US20050214443A1 - Method for sterilizing a medical device having a hydrophilic coating - Google Patents

Method for sterilizing a medical device having a hydrophilic coating Download PDF

Info

Publication number
US20050214443A1
US20050214443A1 US11/134,304 US13430405A US2005214443A1 US 20050214443 A1 US20050214443 A1 US 20050214443A1 US 13430405 A US13430405 A US 13430405A US 2005214443 A1 US2005214443 A1 US 2005214443A1
Authority
US
United States
Prior art keywords
medical device
hydrophilic polymer
device according
hydrophilic
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/134,304
Inventor
Niels Madsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coloplast AS
Original Assignee
Coloplast AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to DKPA199801534 priority Critical
Priority to DKPA199801534 priority
Priority to US21830598A priority
Priority to PCT/DK1999/000641 priority patent/WO2000030696A1/en
Priority to US09/862,030 priority patent/US6986868B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8105834&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050214443(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Coloplast AS filed Critical Coloplast AS
Priority to US11/134,304 priority patent/US20050214443A1/en
Publication of US20050214443A1 publication Critical patent/US20050214443A1/en
Application status is Abandoned legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/145Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/002Packages specially adapted therefor ; catheter kit packages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Abstract

A method for sterilizing a medical device comprising a hydrophilic coating using radiation said method comprising the steps of bringing the medical device having such coating in contact with an aqueous liquid for wetting the hydrophilic coating, said liquid comprising a solution of a hydrophilic polymer and sterilizing the device by applying a sufficient amount of radiation provides coated devices showing a significantly increased and prolonged water retention and lower friction coefficient when wet.

Description

    RELATED APPLICATION
  • This application is related to application Ser. No. 09/218,305, filed Dec. 22, 1998.
  • FIELD OF THE INVENTION
  • The present invention relates generally to sterilization of medical devices having hydrophilic coatings and more specific to sterilization using radiation. Furthermore, the invention relates to a sterilized set comprising a medical device provided with a hydrophilic coating and a liquid for wetting the hydrophilic coating, a method for protecting the hydrophilic coating of a medical device having such coating during sterilization using radiation as well as a medical device having a hydrophilic coating said medical device showing, after sterilization using radiation, a prolonged water drain off time and reduced friction force.
  • DESCRIPTION OF THE RELATED ART
  • It is known to coat medical devices, e.g., catheters for introduction into human cavities such as blood vessels, digestive organs and the urinary system, with a hydrophilic coating, normally as a minimum applied on that part of the surface which is introduced or comes into contact with mucous membranes, etc., during introduction of the device. Whereas such coating is not particularly smooth when dry, so that the handling of the device may become inconvenient, it becomes extremely slippery when it is swelled with water, preferably immediately before introduction into the human body and thus ensures a substantially painless introduction with a minimum of damage on tissue.
  • U.S. Pat. No. 3,967,728 to Gordon discloses the use of a sterile lubricant for deposition on and lubricating an uncoated catheter before use.
  • WO 86/06284 (Astra Meditech Aktiebolag) discloses a wetting and storing device for a coated catheter in which the coating may be wetted using water or water comprising common salt and possibly bactericidal compounds or other additives.
  • GB Patent Application No. 2 284 764 (MMG (Europe Ltd.)) discloses the application of a lubricious substance such as a water based jelly to the tip of a non-coated catheter prior to insertion into the urethra.
  • U.S. Pat. No. 3,648,704 (Jackson) discloses a disposable catheter apparatus in which a lubricant may be applied to the tip of the catheter prior to catherisation.
  • A large number of methods are known for the production of hydrophilic surface coatings for improving the slipperiness of a catheter or other medical device.
  • These methods are most often based on the fact that the substrate to be provided with a hydrophilic surface coating, in the course of one or more process stages with intermediary drying and curing, is coated with one or more (mostly two) layers, which are brought to react with one another in various ways, e.g. by polymerization initiated by irradiation, by UV light, by graft polymerization, by the formation of interpolymeric network structures, or by direct chemical reaction. Known hydrophilic coatings and processes for the application thereof are e.g. disclosed in Danish Patent No. 159,018, published European Patent Application Nos. EP 0 389 632, EP 0 379 156, and EP 0 454 293, European Patent No. EP 0 093 093 B2, British Patent No. 1,600,963, U.S. Pat. Nos. 4,119,094, 4,373,009, 4,792,914, 5,041,100 and 5,120,816, and into PCT Publication Nos. WO 90/05162 and WO 91/19756.
  • According to a method disclosed in U.S. Pat. No. 5,001,009, a hydrophilic surface coating is prepared on a substrate by applying, in two stages or in one combined stage, on the substrate a primer reactive with or adhesive to the substrate and then the actual hydrophilic surface layer which, in this case, comprises polyvinylpyrrolidone [PVP] as the active constituent. By this method, no chemical reaction takes place between the components of the two layers applied. When the product remains inside the body only for a short period, there may be a risk that water will be extracted from the hydrophilic surface coating and into the tissues of the surrounding mucous membranes etc., owing to a higher osmotic potential of said tissues. At the same time, there is a risk of abrasion of the coating during insertion. As a result of the extraction of water or loss of coating, the hydrophilic surface coating will have a tendency to become less slippery and to stick to surrounding tissues, and the removal of the medical device from the body may cause pain or damage the tissue. This is especially a problem when carrying out urodynamic examinations via a catheter.
  • European Patent No. EP 0 217 771 describes a method of forming a hydrophilic coating in order to retain the slipperiness in use for a longer period of time by applying a non-reactive hydrophilic polymer surface layer to a substrate, applying to the non-reactive hydrophilic surface polymer a solution comprising a solvent and above 2% (weight per volume) of an osmolality-increasing compound selected from the group consisting of mono and disaccharides, sugar alcohols, and non-toxic organic and inorganic salts, with the proviso that the osmolality-increasing compound is not a trihalogenide such as KI3 (KI/I2), and evaporating the solvent. EP 0 217 771 discloses that when wetting the catheters after drying, catheters having a coating of a non-toxic, osmolality increasing compound retaining their slipperiness for longer times than corresponding untreated surfaces i.e. coated catheters dry more slowly. However EP 0 217 771 is silent with respect to storing the coated catheters in the wetting solution and any type of sterilization or problems in connection herewith.
  • International patent publication No. WO 94/16747 discloses a hydrophilic coating with improved retention of water on a surface, especially a surface of a medical device such as a urethra catheter, prepared by applying to the surface in one or more process steps at least one solution of components that will combine to form the hydrophilic coating. During the final step, the surface is coated with an osmolality promoting agent which is dissolved or emulgated in the solution or in the last solution to be applied when forming the hydrophilic coating. WO 94/16747 does not disclose cross-linked coatings.
  • WO 89/09246 discloses solid shaped structures having a surface coated with crosslinked hydrophilic polymer, the coating being durable and exhibiting a low coefficient of friction when wet. It is stated that the degree of crosslinking is critical and is to be controlled by the operating conditions chosen as too much crosslinking reduces or completely eliminates the low friction surface property, and too little crosslinking negatively affects the durability of the coating. WO 89/09246 does not disclose the presence of a water soluble or osmolality-increasing compound in the coating.
  • WO 98/19729 discloses catheter packages wherein the catheter is stored in the wetting medium comprising, e.g., an aqueous solution of NaCl, but WO 98/19729 does not mention a wetting solution comprising a hydrophilic polymer.
  • All said coatings are developed for instant swelling immediately before use of the medical device on which the coatings are applied.
  • It has been found, however, that most hydrophilic coatings lose their water retention and that the coefficient of friction increase when the coatings are stored in water for an extended period of time and/or particulary after sterilisation using irradiation or autoclaving.
  • Thus, there is still a need for a hydrophilic coating retaining water retention and low coefficient of friction when the coatings are stored in water for an extended period of time and/or particularly after sterilisation using irradiation or autoclaving.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a method for sterilizing a medical device comprising a hydrophilic coating using radiation.
  • Furthermore, the invention relates to a sterilized set comprising a medical device provided with a hydrophilic coating and an aqueous liquid for wetting the hydrophilic coating.
  • Still further, the invention relates to a method of protecting the hydrophilic coating of a medical device having such coating during sterilizing using radiation.
  • The invention further relates to a medical device comprising a hydrophilic coating said medical device showing, after sterilization using radiation, a prolonged water drain off time and a reduced friction force.
  • The invention yet further relates to methods for preparing sterilized catheters having hydrophilic coatings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a method for sterilizing a medical device comprising a hydrophilic coating using radiation said method comprising the steps of bringing the medical device having such coating in contact with an aqueous liquid for wetting the hydrophilic coating, said liquid comprising a solution of a hydrophilic polymer and sterilizing the device by applying a sufficient amount of radiation.
  • It has surprisingly been found that the water retention can be increased dramatically and the coefficient of friction can be kept low by adding hydrophilic polymers for example polyvinylpyrrolidone or copolymers containing N-vinylpyrrolidone, poly(meth)acrylic acid or copolymers containing (meth)acrylic acid or (meth)acrylic acid esters, polyacrylamides, polyvinylalcohol and copolymers of partially saponified vinylacetate copolymers, polyethylenglycol, polyvinylmethylether, polyvinylmethylether-maleic anhydride and copolymers containing maleic-anhydride or maleic-acidesters or copolymers containing vinylmethyl-ether, or copolymers thereof, or water soluble polysaccharides or derivatives thereof such as carboxymethylcellulose (CMC) or hydroxyethylcellulose or Xanthane or a derivative thereof to the liquid for wetting a hydrophilic coating and that these compounds also protect these properties during exposure to sterilization using radiation when wetted with such wetting liquid.
  • Suitable hydrophilic polymers for the wetting agent may be mixtures of the preferred species stated above.
  • Without limiting the invention to any specific hypothesis, it is assumed that the effect may be ascribed to one or more of following effects:
  • 1. Dissolved hydrophilic polymer chains in the aqueous liquid penetrate physically bound or crosslinked coatings and stabilise them. The thickness of the coating is increased which contributes to a higher capacity of retaining water.
  • 2. Dissolved hydrophilic polymer chains in the aqueous liquid penetrates physically bound or crosslinked coatings and prevent further crosslinking during irradiation.
  • 3. Dissolved polymers may be chemically bonded to the hydrophilic coating during irradiation in the aqueous liquid. This gives rise to a thicker layer of coating contributing to a higher capacity of retaining water.
  • It is preferred that the hydrophilic polymer is a synthetic polymer and especially that the hydrophilic polymer is at least compatible with and preferably of the same type as the hydrophilic polymer of the coating.
  • Also preferred are polysaccharides selected from the group consisting of cellulose derivatives and xanthans. Although polysaccharides show a tendency of break down on sterilisation using radiation, these compounds have still proven effective in giving a long retention time, a low friction. Normally such compounds show a very pronounced thickening effect in water and are used in relatively low amounts.
  • In a preferred embodiment of the invention the cellulose derivative is CMC or a derivative thereof. CMC is suitably used in an amount from 0.005 to 3.0%, depending on the molecular weight and degree of substitution of the polymer preferably about 0.5% giving very good results. When using xanthan, the amount used is normally in the range from 0.005 to 1%, preferably about 0.15%.
  • In an especially preferred embodiment of the invention the hydrophilic polymer is a polyvinyl pyrrolidone (PVP).
  • The amount of polyvinyl pyrrolidone to be used according to the invention may vary and depends i.a. on the molecular weight of the specific PVP. The higher the molecular weight, the higher is the tendency of gelling. Thus, the use of higher amounts of low molecular weight PVP gives an effect similar to the use of lower amounts of a higher molecular weight PVP. The amount of a PVP of a given molecular weight PVP to be used is easily determined by the skilled in the art by routine experiments testing the water retention. When using a PVP having a relatively low molecular weight above 1000 and preferably above 5000, an amount of 6% by weight has proven to be suitable giving a long retention time, a low friction and no problems with gelling.
  • It is also considered an aspect of the invention, when working with medical devices having physically bound or cross-linked hydrophilic coatings, to include a hydrophilic polymer not forming cross-links with the coating into the coating and to wet or store the medical device in water or saline.
  • Saline or another non-toxic osmolality increasing agent is preferably present in the physiological range. Thus, saline is preferably present in an amount of 0.9%
  • Furthermore, the invention relates to a sterilized set comprising a medical device provided with a hydrophilic coating and an aqueous liquid for wetting the hydrophilic coating wherein said device is in contact with the aqueous liquid, wherein said set has been sterilized using radiation while in contact with said liquid comprising a solution of a hydrophilic polymer.
  • In another embodiment of the set of the invention the aqueous liquid is placed in the package also comprising the medical device provided with a hydrophilic coating. Thus, the catheter is permanently wetted by the wetting liquid and thus ready to use. Such a set may be of the kind disclosed in WO 98/19729.
  • It has surprisingly been found that using wetting liquids of the kind disclosed above, it is possible to provide a catheter which is permanently wetted by the wetting liquid and thus ready to use and which may be sterilised by irradiation or autoclaving and which will retain the water retention capability and thus low coefficient of friction when the coatings are stored in water for an extended period of time.
  • Sterilization using radiation is normally carried out using beta or gamma radiation.
  • Normally, a loss of water retention capability of coated catheters is observed, probably due to loss of non-crosslinked and non-bonded polymer chains from the coating during storage in water or by further crosslinking of the coating during irradiation in water.
  • In the first case a collapse of the coating, when the device is removed from the water reservoir, will give a low water retention and increase of the coefficient of friction during use. In the second case further crosslinking will decrease the water content in the coating and hence, the coating will show a low water retention and an increased friction coefficient.
  • Still further, the invention relates in a third aspect to a method of protecting the hydrophilic coating of a medical device having such coating during sterilizing using radiation, characterized in that the coating is brought into contact with an aqueous solution comprising a hydrophilic polymer and exposed for the radiation while in contact with the aqueous solution.
  • In a fourth aspect, the invention relates to a medical device comprising a hydrophilic coating said medical device showing, after sterilization using radiation, a water drain off time >3 minutes and a friction force of <0.05 N when testing a 10 cm tube having the hydrophilic coating fixed on a stainless steel plate with two stainless steel rods as shown in ASTM 1894-93 for both physically bonded hydrophilic coatings of the type disclosed in WO 94/16747 and for chemically cross-linked coatings of the types disclosed in i.a. WO 98/58988, WO 98/58989, and WO 98/58990.
  • Using the invention it has proven possible to obtain and retain very high water drain off time and low friction forces.
  • In a fifth aspect, the invention relates to a method of preparing a sterilized catheter having a crosslinked two-layer hydrophilic coating comprising the steps of
  • a) preparing a solution of polyvinyl pyrrolidone dissolved in an ethanougamma ethanol/gamma solvent mixture,
  • b) dipping a raw catheter in the solution and letting it dry at ambient temperature,
  • c) dipping the resulting catheter in a PVP-solution containing urea and an ethanol/gamma butyrolactone (85/15) solvent mixture,
  • d) further drying at elevated temperature,
  • e) cross-linking the polyvinylpyrrolidone by exposing the coated catheter to UV-light having a wave length range between 200 and 300 nm. for from ½ to 15 minutes, and
  • f) sterilizing the coated catheter while wetted with a. solution of PVP by irradiation.
  • In a sixth aspect, the invention relates to a method of preparing a sterilized catheter having a crosslinked hydrophilic coating with unsaturated poly(methyl vinyl ether/maleic anhydride)/hydroxyethylmethacrylate(HEMA) prepolymers comprising the steps of
  • a) preparing a solution of poly(methyl vinyl ether/maleic anhydride) in acetone in a reaction vessel equipped with at stirrer, keeping the reaction mixture at room temperature while adding 1-methylimidazole as a catalyst and hydroxyethylmethacrylate dropwise to the stirred polymer solution during a period of 30 minutes,
  • b) stirring the mixture for from few minutes to 10 hours at room temperature,
  • c) preparing a primer mixture by dissolving a medical grade polyurethane and the poly(methyl vinyl ether/maleic anhydride)/HEMA unsaturated prepolymer in a mixture of THF and acetone,
  • d) coating a raw catheter with a primer by dipping in the resulting solution in a manner known per se,
  • e) dipping the resulting catheter in the solution of poly(methyl vinyl ether/maleic anhydride)/HEMA unsaturated prepolymer in acetone for applying a top coat,
  • f) drying the resulting catheter,
  • g) cross-linking the poly(methyl vinyl ether/maleic anhydride)/HEMA unsaturated prepolymer polyvinylpyrrolidone by exposing the coated catheter to 5 M rads from a high energy electron beam source, and
  • h) sterilizing the coated catheter while wetted with a solution of PVP by irradiation.
  • In a seventh aspect, the invention relates to a method of preparing a sterilized catheter having a cross-linked single layer of hydrophilic coating comprising the steps of
  • a) preparing a solution of polyvinyl pyrrolidone dissolved in an ethanol/gamma butyrolactone solvent mixture,
  • b) dipping a raw catheter in the solution and letting it dry at elevated temperature,
  • c) cross-linking the polyvinylpyrrolidone by exposing the coated catheter to UV-light having a wave length range between 200 and 300 nm. for from ½ to 15 minutes, and
  • d) sterilizing the coated catheter while wetted with a. solution of PVP by irradiation.
  • In accordance with a preferred embodiment of the invention, the wetting liquid comprises an antibacterial agent such as a silver salt, e.g., silver sulphadiazine, an acceptable iodine source such as povidone iodine (also called polyvinylpyrrolidone iodine), chlorhexidine salts such as the gluconate, acetate, hydrochloride or the like salts or quaternary antibacterial agents such as benzalkonium chloride or other antiseptics or antibiotics. Antibacterial agents reduces the risk of infection, especially when performing urodynamic examinations.
  • The wetting liquid may according to the invention comprise an osmolality increasing agent such as urea, sodium chloride and/or any salt or organic low molecular weight compound being physiological acceptable and non-irritating for adjusting the ion strength of the coating approximately to the physiological range, the coating preferably being isotonic in use.
  • When using urea, the added amount may vary within very broad limits.
  • The wetting liquid of the invention may also, if desired, comprise plasticizers for the hydrophilic coating such as diethylene glycol, glycerol, phthalates, sorbitol or the like.
  • Indicators or buffers for pH or antibodies, e.g. monoclonal antibodies for specific proteins, may also be enclosed in the wetting liquid of the invention.
  • In accordance with a preferred embodiment pharmaceutically active compounds such as antioxidants or preservatives such as anti microbial agents or antithrombogenic agents may be added to the composition.
  • Materials and Methods
  • Polyvinylpyrrolidone: PVP K 90 available from ISP Inc. having a molecular weight 1,300,000 according to ISP.
  • Polyvinylpyrrolidone: Plasdone K-25 available from ISP Inc. having a molecular weight 34,000 according to ISP.
  • Poly(methyl vinyl ether/maleic anhydride) is available as the Gantrez AN series of copolymers from ISP
  • Ethanol: Absolute Alcohol.
  • Gamma butyrolactone: Gamma-butyrolactone from International Specialty Products.
  • UV catalyst: ESACURE KIP 150 from Lamberti SpA
      • Darocure® 1173 from Ciba Geigy.
        Method for Determination of the Friction
  • The Standard Test Method for Static and Kinetic Coefficient of Friction of Plastic Film and Sheeting, ASTM D 1894-93 was modified for testing the friction coefficient and wear on plastic tubes and catheters.
  • The tubes or catheters were cut in lengths of 10 cm and fixed on a stainless steel plate with two stainless steel rods as shown in ASTM D 1894-93. The rods had diameters comparable with the inner diameter of the tubes or catheters to keep their shape even when heavy sledges were placed upon them.
  • The friction was determined after wetting after dipping the specimen in wetting liquid for 1 minute. The force for pulling the sledge was measured in Newtons.
  • Method for Determination of Water Retention
  • Water retention was determined by subjectively determining the time for the liquid to drain off after which the coating is dry using a stop watch.
  • Experimental Part
  • EXAMPLE 1 Preparation of a Catheter Having a Crosslinked Two-layer Hydrophilic Coating
  • 5 parts of PVP K 90 and 0.05 part of ESACURE KIP 150 were dissolved in 94.95 parts of an ethanol/gamma butyrolactone solvent mixture. PVC-catheters were dipped in the solution and dried 1 minute at ambient temperature and then dipped in a PVP-solution containing 5 parts of PVP, 1 part of urea and 94 parts of an ethanol/gamma butyrolactone (85/15) solvent mixture. The catheters were further dried for 30 minutes at 70° C. and exposed to UV-light having a wave length range between 200 and 300 nm. for 5 minutes.
  • Finally, sterilization of the coated catheter was performed while wetted with a solution of PVP using irradiation.
  • EXAMPLE 2 Preparation of a Catheter Having a Crosslinked Hydrophilic Coating With Unsaturated Poly(methyl Vinyl Ether/maleic Anhydride)/hydroxyethylmethacrylate(HEMA) Prepolymers
  • 20 parts of Gantrez® AN 119 was dissolved in 200 parts of acetone in a reaction vessel equipped with at stirrer. The reaction mixture was kept at room temperature. One drop of 1-methylimidazole was added to the solution as a catalyst. 5 mole % 2-hydroxyethylmethacrylate, based on contents of maleic anhydride were added dropwise to the stirred polymer solution during a period at 30 min. The mixture was stirred for further 2 hours at room temperature.
  • A 50:50 primer mixture with 5% solids was prepared by dissolving a medical grade polyurethane and the Poly(methyl vinyl ether/maleic anhydride)/HEMA unsaturated prepolymer in a 50:50 mixture of THF and acetone and was coated on PVC catheters as a primer by dipping in a manner known per se.
  • The catheters were dipped in the solution of poly(methyl vinyl ether/maleic anhydride)/HEMA unsaturated prepolymer in acetone for applying a top coat, dried and exposed to 5 M rads from a high energy electron beam source.
  • Afterwards, the cross-linked coatings were hydrolyzed and neutralized in a sodium hydrogen carbonate buffer solution for one hour before drying.
  • Then, sterilization of the coated catheter was carried out while wetted with a solution of PVP using irradiation.
  • The friction tested according to the modified ASTM D 1894-93 method as described above showed a friction force of 0.02 when determined in water.
  • EXAMPLE 3
  • A top coat and a primer solution were prepared as in Example b. To the solutions was added 1% by weight of the solid Darocure® 1173, a UV photo-initiator obtainable from Ciba Geigy.
  • PVC catheters were dipped in the primer solution, dried for 30 minutes and dipped in the top coat solution also containing 1% by weight of the solid of Darocure® 1173 and dried for further 30 minutes. Then, the coating was cross-linked by exposure to UV light.
  • The cross-linked coatings were then hydrolyzed and neutralized in a sodium hydrogen carbonate buffer solution for one hour before drying.
  • Then, sterilization of the coated catheter was carried out while wetted with a. solution of PVP using irradiation.
  • The friction tested according to the modified ASTM D 1894-93 method as described above showed a friction force of 0.02 when determined in water.
  • EXAMPLE 4 Preparation of a Catheter Having a Cross-linked Single Layer Hydrophilic Coating According to the Invention
  • 5 parts of PVP K 90 was dissolved in 95 parts of a ethanol/gamma butyrolactone (85/15) solvent mixture. PVC catheters were dipped in the solution, dried for 30 minutes at 70° C. and exposed to a UV light having a wave length between 200 and 300 nm for 6 minutes.
  • Then, sterilization of the coated catheter was carried out while wetted with a. solution of PVP using irradiation.
  • The catheter was lubricious in wet condition and had a high abrasion resistance.
  • EXAMPLE 5
  • Determination of the water retention time in minutes and the friction force in N when using the aqueous wetting liquid according to the invention as compared to the use of saline for wetting the coating.
  • A cross-linked coating prepared according to Example a, and the following commercial catheters: an EasiCath® catheter, from Coloplast A/S, a LoFric® catheter from Astra AB, a PuriCath® catheter from Maersk Medical, an AquaCath® catheter from EMS, and a Uro-flo Silky catheter from Simcare were tested for determination of the water retention time and the friction. The coated catheters were compared to an uncoated raw catheter having no hydrophilic coating.
  • All catheters were stored in a 6% solution of PVP Plasdone K-25 or in saline and sterilized by irradiation, and water reretention of the coatings and the force of friction were determined as described above.
  • The results are summarized in the below Table 1:
    TABLE 1
    6% 6%
    0.9% Plasdone 0.5% 0.15% 0.9% Plasdone
    Liquid saline K-25 CMC Xanthane Saline K-25
    Coating Water retention (minutes) Friction Force (N)
    Example a 1-3 9 9 9 0.06 0.04
    EasiCath ® 1-2 7 0.1 0.04
    LoFric ® 1-2 5-7 0.05 0.02
    PuriCath ® 1-2 5 0.32 0.25
    AquaCath ® 1-2 3 0.08 0.06
    Uro-flo Silky 1-2 1-2 0.7 0.35
    Raw 0 0 0.8 0.8
    catheter
  • EXAMPLE 6
  • Determination of the water retention time in minutes and the friction force in N for the same wetting liquids before and after sterilization using radiation.
  • The friction force and the water retention were determined as stated above after the catheters had been stored in the stated solutions for two days.
  • The results are stated in the below Tables 2 and 3.
    TABLE 2
    Water retention (Minutes)
    Storage for 48 hours Storage for 48 hours
    without sterilization with sterilization
    Wetting 0.9% NaCl 0.9% NaCl + 0.9% NaCl 0.9% NaCl +
    Liquid Plasdone Plasdone K25
    Coating K25
    Example a 3 5 1-3 9
    EasiCath ® 9 5 1-2 7
    LoFric ® 9 5 1-2 5-7
    PuriCath ® 9 5 1-2 5
    Raw catheter 0 0 0 0
  • TABLE 3
    Friction Force (N)
    Storage for 48 hours Storage for 48 hours
    without sterilization with sterilization
    Wetting 0.9% NaCl 0.9% NaCl + 0.9% NaCl 0.9% NaCl +
    Liquid Plasdone Plasdone K25
    Coating K25
    Example a 0.04 0.13 0.06 0.04
    EasiCath ® 0.08 0.09 0.1 0.04
    LoFric ® 0.07 0.08 0.05 0.02
    PuriCath ® 0.26 0.31 0.32 0.25
    Raw catheter 0.8 0.8 0.8 0.8
  • The results presented in Tables 2 and 3 show that sterilization by beta irradiation of the catheters in an isotonic saline solution reduces the water retention and increases the friction force of the coatings whereas sterilization by irradiation of coated catheters stored in a isotonic saline solution comprising also 6% Plasdone K-25 does not adversely effect water retention or friction force of the coatings. This is the case for the coating prepared according to Example a as well as for commercial state of the art catheters.

Claims (19)

1-13. (canceled)
14. A medical device comprising a hydrophilic coating, said hydrophilic coating having, after sterilisation using radiation, a water drain off time of greater than 3 minutes and a friction force of less than 0.05 N, when the water drain off time and the friction force are measured on a 10 cm tube having the hydrophilic coating of the medical device, said tube being fixed on a stainless steel plate with two stainless steel rods and tested under the conditions set forth in ASTM 1894-93.
15. The medical device according to claim 14 wherein the medical device has been sterilised using radiation while the hydrophilic coating is in contact with an aqueous liquid including a solution of a hydrophilic polymer.
16. The medical device according to claim 1, wherein said device is a plastic tube or catheter and the water drain off time and the friction force are measured on 10 cm of said plastic tube or catheter.
17. The medical device according to claim 15, wherein the hydrophilic polymer is a synthetic polymer.
18. The medical device according to claim 17, wherein the hydrophilic polymer is selected from the group consisting of polyvinylpyrrolidone or a copolymer containing N-vinylpyrrolidone, poly(meth)acrylic acid or a copolymer containing (meth)acrylic acid or a (meth)acrylic acid ester, a polyacrylamide, polyvinylalcohol and a copolymer of a partially saponified vinylacetate copolymer, polyethylenglycol, polyvinylmethylether, polyvinylmethylether-maleic anhydride and a copolymer containing maleic-anhydride or a maleic acid ester or a copolymer containing vinylmethyl-ether.
19. The medical device as in claim 18 wherein the hydrophilic polymer is polyvinyl pyrrolidone or a copolymer thereof.
20. The medical device according to claim 15 wherein the hydrophilic polymer is a polysaccharide.
21. The medical device according to claim 20 wherein the hydrophilic polymer is a member selected from the group consisting of a water soluble polysaccharide, Xanthane and a derivative of either.
22. The medical device according to claim 21 wherein the hydrophilic polymer is CMC or a derivative thereof.
23. The medical device according the claim 15 wherein the aqueous liquid including a solution of a hydrophilic polymer also contains diethylene glycol, glycerol, phthalates or sorbitol.
24. A sterilized medical device comprising a hydrophilic coating, said medical device having been sterilized while the hydrophilic coating is in contact with an aqueous liquid including a solution of a hydrophilic polymer.
25. The medical device according to claim 24, wherein the hydrophilic polymer is a synthetic polymer.
26. The medical device according to claim 25, wherein the hydrophilic polymer is selected from the group consisting of polyvinylpyrrolidone or a copolymer containing N-vinylpyrrolidone, poly(meth)acrylic acid or a copolymer containing (meth)acrylic acid or a (meth)acrylic acid ester, a polyacrylamide, polyvinylalcohol and a copolymer of a partially saponified vinylacetate copolymer, polyethylenglycol, polyvinylmethylether, polyvinylmethylether-maleic anhydride and a copolymer containing maleic-anhydride or a maleic acid ester or a copolymer containing vinylmethyl-ether.
27. The medical device as in claim 26 wherein the hydrophilic polymer is polyvinyl pyrrolidone or a copolymer thereof.
28. The medical device according to claim 24 wherein the hydrophilic polymer is a polysaccharide.
29. The medical device according to claim 28 wherein the hydrophilic polymer is a member selected from the group consisting of a water soluble polysaccharide, Xanthane and a derivative of either.
30. The medical device according to claim 29 wherein the hydrophilic polymer is CMC or a derivative thereof.
31. The medical device according the claim 24 wherein the aqueous liquid including a solution of a hydrophilic polymer also contains diethylene glycol, glycerol, phthalates or sorbitol.
US11/134,304 1998-11-20 2005-05-23 Method for sterilizing a medical device having a hydrophilic coating Abandoned US20050214443A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DKPA199801534 1998-11-20
DKPA199801534 1998-11-20
US21830598A true 1998-12-22 1998-12-22
PCT/DK1999/000641 WO2000030696A1 (en) 1998-11-20 1999-11-19 A method for sterilising a medical device having a hydrophilic coating
US09/862,030 US6986868B2 (en) 1998-11-20 2001-05-18 Method for sterilizing a medical device having a hydrophilic coating
US11/134,304 US20050214443A1 (en) 1998-11-20 2005-05-23 Method for sterilizing a medical device having a hydrophilic coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/134,304 US20050214443A1 (en) 1998-11-20 2005-05-23 Method for sterilizing a medical device having a hydrophilic coating
US14/275,910 US9138510B2 (en) 1998-11-20 2014-05-13 Sterilized ready-to-use catheter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/862,030 Division US6986868B2 (en) 1998-11-20 2001-05-18 Method for sterilizing a medical device having a hydrophilic coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/275,910 Continuation US9138510B2 (en) 1998-11-20 2014-05-13 Sterilized ready-to-use catheter

Publications (1)

Publication Number Publication Date
US20050214443A1 true US20050214443A1 (en) 2005-09-29

Family

ID=8105834

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/134,304 Abandoned US20050214443A1 (en) 1998-11-20 2005-05-23 Method for sterilizing a medical device having a hydrophilic coating
US14/275,910 Expired - Lifetime US9138510B2 (en) 1998-11-20 2014-05-13 Sterilized ready-to-use catheter

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/275,910 Expired - Lifetime US9138510B2 (en) 1998-11-20 2014-05-13 Sterilized ready-to-use catheter

Country Status (14)

Country Link
US (2) US20050214443A1 (en)
EP (4) EP1961429A3 (en)
JP (1) JP4602556B2 (en)
CN (1) CN1291762C (en)
AT (1) AT232750T (en)
AU (1) AU754585B2 (en)
CA (1) CA2349198C (en)
DE (1) DE69905487T3 (en)
DK (2) DK2065061T3 (en)
ES (2) ES2539944T3 (en)
HU (1) HU226497B1 (en)
PL (1) PL347727A1 (en)
PT (1) PT2065061E (en)
WO (1) WO2000030696A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263404A1 (en) * 2003-02-26 2006-11-23 Nielsen Bo R Assembly for the preparation of a medical device having a coating comprising hydrogen peroxide
US20080044553A1 (en) * 2006-08-15 2008-02-21 Abigail Freeman Sterilization methods for medical devices
US20080292496A1 (en) * 2005-05-02 2008-11-27 Niels Jorgen Madsen Method for Sterilising a Medical Device Having a Hydrophilic Coating
US20090012208A1 (en) * 2003-10-07 2009-01-08 Niels Joergen Madsen Medical Device Having a Wetted Hydrophilic Coating
US20110058982A1 (en) * 2008-05-16 2011-03-10 Terumo Kabushiki Kaisha Method for radiation sterilization of hydrophilic polymer-coated medical device
US20110106061A1 (en) * 2008-06-16 2011-05-05 Bo Rud Nielsen Buffered swelling media for radiation sterilized hydrophilic coatings
US8328792B2 (en) 2005-10-27 2012-12-11 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating
US8864730B2 (en) 2005-04-12 2014-10-21 Rochester Medical Corporation Silicone rubber male external catheter with absorbent and adhesive
US8998882B2 (en) 2013-03-13 2015-04-07 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating
US9033149B2 (en) 2010-03-04 2015-05-19 C. R. Bard, Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve and a foil outer layer and method of making and using the same
US9364588B2 (en) 2014-02-04 2016-06-14 Abbott Cardiovascular Systems Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating
US9707375B2 (en) 2011-03-14 2017-07-18 Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. Catheter grip and method
US9821139B2 (en) 2009-08-13 2017-11-21 C. R. Bard, Inc. Catheter having internal hydrating fluid storage and/or catheter package using the same and method of making and/or using the same
US9872969B2 (en) 2012-11-20 2018-01-23 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Catheter in bag without additional packaging
US10092728B2 (en) 2012-11-20 2018-10-09 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Sheath for securing urinary catheter
US10149961B2 (en) 2009-07-29 2018-12-11 C. R. Bard, Inc. Catheter having improved drainage and/or a retractable sleeve and method of using the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK172941B1 (en) 1996-09-18 1999-10-11 Coloplast As A urinary catheter assembly
JP4602556B2 (en) 1998-11-20 2010-12-22 コロプラスト アクティーゼルスカブ Method of sterilizing a medical device having a hydrophilic coating
IES20030294A2 (en) 2003-04-17 2004-10-20 Medtronic Vascular Connaught Coating for biomedical devices
US7380658B2 (en) 2003-08-08 2008-06-03 Hollister Incorporated Vapor hydration of a hydrophilic catheter within a package
DK1809345T3 (en) 2004-10-07 2009-07-13 Coloplast As Medical device having a wetted hydrophilic coating
SE0303525D0 (en) 2003-12-22 2003-12-22 Astra Tech Ab Catheter assembly with osmolality-increasing
JP4649845B2 (en) * 2004-02-24 2011-03-16 東レ株式会社 Modified substrate
JP2005298656A (en) * 2004-04-09 2005-10-27 Toto Ltd Glass-hydrophilizing agent
DE102005053295C5 (en) * 2005-11-08 2013-03-07 Spiegelberg GmbH & Co. KG A method for producing a sterile packaged, metal-containing plastic body with antimicrobial surface
EP2035045A1 (en) * 2006-06-01 2009-03-18 DSMIP Assets B.V. Sterilisation of a medical device by irradiation
US7770726B2 (en) 2006-06-08 2010-08-10 Hollister Incorporated Catheter product package and method of forming same
AT547985T (en) 2006-09-04 2012-03-15 Hoffmann La Roche Packaging of hydrophilic medical instruments
US8580192B2 (en) 2006-10-31 2013-11-12 Ethicon, Inc. Sterilization of polymeric materials
EP2198897B1 (en) 2008-12-19 2016-08-03 Dentsply IH AB Method for producing a medical device with a cross-linked hydrophilic coating
EP2338535B1 (en) * 2009-12-18 2012-08-01 Dentsply IH AB Medical device for short time use with quickly releasable antibacterial agent
CN102665779B (en) * 2009-12-21 2015-04-01 科洛普拉斯特公司 Wetting media with low molecolar polyol and buffer
CN103561789A (en) * 2011-07-29 2014-02-05 帝斯曼知识产权资产管理有限公司 Medical device comprising a wetted hydrophilic coating
CN103997981B (en) * 2011-10-14 2017-07-07 放射医疗系统公司 Small flexible conduit and a liquid core using methods for laser ablation of the body lumen
DK177651B1 (en) 2012-10-26 2014-02-03 Mbh Internat A S Method of preparing a ready-to-use urinary catheter and a catheter assembly for use in said method
LT2919825T (en) 2012-11-14 2018-12-10 Hollister Incorporated Disposable catheter with selectively degradable inner core
USD751704S1 (en) 2013-06-10 2016-03-15 Coloplast A/S Compact female urinary catheter
US9962527B2 (en) 2013-10-16 2018-05-08 Ra Medical Systems, Inc. Methods and devices for treatment of stenosis of arteriovenous fistula shunts
AU2014363933A1 (en) * 2013-12-12 2016-06-09 Hollister Incorporated Flushable disintegration catheter
CN103948971A (en) * 2014-03-20 2014-07-30 北京迪玛克医药科技有限公司 Intervention catheter surface treatment method and intervention catheter
KR101740304B1 (en) 2015-06-23 2017-05-29 (주)헵틸와이 Medical catheter comprising hydrophilic oxidized polysaccharide coating layer and manufacturing method thereof
CN105963798B (en) * 2015-10-15 2019-02-15 淮海工学院 A kind of water-based lubricating liquid and the preparation method and application thereof
EP3248620A1 (en) * 2016-05-25 2017-11-29 Teleflex Life Sciences Method of making a ready-to-use catheter assembly and a ready-to-use catheter assembly
EP3281649A1 (en) 2016-08-09 2018-02-14 Teleflex Lifesciences Wetting agent formulation

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US350749A (en) * 1886-10-12 Journal-bearing
US462622A (en) * 1891-11-03 Spool-holder
US537245A (en) * 1895-04-09 Process of decorating glass
US551514A (en) * 1895-12-17 sherman
US3648704A (en) * 1970-07-17 1972-03-14 Frederick E Jackson Disposable catheter apparatus
US3967728A (en) * 1973-03-02 1976-07-06 International Paper Company Catheter package
US4100309A (en) * 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4119094A (en) * 1977-08-08 1978-10-10 Biosearch Medical Products Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4459317A (en) * 1982-04-22 1984-07-10 Astra Meditec Aktiebolag Process for the preparation of a hydrophilic coating
US4626292A (en) * 1982-06-01 1986-12-02 Sherman Laboratories, Inc. Soft contact lens wetting and preservation method
US4691820A (en) * 1985-11-18 1987-09-08 Vistakon, Inc. Package for hydrophilic contact lens
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US4792914A (en) * 1985-12-23 1988-12-20 Thomson-Csf High frequency digital synthesizer with aperiodic correction optimizing the spectral purity
US4906237A (en) * 1985-09-13 1990-03-06 Astra Meditec Ab Method of forming an improved hydrophilic coating on a polymer surface
US5001009A (en) * 1987-09-02 1991-03-19 Sterilization Technical Services, Inc. Lubricious hydrophilic composite coated on substrates
US5041100A (en) * 1989-04-28 1991-08-20 Cordis Corporation Catheter and hydrophilic, friction-reducing coating thereon
US5120816A (en) * 1987-12-02 1992-06-09 Tyndale Plains-Hunter Ltd. Hydrophilic polyurethanes of improved strength
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5233667A (en) * 1990-12-24 1993-08-03 Goldstar Co., Ltd. Camcorder with a microphone
US5240675A (en) * 1992-09-24 1993-08-31 Wilk Peter J Method for cleaning endoscope
US5242428A (en) * 1991-10-04 1993-09-07 Aubrey Palestrant Apparatus for wetting hydrophilic-coated guide wires and catheters
US5322667A (en) * 1987-03-31 1994-06-21 Sherman Pharmaceuticals, Inc. Preservative system for ophthalmic and contact lens solutions and method for cleaning disinfecting and storing contact lenses
US5356948A (en) * 1990-09-04 1994-10-18 Becton, Dickinson And Company Lubricious radiation stable polymeric composition and method for sterilizing therefrom
US5529727A (en) * 1994-07-20 1996-06-25 Bausch & Lomb Incorporated Method of treating contact lenses
US5576072A (en) * 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
US5604189A (en) * 1993-06-18 1997-02-18 Zhang; Hong J. Composition for cleaning and wetting contact lenses
US5618492A (en) * 1994-08-23 1997-04-08 Auten; Richard D. Process for sterilizing articles and providing sterile storage environments
US5688855A (en) * 1995-05-01 1997-11-18 S.K.Y. Polymers, Inc. Thin film hydrophilic coatings
US5741828A (en) * 1995-05-01 1998-04-21 S.K.Y. Polymers, Inc. Flexible hydrophilic composite coatings
US5744094A (en) * 1991-04-12 1998-04-28 Elopak Systems Ag Treatment of material
US5882687A (en) * 1997-01-10 1999-03-16 Allergan Compositions and methods for storing contact lenses
US6099804A (en) * 1996-03-29 2000-08-08 Radiometer Medical A/S Sensor and membrane for a sensor
US6102898A (en) * 1994-08-22 2000-08-15 Becton Dickinson & Company Radiation compatible lubricant for medical devices
US6409717B1 (en) * 1996-01-25 2002-06-25 Astra Aktiebolag Hydrophilic urinary catheter having a water-containing sachet
US6629961B1 (en) * 1996-06-26 2003-10-07 Astra Aktiebolag Medical device with hydrophilic coating
US6664308B2 (en) * 1993-06-01 2003-12-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US6986868B2 (en) * 1998-11-20 2006-01-17 Coloplast A/S Method for sterilizing a medical device having a hydrophilic coating
US7705067B2 (en) * 1998-01-09 2010-04-27 Novartis Ag Biomedical device having improved surface characteristics

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE430695B (en) 1982-04-22 1983-12-05 Astra Meditec Ab Process for the production tell up from a hydrophilic beleggning and according to the procedure framstellda medical articles
AU566085B2 (en) 1984-06-04 1987-10-08 Terumo Kabushiki Kaisha Medical instrument with surface treatment
JPH0133181B2 (en) * 1984-06-04 1989-07-12 Terumo Corp
SE447791B (en) 1985-04-30 1986-12-15 Astra Meditec Ab Vetnings- and forvaringsanordning for a catheter
JPH03503379A (en) * 1988-03-23 1991-08-01
US5079093A (en) 1988-08-09 1992-01-07 Toray Industries, Inc. Easily-slippery medical materials and a method for preparation thereof
DK165415C (en) 1988-11-02 1993-04-13 Unoplast A S Article with a wetting friktionsnedsaettende surface coatings procedure for preparing the same and belaegningsmiddel for use in the procedure
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
US5077352A (en) 1990-04-23 1991-12-31 C. R. Bard, Inc. Flexible lubricious organic coatings
DK146790D0 (en) 1990-06-15 1990-06-15 Meadox Surgimed As Method for producing an at fertilization friktionsnedsaettende paperboard and medical instrument with a friktionsnedsaettende COATED
JPH0489061A (en) 1990-08-01 1992-03-23 Terumo Corp Yellowing preventing method for vinyl chloride resin product
JPH04285561A (en) 1991-03-14 1992-10-09 Terumo Corp Sterilization method for medical material and manufacture of medical instrument
US5405366A (en) 1991-11-12 1995-04-11 Nepera, Inc. Adhesive hydrogels having extended use lives and process for the preparation of same
JP2672051B2 (en) 1992-01-20 1997-11-05 日機装 株式会社 Method for producing a blood purification apparatus
JP2804200B2 (en) * 1992-03-13 1998-09-24 ダイメック株式会社 Medical device and a manufacturing method thereof lubricating surface when wet
DK7193B (en) 1993-01-21 1994-07-22 Coloplast As A process for the preparation of a hydrophilic coating on a surface and the medical article prepared by the process
US5531715A (en) 1993-05-12 1996-07-02 Target Therapeutics, Inc. Lubricious catheters
AU7642894A (en) * 1993-08-30 1995-03-22 Nepera, Inc. Low friction, hydrophilic, biocompatible compositions
GB2284764B (en) 1993-11-30 1998-08-05 Mmg A catheter and urine collection device assembly
AU681761B2 (en) 1994-02-15 1997-09-04 Biosearch Italia S.P.A. Central venous catheters loaded with antibiotics of the ramoplanin group preventing development of catheter related infections
JPH07250891A (en) 1994-03-16 1995-10-03 Teijin Ltd Gamma ray sterilization of blood dialyzer
CA2195744A1 (en) * 1994-07-22 1996-02-08 Eugene Michal Hydrophilic coating material for intracorporeal use
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
WO1996023602A1 (en) * 1995-02-01 1996-08-08 Schneider (Usa) Inc. Hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other dissimilar polymer hydrogel
DE69602729T3 (en) * 1995-03-29 2007-10-31 Coloplast A/S Applicator and method for use in non-contaminating insertion of a medical catheter
EP0879268A1 (en) * 1996-02-09 1998-11-25 Surface Solutions Laboratories, Inc. Water-based hydrophilic coating compositions and articles prepared therefrom
DK172941B1 (en) * 1996-09-18 1999-10-11 Coloplast As A urinary catheter assembly
PT935478E (en) * 1996-11-01 2000-05-31 Coloplast As A urinary catheter assembly with a catheter ready for use
GB9624269D0 (en) * 1996-11-21 1997-01-08 Rusch Manufacturing Uk Limited Packaged medical device
AU8011798A (en) 1997-06-20 1999-01-04 Coloplast A/S A hydrophilic coating and a method for the preparation thereof
AU8011898A (en) * 1997-06-20 1999-01-04 Coloplast A/S A hydrophilic coating and a method for the preparation thereof
DE69809420T2 (en) 1997-06-20 2003-07-17 Coloplast As Hydrophilic coating and process for their manufacture
JP4602556B2 (en) 1998-11-20 2010-12-22 コロプラスト アクティーゼルスカブ Method of sterilizing a medical device having a hydrophilic coating
US7669720B2 (en) 2006-12-15 2010-03-02 General Electric Company Functional polyarylethers
JP5572016B2 (en) 2009-08-04 2014-08-13 シスメックス株式会社 The device for interstitial fluid extraction method analysis of tissue fluid using a process for producing the same, and the device

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US350749A (en) * 1886-10-12 Journal-bearing
US462622A (en) * 1891-11-03 Spool-holder
US537245A (en) * 1895-04-09 Process of decorating glass
US551514A (en) * 1895-12-17 sherman
US3648704A (en) * 1970-07-17 1972-03-14 Frederick E Jackson Disposable catheter apparatus
US3967728A (en) * 1973-03-02 1976-07-06 International Paper Company Catheter package
US4100309A (en) * 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4119094A (en) * 1977-08-08 1978-10-10 Biosearch Medical Products Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4459317A (en) * 1982-04-22 1984-07-10 Astra Meditec Aktiebolag Process for the preparation of a hydrophilic coating
US4626292A (en) * 1982-06-01 1986-12-02 Sherman Laboratories, Inc. Soft contact lens wetting and preservation method
US4906237A (en) * 1985-09-13 1990-03-06 Astra Meditec Ab Method of forming an improved hydrophilic coating on a polymer surface
US4691820A (en) * 1985-11-18 1987-09-08 Vistakon, Inc. Package for hydrophilic contact lens
US4792914A (en) * 1985-12-23 1988-12-20 Thomson-Csf High frequency digital synthesizer with aperiodic correction optimizing the spectral purity
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US5322667A (en) * 1987-03-31 1994-06-21 Sherman Pharmaceuticals, Inc. Preservative system for ophthalmic and contact lens solutions and method for cleaning disinfecting and storing contact lenses
US5001009A (en) * 1987-09-02 1991-03-19 Sterilization Technical Services, Inc. Lubricious hydrophilic composite coated on substrates
US5120816A (en) * 1987-12-02 1992-06-09 Tyndale Plains-Hunter Ltd. Hydrophilic polyurethanes of improved strength
US5041100A (en) * 1989-04-28 1991-08-20 Cordis Corporation Catheter and hydrophilic, friction-reducing coating thereon
US5356948A (en) * 1990-09-04 1994-10-18 Becton, Dickinson And Company Lubricious radiation stable polymeric composition and method for sterilizing therefrom
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5233667A (en) * 1990-12-24 1993-08-03 Goldstar Co., Ltd. Camcorder with a microphone
US5744094A (en) * 1991-04-12 1998-04-28 Elopak Systems Ag Treatment of material
US5242428A (en) * 1991-10-04 1993-09-07 Aubrey Palestrant Apparatus for wetting hydrophilic-coated guide wires and catheters
US5240675A (en) * 1992-09-24 1993-08-31 Wilk Peter J Method for cleaning endoscope
US6664308B2 (en) * 1993-06-01 2003-12-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US5604189A (en) * 1993-06-18 1997-02-18 Zhang; Hong J. Composition for cleaning and wetting contact lenses
US5529727A (en) * 1994-07-20 1996-06-25 Bausch & Lomb Incorporated Method of treating contact lenses
US6102898A (en) * 1994-08-22 2000-08-15 Becton Dickinson & Company Radiation compatible lubricant for medical devices
US5618492A (en) * 1994-08-23 1997-04-08 Auten; Richard D. Process for sterilizing articles and providing sterile storage environments
US5576072A (en) * 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
US5688855A (en) * 1995-05-01 1997-11-18 S.K.Y. Polymers, Inc. Thin film hydrophilic coatings
US5741828A (en) * 1995-05-01 1998-04-21 S.K.Y. Polymers, Inc. Flexible hydrophilic composite coatings
US6409717B1 (en) * 1996-01-25 2002-06-25 Astra Aktiebolag Hydrophilic urinary catheter having a water-containing sachet
US6099804A (en) * 1996-03-29 2000-08-08 Radiometer Medical A/S Sensor and membrane for a sensor
US6629961B1 (en) * 1996-06-26 2003-10-07 Astra Aktiebolag Medical device with hydrophilic coating
US5882687A (en) * 1997-01-10 1999-03-16 Allergan Compositions and methods for storing contact lenses
US7705067B2 (en) * 1998-01-09 2010-04-27 Novartis Ag Biomedical device having improved surface characteristics
US6986868B2 (en) * 1998-11-20 2006-01-17 Coloplast A/S Method for sterilizing a medical device having a hydrophilic coating

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028858B2 (en) 2003-02-26 2015-05-12 Coloplast A/S Assembly for the preparation of a medical device having a coating comprising hydrogen peroxide
US20060263404A1 (en) * 2003-02-26 2006-11-23 Nielsen Bo R Assembly for the preparation of a medical device having a coating comprising hydrogen peroxide
US20090012208A1 (en) * 2003-10-07 2009-01-08 Niels Joergen Madsen Medical Device Having a Wetted Hydrophilic Coating
US9248058B2 (en) 2005-04-12 2016-02-02 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Male external catheter with absorbent and adhesive
US8864730B2 (en) 2005-04-12 2014-10-21 Rochester Medical Corporation Silicone rubber male external catheter with absorbent and adhesive
US20080292496A1 (en) * 2005-05-02 2008-11-27 Niels Jorgen Madsen Method for Sterilising a Medical Device Having a Hydrophilic Coating
US7833475B2 (en) 2005-05-02 2010-11-16 Coloplast A/S Method for sterilising a medical device having a hydrophilic coating
US8328792B2 (en) 2005-10-27 2012-12-11 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating
US20110209442A1 (en) * 2006-08-15 2011-09-01 Abbott Cardiovascular Systems Inc. Sterilization Methods For Medical Devices
US9682162B2 (en) 2006-08-15 2017-06-20 Abbott Cardiovascular Systems Inc. Sterilization methods for medical devices
US8747738B2 (en) 2006-08-15 2014-06-10 Abbott Cardiovascular Systems Inc. Sterilization methods for medical devices
US20080044553A1 (en) * 2006-08-15 2008-02-21 Abigail Freeman Sterilization methods for medical devices
US8968648B2 (en) 2008-05-16 2015-03-03 Terumo Kabushiki Kaisha Method for radiation sterilization of hydrophilic polymer-coated medical device
US20110058982A1 (en) * 2008-05-16 2011-03-10 Terumo Kabushiki Kaisha Method for radiation sterilization of hydrophilic polymer-coated medical device
US20110106061A1 (en) * 2008-06-16 2011-05-05 Bo Rud Nielsen Buffered swelling media for radiation sterilized hydrophilic coatings
US8703048B2 (en) 2008-06-16 2014-04-22 Coloplast A/S Buffered swelling media for radiation sterilized hydrophilic coatings
US10149961B2 (en) 2009-07-29 2018-12-11 C. R. Bard, Inc. Catheter having improved drainage and/or a retractable sleeve and method of using the same
US9821139B2 (en) 2009-08-13 2017-11-21 C. R. Bard, Inc. Catheter having internal hydrating fluid storage and/or catheter package using the same and method of making and/or using the same
US9033149B2 (en) 2010-03-04 2015-05-19 C. R. Bard, Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve and a foil outer layer and method of making and using the same
US9731093B2 (en) 2010-03-04 2017-08-15 C. R. Bard, Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve and a foil outer layer and method of making and using the same
US9707375B2 (en) 2011-03-14 2017-07-18 Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. Catheter grip and method
US9872969B2 (en) 2012-11-20 2018-01-23 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Catheter in bag without additional packaging
US10092728B2 (en) 2012-11-20 2018-10-09 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Sheath for securing urinary catheter
US9694113B2 (en) 2013-03-13 2017-07-04 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating
US8998882B2 (en) 2013-03-13 2015-04-07 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating
US9364588B2 (en) 2014-02-04 2016-06-14 Abbott Cardiovascular Systems Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating

Also Published As

Publication number Publication date
US20140249489A1 (en) 2014-09-04
EP1961429A3 (en) 2008-09-24
AU1374600A (en) 2000-06-13
DE69905487D1 (en) 2003-03-27
EP2065061B1 (en) 2015-03-25
JP2002530158A (en) 2002-09-17
EP2065061A2 (en) 2009-06-03
ES2190289T3 (en) 2003-07-16
JP4602556B2 (en) 2010-12-22
EP1252898A2 (en) 2002-10-30
EP1252898A3 (en) 2003-02-05
HU0104136A2 (en) 2002-03-28
WO2000030696A1 (en) 2000-06-02
ES2539944T3 (en) 2015-07-07
HU226497B1 (en) 2009-03-02
EP2065061A3 (en) 2009-08-26
DK1131112T3 (en) 2003-06-16
PL347727A1 (en) 2002-04-22
US9138510B2 (en) 2015-09-22
AT232750T (en) 2003-03-15
EP1131112B1 (en) 2003-02-19
ES2190289T5 (en) 2007-08-01
AU754585B2 (en) 2002-11-21
CN1291762C (en) 2006-12-27
EP1961429A2 (en) 2008-08-27
CN1326366A (en) 2001-12-12
DE69905487T2 (en) 2003-12-04
EP1131112B2 (en) 2006-11-29
EP1131112A1 (en) 2001-09-12
DK1131112T4 (en) 2007-04-02
PT2065061E (en) 2015-07-30
CA2349198C (en) 2010-10-19
CA2349198A1 (en) 2000-06-02
DK2065061T3 (en) 2015-06-22
DE69905487T3 (en) 2007-06-06
HU0104136A3 (en) 2005-12-28

Similar Documents

Publication Publication Date Title
US4589873A (en) Method of applying a hydrophilic coating to a polymeric substrate and articles prepared thereby
CA2467018C (en) Medical devices containing antimicrobial agents having a surfactant surface
EP0570370B1 (en) Lubricious hydrophilic coating, resistant to wet abrasion
JP5783988B2 (en) The hydrophilic coating comprising a polymer electrolyte
CA2052851C (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
JP2617260B2 (en) Wound care gel formulations
AU635197B2 (en) Antimicrobial device and method
US6224579B1 (en) Triclosan and silver compound containing medical devices
US4642104A (en) Urethral catheter capable of preventing urinary tract infection and process for producing the same
EP0738106B1 (en) Peracetic acid sterilization
EP0093093B2 (en) Preparation of a hydrophilic coating
US6159240A (en) Rigid annuloplasty device that becomes compliant after implantation
EP1152013B1 (en) Functional chitosan derivative
EP0693293A1 (en) Medical instruments that exhibit surface lubricity when wetted
EP1178849B1 (en) Lubricious coating for medical devices
CA1292649C (en) Method of forming an improved hydrophilic coating on a polymer surface
CA1156891A (en) Catheterization
US5800412A (en) Hydrophilic coatings with hydrating agents
US6610035B2 (en) Hydrophilic lubricity coating for medical devices comprising a hybrid top coat
US6340465B1 (en) Lubricious coatings for medical devices
EP0480809A2 (en) Medical device
US3896814A (en) Collagen based threads
US5763412A (en) Film-forming composition containing chlorhexidine gluconate
US4883699A (en) Polymeric article having high tensile energy to break when hydrated
US6221425B1 (en) Lubricious hydrophilic coating for an intracorporeal medical device