2 (en) 2007-06-29 2009-01-08 Sandisk 3D Llc 3d r/w cell with diode and resistive semiconductor element and method of making thereof
US20090086521A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same
US8349663B2 (en) 2007-09-28 2013-01-08 Sandisk 3D Llc Vertical diode based memory cells having a lowered programming voltage and methods of forming the same
US20090085154A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Vertical diode based memory cells having a lowered programming voltage and methods of forming the same
US20090155962A1 (en) * 2007-12-17 2009-06-18 Sandisk 3D Llc Method for fabricating pitch-doubling pillar structures
US7759201B2 (en) * 2007-12-17 2010-07-20 Sandisk 3D Llc Method for fabricating pitch-doubling pillar structures
US20090168486A1 (en) * 2007-12-27 2009-07-02 Sandisk 3D Llc Large capacity one-time programmable memory cell using metal oxides
US7706169B2 (en) 2007-12-27 2010-04-27 Sandisk 3D Llc Large capacity one-time programmable memory cell using metal oxides
US7764534B2 (en) * 2007-12-28 2010-07-27 Sandisk 3D Llc Two terminal nonvolatile memory using gate controlled diode elements
US20090168492A1 (en) * 2007-12-28 2009-07-02 Sandisk 3D Llc Two terminal nonvolatile memory using gate controlled diode elements
US7706177B2 (en) 2007-12-28 2010-04-27 Sandisk 3D Llc Method of programming cross-point diode memory array
US20090166610A1 (en) * 2007-12-31 2009-07-02 April Schricker Memory cell with planarized carbon nanotube layer and methods of forming the same
US20090278112A1 (en) * 2008-04-11 2009-11-12 Sandisk 3D Llc Methods for etching carbon nano-tube films for use in non-volatile memories
US7830698B2 (en) 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US8178286B2 (en) 2008-04-11 2012-05-15 Sandisk 3D Llc Double patterning method
US20090256129A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Sidewall structured switchable resistor cell
US20090258501A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Double patterning method
US7859887B2 (en) 2008-04-11 2010-12-28 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090257265A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US8445385B2 (en) 2008-04-11 2013-05-21 Sandisk 3D Llc Methods for etching carbon nano-tube films for use in non-volatile memories
US20090257266A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7812335B2 (en) 2008-04-11 2010-10-12 Sandisk 3D Llc Sidewall structured switchable resistor cell
US20090258489A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7713818B2 (en) 2008-04-11 2010-05-11 Sandisk 3D, Llc Double patterning method
US8084366B2 (en) 2008-04-11 2011-12-27 Sandisk 3D Llc Modified DARC stack for resist patterning
US20090258318A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Double patterning method
US7981592B2 (en) 2008-04-11 2011-07-19 Sandisk 3D Llc Double patterning method
US20090258495A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Modified darc stack for resist patterning
US8048474B2 (en) 2008-04-11 2011-11-01 Sandisk 3D Llc Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing
US7723180B2 (en) 2008-04-11 2010-05-25 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090258135A1 (en) * 2008-04-11 2009-10-15 Sandisk 3D Llc Method of making nonvolatile memory cell containing carbon resistivity switching as a storage element by low temperature processing
US20110236833A1 (en) * 2008-04-11 2011-09-29 Sandisk 3D Llc Double Patterning Method
US7786015B2 (en) 2008-04-28 2010-08-31 Sandisk 3D Llc Method for fabricating self-aligned complementary pillar structures and wiring
US20090269932A1 (en) * 2008-04-28 2009-10-29 Sandisk 3D Llc Method for fabricating self-aligned complimentary pillar structures and wiring
US8680503B2 (en) 2008-05-16 2014-03-25 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US20090283735A1 (en) * 2008-05-16 2009-11-19 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8133793B2 (en) 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US20110235404A1 (en) * 2008-06-27 2011-09-29 Scheuerlein Roy E Pulse reset for non-volatile storage
US8270210B2 (en) 2008-06-27 2012-09-18 Sandisk 3D, Llc Pulse reset for non-volatile storage
US20090323394A1 (en) * 2008-06-27 2009-12-31 Scheuerlein Roy E Pulse reset for non-volatile storage
US7978507B2 (en) 2008-06-27 2011-07-12 Sandisk 3D, Llc Pulse reset for non-volatile storage
US20090323385A1 (en) * 2008-06-30 2009-12-31 ScanDisk 3D LLC Method for fabricating high density pillar structures by double patterning using positive photoresist
US8138010B2 (en) 2008-06-30 2012-03-20 Sandisk 3D Llc Method for fabricating high density pillar structures by double patterning using positive photoresist
US20090321789A1 (en) * 2008-06-30 2009-12-31 Sandisk 3D Llc Triangle two dimensional complementary patterning of pillars
US7935553B2 (en) 2008-06-30 2011-05-03 Sandisk 3D Llc Method for fabricating high density pillar structures by double patterning using positive photoresist
US7781269B2 (en) 2008-06-30 2010-08-24 Sandisk 3D Llc Triangle two dimensional complementary patterning of pillars
KR101487288B1 (en) 2008-06-30 2015-01-29 쌘디스크 3디 엘엘씨 Method for fabricating high density pillar structures by double patterning using positive photoresist
US20100219510A1 (en) * 2008-06-30 2010-09-02 Sandisk 3D Llc Method for fabricating high density pillar structures by double patterning using positive photoresist
US7732235B2 (en) 2008-06-30 2010-06-08 Sandisk 3D Llc Method for fabricating high density pillar structures by double patterning using positive photoresist
US8569730B2 (en) 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US20100006811A1 (en) * 2008-07-08 2010-01-14 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US8309407B2 (en) 2008-07-15 2012-11-13 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100012912A1 (en) * 2008-07-15 2010-01-21 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100012914A1 (en) * 2008-07-18 2010-01-21 Sandisk 3D Llc Carbon-based resistivity-switching materials and methods of forming the same
US20100032638A1 (en) * 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US8466044B2 (en) 2008-08-07 2013-06-18 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods forming the same
US8766225B2 (en) * 2008-09-05 2014-07-01 Kabushiki Kaisha Toshiba Storage device
US20110210304A1 (en) * 2008-09-05 2011-09-01 Kenichi Murooka Storage device
US20100086875A1 (en) * 2008-10-06 2010-04-08 Sandisk 3D Llc Method of making sub-resolution pillar structures using undercutting technique
US8076056B2 (en) 2008-10-06 2011-12-13 Sandisk 3D Llc Method of making sub-resolution pillar structures using undercutting technique
US8080443B2 (en) 2008-10-27 2011-12-20 Sandisk 3D Llc Method of making pillars using photoresist spacer mask
US20100105210A1 (en) * 2008-10-27 2010-04-29 Sandisk 3D Llc Method of making pillars using photoresist spacer mask
US8835892B2 (en) 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US20100108982A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US8421050B2 (en) 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US20100108981A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US8193074B2 (en) 2008-11-21 2012-06-05 Sandisk 3D Llc Integration of damascene type diodes and conductive wires for memory device
US20100127358A1 (en) * 2008-11-21 2010-05-27 Sandisk 3D Llc Integration of damascene type diodes and conductive wires for memory device
US7978496B2 (en) 2008-12-18 2011-07-12 Sandisk 3D Llc Method of programming a nonvolatile memory device containing a carbon storage material
US7944728B2 (en) * 2008-12-19 2011-05-17 Sandisk 3D Llc Programming a memory cell with a diode in series by applying reverse bias
US20100157652A1 (en) * 2008-12-19 2010-06-24 Sandisk 3D Llc Programming a memory cell with a diode in series by applying reverse bias
US20100155784A1 (en) * 2008-12-24 2010-06-24 Scheuerlein Roy E Three-Dimensional Memory Structures Having Shared Pillar Memory Cells
US9076518B2 (en) 2008-12-24 2015-07-07 Sandisk 3D Llc Three-dimensional memory structures having shared pillar memory cells
US8120068B2 (en) * 2008-12-24 2012-02-21 Sandisk 3D Llc Three-dimensional memory structures having shared pillar memory cells
US8084347B2 (en) 2008-12-31 2011-12-27 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US8637389B2 (en) 2008-12-31 2014-01-28 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US8114765B2 (en) 2008-12-31 2012-02-14 Sandisk 3D Llc Methods for increased array feature density
US8372740B2 (en) 2008-12-31 2013-02-12 Sandisk 3D, Llc Methods for increased array feature density
US20100167502A1 (en) * 2008-12-31 2010-07-01 Sandisk 3D Llc Nanoimprint enhanced resist spacer patterning method
US20100167520A1 (en) * 2008-12-31 2010-07-01 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
WO2010078343A2 (en) 2008-12-31 2010-07-08 Sandisk 3D, Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US7846756B2 (en) 2008-12-31 2010-12-07 Sandisk 3D Llc Nanoimprint enhanced resist spacer patterning method
US8658526B2 (en) 2008-12-31 2014-02-25 Sandisk 3D Llc Methods for increased array feature density
US8357606B2 (en) 2008-12-31 2013-01-22 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US20100193916A1 (en) * 2008-12-31 2010-08-05 Sandisk 3D Llc Methods for increased array feature density
US8023310B2 (en) * 2009-01-14 2011-09-20 Sandisk 3D Llc Nonvolatile memory cell including carbon storage element formed on a silicide layer
US20100176366A1 (en) * 2009-01-14 2010-07-15 Sandisk 3D Llc Nonvolatile memory cell including carbon storage element formed on a silicide layer
US20100237346A1 (en) * 2009-03-17 2010-09-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US20100247669A1 (en) * 2009-03-30 2010-09-30 Cerulean Pharma Inc. Polymer-agent conjugates, particles, compositions, and related methods of use
US20100245029A1 (en) * 2009-03-31 2010-09-30 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US8183121B2 (en) 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US8605486B2 (en) 2009-04-03 2013-12-10 Sandisk 3D Llc Cross point non-volatile memory cell
WO2011034750A1 (en) 2009-09-17 2011-03-24 Sandisk 3D Llc Pin diode with sige low contact resistance and method for forming the same
CN102640289A (en) * 2009-09-17 2012-08-15 桑迪士克3D公司 PIN diode with sige low contact resistance and method for forming the same
US8551855B2 (en) 2009-10-23 2013-10-08 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US20110095257A1 (en) * 2009-10-23 2011-04-28 Huiwen Xu Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8481396B2 (en) 2009-10-23 2013-07-09 Sandisk 3D Llc Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US20110095258A1 (en) * 2009-10-23 2011-04-28 Huiwen Xu Memory cell that includes a carbon-based reversible resistance switching element compatible with a steering element, and methods of forming the same
US8551850B2 (en) 2009-12-07 2013-10-08 Sandisk 3D Llc Methods of forming a reversible resistance-switching metal-insulator-metal structure
US20110133151A1 (en) * 2009-12-07 2011-06-09 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7923305B1 (en) 2010-01-12 2011-04-12 Sandisk 3D Llc Patterning method for high density pillar structures
US8026178B2 (en) 2010-01-12 2011-09-27 Sandisk 3D Llc Patterning method for high density pillar structures
US8241969B2 (en) 2010-01-12 2012-08-14 Sandisk 3D Llc Patterning method for high density pillar structures
US20110171815A1 (en) * 2010-01-12 2011-07-14 Sandisk 3D Llc Patterning method for high density pillar structures
US8329512B2 (en) 2010-01-12 2012-12-11 Sandisk 3D Llc Patterning method for high density pillar structures
US8389375B2 (en) 2010-02-11 2013-03-05 Sandisk 3D Llc Memory cell formed using a recess and methods for forming the same
US20110193042A1 (en) * 2010-02-11 2011-08-11 Steven Maxwell Memory cell formed using a recess and methods for forming the same
US20110204474A1 (en) * 2010-02-24 2011-08-25 Franz Kreupl Memory cell with silicon-containing carbon switching layer and methods for forming the same
US8237146B2 (en) 2010-02-24 2012-08-07 Sandisk 3D Llc Memory cell with silicon-containing carbon switching layer and methods for forming the same
US20110210306A1 (en) * 2010-02-26 2011-09-01 Yubao Li Memory cell that includes a carbon-based memory element and methods of forming the same
US8471360B2 (en) 2010-04-14 2013-06-25 Sandisk 3D Llc Memory cell with carbon switching material having a reduced cross-sectional area and methods for forming the same
US9343674B2 (en) 2010-07-09 2016-05-17 Micron Technology, Inc. Cross-point memory utilizing Ru/Si diode
US8395140B2 (en) 2010-07-09 2013-03-12 Micron Technology, Inc. Cross-point memory utilizing Ru/Si diode
US8803125B2 (en) 2010-07-09 2014-08-12 Micron Technology, Inc. Cross-point memory utilizing Ru/Si diode
US20120025160A1 (en) * 2010-07-30 2012-02-02 Kabushiki Kaisha Toshiba Nonvolatile memory device
US20120043517A1 (en) * 2010-08-17 2012-02-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8912524B2 (en) 2011-09-01 2014-12-16 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US9048176B2 (en) * 2011-09-08 2015-06-02 Kabushiki Kaisha Toshiba Nonvolatile storage device
US20130062590A1 (en) * 2011-09-08 2013-03-14 Kabushiki Kaisha Toshiba Method for manufacturing nonvolatile storage device and nonvolatile storage device
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
US8901530B2 (en) 2012-01-19 2014-12-02 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a passive current steering element
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8895949B2 (en) 2012-02-17 2014-11-25 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US9472301B2 (en) 2013-02-28 2016-10-18 Sandisk Technologies Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US9478495B1 (en) 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof
WO2017222592A1 (en) * 2016-06-20 2017-12-28 Massachusetts Institute Of Technology Apparatus and methods for electrical switching
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof

Also Published As

Publication number Publication date Type
US20130286728A1 (en) 2013-10-31 application
CN101390212A (en) 2009-03-18 application
US20120300533A1 (en) 2012-11-29 application
US8482973B2 (en) 2013-07-09 grant
US8243509B2 (en) 2012-08-14 grant
EP1889294A1 (en) 2008-02-20 application
US20110176352A1 (en) 2011-07-21 application
JP2008546213A (en) 2008-12-18 application
US8730720B2 (en) 2014-05-20 grant
KR20080025688A (en) 2008-03-21 application
WO2007046883A1 (en) 2007-04-26 application

Similar Documents

Publication Publication Date Title
US6946719B2 (en) Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US7829875B2 (en) Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US4499557A (en) Programmable cell for use in programmable electronic arrays
US8233308B2 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7023009B2 (en) Electrically programmable memory element with improved contacts
US20060157682A1 (en) Write-once nonvolatile phase change memory array
US20080311722A1 (en) Method for forming polycrystalline thin film bipolar transistors
EP0455414A1 (en) Integrated circuits having antifuses
US7830697B2 (en) High forward current diodes for reverse write 3D cell
US6838692B1 (en) Chalcogenide memory device with multiple bits per cell
US20100159638A1 (en) Method of fabricating nonvolatile memory device
US20090001345A1 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7830698B2 (en) Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US20090309089A1 (en) Non-Volatile Memory Arrays Comprising Rail Stacks with a Shared Diode Component Portion for Diodes of Electrically Isolated Pillars
US4922319A (en) Semiconductor programmable memory device
US20040016991A1 (en) Silicon nitride antifuse for use in diode-antifuse memory arrays
US8389971B2 (en) Memory cells having storage elements that share material layers with steering elements and methods of forming the same
US20100157651A1 (en) Method of programming a nonvolatile memory device containing a carbon storage material
US20070015348A1 (en) Crosspoint resistor memory device with back-to-back Schottky diodes
US7422926B2 (en) Self-aligned process for manufacturing phase change memory cells
US7038248B2 (en) Diverse band gap energy level semiconductor device
US7426128B2 (en) Switchable resistive memory with opposite polarity write pulses
US20110089391A1 (en) Punch-through diode steering element
US20120224413A1 (en) Non-Volatile Storage System Using Opposite Polarity Programming Signals For MIM Memory Cell
US20060034116A1 (en) Cross point array cell with series connected semiconductor diode and phase change storage media

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATRIX SEMICONDUCTOR, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERNER, S. BRAD;BANDYOPADHYAY, ABHIJIT;REEL/FRAME:016884/0049

Effective date: 20050608

AS Assignment

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:017544/0769

Effective date: 20051020

Owner name: SANDISK 3D LLC,CALIFORNIA

Free format text: MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:017544/0769

Effective date: 20051020

AS Assignment

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

Owner name: SANDISK 3D LLC,CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

AS Assignment

Owner name: SANDISK TECHNOLOGIES INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK 3D LLC.;REEL/FRAME:038300/0665

Effective date: 20160324

AS Assignment

Owner name: SANDISK TECHNOLOGIES INC., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED PATENT NUMBER 8853569 TO THE CORRECT PATENT NUMBER 8883569 PREVIOUSLY RECORDED ON REEL 038300 FRAME 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDISK 3D LLC;REEL/FRAME:038520/0552

Effective date: 20160324

AS Assignment

Owner name: SANDISK TECHNOLOGIES LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038807/0980

Effective date: 20160516