US20050221293A1 - DNA virus microRNA and methods for inhibiting same - Google Patents
DNA virus microRNA and methods for inhibiting same Download PDFInfo
- Publication number
- US20050221293A1 US20050221293A1 US10/925,363 US92536304A US2005221293A1 US 20050221293 A1 US20050221293 A1 US 20050221293A1 US 92536304 A US92536304 A US 92536304A US 2005221293 A1 US2005221293 A1 US 2005221293A1
- Authority
- US
- United States
- Prior art keywords
- molecule
- moieties
- dna virus
- microrna
- molecule according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108700011259 MicroRNAs Proteins 0.000 title claims abstract description 236
- 239000002679 microRNA Substances 0.000 title claims abstract description 199
- 241000700605 Viruses Species 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims description 26
- 230000002401 inhibitory effect Effects 0.000 title claims description 10
- 108020004414 DNA Proteins 0.000 claims abstract description 113
- 230000003172 anti-dna Effects 0.000 claims abstract description 41
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 35
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 32
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 32
- 102000053602 DNA Human genes 0.000 claims abstract description 14
- 108020004682 Single-Stranded DNA Proteins 0.000 claims abstract description 9
- 239000002243 precursor Substances 0.000 claims description 33
- 230000000295 complement effect Effects 0.000 claims description 29
- 125000003729 nucleotide group Chemical group 0.000 claims description 28
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 238000007792 addition Methods 0.000 claims description 21
- 238000012217 deletion Methods 0.000 claims description 20
- 230000037430 deletion Effects 0.000 claims description 20
- 125000002637 deoxyribonucleotide group Chemical group 0.000 claims description 20
- 125000002652 ribonucleotide group Chemical group 0.000 claims description 19
- 239000005547 deoxyribonucleotide Substances 0.000 claims description 18
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 17
- 101710163270 Nuclease Proteins 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 13
- 108091028664 Ribonucleotide Proteins 0.000 claims description 9
- 239000002336 ribonucleotide Substances 0.000 claims description 9
- -1 methoxyethyl Chemical group 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 230000001965 increasing effect Effects 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical group C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- LUTRZKIJGBTTPE-UHFFFAOYSA-N morpholin-4-yloxyphosphonamidic acid Chemical group NP(O)(=O)ON1CCOCC1 LUTRZKIJGBTTPE-UHFFFAOYSA-N 0.000 claims description 4
- 125000001424 substituent group Chemical group 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 69
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 55
- 108090000623 proteins and genes Proteins 0.000 description 35
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 34
- 108020004999 messenger RNA Proteins 0.000 description 31
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 28
- 108091032955 Bacterial small RNA Proteins 0.000 description 19
- 230000003612 virological effect Effects 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 15
- 229940024606 amino acid Drugs 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 14
- 101000757692 Homo sapiens ADP-ribosylation factor-like protein 2-binding protein Proteins 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 230000002101 lytic effect Effects 0.000 description 12
- 108091070501 miRNA Proteins 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 101150013616 BHRF1 gene Proteins 0.000 description 10
- 101100122503 Human herpesvirus 6A (strain Uganda-1102) gN gene Proteins 0.000 description 10
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 10
- 101000934823 Homo sapiens Barttin Proteins 0.000 description 9
- 102100025359 Barttin Human genes 0.000 description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 8
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- 101150093926 BALF5 gene Proteins 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 238000000636 Northern blotting Methods 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 108700026244 Open Reading Frames Proteins 0.000 description 7
- 229940035893 uracil Drugs 0.000 description 7
- 108020005345 3' Untranslated Regions Proteins 0.000 description 6
- 229930024421 Adenine Natural products 0.000 description 6
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 6
- 208000011691 Burkitt lymphomas Diseases 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108020004566 Transfer RNA Proteins 0.000 description 6
- 229960000643 adenine Drugs 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 108060002716 Exonuclease Proteins 0.000 description 5
- 208000017604 Hodgkin disease Diseases 0.000 description 5
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 5
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 102000013165 exonuclease Human genes 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229940113082 thymine Drugs 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 102100023961 ADP-ribosylation factor-like protein 2-binding protein Human genes 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 4
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 4
- 108020003224 Small Nucleolar RNA Proteins 0.000 description 4
- 102000042773 Small Nucleolar RNA Human genes 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 125000003636 chemical group Chemical group 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 229940104302 cytosine Drugs 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 108091026038 virus miR-BART2 stem-loop Proteins 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 125000004103 aminoalkyl group Chemical group 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 241001515942 marmosets Species 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- JJMDCOVWQOJGCB-UHFFFAOYSA-N 5-aminopentanoic acid Chemical compound [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 2
- 108091027075 5S-rRNA precursor Proteins 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 208000004449 DNA Virus Infections Diseases 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 2
- 102100031780 Endonuclease Human genes 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108091034120 Epstein–Barr virus-encoded small RNA Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 102100035081 Homeobox protein TGIF1 Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- 101710093458 ICOS ligand Proteins 0.000 description 2
- 102100034980 ICOS ligand Human genes 0.000 description 2
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 102100033353 Lipopolysaccharide-responsive and beige-like anchor protein Human genes 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 108091033773 MiR-155 Proteins 0.000 description 2
- 101100477893 Mus musculus Siglec1 gene Proteins 0.000 description 2
- 108010010677 Phosphodiesterase I Proteins 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 2
- 108091026822 U6 spliceosomal RNA Proteins 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 108091084090 miR-106 stem-loop Proteins 0.000 description 2
- 108091027943 miR-16 stem-loop Proteins 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 108010068698 spleen exonuclease Proteins 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- OUCUOMVLTQBZCY-BYPYZUCNSA-N (2s)-1-azaniumylpyrrolidine-2-carboxylate Chemical compound NN1CCC[C@H]1C(O)=O OUCUOMVLTQBZCY-BYPYZUCNSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- CSEWAUGPAQPMDC-UHFFFAOYSA-N 2-(4-aminophenyl)acetic acid Chemical compound NC1=CC=C(CC(O)=O)C=C1 CSEWAUGPAQPMDC-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- KIAPWMKFHIKQOZ-UHFFFAOYSA-N 2-[[(4-fluorophenyl)-oxomethyl]amino]benzoic acid methyl ester Chemical compound COC(=O)C1=CC=CC=C1NC(=O)C1=CC=C(F)C=C1 KIAPWMKFHIKQOZ-UHFFFAOYSA-N 0.000 description 1
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102100039222 5'-3' exoribonuclease 2 Human genes 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical group NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101710098272 C-X-C motif chemokine 11 Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108010032389 CBFA2T2 myeloid-transforming gene-related protein Proteins 0.000 description 1
- 101100452003 Caenorhabditis elegans ape-1 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 102000011682 Centromere Protein A Human genes 0.000 description 1
- 108010076303 Centromere Protein A Proteins 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 102100032768 Complement receptor type 2 Human genes 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- QWCKQJZIFLGMSD-GSVOUGTGSA-N D-alpha-aminobutyric acid Chemical compound CC[C@@H](N)C(O)=O QWCKQJZIFLGMSD-GSVOUGTGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 102000008167 DEAD Box Protein 20 Human genes 0.000 description 1
- 108010060424 DEAD Box Protein 20 Proteins 0.000 description 1
- OFVBLKINTLPEGH-UHFFFAOYSA-N DL-beta-Homophenylalanine Chemical compound OC(=O)CC(N)CC1=CC=CC=C1 OFVBLKINTLPEGH-UHFFFAOYSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102100035619 DNA-(apurinic or apyrimidinic site) lyase Human genes 0.000 description 1
- 102100031155 Deoxyribonuclease-1-like 2 Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 108010063774 E2F1 Transcription Factor Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710147543 Epstein-Barr nuclear antigen leader protein Proteins 0.000 description 1
- 206010015108 Epstein-Barr virus infection Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102100029075 Exonuclease 1 Human genes 0.000 description 1
- 102100038982 Exosome complex component RRP40 Human genes 0.000 description 1
- 102100038985 Exosome complex component RRP41 Human genes 0.000 description 1
- 102100026045 Exosome complex component RRP42 Human genes 0.000 description 1
- 102100026059 Exosome complex component RRP45 Human genes 0.000 description 1
- 102100038975 Exosome complex component RRP46 Human genes 0.000 description 1
- 108091060211 Expressed sequence tag Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100026121 Flap endonuclease 1 Human genes 0.000 description 1
- 108090000652 Flap endonucleases Proteins 0.000 description 1
- 241000723754 Flock house virus Species 0.000 description 1
- 102100037759 GRB2-associated-binding protein 2 Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101710097363 Homeobox protein TGIF1 Proteins 0.000 description 1
- 101000745788 Homo sapiens 5'-3' exoribonuclease 2 Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000858060 Homo sapiens C-X-C motif chemokine 11 Proteins 0.000 description 1
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 1
- 101001137256 Homo sapiens DNA-(apurinic or apyrimidinic site) lyase Proteins 0.000 description 1
- 101100117347 Homo sapiens DNASE1L2 gene Proteins 0.000 description 1
- 101000918264 Homo sapiens Exonuclease 1 Proteins 0.000 description 1
- 101000882159 Homo sapiens Exosome complex component RRP40 Proteins 0.000 description 1
- 101000882162 Homo sapiens Exosome complex component RRP41 Proteins 0.000 description 1
- 101001055992 Homo sapiens Exosome complex component RRP42 Proteins 0.000 description 1
- 101001055965 Homo sapiens Exosome complex component RRP45 Proteins 0.000 description 1
- 101000882125 Homo sapiens Exosome complex component RRP46 Proteins 0.000 description 1
- 101001024902 Homo sapiens GRB2-associated-binding protein 2 Proteins 0.000 description 1
- 101000596925 Homo sapiens Homeobox protein TGIF1 Proteins 0.000 description 1
- 101000993376 Homo sapiens Hypermethylated in cancer 2 protein Proteins 0.000 description 1
- 101001033233 Homo sapiens Interleukin-10 Proteins 0.000 description 1
- 101000984185 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 5 Proteins 0.000 description 1
- 101001017764 Homo sapiens Lipopolysaccharide-responsive and beige-like anchor protein Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000987581 Homo sapiens Perforin-1 Proteins 0.000 description 1
- 101001120056 Homo sapiens Phosphatidylinositol 3-kinase regulatory subunit alpha Proteins 0.000 description 1
- 101001066878 Homo sapiens Polyribonucleotide nucleotidyltransferase 1, mitochondrial Proteins 0.000 description 1
- 101000798481 Homo sapiens Putative protein BCL8 Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 1
- 101000801228 Homo sapiens Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 101000809273 Homo sapiens Ubinuclein-1 Proteins 0.000 description 1
- 101000823796 Homo sapiens Y-box-binding protein 1 Proteins 0.000 description 1
- 101000964589 Homo sapiens Zinc finger protein 177 Proteins 0.000 description 1
- 241000620147 Human mastadenovirus C Species 0.000 description 1
- 102100031613 Hypermethylated in cancer 2 protein Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 101150040736 K12 gene Proteins 0.000 description 1
- 241000701646 Kappapapillomavirus 2 Species 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100025577 Leukocyte immunoglobulin-like receptor subfamily B member 5 Human genes 0.000 description 1
- 101710160778 Lipopolysaccharide-responsive and beige-like anchor protein Proteins 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 108091093082 MiR-146 Proteins 0.000 description 1
- 108091028035 Mir-BART2 microRNA precursor family Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100226013 Mus musculus Ercc1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 101150041636 NEC1 gene Proteins 0.000 description 1
- 108010051791 Nuclear Antigens Proteins 0.000 description 1
- 102000019040 Nuclear Antigens Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102100033337 PDZ and LIM domain protein 7 Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100028467 Perforin-1 Human genes 0.000 description 1
- 102100034410 Polyribonucleotide nucleotidyltransferase 1, mitochondrial Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102100024949 Protein CBFA2T2 Human genes 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102100032425 Putative protein BCL8 Human genes 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100025290 Ribonuclease H1 Human genes 0.000 description 1
- 102000004167 Ribonuclease P Human genes 0.000 description 1
- 108090000621 Ribonuclease P Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 102000008935 SMN Complex Proteins Human genes 0.000 description 1
- 108010049037 SMN Complex Proteins Proteins 0.000 description 1
- 241000282695 Saimiri Species 0.000 description 1
- 241000701062 Saimiriine gammaherpesvirus 2 Species 0.000 description 1
- 101100049940 Schizosaccharomyces pombe (strain 972 / ATCC 24843) dhp1 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108020004688 Small Nuclear RNA Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 102100038458 Ubinuclein-1 Human genes 0.000 description 1
- 108020004417 Untranslated RNA Proteins 0.000 description 1
- 102000039634 Untranslated RNA Human genes 0.000 description 1
- 102000007619 Werner Syndrome Helicase Human genes 0.000 description 1
- 108010007135 Werner Syndrome Helicase Proteins 0.000 description 1
- 102100022224 Y-box-binding protein 1 Human genes 0.000 description 1
- 102100040813 Zinc finger protein 177 Human genes 0.000 description 1
- 102100026655 Zinc finger protein castor homolog 1 Human genes 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 230000011855 chromosome organization Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000002654 craniosacral therapy Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 108091007423 let-7b Proteins 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000006357 methylene carbonyl group Chemical group [H]C([H])([*:1])C([*:2])=O 0.000 description 1
- 108091043249 miR-135-1 stem-loop Proteins 0.000 description 1
- 108091064876 miR-135-2 stem-loop Proteins 0.000 description 1
- 108091047467 miR-136 stem-loop Proteins 0.000 description 1
- 108091060382 miR-140 stem-loop Proteins 0.000 description 1
- 108091054642 miR-194 stem-loop Proteins 0.000 description 1
- 108091088515 miR-197 stem-loop Proteins 0.000 description 1
- 108091087148 miR-20 stem-loop Proteins 0.000 description 1
- 108091066984 miR-20-1 stem-loop Proteins 0.000 description 1
- 108091076199 miR-20-2 stem-loop Proteins 0.000 description 1
- 108091059105 miR-216-1 stem-loop Proteins 0.000 description 1
- 108091045470 miR-216-2 stem-loop Proteins 0.000 description 1
- 108091035328 miR-217 stem-loop Proteins 0.000 description 1
- 108091039135 miR-217-1 stem-loop Proteins 0.000 description 1
- 108091029206 miR-217-2 stem-loop Proteins 0.000 description 1
- 108091088477 miR-29a stem-loop Proteins 0.000 description 1
- 108091029716 miR-29a-1 stem-loop Proteins 0.000 description 1
- 108091092089 miR-29a-2 stem-loop Proteins 0.000 description 1
- 108091066559 miR-29a-3 stem-loop Proteins 0.000 description 1
- 108091074563 miR-301-1 stem-loop Proteins 0.000 description 1
- 108091034144 miR-301-2 stem-loop Proteins 0.000 description 1
- 108091023525 miR-95 stem-loop Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 238000003322 phosphorimaging Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108010052833 ribonuclease HI Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 108091037727 virus miR-BART1 stem-loop Proteins 0.000 description 1
- 108091064394 virus miR-BHRF1-1 stem-loop Proteins 0.000 description 1
- 108091080378 virus miR-BHRF1-3 stem-loop Proteins 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00021—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00041—Use of virus, viral particle or viral elements as a vector
- C12N2750/00043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- MicroRNAs are small RNA molecules of about 22 nucleotides. These microRNA molecules can control gene expression in a sequence specific manner in a wide variety of organisms.
- RNA silencing mediated by double-stranded RNA is part of an innate immune response against RNA viruses and transposable elements.
- Counter defense strategies to thwart the host response were found in, for example, plant viruses and the insect Flock House virus. These viruses express inhibitors, e.g., dsRNA-binding proteins, that interfere with the host cell RNA silencing machinery.
- microRNAs are reported to block translation after partially hybridizing to the non-coding 3′ region of mRNAs of target genes.
- the genes targeted by microRNAs largely remain to be characterized.
- microRNAs are implicated in various diseases and illnesses. For instance, drosophila microRNAs have been shown to target genes involved in apoptosis, and B-cell chronic lymphocytic leukemia has been linked to the deletion of two microRNAs.
- microRNAs Due to the ability of microRNAs to induce RNA degradation or repress translation of mRNA which encode important proteins, there is also a need for novel molecules that inhibit DNA virus microRNA-induced cleavage or translation repression of target mRNAs.
- the invention relates to an isolated nucleic acid molecule comprising the sequence of a DNA virus microRNA.
- the invention in another embodiment, relates to an isolated single stranded DNA virus microRNA molecule.
- the molecule comprises a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units.
- Each moiety comprises a base bonded to a backbone unit wherein at least ten contiguous bases have the same sequence as a sequence of bases in a DNA virus microRNA molecule, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- the invention relates to an isolated single stranded anti-DNA virus microRNA molecule.
- the anti-DNA virus microRNA molecule comprises a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units.
- Each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have a sequence complementary to a contiguous sequence of bases in a DNA virus microRNA molecule, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the molecule is capable of inhibiting microRNP activity.
- the invention relates to a method for inhibiting microRNP activity in a cell.
- the microRNP comprises a DNA virus microRNA molecule, the DNA virus microRNA molecule comprising a sequences of bases complementary to the sequence of bases in a single stranded anti-DNA virus microRNA molecule.
- the method comprises introducing into the cell a single-stranded anti-DNA virus microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein at least ten contiguous bases of the anti-DNA virus microRNA molecule are complementary to the DNA virus microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties are addition, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- the invention relates to a method for treating a DNA virus infection in a mammal in need thereof.
- the method comprises introducing into the mammal an anti-DNA virus microRNA molecule.
- the invention relates to an isolated microRNP comprising an isolated nucleic acid molecule described herein.
- the invention relates to an isolated microRNP comprising an isolated single stranded DNA virus microRNA molecule.
- the invention relates to an isolated nucleic acid sequence comprising any one of the sequence of a DNA virus microRNA shown in Table A1.
- the invention relates to an isolated single stranded DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone.
- the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit wherein: at least ten contiguous bases have the same sequence as any one of the sequence of bases in a DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- the invention relates to an isolated single stranded anti-DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone.
- the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have a sequence complementary to a contiguous sequence of bases in the sequence of bases in any one of the DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the molecule is capable of inhibiting microRNP activity.
- FIG. 1 shows the modified nucleotide units discussed in the specification.
- B denotes any one of the following nucleic acid bases: adenosine, cytidine, guanosine, thymine, or uridine.
- FIG. 2 EBV expresses microRNAs.
- A Diagram of the microRNA containing segments of the EBV genome. Latent genes are indicated with white boxes, lytic genes with black boxes, previously known non-coding RNAs with blue and newly identified microRNAs with red. Promoters active at latent stages (I, II, or III) are illustrated as white pennants, those active at lytic stage as black pennants, and those active at all stages as gray pennants. The intronic segments within the BARTs region are indicated as dashed lines, the exonic segments with bold bars.
- B Predicted fold-back precursors of the EBV microRNAs. The mature microRNA is highlighted in red.
- FIG. 3 Schematic representation of miR-BART2-guided cleavage of BALF5 mRNA. Lytic genes are shown as black boxes and genes for which the expression has not been characterized are indicated in gray (GenBank entry V01555). The miR-BART2 sequence is aligned relative to the nucleotide sequence and the processing site of the BALF5 mRNA. The prediction position of BALF5 mRNA cleavage coincides with the mapped terminus of the 3.7 kb processed form.
- FIG. 4 Genomic positions and foldback structures of KSHV mRNAs.
- A Genomic positions of KSHV microRNAs. Solid arrows indicate open reading frames (ORF) conserved in Herpes Saimiri virus, open arrows indicate the unique KSHV ORFs. Repeat regions are shown as small filled rectangles above the ORFs. Cloned mRNAs are shown as dotted lines. The two possible promoters for K12 transcript are indicated as a black arrow, and K12 transcripts as a black lines, the intronic region in the larger transcript is depicted as a break in the line. The thick grey arrows show ORF for Kaposin proteins A, B and C.
- B Foldback precursors of KSHV microRNAs. The cloned mature microRNAs are highlighted in red.
- FIG. 5 KSHV mRNAs are differentially regulated upon induction of the lytic cycle.
- Northern blots for KSHV miR-K1a, miR-K6 and miR-K7 made from total RNA isolated from a KSHV negative (BJAB) cell line and from BCBL1 cells at 24 h, 48 h and 72 h after TPA treatment.
- the invention relates to an isolated single stranded DNA virus microRNA molecule.
- MicroRNA molecules are known in the art (see, for example, Bartel, Cell, 2004, 116, 281-297 for a review on microRNA molecules). The article by Bartel is hereby incorporated by reference. Such molecules are derived from genomic loci and are produced from specific microRNA genes.
- Mature microRNA molecules are processed from precursor transcripts that form local hairpin structures.
- the hairpin structures are typically cleaved by an enzyme known as Dicer, generating thereby one microRNA duplex. See the above reference by Bartel.
- microRNA ribonucleoprotein complex in, for example, humans, also includes the proteins eIF2C2, helicase, e.g, Gemin3, and Gemin 4.
- the invention relates to an isolated nucleic acid molecule comprising a DNA virus microRNA sequence or a DNA virus hairpin precursor sequence.
- the nucleic acid molecule may also have one or more additional nucleotides. Any nucleotide can be added. There is no upper limit to the additional number of nucleotides. Typically, no more than about 500 nucleotides, and preferably no more than about 300 nucleotides are added to the DNA virus microRNA sequence or hairpin precursor sequence.
- the DNA virus microRNA is part of a hairpin precursor sequence of fragment thereof.
- the DNA virus microRNA can be inserted into a vector, such as, for example, a recombinant vector.
- a vector such as, for example, a recombinant vector.
- the hairpin precursor sequence which contains the DNA virus microRNA sequence is incorporated into the vector. See for example, Chen et al. Science 2004, 303:83-86.
- the recombinant vector may be any recombinant vector, such as a plasmid, a cosmid or a phage.
- Recombinant vectors generally have an origin of replication.
- the vector may be, for example, a viral vector, such as an adenovirus vector or an adeno-associated virus (AAV) vector. See for example: Ledley 1996, Pharmaceutical Research 13:1595-1614 and Verma et al. Nature 1997, 387:239-242.
- the vector may further include a selectable marker, such as for instance a drug resistance marker or a detectable gene marker, such as ⁇ -galactosidase.
- a selectable marker such as for instance a drug resistance marker or a detectable gene marker, such as ⁇ -galactosidase.
- the nucleic acid molecule consists of a DNA virus microRNA sequence or a hairpin precursor sequence. In another preferred embodiment, the nucleic acid molecule consists of any one of the DNA virus microRNA sequence or hairpin precursor sequence shown in Table A or Table A1.
- the DNA virus can be any DNA virus known to those skilled in the art.
- the DNA virus infects mammalian cells.
- mammals include laboratory animals, such as dogs and cats, farm animals, such as cows, horses and sheeps, laboratory animals, such as rats, mice and rabbits, and primates, such as monkeys and humans.
- the DNA virus can be a single stranded or double stranded DNA virus. Examples of single stranded and double stranded DNA viruses are listed in Table B.
- the DNA virus is Epstein barr virus (EBV).
- EBV microRNA's and the corresponding hairpin precursor sequences are shown in Table A.
- the DNA virus is Kaposi's sarcoma-associated herpesvirus, also known as herpesvirus 8 (KSHV).
- KSHV herpesvirus 8
- Table A1 Examples of KSHV microRNA's and the corresponding hairpin precursor sequences are shown in Table A1.
- the sequence of the isolated DNA virus microRNA molecules can be a DNA or RNA molecule. Sequences of nucleic acid molecules shown in the Tables A and A1 are shown having uracil bases. Uracil bases occur in unmodified RNA molecules.
- the invention also includes unmodified DNA molecules. The sequence of bases of the unmodified DNA molecule is the same as the unmodified RNA molecules, except that in the unmodified DNA molecule, the uracil bases are replaced with thymine bases.
- the invention relates to analogs of DNA virus microRNAs or hairpin precursors described above, including those having the sequences shown in Table A or Table A1.
- the DNA virus microRNA molecule comprises a minimum number of ten moieties, preferably a minimum of thirteen, more preferably a minimum of fifteen, even more preferably a minimum of 18, and most preferably a minimum of 21 moieties.
- the DNA virus microRNA molecule comprises a maximum number of fifty moieties, preferably a maximum of forty, more preferably a maximum of thirty, even more preferably a maximum of twenty-five, and most preferably a maximum of twenty-three moieties.
- a suitable range of minimum and maximum numbers of moieties may be obtained by combining any of the above minima with any of the above maxima.
- Each moiety comprises a base bonded to a backbone unit.
- a base refers to any one of the nucleic acid bases present in DNA or RNA.
- the base can be a purine or pyrimidine.
- purine bases include adenine (A) and guanine (G).
- pyrimidine bases include thymine (T), cytosine (C) and uracil (U).
- Each base of the moiety forms a Watson-Crick base pair with a complementary base.
- Watson-Crick base pairs refer to the hydrogen bonding interaction between, for example, the following bases: adenine and thymine (A-T); adenine and uracil (A-U); and cytosine and guanine (C-G).
- A-T adenine and thymine
- A-U adenine and uracil
- C-G cytosine and guanine
- the adenine can be replaced with 2,6-diaminopurine without compromising base-pairing.
- the backbone unit may be any molecular unit that is able to stably bind to a base and to form an oligomeric chain. Suitable backbone units are well known to those in the art.
- suitable backbone units include sugar-phosphate groups, such as the sugar-phosphate groups present in ribonucleotides, deoxyribonucleotides, phosphorothioate deoxyribose groups, N′3-N′5 phosphoroamidate deoxyribose groups, 2′O-alkyl-ribose phosphate groups, 2′-O-alkyl-alkoxy ribose phosphate groups, ribose phosphate group containing a methylene bridge, 2′-fluororibose phosphate groups, morpholino phosphoroamidate groups, cyclohexene groups, tricyclo phosphate groups, and amino acid molecules.
- sugar-phosphate groups such as the sugar-phosphate groups present in ribonucleotides, deoxyribonucleotides, phosphorothioate deoxyribose groups, N′3-N′5 phosphoroamidate deoxyribose groups,
- the DNA virus microRNA molecule comprises at least one moiety which confers increased nuclease resistance.
- Such molecules comprise at least one moiety that is not recognized by a nuclease. Therefore, the nuclease resistance of the molecule is increased compared to a sequence containing only unmodified ribonucleotide, unmodified deoxyribonucleotide or both.
- modified moieties are well known in the art, and were reviewed, for example, by Kurreck, Eur. J. Biochem. 270, 1628-1644 (2003).
- the nuclease resisted can be an exonuclease, an endonuclease, or both.
- the exonuclease can be a 3′ ⁇ 5′ exonuclease or a 5′ ⁇ 3′ exonuclease.
- 3′ ⁇ 5′ human exonuclease include PNPT1, Werner syndrome helicase, RRP40, RRP41, RRP42, RRP45, and RRP46.
- 5′ ⁇ - 3 ′ exonuclease include XRN2, and FEN1.
- endonucleases examples include Dicer, Drosha, RNase4, Ribonuclease P, Ribonuclease H1, DHP1, ERCC-1 and OGG1.
- nucleases which function as both an exonuclease and an endonuclease include APE1 and EXO1.
- a modified moiety can occur at any position in the DNA virus microRNA molecule.
- the molecule can have at least one modified moiety at the 3′ end of the molecule and preferably at least two modified moieties at the 3′ end. If it is desirable to protect the molecule against 5′ ⁇ 3′ exonuclease, the DNA virus microRNA molecule can have at least one modified moiety and preferably at least two modified moieties at the 5′ end of the molecule.
- the DNA virus microRNA molecule can also have at least one and preferably at least two modified moieties between the 5′ and 3′ end of the molecule to increase resistance of the molecule to endonucleases.
- At least about 10%, more preferably at least about 25%, even more preferably at least about 50%, and further more preferably at least about 75%, and most preferably about 95% of the moieties are modified.
- all of the moieties are nuclease resistant.
- the DNA virus microRNA molecule comprises at least one modified deoxyribonucleotide moiety. Suitable modified deoxyribonucleotide moieties are known in the art.
- a suitable example of a modified deoxyribonucleotide moiety is a phosphorothioate deoxyribonucleotide moiety. See structure 1 in FIG. 1 .
- a DNA virus microRNA molecule comprising phosphorothioate deoxyribonucleotide moieties is generally referred to as phosphorothioate (PS) DNA.
- PS phosphorothioate
- a modified deoxyribonucleotide moiety is an N′3-N′5 phosphoroamidate deoxyribonucleotide moiety. See structure 2 in FIG. 1 .
- An oligonucleotide molecule comprising phosphoroamidate deoxyribonucleotide moieties is generally referred to as phosphoroamidate (NP) DNA.
- NP phosphoroamidate
- the molecule comprises at least one modified ribonucleotide moiety.
- Suitable modified ribonucleotide moieties are known in the art.
- a suitable example of a modified ribonucleotide moiety is a ribonucleotide moiety that is substituted at the 2′ position.
- the substituents at the 2′ position may, for example, be a C 1 to C 4 alkyl group.
- the C 1 to C 4 alkyl group may be saturated or unsaturated, and unbranched or branched.
- Some examples of C 1 to C 4 alkyl groups include ethyl, isopropyl, and allyl.
- the preferred C 1 to C 4 alkyl group is methyl. See structure 3 in FIG. 1 .
- An oligoribonucleotide molecule comprising ribonucleotide moieties substituted at the 2′ position with a C 1 to C 4 alkyl group is generally referred to as a 2′-O-(C 1 -C 4 alkyl) RNA, e.g., 2′-O-methyl RNA (OMe RNA).
- a 2′-O-(C 1 -C 4 alkyl) RNA e.g., 2′-O-methyl RNA (OMe RNA).
- C 1 to C 4 alkoxy-C 1 to C 4 alkyl group is a substituent at the 2′ position of a modified ribonucleotide moiety.
- the C 1 to C 4 alkoxy (alkyloxy) and C 1 to C 4 alkyl group may comprise any of the alkyl groups described above.
- the preferred C 1 to C 4 alkoxy-C 1 to C 4 alkyl group is methoxyethyl. See structure 4 in FIG. 1 .
- oligonucleotide molecule comprising more than one ribonucleotide moiety that is substituted at the 2′ position with a C1 to C 4 alkoxy-C 1 to C 4 alkyl group is referred to as a 2′-O—(C 1 to C 4 alkoxy-C 1 to C 4 alkyl) RNA, e.g., 2′-O-methoxyethyl RNA (MOE RNA).
- MOE RNA 2′-O-methoxyethyl RNA
- LNA locked nucleic acid
- a modified ribonucleotide moiety is a ribonucleotide that is substituted at the 2′ position with fluoro group.
- Such 2′-fluororibonucleotide moieties are known in the art. Molecules comprising 2′-fluororibonucleotide moieties are generally referred to herein as 2′-fluororibo nucleic acids (FANA). See structure 7 in FIG. 1 . Damha et al., J. Am. Chem. Soc. 120,12976-12977 (1998).
- the DNA virus microRNA molecule comprises at least one base bonded to an amino acid residue.
- Moieties that have at least one base bonded to an amino acid residue will be referred to herein as peptide nucleic acid (PNA) moieties. Such moieties are nuclease resistance, and are known in the art. Molecules having PNA moieties are generally referred to as peptide nucleic acids. See structure 6 in FIG. 1 . Nielson, Methods Enzymol. 313, 156-164 (1999); Elayadi, et al, id.; Braasch et al., Biochemistry 41, 4503-4509 (2002), Nielsen et al., Science 254, 1497-1500 (1991).
- the amino acids can be any amino acid, including natural or non-natural amino acids.
- Naturally occurring amino acids include, for example, the twenty most common amino acids normally found in proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Glu), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ileu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val).
- the non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups.
- alkyl amino acids include ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminovaleric acid, and ⁇ -aminocaproic acid.
- aryl amino acids include ortho-, meta, and para-aminobenzoic acid.
- alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and ⁇ -phenyl- ⁇ -aminobutyric acid.
- Non-naturally occurring amino acids also include derivatives of naturally occurring amino acids.
- the derivative of a naturally occurring amino acid may, for example, include the addition or one or more chemical groups to the naturally occurring amino acid.
- one or more chemical groups can be added to one or more of the 2′, 3′, 4′, 5′, or 6′ position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4′, 5′, 6′, or 7′ position of the benzo ring of a tryptophan residue.
- the group can be any chemical group that can be added to an aromatic ring.
- Some examples of such groups include hydroxyl, C 1 -C 4 alkoxy, amino, methylamino, dimethylamino, nitro, halo (i.e., fluoro, chloro, bromo, or iodo), or branched or unbranched C 1 -C 4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl.
- halo i.e., fluoro, chloro, bromo, or iodo
- non-naturally occurring amino acids which are derivatives of naturally occurring amino acids include norvaline (Nva), norleucine (Nle), and hydroxyproline (Hyp).
- the amino acids can be identical or different from one another.
- Bases are attached to the amino acid unit by molecular linkages. Examples of linkages are methylene carbonyl, ethylene carbonyl and ethyl linkages.
- linkages are methylene carbonyl, ethylene carbonyl and ethyl linkages.
- PNA moieties include cyclohexyl PNA, retro-inverso PNA, phosphone PNA, propionyl PNA and aminoproline PNA.
- PNA moieties see FIG. 5 of Nielsen et al., Peptide Nucleic Acids—Protocols and Applications , Horizon Scientific Press, pages 1-19.
- FIG. 5 on page 7 of Nielsen et al. is hereby incorporated by reference.
- PNA can be chemically synthesized by methods known in the art, e.g. by modified Fmoc or tBoc peptide synthesis protocols.
- the PNA has many desirable properties, including high melting temperatures (Tm), high base-pairing specificity with nucleic acid and an uncharged molecular backbone. Additionally, the PNA does not confer RNase H sensitivity on the target RNA, and generally has good metabolic stability.
- Peptide nucleic acids are also commercially available from Applied Biosystems (Foster City, Calif., USA).
- the DNA virus microRNA molecule comprises at least one morpholino phosphoroamidate nucleotide moiety.
- Molecules comprising morpholino phosphoroamidate nucleotide moieties are generally referred to as morpholino (MF) nucleic acids.
- MF morpholino
- the DNA virus microRNA molecule comprises at least one cyclohexene nucleotide moiety.
- Molecules comprising cyclohexene nucleotide moieties are generally referred to as cyclohexene nucleic acids (CeNA). See structure in FIG. 1 . Wang et al., J. Am. Chem. Soc. 122, 8595-8602 (2000), Verbeure et al., Nucleic Acids Res. 29, 4941-4947 (2001).
- the DNA virus microRNA molecule comprises at least one tricyclo nucleotide moiety.
- Molecules comprising tricyclo nucleotide moieties are generally referred to as tricyclo nucleic acids (tcDNA). See structure 9 in FIG. 1 . Steffens et al., J. Am. Chem. Soc. 119, 11548-11549 (1997), Renneberg et al., J. Am. Chem. Soc. 124, 5993-6002 (2002).
- caps can be attached to one end, both ends, and/or between the ends of the molecule in order to increase nuclease resistance of the DNA virus microRNA analogs or unmodified isolated nucleic acid microRNA molecules of the present invention described above to exonucleoses. Any cap known to those in the art for increasing nuclease resistance can be employed.
- caps examples include inverted nucleotide caps and chemical caps.
- Inverted nucleotide caps can be attached at the 5′ and/or 3′ end.
- Chemical caps can be attached to one end, both ends, and/or between the ends of the molecule.
- An inverted nucleotide cap refers to a 3′ ⁇ 5′ sequence of nucleic acids attached to the DNA virus microRNA molecule or isolated nucleic acid microRNA molecules. There is no limit to the maximum number of nucleotides in the inverted cap just as long as it does not interfere with binding of the molecule to its target mRNA. Any nucleotide can be used in the inverted nucleotide cap. Usually, the nucleotide cap is less than about forty nucleotides in length, preferably less than about thirty nucleotides in length, more preferably less than about twenty nucleotides in length, and even more preferably less than about ten nucleotides in length.
- the inverted nucleotide cap is one nucleotide in length.
- the nucleotide for the inverted cap is generally thymine, but can be any nucleotide such as adenine, guanine, uracil, or cytosine.
- a chemical cap refers to any chemical group known to those in the art for increasing nuclease resistance of nucleic acids.
- Example of such chemical caps include hydroxyalkyl groups (alkyl hydroxides) or aminoalkyl groups (alkyl amines). Hydroxyalkyl groups are sometimes referred to as alkyl glycoyl groups (e.g., ethylene glycol). Aminoalkyl groups are sometimes referred to as amino linkers.
- the alkyl chain in the hydroxyalkyl group or aminoalkyl group can be a straight chain or branched chain.
- the minimum number of carbon atoms present in the alkyl chain is one, preferably at least two, and more preferably at least about three carbon atoms.
- the maximum number of carbon atoms present in the alkyl chain is about eighteen, preferably about sixteen, and more preferably about twelve.
- Typical alkyl groups include methyl, ethyl, and propyl.
- the alkyl groups can be further substituted with one or more hydroxyl and/or amino groups.
- amino linkers are shown in Table C.
- the amino linkers listed in Table C lists are commercially available from TriLink Biotechnologies, San Diego, Calif. TABLE C Amino Linkers from TriLink Biotechnologies 2′-Deoxycytidine-5-C6 Amino Linker (3′ Terminus) 2′-Deoxycytidine-5-C6 Amino Linker (5′ or Internal) 3′ C3 Amino Linker 3′ C6 Amino Linker 3′ C7 Amino Linker 5′ C12 Amino Linker 5′ C3 Amino Linker 5′ C6 Amino Linker C7 Internal Amino Linker Thymidine-5-C2 Amino Linker (5′ or Internal) Thymidine-5-C6 Amino Linker (3′ Terminus) Thymidine-5-C6 Amino Linker (Internal)
- Chimeric DNA virus microRNA molecules containing a mixture of any of the moieties mentioned above are also known, and may be made by methods known, in the art. See, for example, references cited above, and Wang et al, Proc. Natl. Acad. Sci. USA 96, 13989-13994 (1999), Liang et al., Eur. J. Biochem. 269, 5753-5758 (2002), Lok et al., Biochemistry 41, 3457-3467 (2002), and Damha et al., J. Am. Chem. Soc. 120, 12976-12977 (2002).
- the DNA virus microRNA molecules of the invention comprise at least ten, preferably at least thirteen, more preferably at least fifteen, and even more preferably at least twenty contiguous bases having the sequence of a naturally occurring DNA virus microRNA molecule.
- the DNA virus microRNA molecules comprise the entire sequence of a DNA virus microRNA molecule, such as any one of the DNA virus microRNA molecule sequences shown in Table A or Table A1.
- the DNA virus microRNA molecule comprises at least one moiety which is a ribonucleotide moiety or a deoxyribonucleotide moiety.
- any number of additional moieties, up to a maximum of forty moieties, having any base sequence can be added to the moieties comprising the contiguous base sequence, as long as the total number of moieties in the molecule does not exceed fifty.
- the additional moieties can be added to the 5′ end, the 3′ end, or to both ends of the contiguous sequence.
- the additional bases can include a sequence of bases at the 5′ end and/or a sequence of bases at the 3′ end present in the hairpin precursor from which the DNA virus microRNA is derived or any fragment thereof.
- the hairpin precursor sequence is any one of the hairpin precursor sequences shown in Table A or Table A1.
- wobble base pairs refer to either: i) substitution of a cytosine with a uracil, or 2) the substitution of an adenine with a guanine, in the sequence of the DNA virus microRNA molecule. These wobble base pairs are generally referred to as UG or GU wobbles.
- Table D shows the number of contiguous bases and the maximum number of wobble base pairs in the DNA virus microRNA molecule. TABLE D Number of contiguous Bases and Maximum Number of Wobble Bases No. of Contiguous Bases 10 11 12 13 14 15 16 17 18 Max. No. of 3 3 3 3 4 4 4 5 5 Wobble Base Pairs No. of Contiguous Bases 19 20 21 22 23 Max. No. of 5 6 6 6 6 Wobble Base Pairs
- up to ten percent, and preferably up to five percent of the contiguous bases can be additions, deletions, mismatches or combinations thereof.
- Additions refer to the insertion in the contiguous sequence of any moiety described above comprising any one of the bases described above.
- Deletions refer to the removal of any moiety present in the contiguous sequence.
- Mismatches refer to the substitution of one of the moieties comprising a base in the contiguous sequence with any of the above described moieties comprising a different base.
- the additions, deletions or mismatches can occur anywhere in the contiguous sequence, for example, at either end of the contiguous sequence or within the contiguous sequence of the DNA virus microRNA molecule.
- the additions, deletions or mismatches occur at the end of the contiguous sequence if the contiguous sequence is relatively short, such as, for example, from about ten to about fifteen moieties in length. If the contiguous sequence is relatively long, such as, for example, a minimum of sixteen contiguous sequences, the additions, deletions, or mismatches typically occur anywhere in the contiguous sequence.
- none or one of the contiguous bases may be additions, deletions, or mismatches when the number of contiguous bases is ten to nineteen; and a maximum of one or two additions, deletions, or mismatches are permissible when the number of contiguous bases is twenty to twenty-three.
- no more than fifty percent, and preferably no more than thirty percent, of the contiguous moieties contain deoxyribonucleotide backbone units.
- Table E and F show the number of contiguous bases and the maximum number of deoxyribonucleotide backbone units. TABLE E Fifty Percent of the Contiguous Moieties containing Deoxyribonucleotide Backbone Units No. of Contiguous Bases 10 11 12 13 14 15 16 17 18 Max. No. of 5 5 6 6 7 7 8 8 9 Deoxyribonucleotide Backbone Units No. of Contiguous Bases 19 20 21 22 23 Max. No. of 9 10 10 11 11 Deoxyribonucleotide Backbone Units
- the moiety corresponding to position 11 in a naturally occurring DNA virus microRNA sequence can be an addition, deletion or mismatch.
- the invention provides an isolated microRNP comprising any of the isolated nucleic acid sequences described above or analogs of the DNA virus microRNAs described above.
- the invention provides an anti-DNA virus microRNA molecule.
- the anti-DNA virus microRNA molecule may be any of the isolated nucleic acid sequences described above or analogs of the DNA virus microRNAs described above, except that the sequence of bases of the anti-DNA virus microRNA molecule is complementary to the sequence of bases in an isolated nucleic acid DNA microRNA sequence or analogs of DNA virus microRNA molecules.
- the anti-DNA virus microRNA molecule can be modified as described above for DNA virus microRNA molecules.
- the contiguous moieties in the anti-DNA virus microRNA molecule are complementary to the corresponding DNA virus microRNA molecule.
- the degree of complementarity of the anti-DNA virus microRNA molecules are subject to the restrictions described above for analogs of DNA virus microRNA molecules, including the restriction relating to wobble base pairs, as well as those relating to additions, deletions and mismatches.
- the anti-DNA virus microRNA molecule comprises only unmodified moieties, then the anti-DNA virus microRNA molecule comprises at least one base, in the at least ten contiguous bases, which is non-complementary to the DNA virus microRNA and/or comprise a chemical cap.
- the anti-DNA virus microRNA molecule contains at least one modified moiety in the at least ten contiguous bases and/or comprises a chemical cap.
- the moiety in the anti-DNA virus microRNA molecule at the position corresponding to position 11 of a naturally occurring DNA virus microRNA is non-complementary.
- the moiety in the anti-DNA virus microRNA molecule corresponding to position 11 of a naturally occurring DNA virus microRNA can be rendered non-complementary by any means described above, including by the introduction of an addition, deletion or mismatch, as described above.
- the nucleic acid molecule, DNA virus microRNA molecule or anti-DNA virus microRNA molecule is preferably isolated, which means that it is essentially free of other nucleic acids. Essentially free from other nucleic acids means that the nucleic acid molecule, DNA virus microRNA molecule or anti-DNA virus microRNA molecule is at least about 90%, preferably at least about 95% and, more preferably at least about 98% free of other nucleic acids.
- the molecule is essentially pure, which means that the molecule is free not only of other nucleic acids, but also of other materials used in the synthesis and isolation of the molecule.
- Materials used in synthesis include, for example, enzymes.
- Materials used in isolation include, for example, gels, such as SDS-PAGE.
- the molecule is at least about 90% free, preferably at least about 95% free and, more preferably at least about 98% free of other nucleic acids and such other materials.
- DNA virus microRNA molecules and anti-DNA virus microRNA molecules of the present invention have numerous in vitro, ex vivo, and in vivo applications.
- the microRNA molecules and/or anti-microRNA molecules of the present invention can be introduced into a cell to study the function of the microRNA.
- Any DNA viral microRNA molecule and/or anti-DNA viral microRNA molecule mentioned above can be introduced into a cell for studying their function.
- a microRNA in a cell is inhibited with a suitable anti-microRNA molecule.
- the activity of a microRNA molecule in a cell can be enhanced by introducing into the cell an additional microRNA molecule.
- the function of the microRNA can be inferred by observing changes associated with inhibition and/or enhanced activity of the microRNA in the cell.
- the invention relates to a method for inhibiting microRNP activity in a cell.
- the microRNP comprises a DNA virus microRNA molecule.
- the microRNA molecule comprises a sequence of bases complementary to the sequence of bases in a single stranded anti-DNA virus microRNA molecule. Any anti-DNA virus microRNA molecule can be used in the method for inhibiting microRNP activity in a cell, as long as the anti-DNA virus microRNA is complementary, subject to the restrictions described above, to the DNA virus microRNA present in the microRNP.
- the anti-DNA virus microRNA molecules of the present invention are capable of inhibiting microRNP activity by binding to the DNA virus microRNA in the microRNP in a host cell.
- MicroRNP activity refers to the cleavage or the repression of translation of the target sequence.
- the target sequence may be any sequence which is partially or perfectly complementary to the sequence of bases in a DNA virus microRNA.
- the target sequence can be, for example, a viral or host messenger RNA.
- a DNA virus can produce a microRNA which is complementary to a host derived target sequence that is beneficial to the host cell for defending against the viral infection.
- the DNA virus microRNA which is packaged in a microRNP, will inhibit the beneficial effect of the target sequence. Accordingly, the introduction of the anti-DNA virus microRNA molecule inhibits the RNP activity, and thereby reduces harm from the virus.
- a host cell can defend against a viral infection by transcribing a gene which is harmful to the virus.
- the gene may induce the cell to undergo apoptosis, and therefore the gene is harmful to the virus.
- a DNA virus microRNA complementary to the target sequence transcribed by the host cell is beneficial to the virus, because the DNA virus micro RNA (in a microRNP) will inhibit the ability of the host cell to undergo apoptosis. Accordingly, the introduction of DNA virus microRNA molecules promotes survival of the cell, thereby enhancing the infection.
- the method for inhibiting microRNP activity in a cell comprises introducing into the cell a single-stranded anti-DNA virus microRNA molecule.
- the anti-DNA virus microRNA molecule can be introduced into a cell by any method described in the art. Some examples are described below.
- the cell can be any cell capable of being infected with a particular DNA virus.
- Particular cells infected by a particular DNA virus are well known to those skilled in the art. For example, it is well known to those in the art that EBV preferentially infects B lymphocytes.
- microRNA molecules or anti-microRNA molecules can be introduced into a cell by any method known to those skilled in the art.
- the molecules can be injected directly into a cell, such as by microinjection.
- the molecules can be contacted with a cell, preferably aided by a delivery system.
- Useful delivery systems include, for example, liposomes and charged lipids.
- Liposomes typically encapsulate oligonucleotide molecules within their aqueous center.
- Charged lipids generally form lipid-oligonucleotide molecule complexes as a result of opposing charges.
- liposomes-oligonucleotide molecule complexes or lipid-oligonucleotide molecule complexes are usually internalized in cells by endocytosis.
- the liposomes or charged lipids generally comprise helper lipids which disrupt the endosomal membrane and release the oligonucleotide molecules.
- RNA molecules or an anti-microRNA into a cell include use of delivery vehicles, such as dendrimers, biodegradable polymers, polymers of amino acids, polymers of sugars, and oligonucleotide-binding nanoparticles.
- delivery vehicles such as dendrimers, biodegradable polymers, polymers of amino acids, polymers of sugars, and oligonucleotide-binding nanoparticles.
- pluoronic gel as a depot reservoir can be used to deliver the anti-microRNA oligonucleotide molecules over a prolonged period.
- the above methods are described in, for example, Hughes et al., Drug Discovery Today 6, 303-315 (2001); Liang et al. Eur. J. Biochem. 269 5753-5758 (2002); and Becker et al., In Antisense Technology in the Central Nervous System (Leslie, R. A., Hunter, A. J. & Robertson, H. A., eds), pp
- Targeting of a microRNA molecule or an anti-microRNA molecule to a particular cell can be performed by any method known to those skilled in the art.
- the microRNA molecule or anti-microRNA molecule can be conjugated to an antibody or ligand specifically recognized by receptors on the cell.
- the antibody can be against the cell receptor CD19, CD20, CD21, CD23 or a ligand to these receptors.
- the invention provides a method for treating a DNA virus infection is a mammal in need thereof.
- the method comprises introducing into the mammal an anti-DNA virus microRNA molecule.
- the anti-DNA virus microRNA molecules can be introduced into the mammal by any method known to those in the art.
- the above described methods for introducing the anti-DNA molecules into a cell can also be used for introducing the molecules into a mammal.
- EBV negative BL-41 and EBV positive BL41/95 cells were described previously (Torsteinsdottir et al., Int. J. Cancer 1989, 43:273) and were maintained in RPMI 1640 (Gibco) supplemented with 10% FBS.
- BL41/95 but not BL-41 contained EBV, as confirmed by Western blot analysis using antibodies against EBNA-1.
- EBV mRNA expression For analysis of EBV mRNA expression, we also cultured Hodgkin's lymphoma (HD) cells L540 and HD-MY-Z (EBV negative) and RPMI 6666 (EBV positive) and the Burkitt's lymphoma (BL) cells Ramos (EBV negative), Ous and Mutu (EBV positive), and EBV positive Marmoset B95-8 cells that produce infectious B95-8 viral particles. These cell lines were also maintained in RPMI 1640 (Gibco) supplemented with 10% FBS. The KSHV positive BCBL1 cell line was described previously (Renne et al. Nat. Med. 1996, 2:342-346) and was maintained in RPMI 1640 (Gibco) supplemented with 10% FBS.
- RNA preparation, cloning procedure and Northern blot analysis were performed as described previously (Lagos-Quintana et al., Curr. Biol. 2002, 12:735). RNA size fractionation and cloning procedure have also been described. Northern blot analysis was performed as described (Lagos-Quintana et al., Curr. Biol. 2002, 12:735) loading 30 ⁇ g or 15 ⁇ g of total RNA per lane and using 5′ 32 P-radiolableled oligodeoxynucleotides complementary to the mRNA sequence.
- the PCR cycling program consisted of 1′30′′ at 94° C., followed by 30 cycles of 94° C., 30′′; 57° C., 30′′; 72° C., 3′30′′, conditions which largely deplete the primers and deoxynucleotides, obviating the requirement for reaction cleanup prior to sequencing.
- miRNA target prediction was obtained the 3′ UTR sequences for 20,153 transcripts in the human genome using Ensmart (Kasprzyk et al., Genome Res. 2004, 14:160) as well as the sequences of 175 mature human mRNAs from the RFAM mRNA registry (Griffiths-Jones, Nucleic Acids Res., 2004, 32:D109). miRanda (Enright et al., Genome Biol., 2003, 5:RI, 1) was used to identify mRNA binding sequences in the 3′ UTR sequences. The thresholds used for this scan were S:90 and .G: ⁇ 17 kcal/mol. Targets that were in the 90th percentile of the raw alignment scores were selected as candidate mRNA targets.
- EBV Epstein barr virus
- Table 1 Composition of small RNA cDNA libraries prepared from non-infected ( ⁇ ) and DNA virus-infected human cell lines according to sequence annotation. The annotation was based on information from GenBank (http://www.ncbi.nih.gov/Genbank/index.html), a dataset of human tRNA sequences (http://ma.wustl.edu/GtRDB/Hs/Hs-seqs.html), a dataset of human and mouse sn/snoRNA sequences (http://mbcr.bcm.tmc.edu/smallRNA/Database), a database of microRNAs (http://www.sanger.ac.uk/Software/Rfam/microRNA/), predictions of microRNAs (35), and the repeat element annotation of the HG16 human genome assembly from UCSC (http://genome.cse.ucsc.edu).
- Small RNA sequences derived from viral sequence. The position of the small RNA sequence is given relative to the viral genome sequences specified in Table 1 above.
- EBV microRNAs originated from 5 different dsRNA precursors that are clustered in two regions of the EBV genome ( FIGS. 2A and B).
- the EBV microRNAs were all readily detectable by Northern blotting, including the approximately 60-nt fold-back precursor for 3 of the 5 microRNAs ( FIG. 2C ).
- the first microRNA cluster is located within the mRNA of the BHFR1 gene encoding a distant Bcl-2 homolog, and we refer to these three microRNAs as miR-BHRF1-1 to miR-BHRF1-3.
- miRBHFR1-1 is located in the 5′ UTR and miR-BHFR1-2 and -3 are positioned in the 3′ UTR of the BHRF1 mRNA. Structurally similar microRNA gene organization has been observed for some mammalian microRNAs that flank open reading frames in expressed sequence tags. The other EBV microRNAs cluster in intronic regions of the BART gene, and we refer to them as miR-BART1 and miR-BART2. Since microRNAs function in RNA silencing pathways either by targeting mRNAs for degradation or by repressing translation, we identified new viral regulators of host and/or viral gene expression.
- EBV latently infected cells can be found in three different latent stages (I to III, FIG. 2A ) that are characterized by the expression of various subsets of the latent genes: six nuclear antigens (EBNAs 1, 2, 3A, B, C, and EBNA-LP), three latent membrane proteins (LMPs 1, 2A and 2B), two non-coding RNAs (EBERs 1 and 2) and transcripts from the BamHI A region (BARTs/CSTs) whose coding capacity is still controversial.
- EBNAs 1, 2, 3A, B, C, and EBNA-LP three latent membrane proteins
- LMPs 1, 2A and 2B three latent membrane proteins
- EBERs 1 and 2 two non-coding RNAs
- BARTs/CSTs transcripts from the BamHI A region
- RNAs from a latent-stage-III EBV cell line that expresses all latent genes.
- EBV microRNA expression in immortalized cell lines which are in different stages of latency, including Hodgkin's lymphoma (HD, latency II), Burkitt's lymphoma (BL) latency stage I cells, and virus-producing marmoset monkey lymphocytes B95-8 (latency III, with a fraction of 3 to 10% of cells expressing lytic stage antigens) ( FIG. 2D ).
- HD Hodgkin's lymphoma
- BL Burkitt's lymphoma
- B95-8 virus-producing marmoset monkey lymphocytes B95-8
- BART microRNAs were detected in all latent stages consistent with the reported expression of BART during every stage of EBV infection. However, BART microRNA expression was elevated by about 10-fold in the virus producing marmoset cell line ( FIG. 2D , lane 9, rows 5 and 6). Although several studies have attempted to identify proteins encoded from the different spliced transcripts of BART, the function of this region remains unknown. Our findings will help to assign a function to the BART region.
- BHRF1 microRNAs The expression pattern of BHRF1 microRNAs is dependent on the EBV latency stage. While cell lines in stage II and III expressed BHRF1 microRNAs ( FIG. 2D , lanes 5-6), only one of the two stage I cell lines expressed BHRF1 microRNAs ( FIG. 2D , lanes 7, 8). Latency I cell lines are thought to express only EBNA 1, the EBERs and the BARTs.
- BHRF1 protein is only detected in lytic stage, latent stage EBV transcripts encompassing the BHRF1 region were observed previously. It is likely that the microRNAs BHRF1-1 to 3 are also expressed during lytic stage along with the BHRF1 protein. The high-level transcription of BHRF1 during the lytic cycle may exceed the cellular microRNA processing capacity and unprocessed transcripts could then be translated.
- the gene name is indicated as recommended by HUGO, and the gene function annotation was extracted from Ensemble.
- the number of predicted microRNA binding sites in the 3′ UTR of the target gene (NS) and a percentile score ranking the target site predictions (%-ile) are indicated. If human microRNAs are also predicted to bind to a putative EBV microRNA regulated target, it is indicated in the last column. The predicated human microRNA binding sites are also conserved in the orthologous mRNAs in mouse.
- EBV microRNA targets are prominent regulators of cell proliferation and apoptosis, which are presumably important for growth control of the infected cells.
- microRNA modulation of cell proliferation also provides new leads for studying the association of EBV with several cancerous malignancies.
- Another important group of EBV microRNA targets are B-cell specific chemokines and cytokines, which are important for leukocyte activation and/or chemotaxis. Down-regulation of these genes presumably contributes to escape of EBV-infected B cells from activated cytotoxic T cells.
- Additional targets include transcriptional regulators and components of signal transduction pathways that are critical for maintaining or switching between EBV lytic and latent stages.
- miR-BART2 is capable of targeting the virally encoded DNA polymerase BALF5 for degradation ( FIG. 3 ).
- miR-BART2 is transcribed anti-sense to the BALF5 transcript and is therefore perfectly complementary to the BALF5 3′ UTR and able to subject this mRNA for degradation.
- the clustered miRBHRF1-2 and -3 are complementary to the transcript encoding the lytic gene BFLF2 ( FIG. 2A ), whose function is currently unknown.
- the down-regulation of lytic genes by viral microRNAs may contribute to establishment and maintenance of latent infection.
- KSHV Kaposi's sarcoma-associated herpesvirus
- GenBank http://www.ncbi.nih.gov/Genbank/index.html
- a dataset of human tRNA sequences http://rna.wustl.edu/GtRDB/Hs/Hs-seqs.html
- a dataset of human and mouse sn/snoRNA sequences http://mbcr.bcm.tmc.edu/smallRNA/Database
- miRNAs http://www.sanger.ac.uk/Software/Rfam/mirna/
- predictions of miRNAs and the repeat element annotation of the HG16 human genome assembly from UCSC (http://genome.cse.ucsc.edu).
- the total number of cloned sequences is indicated in parentheses at the bottom line of the table. Sequences that mapped to the human genome allowing up to two mismatches but could not be assigned a specific type were classified as “Not annotated”.
- the annotation for viral sequences is based on the published genomic sequence of KSHV BC-1 (GenBank U75698). Composition of small RNAs cDNA library Type BCBL1(%) rRNA 3.22 tRNA 4.78 sn/sno-RNA 0.29 miscRNA 2.14 Repeat 2.24 mRNA 1.75 miRNA 61.60 Viral 20.96 Not annotated 3.02 (No. seq.) (1026)
- Small RNA sequences derived from KSHV The position of the small RNA sequence is given relative to the viral genome sequence specified in Table 4.
- Small RNA sequence (5′ to 3′) No. Seq Position, orientation UAGUGUUGUCCCCCCGAGUGGC 36 117971-117991, ⁇ UGGUGUUGUCCCCCCGAGUGGC 39 117971-117991, ⁇ ACCCAGCUGCGUAAACCCCGCU 2 119338-119359, ⁇ CUGGGUAUACGCAGCUGCGUAA 20 119304-119325, ⁇ CCAGCAGCACCUAAUCCAUCGG 14 120796-120817, ⁇ UGAUGGUUUUCGGGCUGUUGAG 9 120765-120786, ⁇ UAGGAUGCCUGGAACUUGCCGGU 5 121266-121287, ⁇ UAGAAUACUGAGGCCUAGCUGA 12 121417-121438, ⁇ AGCUAAACCGCAGUACUCUAGG 34 121455-121476, ⁇ UCGCGGUCACA
- KSHV microRNAs originated from 10 different dsRNA precursors that are all clustered in the same region of the KSHV genome ( FIGS. 4A and 4B ).
- the KSHV microRNAs were designated miR-K1 to miR-K10.
- the cluster is located within the mRNA of the K12 gene encoding a protein named Kaposin, which possesses some oncogenic properties.
- miR-K1 is located within the coding sequence of K12.
- Previous reports suggest that the K12 coding sequence region is complex and encodes several proteins named Kaposin A, B, and C (see FIG. 4A ).
- MiR-K1a corresponds to the sequenced genome present in BCBL1 cells.
- MiR-K1b appears to be derived from a sequence isolated from a primary effusion lymphoma (PEL) tumor.
- PEL primary effusion lymphoma
- MiR-K2 to miR-K10 are located in the intronic region of a longer transcript encoding K12 whose promoter is located upstream of the ORF 72 (see FIG. 4A ).
- BCBL1 cells harbor replication competent KSHV. Upon treatment with TPA, these cells undergo the complete program of KSHV gene expression, resulting ultimately in viral replication and the release of mature virions.
- KSHV miRNAs mature and precursor sequences. In bold the mature form, underlined the non-functional star sequence that was cloned for miR-K2 and miR-K6.
- KSHV miRNA microRNA sequence (5′ to 3′) Hairpin precursor sequence (5′ to 3′) miR-K1a UAGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACU CGUUUGUCUGUUGGCGAU UAGUGUUG UCCCCCCGAGUGGCCAG miR-K1b UGGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACU CGUUUGUCUGUUGGCGAU UGGUGUUG UCCCCCCGAGUGGC CAG miR-K2 * AGGCAGCUGCGUAAACCCCGCU GGGUCU ACCCAGCUGCGUAAACCCCGC CUGGGUAUAGGGAGCUGCGUAA U GCGUAAACACAG CUGGGUAUACGCA GCUGCGUAA ACCC miR-K3 5p CCAGCAGCACCUAAUCCAUCGG CUUGU CCAGCAGCACCUAAUCCAUCG 3p UGAUGGUUUUCGGGCUGUUGAG
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to isolated nucleic acid molecules comprising the sequence of any one of the DNA virus microRNAs shown in Table A1. In another embodiment, the invention relates to single stranded DNA virus microRNA molecules and anti-DNA virus microRNA molecules.
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 10/819,098 filed on Apr. 5, 2004. The specification of U.S. patent application Ser. No. 10/819,098 is hereby incorporated by reference in its entirety.
- This invention described in this application was made with funds from the National Institutes of Health, Grant Number R01-GM068476-01. The United States Government has certain rights in this invention.
- MicroRNAs are small RNA molecules of about 22 nucleotides. These microRNA molecules can control gene expression in a sequence specific manner in a wide variety of organisms.
- In many organisms, RNA silencing mediated by double-stranded RNA (dsRNA), such as siRNA and microRNA, is part of an innate immune response against RNA viruses and transposable elements. Counter defense strategies to thwart the host response were found in, for example, plant viruses and the insect Flock House virus. These viruses express inhibitors, e.g., dsRNA-binding proteins, that interfere with the host cell RNA silencing machinery.
- For example, microRNAs are reported to block translation after partially hybridizing to the non-coding 3′ region of mRNAs of target genes. The genes targeted by microRNAs largely remain to be characterized. However, there is growing evidence that microRNAs are implicated in various diseases and illnesses. For instance, drosophila microRNAs have been shown to target genes involved in apoptosis, and B-cell chronic lymphocytic leukemia has been linked to the deletion of two microRNAs.
- However, to date, the existence of microRNA encoded by mammalian viruses have not been reported. Identifying mammalian virus microRNAs, and, if they exist, understanding their biological function would facilitate the development of new anti-viral drugs.
- Therefore, there is a need to identify viral microRNAs, and for new materials and methods that can help elucidate the function of known and future virus microRNAs.
- Due to the ability of microRNAs to induce RNA degradation or repress translation of mRNA which encode important proteins, there is also a need for novel molecules that inhibit DNA virus microRNA-induced cleavage or translation repression of target mRNAs.
- In one embodiment, the invention relates to an isolated nucleic acid molecule comprising the sequence of a DNA virus microRNA.
- In another embodiment, the invention relates to an isolated single stranded DNA virus microRNA molecule. The molecule comprises a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units. Each moiety comprises a base bonded to a backbone unit wherein at least ten contiguous bases have the same sequence as a sequence of bases in a DNA virus microRNA molecule, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- In a further embodiment, the invention relates to an isolated single stranded anti-DNA virus microRNA molecule. The anti-DNA virus microRNA molecule comprises a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units. Each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have a sequence complementary to a contiguous sequence of bases in a DNA virus microRNA molecule, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the molecule is capable of inhibiting microRNP activity.
- In yet a further embodiment, the invention relates to a method for inhibiting microRNP activity in a cell. The microRNP comprises a DNA virus microRNA molecule, the DNA virus microRNA molecule comprising a sequences of bases complementary to the sequence of bases in a single stranded anti-DNA virus microRNA molecule. The method comprises introducing into the cell a single-stranded anti-DNA virus microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein at least ten contiguous bases of the anti-DNA virus microRNA molecule are complementary to the DNA virus microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties are addition, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- In yet another embodiment, the invention relates to a method for treating a DNA virus infection in a mammal in need thereof. The method comprises introducing into the mammal an anti-DNA virus microRNA molecule.
- In another embodiment, the invention relates to an isolated microRNP comprising an isolated nucleic acid molecule described herein.
- In a further embodiment, the invention relates to an isolated microRNP comprising an isolated single stranded DNA virus microRNA molecule.
- In yet a further embodiment, the invention relates to an isolated nucleic acid sequence comprising any one of the sequence of a DNA virus microRNA shown in Table A1.
- In yet another embodiment, the invention relates to an isolated single stranded DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone. The molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit wherein: at least ten contiguous bases have the same sequence as any one of the sequence of bases in a DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
- In another embodiment, the invention relates to an isolated single stranded anti-DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone. The molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have a sequence complementary to a contiguous sequence of bases in the sequence of bases in any one of the DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the molecule is capable of inhibiting microRNP activity.
-
FIG. 1 shows the modified nucleotide units discussed in the specification. B denotes any one of the following nucleic acid bases: adenosine, cytidine, guanosine, thymine, or uridine. -
FIG. 2 . EBV expresses microRNAs. (A) Diagram of the microRNA containing segments of the EBV genome. Latent genes are indicated with white boxes, lytic genes with black boxes, previously known non-coding RNAs with blue and newly identified microRNAs with red. Promoters active at latent stages (I, II, or III) are illustrated as white pennants, those active at lytic stage as black pennants, and those active at all stages as gray pennants. The intronic segments within the BARTs region are indicated as dashed lines, the exonic segments with bold bars. (B) Predicted fold-back precursors of the EBV microRNAs. The mature microRNA is highlighted in red. An asterisk is used to denote a low abundant small RNA that was cloned from the strand opposite to the microRNA-BHRF1-2 strand. (C) Northern blots for EBV microRNAs using total RNA isolated from uninfected BL-41 (−) and EBV-infected BL41/95 (+) cells. The expression of human miR-16 (Table S1) was also examined for reference. The position of migration of the mature microRNAs (miR) and its fold-back precursors (miR-L) are indicated. Equal loading of the gel before transfer to the membrane was monitored by ethidium bromide staining of the tRNA band. (D) Northern blots for EBV microRNAs using total RNA isolated from various Hodgkin and Burkitt lymphoma cell lines. The latency stage for EBV positive lines is indicated in parentheses. The numbers below the miR signals indicate relative signal intensity with respect to BL41/95 signals after normalizing for gel loading using the U6 snRNA signal. -
FIG. 3 . Schematic representation of miR-BART2-guided cleavage of BALF5 mRNA. Lytic genes are shown as black boxes and genes for which the expression has not been characterized are indicated in gray (GenBank entry V01555). The miR-BART2 sequence is aligned relative to the nucleotide sequence and the processing site of the BALF5 mRNA. The prediction position of BALF5 mRNA cleavage coincides with the mapped terminus of the 3.7 kb processed form. -
FIG. 4 . Genomic positions and foldback structures of KSHV mRNAs. (A) Genomic positions of KSHV microRNAs. Solid arrows indicate open reading frames (ORF) conserved in Herpes Saimiri virus, open arrows indicate the unique KSHV ORFs. Repeat regions are shown as small filled rectangles above the ORFs. Cloned mRNAs are shown as dotted lines. The two possible promoters for K12 transcript are indicated as a black arrow, and K12 transcripts as a black lines, the intronic region in the larger transcript is depicted as a break in the line. The thick grey arrows show ORF for Kaposin proteins A, B and C. (B) Foldback precursors of KSHV microRNAs. The cloned mature microRNAs are highlighted in red. -
FIG. 5 . KSHV mRNAs are differentially regulated upon induction of the lytic cycle. Northern blots for KSHV miR-K1a, miR-K6 and miR-K7 made from total RNA isolated from a KSHV negative (BJAB) cell line and from BCBL1 cells at 24 h, 48 h and 72 h after TPA treatment. - The inventors have discovered DNA virus-encoded microRNAs. Thus, in one embodiment, the invention relates to an isolated single stranded DNA virus microRNA molecule.
- MicroRNA molecules are known in the art (see, for example, Bartel, Cell, 2004, 116, 281-297 for a review on microRNA molecules). The article by Bartel is hereby incorporated by reference. Such molecules are derived from genomic loci and are produced from specific microRNA genes.
- Mature microRNA molecules are processed from precursor transcripts that form local hairpin structures. The hairpin structures are typically cleaved by an enzyme known as Dicer, generating thereby one microRNA duplex. See the above reference by Bartel.
- Usually, one of the two strands of a microRNA duplex is packaged in a microRNA ribonucleoprotein complex (microRNP). A microRNP in, for example, humans, also includes the proteins eIF2C2, helicase, e.g, Gemin3, and
Gemin 4. - Unmodified DNA Virus microRNA Molecules
- In one embodiment, the invention relates to an isolated nucleic acid molecule comprising a DNA virus microRNA sequence or a DNA virus hairpin precursor sequence. In addition to the sequence of the DNA virus microRNA or hairpin precursor, the nucleic acid molecule may also have one or more additional nucleotides. Any nucleotide can be added. There is no upper limit to the additional number of nucleotides. Typically, no more than about 500 nucleotides, and preferably no more than about 300 nucleotides are added to the DNA virus microRNA sequence or hairpin precursor sequence. In one embodiment, the DNA virus microRNA is part of a hairpin precursor sequence of fragment thereof.
- The DNA virus microRNA can be inserted into a vector, such as, for example, a recombinant vector. Typically, to construct such a recombinant vector containing a DNA virus microRNA, the hairpin precursor sequence which contains the DNA virus microRNA sequence, is incorporated into the vector. See for example, Chen et al. Science 2004, 303:83-86.
- The recombinant vector may be any recombinant vector, such as a plasmid, a cosmid or a phage. Recombinant vectors generally have an origin of replication. The vector may be, for example, a viral vector, such as an adenovirus vector or an adeno-associated virus (AAV) vector. See for example: Ledley 1996, Pharmaceutical Research 13:1595-1614 and Verma et al. Nature 1997, 387:239-242.
- The vector may further include a selectable marker, such as for instance a drug resistance marker or a detectable gene marker, such as β-galactosidase.
- In a preferred embodiment, the nucleic acid molecule consists of a DNA virus microRNA sequence or a hairpin precursor sequence. In another preferred embodiment, the nucleic acid molecule consists of any one of the DNA virus microRNA sequence or hairpin precursor sequence shown in Table A or Table A1.
- The DNA virus can be any DNA virus known to those skilled in the art. Preferably, the DNA virus infects mammalian cells. Examples of mammals include laboratory animals, such as dogs and cats, farm animals, such as cows, horses and sheeps, laboratory animals, such as rats, mice and rabbits, and primates, such as monkeys and humans.
- The DNA virus can be a single stranded or double stranded DNA virus. Examples of single stranded and double stranded DNA viruses are listed in Table B.
- In one embodiment, the DNA virus is Epstein barr virus (EBV). Examples of EBV microRNA's and the corresponding hairpin precursor sequences are shown in Table A.
- In another embodiment, the DNA virus is Kaposi's sarcoma-associated herpesvirus, also known as herpesvirus 8 (KSHV). Examples of KSHV microRNA's and the corresponding hairpin precursor sequences are shown in Table A1.
- The sequence of the isolated DNA virus microRNA molecules can be a DNA or RNA molecule. Sequences of nucleic acid molecules shown in the Tables A and A1 are shown having uracil bases. Uracil bases occur in unmodified RNA molecules. The invention also includes unmodified DNA molecules. The sequence of bases of the unmodified DNA molecule is the same as the unmodified RNA molecules, except that in the unmodified DNA molecule, the uracil bases are replaced with thymine bases.
TABLE A EBV microRNA's and Hairpin Precursor Sequences microRNA Sequence Hairpin Precursor microRNA Sequence* Virus 5′ → 3′ (5′ → 3′) EBV UAACCUGAUCAGCCCCGGAGUU UAUUAACCUGAUCAGCCCCGGAGUUGCCUGUUUCAU CACUAACCCCGGGCCUGAAGAGGUUGACAA UAUCUUUUGCGGCAGAAAUUGAA CUUUAAAUUCUGUUGCAGCAGAUAGCUGAUACCCAA UGUUAUCUUUUGCGGCAGAAAUUGAAAG UAACGGGAAGUGUGUAAGCACAC UCUAACGGGAAGUGUGUAAGCACACACGUAAUUUGC AAGCGGUGCUUCACGCUCUUCGUUAAAAU UCUUAGUGGAAGUGACGUGCU CGGGGUCUUAGUGGAAGUGACGUGCUGUGAAUACAG GUCCAUAGCACCGCUAUCCACUAUGUCUCGCCCG UAUUUCUGCAUUCGCCCUUGC ACUAUUUCUGCAUUCGCCCUUGCGUGUCCAUUGUUG CAAGGAGCGAUUUGGAGAAAAUAAA
*In bold, mature microRNA sequence. In italics, a low abundant sequence corresponding to the non-functional strand of the microRNA
-
TABLE A1 KSHV microRNA's and Hairpin Precursor Sequences microRNA Sequence Hairpin Precursor microRNA Sequence* Virus 5′ → 3′ (5′ → 3′) KSVH UAGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACUCGUUUGUCUGUUG GCGAUUAGUGUUGUCCCCCCGAGUGGCCAG UGGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACUCGUUUGUCUGUUG GCGAUUGGUGUUGUCCCCCCGAGUGGCCAG ACCCAGCUGCGUAAACCCCGCU GGGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACA GCUGGGUAUACGCAGCUGCGUAAACCC CUGGGUAUACGCAGCUGCGUAA GGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACAGC UGGGUAUACGCAGCUGCGUAAACCC CCAGCAGCACCUAAUCCAUCGG CUUGUCCAGCAGCACCUAAUCCAUCGGCGGUCGGGCUGA UGGUUUUCGGGCUGUUGAGCGAG UGAUGGUUUUCGGGCUGUUGAG CUUGUCCAGCAGCACCUAAUCCAUCGGCGGUCGGGCUGAU GGUUUUCGGGCUGUUGAGCGAG UAGGAUGCCUGGAACUUGCCGG UGACCUAGGUAGUCCCUGGUGCCCUAAGGGUCUACAUCAA GCACUUAGGAUGCCUGGAACUUGCCGGUCA AGCUAAACCGCAGUACUCUAGG AUAACUAGCUAAACCGCAGUACUCUAGGGCAUUCAUUUG UUACAUAGAAUACUGAGGCCUAGCUGAUUAU UAGAAUACUGAGGCCUAGCUGA AUAACUAGCUAAACCGCAGUACUCUAGGGCAUUCAUUUGU UACAUAGAAUACUGAGGCCUAGCUGAUUAU UCACAUUCUGAGGACGGCAGCG GGCUAUCACAUUCUGAGGACGGCAGCGACGUGUGUCUAA CGUCAACGUCGCGGUCACAGAAUGUGACACC UCGCGGUCACAGAAUGUGACAC GGCUAUCACAUUCUGAGGACGGCAGCGACGUGUGUCUAAC GUCAACGUCGCGGUCACAGAAUGUGACACC AUUACAGGAAACUGGGUGUAAG GGAUUACAGGAAACUGGGUGUAAGCUGUACAUAAUCCCC GGCAGCACCUGUUUCCUGCAACCCUCGU UGAUCCCAUGUUGCUGGCGCUC GCGUUGAGCGCCACCGGACGGGGAUUUAUGCUGUAUCUUA CUACCAUGAUCCCAUGUUGCUGGCGCUCACGG UUAAUGCUUAGCCUGUGUCCGA CGCUUUGGUCACAGCUUAAACAUUUCUAGGGCGGUGUUAU GAUCCUUAAUGCUUAGCCUGUGUCCGAUGCG UAGGCGCGACUGAGAGAGCACG CGCGCACUCCCUCACUAACGCCCCGCUUUUGUCUGUUGGA AGCAGCUAGGCGCGACUGAGAGAGCACGCG
*In bold, the mature microRNA sequence.
-
TABLE B Single Stranded and Double Stranded DNA Viruses Family Subfamily Genus Type species The dsDNA Viruses Poxviridae Chordopoxvirinae Orthopoxvirus Vaccinia virus Parapoxvirus Orf virus Leporipoxvirus Myxoma virus Molluscipoxvirus Molluscum contagiosum virus Herpesviridae Alphaherpesvirinae Simplexvirus Human herpesvirus 1 Varicellovirus Human herpesvirus 3Betaherpesvirinae Cytomegalovirus Human herpesvirus 5 Muromegalovirus Murid herpesvirus 1 Roseolovirus Human herpesvirus 6Gammaherpesvirinae Lymphocryptovirus Human herpesvirus 4 (EBV) Rhadinovirus Saimiriine herpesvirus 2 Adenoviridae Mastadenovirus Human adenovirus C Polyomaviridae Polyomavirus Simian virus 40 Papillomaviridae Papillomavirus Cottontail rabbit papillomavirus The ssDNA Viruses Parvoviridae Parvovirinae Parvovirus Mice minute virus Erythrovirus B19 virus Dependovirus Adeno-associated virus 2
Analogs of DNA Virus microRNA Molecules - In another embodiment, the invention relates to analogs of DNA virus microRNAs or hairpin precursors described above, including those having the sequences shown in Table A or Table A1. In this embodiment, the DNA virus microRNA molecule comprises a minimum number of ten moieties, preferably a minimum of thirteen, more preferably a minimum of fifteen, even more preferably a minimum of 18, and most preferably a minimum of 21 moieties.
- The DNA virus microRNA molecule comprises a maximum number of fifty moieties, preferably a maximum of forty, more preferably a maximum of thirty, even more preferably a maximum of twenty-five, and most preferably a maximum of twenty-three moieties. A suitable range of minimum and maximum numbers of moieties may be obtained by combining any of the above minima with any of the above maxima.
- Each moiety comprises a base bonded to a backbone unit. In this specification, a base refers to any one of the nucleic acid bases present in DNA or RNA. The base can be a purine or pyrimidine. Examples of purine bases include adenine (A) and guanine (G). Examples of pyrimidine bases include thymine (T), cytosine (C) and uracil (U). Each base of the moiety forms a Watson-Crick base pair with a complementary base.
- Watson-Crick base pairs as used herein refer to the hydrogen bonding interaction between, for example, the following bases: adenine and thymine (A-T); adenine and uracil (A-U); and cytosine and guanine (C-G). The adenine can be replaced with 2,6-diaminopurine without compromising base-pairing.
- The backbone unit may be any molecular unit that is able to stably bind to a base and to form an oligomeric chain. Suitable backbone units are well known to those in the art.
- For example, suitable backbone units include sugar-phosphate groups, such as the sugar-phosphate groups present in ribonucleotides, deoxyribonucleotides, phosphorothioate deoxyribose groups, N′3-
N′ 5 phosphoroamidate deoxyribose groups, 2′O-alkyl-ribose phosphate groups, 2′-O-alkyl-alkoxy ribose phosphate groups, ribose phosphate group containing a methylene bridge, 2′-fluororibose phosphate groups, morpholino phosphoroamidate groups, cyclohexene groups, tricyclo phosphate groups, and amino acid molecules. - Preferably, the DNA virus microRNA molecule comprises at least one moiety which confers increased nuclease resistance. Such molecules comprise at least one moiety that is not recognized by a nuclease. Therefore, the nuclease resistance of the molecule is increased compared to a sequence containing only unmodified ribonucleotide, unmodified deoxyribonucleotide or both. Such modified moieties are well known in the art, and were reviewed, for example, by Kurreck, Eur. J. Biochem. 270, 1628-1644 (2003).
- The nuclease resisted can be an exonuclease, an endonuclease, or both. The exonuclease can be a 3′→5′ exonuclease or a 5′→3′ exonuclease. Examples of 3′→5′ human exonuclease include PNPT1, Werner syndrome helicase, RRP40, RRP41, RRP42, RRP45, and RRP46. Examples of 5′→-3′ exonuclease include XRN2, and FEN1. Examples of endonucleases include Dicer, Drosha, RNase4, Ribonuclease P, Ribonuclease H1, DHP1, ERCC-1 and OGG1. Examples of nucleases which function as both an exonuclease and an endonuclease include APE1 and EXO1.
- A modified moiety can occur at any position in the DNA virus microRNA molecule. For example, to protect the DNA virus microRNA molecule against 3′→5′ exonucleases, the molecule can have at least one modified moiety at the 3′ end of the molecule and preferably at least two modified moieties at the 3′ end. If it is desirable to protect the molecule against 5′→3′ exonuclease, the DNA virus microRNA molecule can have at least one modified moiety and preferably at least two modified moieties at the 5′ end of the molecule. The DNA virus microRNA molecule can also have at least one and preferably at least two modified moieties between the 5′ and 3′ end of the molecule to increase resistance of the molecule to endonucleases. Preferably, at least about 10%, more preferably at least about 25%, even more preferably at least about 50%, and further more preferably at least about 75%, and most preferably about 95% of the moieties are modified. In one embodiment, all of the moieties are nuclease resistant.
- In another embodiment, the DNA virus microRNA molecule comprises at least one modified deoxyribonucleotide moiety. Suitable modified deoxyribonucleotide moieties are known in the art.
- A suitable example of a modified deoxyribonucleotide moiety is a phosphorothioate deoxyribonucleotide moiety. See
structure 1 inFIG. 1 . A DNA virus microRNA molecule comprising phosphorothioate deoxyribonucleotide moieties is generally referred to as phosphorothioate (PS) DNA. See, for example, Eckstein, Antisense Nucleic Acids Drug Dev. 10, 117-121 (2000). - Another suitable example of a modified deoxyribonucleotide moiety is an N′3-
N′ 5 phosphoroamidate deoxyribonucleotide moiety. Seestructure 2 inFIG. 1 . An oligonucleotide molecule comprising phosphoroamidate deoxyribonucleotide moieties is generally referred to as phosphoroamidate (NP) DNA. See, for example, Gryaznov et al., J. Am. Chem. Soc. 116, 3143-3144 (1994). - In another embodiment, the molecule comprises at least one modified ribonucleotide moiety. Suitable modified ribonucleotide moieties are known in the art.
- A suitable example of a modified ribonucleotide moiety is a ribonucleotide moiety that is substituted at the 2′ position. The substituents at the 2′ position may, for example, be a C1 to C4 alkyl group. The C1 to C4 alkyl group may be saturated or unsaturated, and unbranched or branched. Some examples of C1 to C4 alkyl groups include ethyl, isopropyl, and allyl. The preferred C1 to C4 alkyl group is methyl. See
structure 3 inFIG. 1 . An oligoribonucleotide molecule comprising ribonucleotide moieties substituted at the 2′ position with a C1 to C4 alkyl group is generally referred to as a 2′-O-(C1-C4 alkyl) RNA, e.g., 2′-O-methyl RNA (OMe RNA). - Another suitable example of a substituent at the 2′ position of a modified ribonucleotide moiety is a C1 to C4 alkoxy-C1 to C4 alkyl group. The C1 to C4 alkoxy (alkyloxy) and C1 to C4 alkyl group may comprise any of the alkyl groups described above. The preferred C1 to C4 alkoxy-C1 to C4 alkyl group is methoxyethyl. See
structure 4 inFIG. 1 . An oligonucleotide molecule comprising more than one ribonucleotide moiety that is substituted at the 2′ position with a C1 to C4 alkoxy-C1 to C4 alkyl group is referred to as a 2′-O—(C1 to C4 alkoxy-C1 to C4 alkyl) RNA, e.g., 2′-O-methoxyethyl RNA (MOE RNA). - Another suitable example of a modified ribonucleotide moiety is a ribonucleotide that has a methylene bridge between the 2′-oxygen atom and the 4′-carbon atom. See
structure 5 inFIG. 1 . An oligoribonucleotide molecule comprising ribonucleotide moieties that has a methylene bridge between the 2′-oxygen atom and the 4′-carbon atom is generally referred to as locked nucleic acid (LNA). See, for example, Kurreck et al., Nucleic Acids Res. 30, 1911-1918 (2002); Elayadi et al., Curr. Opinion Invest.Drugs 2, 558-561 (2001); Ørum et al., Curr. Opinion Mol. Ther. 3, 239-243 (2001); Koshkin et al.,Tetrahedron 54, 3607-3630 (1998); Obika et al., Tetrahedron Lett. 39, 5401-5404 (1998). Locked nucleic acids are commercially available from Proligo (Paris, France and Boulder, Colo., USA). - Another suitable example of a modified ribonucleotide moiety is a ribonucleotide that is substituted at the 2′ position with fluoro group. Such 2′-fluororibonucleotide moieties are known in the art. Molecules comprising 2′-fluororibonucleotide moieties are generally referred to herein as 2′-fluororibo nucleic acids (FANA). See
structure 7 inFIG. 1 . Damha et al., J. Am. Chem. Soc. 120,12976-12977 (1998). - In another embodiment, the DNA virus microRNA molecule comprises at least one base bonded to an amino acid residue. Moieties that have at least one base bonded to an amino acid residue will be referred to herein as peptide nucleic acid (PNA) moieties. Such moieties are nuclease resistance, and are known in the art. Molecules having PNA moieties are generally referred to as peptide nucleic acids. See
structure 6 inFIG. 1 . Nielson, Methods Enzymol. 313, 156-164 (1999); Elayadi, et al, id.; Braasch et al., Biochemistry 41, 4503-4509 (2002), Nielsen et al., Science 254, 1497-1500 (1991). - The amino acids can be any amino acid, including natural or non-natural amino acids. Naturally occurring amino acids include, for example, the twenty most common amino acids normally found in proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Glu), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ileu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val).
- The non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups. Some examples of alkyl amino acids include α-aminobutyric acid, β-aminobutyric acid, γ-aminobutyric acid, δ-aminovaleric acid, and ε-aminocaproic acid. Some examples of aryl amino acids include ortho-, meta, and para-aminobenzoic acid. Some examples of alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and γ-phenyl-β-aminobutyric acid.
- Non-naturally occurring amino acids also include derivatives of naturally occurring amino acids. The derivative of a naturally occurring amino acid may, for example, include the addition or one or more chemical groups to the naturally occurring amino acid.
- For example, one or more chemical groups can be added to one or more of the 2′, 3′, 4′, 5′, or 6′ position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4′, 5′, 6′, or 7′ position of the benzo ring of a tryptophan residue. The group can be any chemical group that can be added to an aromatic ring. Some examples of such groups include hydroxyl, C1-C4 alkoxy, amino, methylamino, dimethylamino, nitro, halo (i.e., fluoro, chloro, bromo, or iodo), or branched or unbranched C1-C4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl.
- Other examples of non-naturally occurring amino acids which are derivatives of naturally occurring amino acids include norvaline (Nva), norleucine (Nle), and hydroxyproline (Hyp).
- The amino acids can be identical or different from one another. Bases are attached to the amino acid unit by molecular linkages. Examples of linkages are methylene carbonyl, ethylene carbonyl and ethyl linkages. (Nielsen et al., Peptide Nucleic Acids—Protocols and Applications, Horizon Scientific Press, pages 1-19; Nielsen et al., Science 254: 1497-1500.) One example of an amino acid residue of a PNA moiety is N-(2-aminoethyl)-glycine.
- Further examples of PNA moieties include cyclohexyl PNA, retro-inverso PNA, phosphone PNA, propionyl PNA and aminoproline PNA. For a description of these PNA moieties, see
FIG. 5 of Nielsen et al., Peptide Nucleic Acids—Protocols and Applications, Horizon Scientific Press, pages 1-19.FIG. 5 onpage 7 of Nielsen et al. is hereby incorporated by reference. - PNA can be chemically synthesized by methods known in the art, e.g. by modified Fmoc or tBoc peptide synthesis protocols. The PNA has many desirable properties, including high melting temperatures (Tm), high base-pairing specificity with nucleic acid and an uncharged molecular backbone. Additionally, the PNA does not confer RNase H sensitivity on the target RNA, and generally has good metabolic stability.
- Peptide nucleic acids are also commercially available from Applied Biosystems (Foster City, Calif., USA).
- Additional nuclease resistant moieties are known in the art. For example, the DNA virus microRNA molecule comprises at least one morpholino phosphoroamidate nucleotide moiety. Molecules comprising morpholino phosphoroamidate nucleotide moieties are generally referred to as morpholino (MF) nucleic acids. See
structure 8 inFIG. 1 . Heasman, Dev. Biol. 243, 209-214 (2002). Morpholino oligonucleotides are commercially available from Gene Tools LLC (Corvallis, Oreg., USA). - In another example of a nuclease resistant moiety, the DNA virus microRNA molecule comprises at least one cyclohexene nucleotide moiety. Molecules comprising cyclohexene nucleotide moieties are generally referred to as cyclohexene nucleic acids (CeNA). See structure in
FIG. 1 . Wang et al., J. Am. Chem. Soc. 122, 8595-8602 (2000), Verbeure et al., Nucleic Acids Res. 29, 4941-4947 (2001). - In a final example of a nuclease resistant moiety, the DNA virus microRNA molecule comprises at least one tricyclo nucleotide moiety. Molecules comprising tricyclo nucleotide moieties are generally referred to as tricyclo nucleic acids (tcDNA). See
structure 9 inFIG. 1 . Steffens et al., J. Am. Chem. Soc. 119, 11548-11549 (1997), Renneberg et al., J. Am. Chem. Soc. 124, 5993-6002 (2002). - In another embodiment, caps can be attached to one end, both ends, and/or between the ends of the molecule in order to increase nuclease resistance of the DNA virus microRNA analogs or unmodified isolated nucleic acid microRNA molecules of the present invention described above to exonucleoses. Any cap known to those in the art for increasing nuclease resistance can be employed.
- Examples of such caps include inverted nucleotide caps and chemical caps. Inverted nucleotide caps can be attached at the 5′ and/or 3′ end. Chemical caps can be attached to one end, both ends, and/or between the ends of the molecule.
- An inverted nucleotide cap refers to a 3′→5′ sequence of nucleic acids attached to the DNA virus microRNA molecule or isolated nucleic acid microRNA molecules. There is no limit to the maximum number of nucleotides in the inverted cap just as long as it does not interfere with binding of the molecule to its target mRNA. Any nucleotide can be used in the inverted nucleotide cap. Usually, the nucleotide cap is less than about forty nucleotides in length, preferably less than about thirty nucleotides in length, more preferably less than about twenty nucleotides in length, and even more preferably less than about ten nucleotides in length. Typically, the inverted nucleotide cap is one nucleotide in length. The nucleotide for the inverted cap is generally thymine, but can be any nucleotide such as adenine, guanine, uracil, or cytosine.
- A chemical cap refers to any chemical group known to those in the art for increasing nuclease resistance of nucleic acids. Example of such chemical caps include hydroxyalkyl groups (alkyl hydroxides) or aminoalkyl groups (alkyl amines). Hydroxyalkyl groups are sometimes referred to as alkyl glycoyl groups (e.g., ethylene glycol). Aminoalkyl groups are sometimes referred to as amino linkers.
- The alkyl chain in the hydroxyalkyl group or aminoalkyl group can be a straight chain or branched chain. The minimum number of carbon atoms present in the alkyl chain is one, preferably at least two, and more preferably at least about three carbon atoms.
- The maximum number of carbon atoms present in the alkyl chain is about eighteen, preferably about sixteen, and more preferably about twelve. Typical alkyl groups include methyl, ethyl, and propyl. The alkyl groups can be further substituted with one or more hydroxyl and/or amino groups.
- Some examples of amino linkers are shown in Table C. The amino linkers listed in Table C lists are commercially available from TriLink Biotechnologies, San Diego, Calif.
TABLE C Amino Linkers from TriLink Biotechnologies 2′-Deoxycytidine-5-C6 Amino Linker (3′ Terminus) 2′-Deoxycytidine-5-C6 Amino Linker (5′ or Internal) 3′ C3 Amino Linker 3′ C6 Amino Linker 3′ C7 Amino Linker 5′ C12 Amino Linker 5′ C3 Amino Linker 5′ C6 Amino Linker C7 Internal Amino Linker Thymidine-5-C2 Amino Linker (5′ or Internal) Thymidine-5-C6 Amino Linker (3′ Terminus) Thymidine-5-C6 Amino Linker (Internal) - Chimeric DNA virus microRNA molecules containing a mixture of any of the moieties mentioned above are also known, and may be made by methods known, in the art. See, for example, references cited above, and Wang et al, Proc. Natl. Acad. Sci. USA 96, 13989-13994 (1999), Liang et al., Eur. J. Biochem. 269, 5753-5758 (2002), Lok et al., Biochemistry 41, 3457-3467 (2002), and Damha et al., J. Am. Chem. Soc. 120, 12976-12977 (2002).
- The DNA virus microRNA molecules of the invention comprise at least ten, preferably at least thirteen, more preferably at least fifteen, and even more preferably at least twenty contiguous bases having the sequence of a naturally occurring DNA virus microRNA molecule. In a preferred embodiment, the DNA virus microRNA molecules comprise the entire sequence of a DNA virus microRNA molecule, such as any one of the DNA virus microRNA molecule sequences shown in Table A or Table A1.
- The remaining bases in the molecule, if any, can be any modified or unmodified moiety described above. In one embodiment, the DNA virus microRNA molecule comprises at least one moiety which is a ribonucleotide moiety or a deoxyribonucleotide moiety.
- Any number of additional moieties, up to a maximum of forty moieties, having any base sequence can be added to the moieties comprising the contiguous base sequence, as long as the total number of moieties in the molecule does not exceed fifty. The additional moieties can be added to the 5′ end, the 3′ end, or to both ends of the contiguous sequence. The additional bases can include a sequence of bases at the 5′ end and/or a sequence of bases at the 3′ end present in the hairpin precursor from which the DNA virus microRNA is derived or any fragment thereof. In one embodiment, the hairpin precursor sequence is any one of the hairpin precursor sequences shown in Table A or Table A1.
- For the contiguous bases mentioned above, up to thirty percent of the base pairs may be substituted by wobble base pairs. As used herein, wobble base pairs refer to either: i) substitution of a cytosine with a uracil, or 2) the substitution of an adenine with a guanine, in the sequence of the DNA virus microRNA molecule. These wobble base pairs are generally referred to as UG or GU wobbles. Table D shows the number of contiguous bases and the maximum number of wobble base pairs in the DNA virus microRNA molecule.
TABLE D Number of contiguous Bases and Maximum Number of Wobble Bases No. of Contiguous Bases 10 11 12 13 14 15 16 17 18 Max. No. of 3 3 3 3 4 4 4 5 5 Wobble Base Pairs No. of Contiguous Bases 19 20 21 22 23 Max. No. of 5 6 6 6 6 Wobble Base Pairs - Further, in addition to the wobble base pairs, up to ten percent, and preferably up to five percent of the contiguous bases can be additions, deletions, mismatches or combinations thereof. Additions refer to the insertion in the contiguous sequence of any moiety described above comprising any one of the bases described above. Deletions refer to the removal of any moiety present in the contiguous sequence. Mismatches refer to the substitution of one of the moieties comprising a base in the contiguous sequence with any of the above described moieties comprising a different base.
- The additions, deletions or mismatches can occur anywhere in the contiguous sequence, for example, at either end of the contiguous sequence or within the contiguous sequence of the DNA virus microRNA molecule. Typically, the additions, deletions or mismatches occur at the end of the contiguous sequence if the contiguous sequence is relatively short, such as, for example, from about ten to about fifteen moieties in length. If the contiguous sequence is relatively long, such as, for example, a minimum of sixteen contiguous sequences, the additions, deletions, or mismatches typically occur anywhere in the contiguous sequence.
- For example, none or one of the contiguous bases may be additions, deletions, or mismatches when the number of contiguous bases is ten to nineteen; and a maximum of one or two additions, deletions, or mismatches are permissible when the number of contiguous bases is twenty to twenty-three.
- Furthermore, no more than fifty percent, and preferably no more than thirty percent, of the contiguous moieties contain deoxyribonucleotide backbone units. Table E and F show the number of contiguous bases and the maximum number of deoxyribonucleotide backbone units.
TABLE E Fifty Percent of the Contiguous Moieties containing Deoxyribonucleotide Backbone Units No. of Contiguous Bases 10 11 12 13 14 15 16 17 18 Max. No. of 5 5 6 6 7 7 8 8 9 Deoxyribonucleotide Backbone Units No. of Contiguous Bases 19 20 21 22 23 Max. No. of 9 10 10 11 11 Deoxyribonucleotide Backbone Units -
TABLE F Thirty Percent of the Contiguous Moieties Containing Deoxyribonucleotide Backbone Units No. of Contiguous Bases 10 11 12 13 14 15 16 17 18 Max. No. of 3 3 3 3 4 4 4 5 5 Deoxyribonucleotide Backbone Units No. of Contiguous Bases 19 20 21 22 23 Max. No. of 5 6 6 6 6 Deoxyribonucleotide Backbone Units - In another embodiment, in addition to the wobble base pairs and the further additions, deletions, and mismatches, described above, the moiety corresponding to position 11 in a naturally occurring DNA virus microRNA sequence can be an addition, deletion or mismatch.
- Isolated MicroRNP
- In another aspect, the invention provides an isolated microRNP comprising any of the isolated nucleic acid sequences described above or analogs of the DNA virus microRNAs described above.
- Anti-DNA Virus MicroRNA Molecules
- In another aspect, the invention provides an anti-DNA virus microRNA molecule. The anti-DNA virus microRNA molecule may be any of the isolated nucleic acid sequences described above or analogs of the DNA virus microRNAs described above, except that the sequence of bases of the anti-DNA virus microRNA molecule is complementary to the sequence of bases in an isolated nucleic acid DNA microRNA sequence or analogs of DNA virus microRNA molecules.
- Examples of sequences of anti-DNA virus microRNA molecules is shown in Table G and G1.
TABLE G EBV anti-microRNA Sequences Anti-microRNA Sequence Virus 5′ → 3′ EBV AACUCCGGGGCUGAUCAGGUUA UUCAAUUUCUGCCGCAAAAGAUA GUGUGCUUACACACUUCCCGUUA AGCACGUCACUUCCACUAAGA GCAAGGGCGAAUGCAGAAAAUA -
TABLE G1 KSHV 8 anti-microRNA Sequences Anti-microRNA Sequence Virus 5′ → 3′ KSHV GCCACUCGGGGGGACAACACUA GCCACUCGGGGGGACAACACCA AGCGGGGUUUACGCAGCUGGGU UUACGCAGCUGCGUAUACCCAG CCGAUGGAUUAGGUGCUGCUGG CUCAACAGCCCGAAAACCAUCA CCGGCAAGUUCCAGGCAUCCUA CCUAGAGUACUGCGGUUUAGCU UCAGCUAGGCCUCAGUAUUCUA CGCUGCCGUCCUCAGAAUGUGA GUGUCACAUUCUGUGACCGCGA CUUACACCCAGUUUCCUGUAAU GAGCGCCAGCAACAUGGGAUCA UCGGACACAGGCUAAGCAUUAA CGUGCUCUCUCAGUCGCGCCUA - The anti-DNA virus microRNA molecule can be modified as described above for DNA virus microRNA molecules. In one embodiment, the contiguous moieties in the anti-DNA virus microRNA molecule are complementary to the corresponding DNA virus microRNA molecule. The degree of complementarity of the anti-DNA virus microRNA molecules are subject to the restrictions described above for analogs of DNA virus microRNA molecules, including the restriction relating to wobble base pairs, as well as those relating to additions, deletions and mismatches.
- In a preferable embodiment, if the anti-DNA virus microRNA molecule comprises only unmodified moieties, then the anti-DNA virus microRNA molecule comprises at least one base, in the at least ten contiguous bases, which is non-complementary to the DNA virus microRNA and/or comprise a chemical cap.
- In another preferable embodiment, if the at least ten contiguous bases in an anti-DNA virus microRNA molecule is perfectly complementary (i.e., 100%) to a DNA virus microRNA molecule, then the anti-DNA virus microRNA molecule contains at least one modified moiety in the at least ten contiguous bases and/or comprises a chemical cap.
- In yet another embodiment, the moiety in the anti-DNA virus microRNA molecule at the position corresponding to position 11 of a naturally occurring DNA virus microRNA is non-complementary. The moiety in the anti-DNA virus microRNA molecule corresponding to position 11 of a naturally occurring DNA virus microRNA can be rendered non-complementary by any means described above, including by the introduction of an addition, deletion or mismatch, as described above.
- Isolated
- The nucleic acid molecule, DNA virus microRNA molecule or anti-DNA virus microRNA molecule is preferably isolated, which means that it is essentially free of other nucleic acids. Essentially free from other nucleic acids means that the nucleic acid molecule, DNA virus microRNA molecule or anti-DNA virus microRNA molecule is at least about 90%, preferably at least about 95% and, more preferably at least about 98% free of other nucleic acids.
- Preferably, the molecule is essentially pure, which means that the molecule is free not only of other nucleic acids, but also of other materials used in the synthesis and isolation of the molecule. Materials used in synthesis include, for example, enzymes. Materials used in isolation include, for example, gels, such as SDS-PAGE. The molecule is at least about 90% free, preferably at least about 95% free and, more preferably at least about 98% free of other nucleic acids and such other materials.
- Utility
- The DNA virus microRNA molecules and anti-DNA virus microRNA molecules of the present invention have numerous in vitro, ex vivo, and in vivo applications.
- For example, the microRNA molecules and/or anti-microRNA molecules of the present invention can be introduced into a cell to study the function of the microRNA. Any DNA viral microRNA molecule and/or anti-DNA viral microRNA molecule mentioned above can be introduced into a cell for studying their function.
- In one embodiment, a microRNA in a cell is inhibited with a suitable anti-microRNA molecule. Alternatively, the activity of a microRNA molecule in a cell can be enhanced by introducing into the cell an additional microRNA molecule. The function of the microRNA can be inferred by observing changes associated with inhibition and/or enhanced activity of the microRNA in the cell.
- Thus, in one aspect of the invention, the invention relates to a method for inhibiting microRNP activity in a cell. The microRNP comprises a DNA virus microRNA molecule. The microRNA molecule comprises a sequence of bases complementary to the sequence of bases in a single stranded anti-DNA virus microRNA molecule. Any anti-DNA virus microRNA molecule can be used in the method for inhibiting microRNP activity in a cell, as long as the anti-DNA virus microRNA is complementary, subject to the restrictions described above, to the DNA virus microRNA present in the microRNP.
- The anti-DNA virus microRNA molecules of the present invention are capable of inhibiting microRNP activity by binding to the DNA virus microRNA in the microRNP in a host cell. MicroRNP activity refers to the cleavage or the repression of translation of the target sequence. The target sequence may be any sequence which is partially or perfectly complementary to the sequence of bases in a DNA virus microRNA. The target sequence can be, for example, a viral or host messenger RNA.
- For example, a DNA virus can produce a microRNA which is complementary to a host derived target sequence that is beneficial to the host cell for defending against the viral infection. The DNA virus microRNA, which is packaged in a microRNP, will inhibit the beneficial effect of the target sequence. Accordingly, the introduction of the anti-DNA virus microRNA molecule inhibits the RNP activity, and thereby reduces harm from the virus.
- Alternatively, a host cell can defend against a viral infection by transcribing a gene which is harmful to the virus. For instance, the gene may induce the cell to undergo apoptosis, and therefore the gene is harmful to the virus. A DNA virus microRNA complementary to the target sequence transcribed by the host cell is beneficial to the virus, because the DNA virus micro RNA (in a microRNP) will inhibit the ability of the host cell to undergo apoptosis. Accordingly, the introduction of DNA virus microRNA molecules promotes survival of the cell, thereby enhancing the infection.
- The method for inhibiting microRNP activity in a cell comprises introducing into the cell a single-stranded anti-DNA virus microRNA molecule. The anti-DNA virus microRNA molecule can be introduced into a cell by any method described in the art. Some examples are described below.
- The cell can be any cell capable of being infected with a particular DNA virus. Particular cells infected by a particular DNA virus are well known to those skilled in the art. For example, it is well known to those in the art that EBV preferentially infects B lymphocytes.
- The microRNA molecules or anti-microRNA molecules can be introduced into a cell by any method known to those skilled in the art. For example, the molecules can be injected directly into a cell, such as by microinjection. Alternatively, the molecules can be contacted with a cell, preferably aided by a delivery system.
- Useful delivery systems include, for example, liposomes and charged lipids. Liposomes typically encapsulate oligonucleotide molecules within their aqueous center. Charged lipids generally form lipid-oligonucleotide molecule complexes as a result of opposing charges.
- These liposomes-oligonucleotide molecule complexes or lipid-oligonucleotide molecule complexes are usually internalized in cells by endocytosis. The liposomes or charged lipids generally comprise helper lipids which disrupt the endosomal membrane and release the oligonucleotide molecules.
- Other methods for introducing a microRNA molecule or an anti-microRNA into a cell include use of delivery vehicles, such as dendrimers, biodegradable polymers, polymers of amino acids, polymers of sugars, and oligonucleotide-binding nanoparticles. In addition, pluoronic gel as a depot reservoir can be used to deliver the anti-microRNA oligonucleotide molecules over a prolonged period. The above methods are described in, for example, Hughes et al.,
Drug Discovery Today 6, 303-315 (2001); Liang et al. Eur. J. Biochem. 269 5753-5758 (2002); and Becker et al., In Antisense Technology in the Central Nervous System (Leslie, R. A., Hunter, A. J. & Robertson, H. A., eds), pp. 147-157, Oxford University Press. - Targeting of a microRNA molecule or an anti-microRNA molecule to a particular cell can be performed by any method known to those skilled in the art. For example, the microRNA molecule or anti-microRNA molecule can be conjugated to an antibody or ligand specifically recognized by receptors on the cell. For example, if the cell is a B lymphocyte, the antibody can be against the cell receptor CD19, CD20, CD21, CD23 or a ligand to these receptors.
- In another embodiment, the invention provides a method for treating a DNA virus infection is a mammal in need thereof. The method comprises introducing into the mammal an anti-DNA virus microRNA molecule. The anti-DNA virus microRNA molecules can be introduced into the mammal by any method known to those in the art. For example, the above described methods for introducing the anti-DNA molecules into a cell can also be used for introducing the molecules into a mammal.
- Cell lines and viruses. The EBV negative BL-41 and EBV positive BL41/95 cells were described previously (Torsteinsdottir et al., Int. J. Cancer 1989, 43:273) and were maintained in RPMI 1640 (Gibco) supplemented with 10% FBS. BL41/95 but not BL-41 contained EBV, as confirmed by Western blot analysis using antibodies against EBNA-1. For analysis of EBV mRNA expression, we also cultured Hodgkin's lymphoma (HD) cells L540 and HD-MY-Z (EBV negative) and RPMI 6666 (EBV positive) and the Burkitt's lymphoma (BL) cells Ramos (EBV negative), Ous and Mutu (EBV positive), and EBV positive Marmoset B95-8 cells that produce infectious B95-8 viral particles. These cell lines were also maintained in RPMI 1640 (Gibco) supplemented with 10% FBS. The KSHV positive BCBL1 cell line was described previously (Renne et al. Nat. Med. 1996, 2:342-346) and was maintained in RPMI 1640 (Gibco) supplemented with 10% FBS. For the KSHV studies, to induce viral replication, a total of 5×106 BCBL1 cells were induced with 20 ng of phorbol-12-tetradecanoate-13-acetate (TPA)/ml and RNA was isolated 24, 48 and 72 h after TPA treatment.
- RNA preparation, cloning procedure and Northern blot analysis. Total RNA extraction was performed as described previously (Lagos-Quintana et al., Curr. Biol. 2002, 12:735). RNA size fractionation and cloning procedure have also been described. Northern blot analysis was performed as described (Lagos-Quintana et al., Curr. Biol. 2002, 12:735) loading 30 μg or 15 μg of total RNA per lane and using 5′ 32P-radiolableled oligodeoxynucleotides complementary to the mRNA sequence. For the EBV studies, equal loading of the gels was confirmed by ethidium bromide staining of the tRNA band or by reprobing the blot for U6 snRNA using 32P-labeled 5′GCAGGGGCCATGCTAATCTTCTCTGTATCG oligodeoxynucleotide. Blots were stripped and reprobed several times. Complete stripping of the blot was confirmed by phosphorimaging of the membrane before reprobing.
- DNA Sequencing of small RNA cDNA libraries. Bacterial colonies were picked into 96 well plates filled with 20 μl sterile water per well, then diluted 1:1 into a second 96 well plate containing 10 μl PCR cocktail (2
μl 10× Sigma JumpStart PCR buffer, 2μl 2 mM deoxynucleoside triphosphate mixture, 0.4 μl each 10 μM M13 universal and reverse primers, 0.35 μl 1 U/μl JumpStart REDAccuTaq DNA polymerase (Sigma), and 4.85 μl water. The PCR cycling program consisted of 1′30″ at 94° C., followed by 30 cycles of 94° C., 30″; 57° C., 30″; 72° C., 3′30″, conditions which largely deplete the primers and deoxynucleotides, obviating the requirement for reaction cleanup prior to sequencing. After diluting the PCR products with 30 μl water, 3 μl was added to wells of a 96 well plate containing 17 μl sequencing cocktail consisting of 1 μl 2.5× BigDye Terminator v3.1 Cycle Sequencing Kit premix, 1.75μl 5× buffer and 14.25 μl water, and sequencing reactions were carried out for 25 cycles (96° C., 10″; 50° C., 5″; 60° C., 4′). The reaction products were precipitated with 50μl 100% ethanol/2 μl 3M NaOAc (pH 4.8), pellets were rinsed with 70% ethanol, and after the addition of 10 μl Hi-Di Formamide (Applied Biosystems) and denaturing at 94° C. for 10 min, samples were loaded onto an ABI 3730x1 sequencer. - miRNA target prediction. We first obtained the 3′ UTR sequences for 20,153 transcripts in the human genome using Ensmart (Kasprzyk et al., Genome Res. 2004, 14:160) as well as the sequences of 175 mature human mRNAs from the RFAM mRNA registry (Griffiths-Jones, Nucleic Acids Res., 2004, 32:D109). miRanda (Enright et al., Genome Biol., 2003, 5:RI, 1) was used to identify mRNA binding sequences in the 3′ UTR sequences. The thresholds used for this scan were S:90 and .G: −17 kcal/mol. Targets that were in the 90th percentile of the raw alignment scores were selected as candidate mRNA targets.
- We examined a large DNA virus of the Herpes family, Epstein barr virus (EBV) which preferentially infects human B cells. We cloned the small RNAs from a Burkitt's lymphoma cell line latently infected with EBV. Surprisingly, we found 4% of the cloned small RNAs originated from EBV (Tables 1 and 2).
- Table 1. Composition of small RNA cDNA libraries prepared from non-infected (−) and DNA virus-infected human cell lines according to sequence annotation. The annotation was based on information from GenBank (http://www.ncbi.nih.gov/Genbank/index.html), a dataset of human tRNA sequences (http://ma.wustl.edu/GtRDB/Hs/Hs-seqs.html), a dataset of human and mouse sn/snoRNA sequences (http://mbcr.bcm.tmc.edu/smallRNA/Database), a database of microRNAs (http://www.sanger.ac.uk/Software/Rfam/microRNA/), predictions of microRNAs (35), and the repeat element annotation of the HG16 human genome assembly from UCSC (http://genome.cse.ucsc.edu). The total number of cloned sequences is indicated in parentheses at the bottom line of the table. Sequences that mapped to the human genome allowing up to two mismatches but could not be assigned a specific type were classified as Not annotated; those that did not match to the genome with more than 3 mismatches were classified as Not matched.
BL-41 Human Cell Line Type — EBV rRNA 37.00 41.92 tRNA 5.32 4.72 microRNA 44.36 33.94 Repeat 1.62 0.98 Other ncRNAa 4.33 5.80 mRNA 4.11 5.39 Viralb 0 4.15 Not annotated 2.26 2.23 Not matched. 0.99 0.88 (No. seq.) (2216) (1930)
aThis includes snRNAs and snoRNAs and other known small cytoplasmic non-coding RNAs.
bThe annotation for viral sequences is based on EBV B95-8 (GenBank V01555).
-
TABLE 2 Small RNA sequences derived from viral sequence. The position of the small RNA sequence is given relative to the viral genome sequences specified in Table 1 above. Small RNA Sequence Size range Virus 5′ → 3′ Clones (nt) Position, Orientation EBV UAACCUGAUCAGCCCCGGAGUU 2 21-22 53762-53783, + AAAUUCUGUUGCAGCAGAUAGC 3 22 55141-55162, + UAUCUUUUGCGGCAGAAAUUGAA 50 20-23 55176-55198, + UAACGGGAAGUGUGUAAGCACAC 23 19-23 55256-55278, + UCUUAGUGGAAGUGACGUGCU 1 21 151640-151660, + UAUUUUCUGCAUUCGCCCUUGC 2 22 153205-153226, + - Most of the EBV sequences were cloned more than once and the analysis of the genomic sequence flanking the cloned RNAs suggested fold-back structures characteristic of microRNAs genes. The EBV microRNAs originated from 5 different dsRNA precursors that are clustered in two regions of the EBV genome (
FIGS. 2A and B). - The EBV microRNAs were all readily detectable by Northern blotting, including the approximately 60-nt fold-back precursor for 3 of the 5 microRNAs (
FIG. 2C ). The first microRNA cluster is located within the mRNA of the BHFR1 gene encoding a distant Bcl-2 homolog, and we refer to these three microRNAs as miR-BHRF1-1 to miR-BHRF1-3. - miRBHFR1-1 is located in the 5′ UTR and miR-BHFR1-2 and -3 are positioned in the 3′ UTR of the BHRF1 mRNA. Structurally similar microRNA gene organization has been observed for some mammalian microRNAs that flank open reading frames in expressed sequence tags. The other EBV microRNAs cluster in intronic regions of the BART gene, and we refer to them as miR-BART1 and miR-BART2. Since microRNAs function in RNA silencing pathways either by targeting mRNAs for degradation or by repressing translation, we identified new viral regulators of host and/or viral gene expression.
- EBV latently infected cells can be found in three different latent stages (I to III,
FIG. 2A ) that are characterized by the expression of various subsets of the latent genes: six nuclear antigens (EBNAs 1, 2, 3A, B, C, and EBNA-LP), three latent membrane proteins (LMPs 1, 2A and 2B), two non-coding RNAs (EBERs 1 and 2) and transcripts from the BamHI A region (BARTs/CSTs) whose coding capacity is still controversial. - We isolated our small RNAs from a latent-stage-III EBV cell line that expresses all latent genes. In order to address if the expression of the EBV microRNAs is coupled with a specific latent stage, we probed for EBV microRNA expression in immortalized cell lines which are in different stages of latency, including Hodgkin's lymphoma (HD, latency II), Burkitt's lymphoma (BL) latency stage I cells, and virus-producing marmoset monkey lymphocytes B95-8 (latency III, with a fraction of 3 to 10% of cells expressing lytic stage antigens) (
FIG. 2D ). - BART microRNAs were detected in all latent stages consistent with the reported expression of BART during every stage of EBV infection. However, BART microRNA expression was elevated by about 10-fold in the virus producing marmoset cell line (
FIG. 2D ,lane 9,rows 5 and 6). Although several studies have attempted to identify proteins encoded from the different spliced transcripts of BART, the function of this region remains unknown. Our findings will help to assign a function to the BART region. - The expression pattern of BHRF1 microRNAs is dependent on the EBV latency stage. While cell lines in stage II and III expressed BHRF1 microRNAs (
FIG. 2D , lanes 5-6), only one of the two stage I cell lines expressed BHRF1 microRNAs (FIG. 2D ,lanes 7, 8). Latency I cell lines are thought to express only EBNA 1, the EBERs and the BARTs. - The expression of a transcript deriving from the BHRF1 region in one of the latency stage I cell lines as well as its expression in stage II cell lines, suggests a new latency stage I/II promoter upstream of the known latency stage I/II Qp promoter (
FIG. 2A ). A new subdivision of latency I stages may have to be introduced to distinguish between BHRF1 microRNA expressing cell lines in latency I. - Although BHRF1 protein is only detected in lytic stage, latent stage EBV transcripts encompassing the BHRF1 region were observed previously. It is likely that the microRNAs BHRF1-1 to 3 are also expressed during lytic stage along with the BHRF1 protein. The high-level transcription of BHRF1 during the lytic cycle may exceed the cellular microRNA processing capacity and unprocessed transcripts could then be translated.
- To identify targets for EBV microRNAs, we used a computational method recently developed for prediction of Drosophila microRNAs targets (Enright et al., Genome Biol., 2003, 5:RI, 1). A set of approximately 20,000
non-redundant human 3′ UTRs and the genome sequence of EBV were searched for potential microRNA binding sites. The top scoring hits for which a gene function annotation was available, are listed in Table 3. The majority of predicted host cell targets have more than one binding site for the viral microRNA, and approximately 50% of these are additionally targeted by one or several host cell microRNAs. Multiple microRNA binding sites are believed to act synergistically and increase targeting efficiency in a cooperative non-linear fashion.TABLE 3 Predicted host cell target mRNAs of EBV microRNA. The gene name is indicated as recommended by HUGO, and the gene function annotation was extracted from Ensemble. The number of predicted microRNA binding sites in the 3′ UTR of the target gene (NS) and a percentile score ranking the target site predictions (%-ile) are indicated. If human microRNAs are also predicted to bind to a putative EBV microRNA regulated target, it is indicated in the last column. The predicated human microRNA binding sites are also conserved in the orthologous mRNAs in mouse. EBV microRNA Gene ID Proposed function NS %-ile Human miRNA Apoptosis, cell proliferation BART1, BHRF1-2 BCL2 Apoptosis regulator Bcl-2 3, 1 100, 98 miR-217, miR-140 BHRF1-1 P53 Tumor suppressor P53 2 98 BHRF1-1 E2F1 Retinoblastoma Binding protein 3, Transcription factor E2F-1 2 98 miR-20, miR-106 Transcription regulation BART1 HIC2 Hypermethylated in Cancer 2 Protein 2 99 BART1 ZNF177 Zinc Finger protein 177 4 100 BART2 UBN1 Ubinuclein 1 3 100 BHRF1-1 CBFA2T2 Myeloid Translocation gene-related protein 1 3 100 miR-301 BHRF1-3 NSEP1 Y Box Binding protein 1 94 miR-95, miR-216, miR-136 BHRF1-3, BART2 TGIF 5′-TG-3′ Interacting factor, Homeobox protein TGIF 1, 1 97 miR-194 97 Immune response BART2 LRBA Lipopolysaccharide-responsive and beige like protein, BCL8 4 99 miR-15a, miR-146 Homolog miR-29a BHRF1-1 LILRB5 Leukocyte immunoglobulin receptor, subfamily B, member 5 2 100 BHRF1-3 PRF1 Perform 1 precursor 1 99 Signal transduction BART1 CXCL12 Stromal cell derived factor 1 precursor, Pre-B growth 3 100 miR-106, miR-135 Stimulating factor miR-197 BART2 GAB2 GRB2-Associated Binding Protein 2 4 100 miR-155 BART2 TNFRSF1A Tumor Necrosis Factor Receptor Superfamily member 1A 2 99 BHRF1-2 PIK3R1 Phosphatidylinositol 3-kinase regulatory Alpha Subunit 1 92 let-7b BHRF1-2, BART2 B7RP-1 B7 homolog, ICOS ligand precursor 1, 3 97, 99 miR-155 BHRF1-3 CXCL11 Small inducible cytokine B11 precursor, I-TAC 3 100 Chromosome organization BHRF1-2 CENPA Centromere Protein A 1 98 miR-16 - Several of the predicted viral microRNA targets are prominent regulators of cell proliferation and apoptosis, which are presumably important for growth control of the infected cells. microRNA modulation of cell proliferation also provides new leads for studying the association of EBV with several cancerous malignancies. Another important group of EBV microRNA targets are B-cell specific chemokines and cytokines, which are important for leukocyte activation and/or chemotaxis. Down-regulation of these genes presumably contributes to escape of EBV-infected B cells from activated cytotoxic T cells. Additional targets include transcriptional regulators and components of signal transduction pathways that are critical for maintaining or switching between EBV lytic and latent stages.
- One of the EBV-encoded microRNAs, miR-BART2, is capable of targeting the virally encoded DNA polymerase BALF5 for degradation (
FIG. 3 ). miR-BART2 is transcribed anti-sense to the BALF5 transcript and is therefore perfectly complementary to theBALF5 3′ UTR and able to subject this mRNA for degradation. Similarly, the clustered miRBHRF1-2 and -3 are complementary to the transcript encoding the lytic gene BFLF2 (FIG. 2A ), whose function is currently unknown. The down-regulation of lytic genes by viral microRNAs may contribute to establishment and maintenance of latent infection. - The role of Kaposi's sarcoma-associated herpesvirus (KSHV) in various lymphomas is firmly established. To identify KSHV microRNAs, we cloned the small RNAs from a body cavity based lymphoma (BCBL) cell line, latently infected with KSHV. We found that up to 21% of the total cloned small RNAs (34% of the cloned cellular mRNAs), originated from KSHV (Tables 4 and 5).
TABLE 4 Composition in percentage of small RNA cDNA libraries prepared from KSHV-infected human cell line according to sequence annotation. The annotation was based on information from GenBank (http://www.ncbi.nih.gov/Genbank/index.html), a dataset of human tRNA sequences (http://rna.wustl.edu/GtRDB/Hs/Hs-seqs.html), a dataset of human and mouse sn/snoRNA sequences (http://mbcr.bcm.tmc.edu/smallRNA/Database), a database of miRNAs (http://www.sanger.ac.uk/Software/Rfam/mirna/), predictions of miRNAs, and the repeat element annotation of the HG16 human genome assembly from UCSC (http://genome.cse.ucsc.edu). The total number of cloned sequences is indicated in parentheses at the bottom line of the table. Sequences that mapped to the human genome allowing up to two mismatches but could not be assigned a specific type were classified as “Not annotated”. The annotation for viral sequences is based on the published genomic sequence of KSHV BC-1 (GenBank U75698). Composition of small RNAs cDNA library Type BCBL1(%) rRNA 3.22 tRNA 4.78 sn/sno-RNA 0.29 miscRNA 2.14 Repeat 2.24 mRNA 1.75 miRNA 61.60 Viral 20.96 Not annotated 3.02 (No. seq.) (1026) -
TABLE 5 Small RNA sequences derived from KSHV. The position of the small RNA sequence is given relative to the viral genome sequence specified in Table 4. Small RNA sequence (5′ to 3′) No. Seq Position, orientation UAGUGUUGUCCCCCCGAGUGGC 36 117971-117991, − UGGUGUUGUCCCCCCGAGUGGC 39 117971-117991, − ACCCAGCUGCGUAAACCCCGCU 2 119338-119359, − CUGGGUAUACGCAGCUGCGUAA 20 119304-119325, − CCAGCAGCACCUAAUCCAUCGG 14 120796-120817, − UGAUGGUUUUCGGGCUGUUGAG 9 120765-120786, − UAGGAUGCCUGGAACUUGCCGGU 5 121266-121287, − UAGAAUACUGAGGCCUAGCUGA 12 121417-121438, − AGCUAAACCGCAGUACUCUAGG 34 121455-121476, − UCGCGGUCACAGAAUGUGACA 12 121546-121566, − UCACAUUCUGAGGACGGCAGCGA 2 121586-121608, − AUUACAGGAAACUGGGUGUAAGC 12 121889-121910, − UGAUCCCAUGUUGCUGGCGCU 13 120359-120380, − UUAAUGCUUAGCCUGUGUCCGA 4 120580-120601, − UAGGCGCGACUGAGAGAGCACG 1 119945-119966, − - Most of the KSHV sequences were cloned more than once and the analysis of the genomic sequence flanking the cloned RNAs suggested fold-back structures characteristic of microRNA genes. The KSHV microRNAs originated from 10 different dsRNA precursors that are all clustered in the same region of the KSHV genome (
FIGS. 4A and 4B ). - The KSHV microRNAs were designated miR-K1 to miR-K10. The cluster is located within the mRNA of the K12 gene encoding a protein named Kaposin, which possesses some oncogenic properties. Interestingly, miR-K1 is located within the coding sequence of K12. Previous reports suggest that the K12 coding sequence region is complex and encodes several proteins named Kaposin A, B, and C (see
FIG. 4A ). - We also identified two isoforms of miR-K1, i.e. miR-K1a and miR-K1b, which differ by one nucleotide at position 2 (see Table 6). MiR-K1a corresponds to the sequenced genome present in BCBL1 cells. MiR-K1b appears to be derived from a sequence isolated from a primary effusion lymphoma (PEL) tumor. Thus, two difference viral genomes or quasi-species may be present in the BCBL1 cell line. MiR-K2 to miR-K10 are located in the intronic region of a longer transcript encoding K12 whose promoter is located upstream of the ORF 72 (see
FIG. 4A ). - We next investigated whether KSHV mRNAs are differentially regulated upon induction of the lytic cycle. BCBL1 cells harbor replication competent KSHV. Upon treatment with TPA, these cells undergo the complete program of KSHV gene expression, resulting ultimately in viral replication and the release of mature virions.
- We isolated total RNA after various times of TPA treatment and probed for KSHV mRNAs expression by Northern blot. Only miR-K1a expression was induced upon treatment, whereas mRNAs in the intronic regions, such as miR-K6 and miR-K7, where not affected (
FIG. 5 ). This indicates that miR-K1a and miR-K2 to K10 may originate from different primary transcripts (FIG. 4A ). - The identification of mRNAs in the genome of KSHV will provide new insights in the understanding of the oncogenic properties of the virus.
TABLE 6 KSHV miRNAs mature and precursor sequences. In bold the mature form, underlined the non-functional star sequence that was cloned for miR-K2 and miR-K6. KSHV miRNA microRNA sequence (5′ to 3′) Hairpin precursor sequence (5′ to 3′) miR-K1a UAGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACU CGUUUGUCUGUUGGCGAUUAGUGUUG UCCCCCCGAGUGGCCAG miR-K1b UGGUGUUGUCCCCCCGAGUGGC CUGGAGGCUUGGGGCGAUACCACCACU CGUUUGUCUGUUGGCGAUUGGUGUUG UCCCCCCGAGUGGCCAG miR-K2 * AGGCAGCUGCGUAAACCCCGCU GGGUCUACCCAGCUGCGUAAACCCCGC CUGGGUAUAGGGAGCUGCGUAA UGCGUAAACACAGCUGGGUAUACGCA GCUGCGUAAACCC miR-K3 5p CCAGCAGCACCUAAUCCAUCGG CUUGUCCAGCAGCACCUAAUCCAUCG 3p UGAUGGUUUUCGGGCUGUUGAG GCGGUCGGGCUGAUGGUUUUCGGGCU GUUGAGCGAG miR-K4 UAGGAUGCCUGGAACUUGCCGGU UGACCUAGGUAGUCCCUGGUGCCCUAA GGGUCUACAUCAAGCACUUAGGAUGC CUGGAACUUGCCGGUCA miR-K5 5p AGCUAAACCGCAGUACUCUAGG AUAACUAGCUAAACCGCAGUACUCUA 3p UAGAAUACUGAGGCCUAGCUGA GGGCAUUCAUUUGUUACAUAGAAUAC UGAGGCCUAGCUGAUUAU miR-K6 UCACAUUCUGAGGACGGCAGCGA GGCUAUCACAUUCUGAGGACGGCAGC * UCGCGGUCACAGAAUGUGACA GACGUGUGUCUAACGUCAACGUCGCG GUCACAGAAUGUGACACC miR-K7 AUUACAGGAAACUGGGUGUAAGC GGAUUACAGGAAACUGGGUGUAAGC UGUACAUAAUCCCCGGCAGCACCUGUU UCCUGCAACCCUCGU miR-K8 UGAUCCCAUGUUGCUGGCGCU GCGUUGAGCGCCACCGGACGGGGAUU UAUGCUGUAUCUUACUACCAUGAUCC CAUGUUGCUGGCGCUCACGG miR-K9 UUAAUGCUUAGCCUGUGUCCGA CGCUUUGGUCACAGCUUAAACAUUUC UAGGGCGGUGUUAUGAUCCUUAAUGC UUAGCCUGUGUCCGAUGCG MiR-K10 UAGGCGCGACUGAGAGAGCACG CGCGCACUCCCUCACUAACGCCCCGCU UUUGUCUGUUGGAAGCAGCUAGGCGC GACUGAGAGAGCACGCG -
Claims (33)
1-66. (canceled)
67. An isolated single stranded DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit wherein:
at least ten contiguous bases have the same sequence as any one of the sequence of bases in a DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and
no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
68. An isolated single stranded anti-DNA virus microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein:
at least ten contiguous bases have a sequence complementary to a contiguous sequence of bases in the sequence of bases in any one of the DNA virus microRNA molecule shown in Table A1, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof;
no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and
the molecule is capable of inhibiting microRNP activity.
69. A molecule according to claim 67 , further comprising a sequence of bases at the 5′ end and/or sequence of bases at the 3′ end present in a hairpin precursor from which the DNA microRNA is derived or any fragment thereof.
70. A molecule according to claim 69 , wherein the hairpin precursor is any one of the hairpin precursor sequences shown in Table A1 or any fragment thereof.
71. A molecule according to claim 67 , wherein the molecule is modified for increased nuclease resistance.
72. A molecule according to claim 68 , wherein the moiety in the molecule at the position corresponding to position 11 of the microRNA is non-complementary.
73. A molecule according to claim 68 , wherein up to 5% of the contiguous moieties are non-complementary to the contiguous sequence of bases in the DNA virus microRNA.
74. A molecule according to claim 68 having any one of the anti-DNA virus microRNA sequences shown in Table G1.
75. A molecule according to claim 68 , wherein at least one of the moieties is a deoxyribonucleotide.
76. A molecule according to claim 75 , wherein the deoxyribonucleotide is a modified deoxyribonucleotide moiety.
77. A molecule according to claim 76 , wherein the modified deoxyribonucleotide is a phosphorothioate deoxyribonucleotide moiety.
78. A molecule according to claim 76 , wherein the modified deoxyribonucleotide is N′3, —N′5 phosphoroamidate deoxyribonucleotide moiety.
79. A molecule according to claim 68 , wherein at least one of the moieties is a ribonucleotide moiety.
80. A molecule according to claim 79 , wherein at least one of the moieties is a modified ribonucleotide moiety.
81. A molecule according to claim 79 , wherein the modified ribonucleotide is substituted at the 2′ position.
82. A molecule according to claim 81 , wherein the substituent at the 2′position is a C1 to C4 alkyl group.
83. A molecule according to claim 82 , wherein the alkyl group is methyl.
84. A molecule according to claim 82 , wherein the alkyl group is allyl.
85. A molecule according to claim 81 , wherein the substituent at the 2′position is a C1 to C4 alkoxy-C1 to C4 alkyl group.
86. A molecule according to claim 85 , wherein the C1 to C4 alkoxy-C1 to C4 alkyl group is methoxyethyl.
87. A molecule according to claim 80 , wherein the modified ribonucleotide has a methylene bridge between the 2′-oxygen atom and the 4′carbon atom.
88. A molecule according to claim 68 , wherein at least one of the moieties is a peptide nucleic acid moiety.
89. A molecule according to claim 68 , wherein at least one of the moieties is a 2′-fluororibonucleotide moiety.
90. A molecule according to claim 68 , wherein at least one of the moieties is a morpholino phosphoroamidate nucleotide moiety.
81. A molecule according to claim 68 , wherein at least one of the moieties is tricyclo nucleotide moiety.
92. A molecule according to claim 68 , wherein at least one of the moieties is a cyclohexene nucleotide moiety.
93. A molecule according to claim 68 , wherein the molecule comprises at least one modified moiety for increased nuclease resistance.
94. A molecule according to claim 68 , wherein the molecule comprises a nucleotide cap at the 5′ end, the 3′ end, or both.
95. A molecule according to claim 68 , wherein the molecule comprises a chemical cap at the 5′ end, the 3′ end, or both.
96. An isolated nucleic acid molecule comprising the sequence of any one of the DNA virus microRNA shown in Table A1.
97. A method for inhibiting microRNP activity in a cell, the microRNP comprising a DNA virus microRNA molecule, the DNA virus microRNA molecule comprising a sequences of bases complementary to the sequence of bases in a single stranded anti-DNA virus microRNA molecule, the method comprising introducing into the cell a single-stranded anti-DNA virus microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein:
at least ten contiguous bases of the anti-DNA virus microRNA molecule are complementary to any one of the DNA virus microRNAs shown in Table A1, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties are addition, deletions, mismatches, or combinations thereof; and
no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.
98. An isolated microRNP comprising an isolated nucleic acid molecule according to claim 67.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/925,363 US20050221293A1 (en) | 2004-04-05 | 2004-08-24 | DNA virus microRNA and methods for inhibiting same |
US10/968,821 US8088902B2 (en) | 2004-04-05 | 2004-10-19 | DNA virus microRNA and methods for inhibiting same |
JP2007507392A JP5010466B2 (en) | 2004-04-05 | 2005-04-04 | DNA virus microRNA and pharmaceuticals that inhibit the same |
PCT/US2005/011232 WO2005097205A2 (en) | 2004-04-05 | 2005-04-04 | Dna virus microrna and methods for inhibiting same |
EP05763736.5A EP1747024B1 (en) | 2004-04-05 | 2005-04-04 | Dna virus microrna and methods for inhibiting same |
CA2590604A CA2590604C (en) | 2004-04-05 | 2005-04-04 | Microrna encoded by ebv, kshv and hcmv and microrna for targeting the same |
AU2005231809A AU2005231809C1 (en) | 2004-04-05 | 2005-04-04 | DNA virus microRNA and methods for inhibiting same |
CN2005800182530A CN101426535B (en) | 2004-04-05 | 2005-04-04 | DNA virus microrna and methods for inhibiting same |
AU2009212813A AU2009212813A1 (en) | 2004-04-05 | 2009-08-27 | DNA virus microRNA and methods for inhibiting same |
US13/307,694 US9476048B2 (en) | 2004-04-05 | 2011-11-30 | DNA virus MicroRNA and methods for inhibiting same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/819,098 US7416842B2 (en) | 2004-04-05 | 2004-04-05 | DNA virus microRNA |
US10/925,363 US20050221293A1 (en) | 2004-04-05 | 2004-08-24 | DNA virus microRNA and methods for inhibiting same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/819,098 Continuation-In-Part US7416842B2 (en) | 2004-04-05 | 2004-04-05 | DNA virus microRNA |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/968,821 Continuation-In-Part US8088902B2 (en) | 2004-04-05 | 2004-10-19 | DNA virus microRNA and methods for inhibiting same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050221293A1 true US20050221293A1 (en) | 2005-10-06 |
Family
ID=35054785
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/819,098 Expired - Fee Related US7416842B2 (en) | 2004-04-05 | 2004-04-05 | DNA virus microRNA |
US10/925,363 Abandoned US20050221293A1 (en) | 2004-04-05 | 2004-08-24 | DNA virus microRNA and methods for inhibiting same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/819,098 Expired - Fee Related US7416842B2 (en) | 2004-04-05 | 2004-04-05 | DNA virus microRNA |
Country Status (3)
Country | Link |
---|---|
US (2) | US7416842B2 (en) |
CN (1) | CN101426535B (en) |
AU (1) | AU2009212813A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040053411A1 (en) * | 2002-05-03 | 2004-03-18 | Duke University | Method of regulating gene expression |
WO2007027894A2 (en) | 2005-08-29 | 2007-03-08 | Isis Pharmaceuticals, Inc. | Antisense compounds having enhanced anti-microrna activity |
WO2007147067A2 (en) * | 2006-06-14 | 2007-12-21 | Rosetta Inpharmatics Llc | Methods and compositions for regulating cell cycle progression |
US20070299030A1 (en) * | 2006-04-03 | 2007-12-27 | Koebenhavns Universitet (University Of Copenhagen) | MicroRNA biomarkers for human breast and lung cancer |
US20100010072A1 (en) * | 2006-04-03 | 2010-01-14 | Koebenhavns Universitet (University Of Copenhagen) | Microrna biomarkers for human breast and lung cancer |
EP2388328A1 (en) | 2006-01-27 | 2011-11-23 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of micrornas |
US8192938B2 (en) | 2005-02-24 | 2012-06-05 | The Ohio State University | Methods for quantifying microRNA precursors |
WO2012177906A1 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
WO2013067050A1 (en) | 2011-10-31 | 2013-05-10 | University Of Utah Research Foundation | Genetic alterations in glioblastoma |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060293267A1 (en) * | 2005-04-13 | 2006-12-28 | University Of Massachusetts | Dual functional oligonucleotides for use as anti-viral agents |
US9051601B2 (en) | 2006-08-01 | 2015-06-09 | Gen-Probe Incorporated | Methods of nonspecific target capture of nucleic acids |
WO2010135714A2 (en) | 2009-05-22 | 2010-11-25 | The Methodist Hospital Research Institute | Methods for modulating adipocyte expression using microrna compositions |
US10556020B2 (en) | 2014-09-26 | 2020-02-11 | University Of Massachusetts | RNA-modulating agents |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1309726T4 (en) * | 2000-03-30 | 2019-01-28 | Whitehead Inst Biomedical Res | RNA Sequence-Specific Mediators of RNA Interference |
AU2001261676A1 (en) * | 2000-05-16 | 2001-11-26 | Glaxo Group Limited | Method and reagent for the inhibition of erg |
EP1430128B1 (en) | 2001-09-28 | 2018-04-25 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Micro-rna molecules |
EP2314690A1 (en) | 2002-07-10 | 2011-04-27 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | RNA-interference by single-stranded RNA molecules |
DK2284266T3 (en) * | 2002-11-14 | 2014-01-13 | Thermo Fisher Scient Biosciences Inc | SIRNA MOLECULE MOD TP53 |
US7250496B2 (en) | 2002-11-14 | 2007-07-31 | Rosetta Genomics Ltd. | Bioinformatically detectable group of novel regulatory genes and uses thereof |
US7217807B2 (en) | 2002-11-26 | 2007-05-15 | Rosetta Genomics Ltd | Bioinformatically detectable group of novel HIV regulatory genes and uses thereof |
-
2004
- 2004-04-05 US US10/819,098 patent/US7416842B2/en not_active Expired - Fee Related
- 2004-08-24 US US10/925,363 patent/US20050221293A1/en not_active Abandoned
-
2005
- 2005-04-04 CN CN2005800182530A patent/CN101426535B/en not_active Expired - Fee Related
-
2009
- 2009-08-27 AU AU2009212813A patent/AU2009212813A1/en not_active Abandoned
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9267145B2 (en) | 2002-05-03 | 2016-02-23 | Duke University | Method of regulating gene expression |
US8409796B2 (en) | 2002-05-03 | 2013-04-02 | Duke University | Method of regulating gene expression |
US10233451B2 (en) | 2002-05-03 | 2019-03-19 | Duke University | Method of regulating gene expression |
US9856476B2 (en) | 2002-05-03 | 2018-01-02 | Duke University | Method of regulating gene expression |
US9850485B2 (en) | 2002-05-03 | 2017-12-26 | Duke University | Method of regulating gene expression |
US8137910B2 (en) | 2002-05-03 | 2012-03-20 | Duke University | Method of regulating gene expression |
US20040053411A1 (en) * | 2002-05-03 | 2004-03-18 | Duke University | Method of regulating gene expression |
US8192938B2 (en) | 2005-02-24 | 2012-06-05 | The Ohio State University | Methods for quantifying microRNA precursors |
EP2338992A2 (en) | 2005-08-29 | 2011-06-29 | Regulus Therapeutics, Inc | Antisense compounds having enhanced anti-microRNA activity |
WO2007027894A2 (en) | 2005-08-29 | 2007-03-08 | Isis Pharmaceuticals, Inc. | Antisense compounds having enhanced anti-microrna activity |
EP2388328A1 (en) | 2006-01-27 | 2011-11-23 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of micrornas |
EP2388327A1 (en) | 2006-01-27 | 2011-11-23 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of micrornas |
US8129515B2 (en) | 2006-01-27 | 2012-03-06 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of microRNAs |
US9598693B2 (en) | 2006-01-27 | 2017-03-21 | Ionis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of micrornas |
US9127272B2 (en) | 2006-01-27 | 2015-09-08 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and compositions for the use in modulation of target nucleic acids |
US7955848B2 (en) | 2006-04-03 | 2011-06-07 | Trustees Of Dartmouth College | MicroRNA biomarkers for human breast and lung cancer |
US9056135B2 (en) | 2006-04-03 | 2015-06-16 | Trustees Of Dartmouth College | MicroRNA biomarkers for human breast and lung cancer |
US8207325B2 (en) | 2006-04-03 | 2012-06-26 | Univ. of Copenhagen | MicroRNA biomarkers for human breast and lung cancer |
US20100010072A1 (en) * | 2006-04-03 | 2010-01-14 | Koebenhavns Universitet (University Of Copenhagen) | Microrna biomarkers for human breast and lung cancer |
US20070299030A1 (en) * | 2006-04-03 | 2007-12-27 | Koebenhavns Universitet (University Of Copenhagen) | MicroRNA biomarkers for human breast and lung cancer |
US9200275B2 (en) | 2006-06-14 | 2015-12-01 | Merck Sharp & Dohme Corp. | Methods and compositions for regulating cell cycle progression |
US20100035966A1 (en) * | 2006-06-14 | 2010-02-11 | Rosetta Inpharmatics Llc | Methods and compositions for regulating cell cycle progression |
WO2007147067A3 (en) * | 2006-06-14 | 2008-09-04 | Rosetta Inpharmatics Llc | Methods and compositions for regulating cell cycle progression |
WO2007147067A2 (en) * | 2006-06-14 | 2007-12-21 | Rosetta Inpharmatics Llc | Methods and compositions for regulating cell cycle progression |
WO2012177906A1 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
EP3564393A1 (en) | 2011-06-21 | 2019-11-06 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
WO2013067050A1 (en) | 2011-10-31 | 2013-05-10 | University Of Utah Research Foundation | Genetic alterations in glioblastoma |
US10202643B2 (en) | 2011-10-31 | 2019-02-12 | University Of Utah Research Foundation | Genetic alterations in glioma |
Also Published As
Publication number | Publication date |
---|---|
CN101426535A (en) | 2009-05-06 |
AU2009212813A1 (en) | 2009-09-17 |
US7416842B2 (en) | 2008-08-26 |
US20050221490A1 (en) | 2005-10-06 |
CN101426535B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476048B2 (en) | DNA virus MicroRNA and methods for inhibiting same | |
AU2009212813A1 (en) | DNA virus microRNA and methods for inhibiting same | |
Marquitz et al. | The role of miRNAs and EBV BARTs in NPC | |
AU2006242225B2 (en) | Human microRNAs and methods for inhibiting same | |
Grundhoff et al. | Virus-encoded microRNAs | |
Zhuo et al. | miRNAs: biogenesis, origin and evolution, functions on virus-host interaction | |
Tagawa et al. | Viral non-coding RNAs: stealth strategies in the tug-of-war between humans and herpesviruses | |
Kulesza et al. | Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron | |
US7776569B2 (en) | Virally-encoded RNAs as substrates, inhibitors and delivery vehicles for RNAi | |
Li et al. | Viral noncoding RNAs in cancer biology | |
Stik et al. | Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures | |
AU8756691A (en) | Compositions and methods for inhibiting growth or replication of viruses | |
Foster | The regulation of cellular microRNAs during KSHV lytic replication | |
Banerjee et al. | Herpesviridae and microRNAs | |
Roller et al. | Cellular proteins specifically bind single-and double-stranded DNA and RNA from the initiation site of a transcript that crosses the origin of DNA replication of herpes simplex virus 1. | |
Tian | Functional Genomics Analysis of the Virus-Host Interaction in FV3-Infected Xenopus laevis | |
Bencun | Ribosome Profiling of EBV-infected cells | |
Scholte | Viral microRNAs EBV and KSHV exploit microRNAs to modulate both viral and cellular processes | |
Oh et al. | Maintenance of the viral episome is essential for the cell survival of an Epstein-Barr virus positive gastric carcinoma cell line | |
Song | Epstein-Barr virus miR-BHRF1-2 targets retinoic acid-inducible gene I and inhibits interferon release in primary B cells | |
Mu et al. | MicroRNAs and their role in viral infection | |
Boulden | Roles of Epstein-Barr virus encoded RNAs during EBV latent infection | |
Yang | Transcriptional regulation of the Epstein-Barr virus latent membrane protein 1 gene in B cells | |
Owen | Utilising Omics Approaches to Understand Kaposi's Sarcoma-associated Herpesvirus | |
Choudhury | Functional analysis of the non-coding RNAs of murine gammaherpesvirus 68 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROCKEFELLER UNIVERSITY, THE, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUSCHL, THOMAS H.;PFEFFER, SEBASTIEN;REEL/FRAME:016095/0373 Effective date: 20041118 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |