Connect public, paid and private patent data with Google Patents Public Datasets

Endoscopic imaging system including removable deflection device

Download PDF

Info

Publication number
US20050215859A1
US20050215859A1 US11132464 US13246405A US2005215859A1 US 20050215859 A1 US20050215859 A1 US 20050215859A1 US 11132464 US11132464 US 11132464 US 13246405 A US13246405 A US 13246405A US 2005215859 A1 US2005215859 A1 US 2005215859A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sheath
distal
end
device
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11132464
Inventor
Yem Chin
Louis Barbato
Michael Banik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0607Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for annular illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope

Abstract

A steerable endoscopic sheath has a proximal end, a distal end and a working channel lumen disposed therein. A plurality of solid state light emitting devices such as light emitting diodes are positioned near the distal end of the sheath and are selectively energized to illuminate internal body tissues. An imaging device such as a photo diode or CCD array creates an image from light reflected from the tissue. The distal tip of the endoscopic sheath is selectively moveable with a deflection device that is insertable into the sheath. The deflection device includes a tip deflection mechanism that allows a user to move the tip of the deflection device. With the deflection device inserted in the sheath, movement of the distal tip causes a corresponding movement in the distal tip of the sheath. The distal tip of the sheath has a shape retaining mechanism that allows it to retain the shape imparted by the deflection device once the deflection device is removed from the sheath.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a continuation of U.S. application Ser. No. 10/291,889, filed Nov. 8, 2002, entitled ENDOSCOPIC IMAGING SYSTEM INCLUDING REMOVABLE DEFLECTION DEVICE, the disclosure of which is hereby expressly incorporated by reference and the priority from the filing date of which is hereby claimed under 35 U.S.C. § 120.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to medical devices and in particular to imaging endoscopes.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Most minimally invasive surgical procedures performed in the GI tract or other internal body cavities are accomplished with the aid of an endoscope. A typical endoscope has an illumination channel and an imaging channel both of which are made of a bundle of optical fibers. The illumination channel is coupled to a light source to illuminate an internal body cavity of a patient and the imaging channel transmits an image created by a lens at the distal end of the scope to a connected camera unit or display device. Most endoscopes also have a working channel through which an elongated treatment/surgical device may be passed. The treatment device usually has a handle or control at its proximal end that is manipulated by a physician to perform some surgical procedure.
  • [0004]
    While endoscopes are a proven technology, most are generally costly to manufacture. In addition, the optical fibers in the endoscope are subject to breakage during handling or sterilization procedures and are costly to repair. In order to limit breakage of the optical fibers, most endoscopes are relatively stiff. Such stiffness is usually achieved by making the working channel relatively small compared to the diameter of the scope. However, a small working channel limits the size of the medical device that can be inserted into the channel. Alternatively, if the working channel is made larger, the thickness of the endoscope is increased, thereby reducing the number of locations to which the scope can be routed.
  • [0005]
    Given these shortcomings, there is a need for an endoscope that does not rely on optical fibers for transmitting light into or images out of a body cavity. In addition, the endoscope should be able to be made with a relatively small diameter without unduly narrowing the size of the working channel.
  • SUMMARY OF THE INVENTION
  • [0006]
    To address these and other concerns, the present invention is an endoscopic sheath having a flexible illumination and imaging mechanism. The illumination mechanism preferably includes a number of solid state light emitters such as light emitting diodes to illuminate a body cavity. The imaging mechanism includes a photo-detector or solid state camera chip, positioned at the distal end of the sheath, that produces an image of the tissue in the body cavity.
  • [0007]
    The endoscopic sheath has a distal end that is selectively positionable in the cavity by a removable deflection device. In one embodiment, the deflection device is a catheter having a steering mechanism such as one or more steering wires that extend along its length. The deflection device is inserted into the endoscopic sheath and the steering mechanism adjusted to move its distal tip. Movement of the tip of the deflection device creates a corresponding movement at the distal end of the endoscopic sheath. In one embodiment, the distal end of the endoscopic sheath has a shape retaining mechanism that maintains its desired position when the deflection device is removed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • [0009]
    FIG. 1 shows an endoscopic imaging system in accordance with one embodiment of the present invention;
  • [0010]
    FIG. 2 illustrates one embodiment of an endoscopic sheath in accordance with the present invention;
  • [0011]
    FIG. 3 illustrates one embodiment of a deflection device for positioning the endoscopic sheath;
  • [0012]
    FIG. 4 illustrates a number of lumens in the endoscopic sheath;
  • [0013]
    FIG. 5 illustrates the deflection device within the endoscopic sheath; and
  • [0014]
    FIGS. 6 and 7 illustrate different embodiments of a shape retaining mechanism in the endoscopic sheath.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0015]
    An endoscopic imaging system 10, in accordance with one embodiment of the present invention includes an endoscopic sheath 12 that emits light from its distal end 14 onto a tissue sample of interest. Light reflected from the tissue is received by an imaging device 16 at the distal end of the endoscopic sheath 12. Signals from the imaging device 16 are received by a computer and image processor 20 that is coupled to the endoscopic sheath 12. The computer and image processor 20 produces an image of the tissue that is shown to a physician on a display terminal 22.
  • [0016]
    As will be explained in further detail below, the distal end 14 of the endoscopic sheath may be oriented in a desired direction by a deflection device 70 that fits within a lumen of the endoscopic sheath 12. The deflection device 70 includes a steering mechanism, such as a number of pull wires or the like, that allow a distal end 62 of the deflection device 70 to be manipulated in a desired direction. Once the distal end 14 of the endoscopic sheath 12 has been positioned in the desired direction, the deflection device 70 is removed from the lumen in the endoscopic sheath 12. The distal end 14 of the sheath 12 has a shape retaining mechanism that retains its position even with the deflection device 70 removed.
  • [0017]
    FIG. 2 shows the endoscopic sheath 12 in accordance with one embodiment of the present invention in greater detail. The sheath 12 comprises an elongated tube having a proximal end 28, a distal region 30 that terminates at the distal end 14, and at least one lumen extending from the proximal end to the distal end that defines a working channel 36. Disposed at the distal end 14 of the endoscopic sheath 12 are a number of solid state light sources 38 such as light emitting diodes (LED's). Each LED includes a pair of flexible wires (not shown) that terminate at a connector 40 at the proximal end 28 of the endoscopic sheath 12. The light sources 38 may be clear LED's or colored LED's such as red, green and blue. White light images can be created by illuminating the clear LED's and recording an image. Alternatively, red, green and blue images can be created by sequential illumination of the tissue with the red, green and blue LED's and combining the colored images in the computer and image processor 20 or on the display 22. Light reflected from the internal body cavity is received by the imaging device 16 such as a photo-diode, solid state camera including a CCD array or other image sensor. Electronic signals representative of the illuminated tissue are carried to the computer and image processor 20 shown in FIG. 1 via wires that terminate at the connector 40 at the proximal end 28 of the endoscope. A flushing port 42 at the proximal end of the endoscopic sheath allows liquids to be delivered through the sheath in order to clear the image sensor 16 and generally flush the working channel 36.
  • [0018]
    FIG. 4 shows the distal tip 14 of the endoscopic sheath 12. The tip has a number of solid state light sources 38 disposed about the working channel 36. In addition, the sheath may include a flushing port lumen 52 through which saline or other liquids/gasses can be delivered. The flushing port lumen 52 may be designed such that a portion of the liquid/gas delivered clears the surface of the imaging device 16.
  • [0019]
    The distal region 30 of the endoscopic sheath 12 has a flexibility that is generally more flexible than the proximal end 28. The proximal end may have a braid 34 or other stiffening member embedded within the walls of the sheath. The stiffening member does not extend all the way to the distal region 30 of the sheath and therefore the distal region 30 is more flexible than the proximal end.
  • [0020]
    FIG. 3 shows one embodiment of a deflection device 70 that is inserted within a lumen of the endoscopic sheath 12 in order to position the distal tip of the sheath in the desired direction. In one embodiment of the invention, the deflection device is inserted into the working channel 36. However, other lumens could be provided in the endoscopic sheath specifically for receiving the deflection device. The deflection device 70 comprises an elongate catheter 72 having a flexible tip 74 that includes a steering mechanism such as a number of pull wires (not shown) to direct the flexible tip 74. Each pull wire is preferably positioned along an edge of the catheter 72 and has a proximal end secured to a wheel 80 within a handle at the proximal end of the deflection device. By rotating the wheel 80, two opposing pull wires are simultaneously compressed and extended on either side of the catheter thereby bending the distal tip 74 in a desired direction within a plane. In addition, the wheel 80 can be moved within a slot 82 within the handle in order to compress and extend another pair of pull wires, so that the tip moves back and forth in another plane. Although the present embodiment of the invention uses pull wires as a steering mechanism, it will be appreciated that other techniques such as fluid/air inflatable bladders, magnetic forces, electromechanical actuators, etc. could be used to bend the tip of the deflection device 70 in the desired direction.
  • [0021]
    In one embodiment, the distal tip 74 of the deflection device 70 is more flexible than a proximal region of the catheter 72 thereby restricting the effect of the steering mechanism to the distal tip 74. Upon the insertion of the deflection device 70 within the working channel 36 of the endoscopic sheath 12, as shown in FIG. 5, movement of the distal tip 74 causes a corresponding movement in the distal tip 14 of the endoscopic sheath. Once the distal tip 14 of the sheath is oriented in the desired direction, the deflection device 70 is withdrawn from the lumen and the distal tip 14 of the sheath retains its desired position so that the physician can access and view a desired region of the patient's body.
  • [0022]
    As indicated above, the distal region 30 of the endoscopic sheath 12 has a shape retaining mechanism that is flexible enough to be moved by the deflection device 70 and allows the distal tip 14 of the endoscopic sheath to retain its shape once the deflection device is removed from the working channel 36.
  • [0023]
    The shape retaining mechanism can be made by selecting shape retaining materials for the manufacture of the distal region 30 of the sheath. Alternatively, shape retaining mechanisms such as wires 76 can be embedded within the distal region 30 as shown in FIG. 6. The wires 76 are bent by the deflection device 70, but retain their shape when the deflection device 70 is removed. Alternatively, a braided stent 78 with a shape retaining ability can be incorporated into the distal region 30 of the sheath as shown in FIG. 7 to maintain its shape once the deflection device 70 is removed.
  • [0024]
    By allowing the endoscopic sheath 12 to be oriented in a desired direction with a removable deflection device, the sheath 12 can be made thinner than conventional endoscopes because no steering wires need be incorporated into the device. In addition, the size of the working channel can be increased relative to the size of the sheath because the sheath doesn't need to be as stiff in order to prevent breakage of optical fibers.
  • [0025]
    While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. Therefore, the scope of the invention is to be determined from the following claims and equivalents thereof.

Claims (14)

1. An imaging endoscope, comprising:
an endoscopic sheath having a proximal end, a distal end and a working channel disposed therein that extends from the proximal end to the distal end;
at least one solid state light source disposed at the distal end of the sheath to illuminate internal body tissues;
an image sensor disposed at the distal end of the sheath;
a deflection device for selectively positioning the distal end of the sheath, the deflection device including:
an elongate shaft having a proximal and a distal end and a steering mechanism for moving the distal end;
wherein the elongate shaft fits within the working channel of the endoscope and engages the distal end of the sheath such that when the distal end of the deflection device is moved, the distal end of the sheath is also moved.
2. The imaging endoscope of claim 1, wherein the steering mechanism in the deflection device includes one or more pull wires.
3. The imaging endoscope of claim 1, wherein the distal end of the endoscopic sheath is more flexible than the proximal end.
4. The imaging endoscope of claim 3, wherein the proximal end of the endoscopic sheath includes a reinforcing braid.
5. The imaging endoscope of claim 1, wherein the image sensor includes a photo-detector.
6. The imaging endoscope of claim 1, wherein the image sensor includes a CCD array.
7. The imaging endoscope of claim 1, wherein the distal end of the endoscopic sheath has a shape retaining mechanism.
8. The imaging endoscope of claim 7, wherein the shape retaining mechanism is a bendable metallic member.
9. A system for imaging internal body tissue, comprising:
a disposable endoscopic sheath having a proximal end, a distal end, a working channel extending from the proximal end to the distal end, a number of light emitting diodes at the distal end that are selectively activated to illuminate the body tissue and an image sensor for producing an image of the body tissue; and
a deflection catheter having a proximal end, a distal end and one or more pull wires that move the distal end, the deflection catheter being selectively inserted into the working channel of the sheath to move the distal tip of the endoscope.
10. The system of claim 9, wherein the sheath includes a shape retaining mechanism at its distal end.
11. A disposable imaging endoscope, comprising:
an endoscopic sheath having a proximal end, a distal end and at least one lumen extending from the proximal end to the distal end;
a plurality of light emitting diodes at the distal end of the sheath that are selectively activated to illuminate internal body tissue;
an image sensor disposed at the distal end of the sheath that transmits electrical signals representative of an image of a tissue sample;
the distal end of the sheath further including a shape retaining mechanism that is movable by a deflection device that is insertable into the lumen, said shape retaining mechanism retaining the shape of the distal end of the sheath after the deflection device is removed from the lumen.
12. The disposable imaging endoscope of claim 11, wherein the shape retaining mechanism includes one or more wires disposed adjacent the distal tip of the sheath.
13. The disposable imaging endoscope of claim 11, wherein the shape retaining mechanism is a flexible stent adjacent the distal end of the sheath.
14. A method of capturing images from an internal body cavity of a patient, comprising:
inserting an endoscope into the patient, the endoscope having a proximal end, a distal end, a working channel, a plurality of light emitting diodes that produce light at the distal end of the endoscope and an image sensor for producing an image of the internal body cavity;
selectively positioning the distal end of the endoscope by inserting a deflection catheter into the endoscope and moving a distal tip of the deflection catheter to move the distal end of the endoscope; and
withdrawing the deflection catheter from the endoscope.
US11132464 2002-11-08 2005-05-18 Endoscopic imaging system including removable deflection device Abandoned US20050215859A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10291889 US6899672B2 (en) 2002-11-08 2002-11-08 Endoscopic imaging system including removable deflection device
US11132464 US20050215859A1 (en) 2002-11-08 2005-05-18 Endoscopic imaging system including removable deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11132464 US20050215859A1 (en) 2002-11-08 2005-05-18 Endoscopic imaging system including removable deflection device

Publications (1)

Publication Number Publication Date
US20050215859A1 true true US20050215859A1 (en) 2005-09-29

Family

ID=32229305

Family Applications (2)

Application Number Title Priority Date Filing Date
US10291889 Active 2023-03-30 US6899672B2 (en) 2002-11-08 2002-11-08 Endoscopic imaging system including removable deflection device
US11132464 Abandoned US20050215859A1 (en) 2002-11-08 2005-05-18 Endoscopic imaging system including removable deflection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10291889 Active 2023-03-30 US6899672B2 (en) 2002-11-08 2002-11-08 Endoscopic imaging system including removable deflection device

Country Status (6)

Country Link
US (2) US6899672B2 (en)
JP (1) JP4691361B2 (en)
CA (1) CA2503265C (en)
DE (1) DE60326480D1 (en)
EP (1) EP1558124B1 (en)
WO (1) WO2004043242A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256375A1 (en) * 2004-05-13 2005-11-17 Scimed Life Systems, Inc. Handle for steerable catheter
US20050283048A1 (en) * 2001-10-19 2005-12-22 Visionscope, Llc Portable imaging system employing a miniature endoscope
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
US20080064925A1 (en) * 2001-10-19 2008-03-13 Gill Thomas J Portable imaging system employing a miniature endoscope
US20100256446A1 (en) * 2007-05-11 2010-10-07 Board Of Regents, The University Of Texas System Medical scope carrier and scope as system and method
US7942814B2 (en) 2001-10-19 2011-05-17 Visionscope Technologies Llc Miniature endoscope with imaging fiber system
US20110134293A1 (en) * 2008-08-19 2011-06-09 Rohm Co., Tld Camera
US20120057010A1 (en) * 2010-09-08 2012-03-08 Olympus Corporation Endoscope apparatus
WO2013177469A1 (en) * 2012-05-23 2013-11-28 Veritract Elongate medical instrument with sheath
US20140002627A1 (en) * 2011-11-11 2014-01-02 Olympus Medical Systems Corp. Color signal transmission device, wireless image transmission system, and transmitter
US9307893B2 (en) 2011-12-29 2016-04-12 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder in a catheter with off-centered lumens
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US7578786B2 (en) * 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US7976462B2 (en) * 2004-04-06 2011-07-12 Integrated Endoscopy, Inc. Endoscope designs and methods of manufacture
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
RU2506056C2 (en) 2008-09-18 2014-02-10 Аккларент, Инк. Methods and apparatus for treating ear, nose and throat diseases
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US20060004258A1 (en) * 2004-07-02 2006-01-05 Wei-Zen Sun Image-type intubation-aiding device
US7918787B2 (en) 2005-02-02 2011-04-05 Voyage Medical, Inc. Tissue visualization and manipulation systems
US9055906B2 (en) 2006-06-14 2015-06-16 Intuitive Surgical Operations, Inc. In-vivo visualization systems
US7930016B1 (en) 2005-02-02 2011-04-19 Voyage Medical, Inc. Tissue closure system
US8137333B2 (en) 2005-10-25 2012-03-20 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US7860556B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue imaging and extraction systems
US8221310B2 (en) 2005-10-25 2012-07-17 Voyage Medical, Inc. Tissue visualization device and method variations
US9510732B2 (en) 2005-10-25 2016-12-06 Intuitive Surgical Operations, Inc. Methods and apparatus for efficient purging
US8050746B2 (en) 2005-02-02 2011-11-01 Voyage Medical, Inc. Tissue visualization device and method variations
US8078266B2 (en) 2005-10-25 2011-12-13 Voyage Medical, Inc. Flow reduction hood systems
US20060178562A1 (en) * 2005-02-10 2006-08-10 Usgi Medical Inc. Apparatus and methods for obtaining endoluminal access with a steerable guide having a variable pivot
US7618413B2 (en) * 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
JP2007021084A (en) * 2005-07-21 2007-02-01 Olympus Medical Systems Corp Endoscope
US20070066881A1 (en) 2005-09-13 2007-03-22 Edwards Jerome R Apparatus and method for image guided accuracy verification
US20070066869A1 (en) * 2005-09-21 2007-03-22 David Hoffman Endoscopic assembly including cap and sheath
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
JP2010502313A (en) 2006-09-01 2010-01-28 ボエッジ メディカル, インコーポレイテッド Method and apparatus for the treatment of atrial fibrillation
EP2066222B1 (en) * 2006-09-11 2012-01-25 Karl Storz Endovision, Inc. System for an hysteroscope with integrated instruments
WO2008034073A3 (en) * 2006-09-15 2008-05-02 William M Fein Novel enhanced higher definition endoscope
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
JP2008099877A (en) * 2006-10-19 2008-05-01 Olympus Medical Systems Corp Stent delivery system
US8131350B2 (en) 2006-12-21 2012-03-06 Voyage Medical, Inc. Stabilization of visualization catheters
US8758229B2 (en) 2006-12-21 2014-06-24 Intuitive Surgical Operations, Inc. Axial visualization systems
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US20080216840A1 (en) * 2007-03-06 2008-09-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Imaging via the airway
JP2010524651A (en) 2007-04-27 2010-07-22 ボエッジ メディカル, インコーポレイテッド Steerable tissue visualization and manipulation the catheter with a complex shape
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8657805B2 (en) 2007-05-08 2014-02-25 Intuitive Surgical Operations, Inc. Complex shape steerable tissue visualization and manipulation catheter
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
EP2155036B1 (en) 2007-05-11 2016-02-24 Intuitive Surgical Operations, Inc. Visual electrode ablation systems
WO2008144077A1 (en) 2007-05-18 2008-11-27 Boston Scientific Scimed, Inc. Drive systems and methods of use
US20080216826A1 (en) * 2007-08-07 2008-09-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Airway imaging system
US20090024018A1 (en) * 2007-08-07 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Anatomical imaging system
GB0716983D0 (en) * 2007-08-31 2007-10-10 Sentient Medical Ltd Surgical device
US8235985B2 (en) 2007-08-31 2012-08-07 Voyage Medical, Inc. Visualization and ablation system variations
US8858609B2 (en) 2008-02-07 2014-10-14 Intuitive Surgical Operations, Inc. Stent delivery under direct visualization
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9101735B2 (en) 2008-07-07 2015-08-11 Intuitive Surgical Operations, Inc. Catheter control systems
CA2732769A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Paranasal ostium finder devices and methods
US8333012B2 (en) 2008-10-10 2012-12-18 Voyage Medical, Inc. Method of forming electrode placement and connection systems
US9468364B2 (en) 2008-11-14 2016-10-18 Intuitive Surgical Operations, Inc. Intravascular catheter with hood and image processing systems
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
JP5483917B2 (en) * 2009-03-31 2014-05-07 ローム株式会社 Endoscope
US20100286477A1 (en) * 2009-05-08 2010-11-11 Ouyang Xiaolong Internal tissue visualization system comprising a rf-shielded visualization sensor module
JP5224305B2 (en) * 2009-07-06 2013-07-03 国立大学法人大阪大学 Endoscopic overtube
US20110009694A1 (en) * 2009-07-10 2011-01-13 Schultz Eric E Hand-held minimally dimensioned diagnostic device having integrated distal end visualization
US8694071B2 (en) 2010-02-12 2014-04-08 Intuitive Surgical Operations, Inc. Image stabilization techniques and methods
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
JP2011212316A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Bending-insertion assisting instrument and insertion path securing apparatus
US9814522B2 (en) 2010-04-06 2017-11-14 Intuitive Surgical Operations, Inc. Apparatus and methods for ablation efficacy
US8696549B2 (en) * 2010-08-20 2014-04-15 Veran Medical Technologies, Inc. Apparatus and method for four dimensional soft tissue navigation in endoscopic applications
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
CN102770061B (en) * 2010-09-30 2014-11-12 奥林巴斯医疗株式会社 Insertion aid, and endoscope device
EP2755543A4 (en) * 2011-09-12 2015-06-10 Cleanoscope Inc Laparoscopic device
US8419720B1 (en) 2012-02-07 2013-04-16 National Advanced Endoscopy Devices, Incorporated Flexible laparoscopic device
WO2013126659A1 (en) 2012-02-22 2013-08-29 Veran Medical Technologies, Inc. Systems, methods, and devices for four dimensional soft tissue navigation
US9386910B2 (en) 2012-07-18 2016-07-12 Apollo Endosurgery, Inc. Endoscope overtube for insertion through a natural body orifice
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
WO2017187617A1 (en) * 2016-04-28 2017-11-02 オリンパス株式会社 Sheath for flexible manipulator

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742817A (en) * 1985-05-15 1988-05-10 Olympus Optical Co., Ltd. Endoscopic apparatus having a bendable insertion section
US4798193A (en) * 1987-05-18 1989-01-17 Thomas J. Fogarty Protective sheath instrument carrier
US4893613A (en) * 1987-11-25 1990-01-16 Hake Lawrence W Endoscope construction with means for controlling rigidity and curvature of flexible endoscope tube
US5025778A (en) * 1990-03-26 1991-06-25 Opielab, Inc. Endoscope with potential channels and method of using the same
US5251611A (en) * 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
US5301061A (en) * 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5337733A (en) * 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5363135A (en) * 1992-04-21 1994-11-08 Inglese Jean Marc Endoscope having a semi-conductor element illumination arrangement
JPH08146305A (en) * 1994-11-15 1996-06-07 Mataari Giken:Kk Endoscope
US5820591A (en) * 1990-02-02 1998-10-13 E. P. Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5860914A (en) * 1993-10-05 1999-01-19 Asahi Kogaku Kogyo Kabushiki Kaisha Bendable portion of endoscope
US5897488A (en) * 1991-09-17 1999-04-27 Olympus Optical Co., Ltd. Bending insertion instrument to be inserted into a body cavity through an endoscope
US5921915A (en) * 1997-04-30 1999-07-13 C.R. Bard, Inc. Directional surgical device for use with endoscope, gastroscope, colonoscope or the like
US6174280B1 (en) * 1998-11-19 2001-01-16 Vision Sciences, Inc. Sheath for protecting and altering the bending characteristics of a flexible endoscope
US6277064B1 (en) * 1997-12-30 2001-08-21 Inbae Yoon Surgical instrument with rotatably mounted offset endoscope
US20020052638A1 (en) * 1996-05-20 2002-05-02 Gholam-Reza Zadno-Azizi Method and apparatus for emboli containment
US20020107478A1 (en) * 2000-01-27 2002-08-08 Wendlandt Jeffrey Michael Catheter introducer system for exploration of body cavities
US6485411B1 (en) * 2000-04-12 2002-11-26 Circon Corporation Endoscope shaft with superelastic alloy spiral frame and braid
US6585641B1 (en) * 2000-11-02 2003-07-01 Ge Medical Systems Global Technology Company, Llc Transesophageal probe with variable stiffness
US6863668B2 (en) * 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US6997931B2 (en) * 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138197B2 (en) * 1972-10-25 1976-10-20
JPH0667377B2 (en) * 1985-05-15 1994-08-31 オリンパス光学工業株式会社 The endoscope bending operation device
JPS62201133A (en) * 1986-02-27 1987-09-04 Olympus Optical Co Insert aid tool for endoscope
JPH0651018B2 (en) * 1989-05-02 1994-07-06 東芝メディカルエンジニアリング株式会社 Endoscope
JP2771859B2 (en) * 1989-08-24 1998-07-02 オリンパス光学工業株式会社 Endoscope apparatus
JPH0647052A (en) * 1992-07-30 1994-02-22 Olympus Optical Co Ltd Curving operation device for tubular insertion means
JP2000279375A (en) * 1999-03-30 2000-10-10 Fuji Photo Optical Co Ltd Endoscope

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742817A (en) * 1985-05-15 1988-05-10 Olympus Optical Co., Ltd. Endoscopic apparatus having a bendable insertion section
US4798193A (en) * 1987-05-18 1989-01-17 Thomas J. Fogarty Protective sheath instrument carrier
US4893613A (en) * 1987-11-25 1990-01-16 Hake Lawrence W Endoscope construction with means for controlling rigidity and curvature of flexible endoscope tube
US5301061A (en) * 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5337733A (en) * 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5820591A (en) * 1990-02-02 1998-10-13 E. P. Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5025778A (en) * 1990-03-26 1991-06-25 Opielab, Inc. Endoscope with potential channels and method of using the same
US5251611A (en) * 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
US5897488A (en) * 1991-09-17 1999-04-27 Olympus Optical Co., Ltd. Bending insertion instrument to be inserted into a body cavity through an endoscope
US5363135A (en) * 1992-04-21 1994-11-08 Inglese Jean Marc Endoscope having a semi-conductor element illumination arrangement
US5860914A (en) * 1993-10-05 1999-01-19 Asahi Kogaku Kogyo Kabushiki Kaisha Bendable portion of endoscope
JPH08146305A (en) * 1994-11-15 1996-06-07 Mataari Giken:Kk Endoscope
US20020052638A1 (en) * 1996-05-20 2002-05-02 Gholam-Reza Zadno-Azizi Method and apparatus for emboli containment
US5921915A (en) * 1997-04-30 1999-07-13 C.R. Bard, Inc. Directional surgical device for use with endoscope, gastroscope, colonoscope or the like
US6277064B1 (en) * 1997-12-30 2001-08-21 Inbae Yoon Surgical instrument with rotatably mounted offset endoscope
US6174280B1 (en) * 1998-11-19 2001-01-16 Vision Sciences, Inc. Sheath for protecting and altering the bending characteristics of a flexible endoscope
US20020107478A1 (en) * 2000-01-27 2002-08-08 Wendlandt Jeffrey Michael Catheter introducer system for exploration of body cavities
US6485411B1 (en) * 2000-04-12 2002-11-26 Circon Corporation Endoscope shaft with superelastic alloy spiral frame and braid
US6585641B1 (en) * 2000-11-02 2003-07-01 Ge Medical Systems Global Technology Company, Llc Transesophageal probe with variable stiffness
US6997931B2 (en) * 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US6863668B2 (en) * 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050283048A1 (en) * 2001-10-19 2005-12-22 Visionscope, Llc Portable imaging system employing a miniature endoscope
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
US20080064925A1 (en) * 2001-10-19 2008-03-13 Gill Thomas J Portable imaging system employing a miniature endoscope
US7942814B2 (en) 2001-10-19 2011-05-17 Visionscope Technologies Llc Miniature endoscope with imaging fiber system
US8038602B2 (en) 2001-10-19 2011-10-18 Visionscope Llc Portable imaging system employing a miniature endoscope
US20050256375A1 (en) * 2004-05-13 2005-11-17 Scimed Life Systems, Inc. Handle for steerable catheter
US8465442B2 (en) * 2004-05-13 2013-06-18 Boston Scientific Scimed, Inc. Handle for steerable catheter
US20100256446A1 (en) * 2007-05-11 2010-10-07 Board Of Regents, The University Of Texas System Medical scope carrier and scope as system and method
US8629916B2 (en) 2008-08-19 2014-01-14 Rohm Co., Ltd. Camera with imaging unit and imaging unit for camera
US20110134293A1 (en) * 2008-08-19 2011-06-09 Rohm Co., Tld Camera
US20120057010A1 (en) * 2010-09-08 2012-03-08 Olympus Corporation Endoscope apparatus
US20140002627A1 (en) * 2011-11-11 2014-01-02 Olympus Medical Systems Corp. Color signal transmission device, wireless image transmission system, and transmitter
US8957952B2 (en) * 2011-11-11 2015-02-17 Olympus Medical Systems Corp. Color signal transmission device, wireless image transmission system, and transmitter
US9307893B2 (en) 2011-12-29 2016-04-12 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder in a catheter with off-centered lumens
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape
WO2013177469A1 (en) * 2012-05-23 2013-11-28 Veritract Elongate medical instrument with sheath

Also Published As

Publication number Publication date Type
JP2006505348A (en) 2006-02-16 application
EP1558124A1 (en) 2005-08-03 application
WO2004043242A1 (en) 2004-05-27 application
DE60326480D1 (en) 2009-04-16 grant
US20040092794A1 (en) 2004-05-13 application
CA2503265C (en) 2008-07-08 grant
CA2503265A1 (en) 2004-05-27 application
US6899672B2 (en) 2005-05-31 grant
EP1558124B1 (en) 2009-03-04 grant
JP4691361B2 (en) 2011-06-01 grant

Similar Documents

Publication Publication Date Title
US5630782A (en) Sterilizable endoscope with separable auxiliary assembly
US5166787A (en) Endoscope having provision for repositioning a video sensor to a location which does not provide the same cross-sectionally viewed relationship with the distal end
US5551945A (en) Endoscope system including endoscope and protection cover
US6086528A (en) Surgical devices with removable imaging capability and methods of employing same
US5275151A (en) Handle for deflectable catheter
US7927272B2 (en) Surgical port with embedded imaging device
US6875169B2 (en) Camera unit with a coupling for a detachable light and image guide
US6811532B2 (en) Endoscope
US6638213B2 (en) Endoscope
US5807239A (en) Transcervical ostium access device and method
US6837849B2 (en) Endoscope
US20080058595A1 (en) Medical device introduction systems and methods
US20110295061A1 (en) Method and device for imaging an interior surface of a corporeal cavity
US4688554A (en) Directing cannula for an optical diagnostic system
US5558619A (en) Endoscope system with automatic control according to movement of an operator
US20070142711A1 (en) Detachable Imaging Device, Endoscope Having A Detachable Imaging Device, And Method of Configuring Such An Endoscope
US6458074B1 (en) Endoscope
US20050165272A1 (en) Endoscope system
US4651201A (en) Stereoscopic endoscope arrangement
US6986738B2 (en) System and method for maneuvering a device in vivo
US7108657B2 (en) Endoscopic visualization apparatus with different imaging systems
US20070279486A1 (en) Device and method for reducing effects of video artifacts
US20050137459A1 (en) Medical device with OLED illumination light source
US8602971B2 (en) Opto-Electronic illumination and vision module for endoscopy
US20070270651A1 (en) Device and method for illuminating an in vivo site

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIN, YEM;BARBATO, LOUIS J.;BANIK, MICHAEL S.;REEL/FRAME:019379/0404

Effective date: 20021025

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:024223/0563

Effective date: 20041222