New! View global litigation for patent families

US20050197621A1 - Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions - Google Patents

Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions Download PDF

Info

Publication number
US20050197621A1
US20050197621A1 US10664368 US66436803A US2005197621A1 US 20050197621 A1 US20050197621 A1 US 20050197621A1 US 10664368 US10664368 US 10664368 US 66436803 A US66436803 A US 66436803A US 2005197621 A1 US2005197621 A1 US 2005197621A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
user
system
patient
insulin
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10664368
Inventor
Jens Poulsen
Lars Christensen
Soren Aasmul
Original Assignee
Poulsen Jens U.
Christensen Lars H.
Soren Aasmul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Health care, e.g. hospitals; Social work
    • G06Q50/24Patient record management
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • G06F19/324Management of patient independent data, e.g. medical references in digital format
    • G06F19/325Medical practices, e.g. general treatment protocols
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3456Computer-assisted prescription or delivery of medication, e.g. prescription filling or compliance checking
    • G06F19/3468Computer-assisted delivery of medication via infusion or injection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3481Computer-assisted prescription or delivery of treatment by physical action, e.g. surgery or physical exercise
    • G16H50/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/002Packages specially adapted therefor, e.g. for syringes or needles, kits for diabetics
    • A61M5/003Kits for diabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3475Computer-assisted prescription or delivery of diets, e.g. prescription filling or compliance checking
    • G16H10/60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/921Diet management

Abstract

This invention relates to a method of assisting a user in a medical self treatment, said self treatment comprising a plurality of actions, said method comprising the steps of collecting in a one or more databases data representing values of parameters relevant for said self treatment, and the step of processing said one or more databases to provide for alternative choices between two or more action and a corresponding value for each two or more actions. The invention also relates to a computer system having means for performing the method according to the invention, and a computer readable medium having a program recorded thereon, where the program when executed is to make the computer execute the method according to the invention

Description

  • [0001]
    The present invention relates to a method of assisting a user in a medical self treatment, said self treatment comprising a plurality of actions.
  • [0002]
    The present invention also relates to a system/an apparatus for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions.
  • [0003]
    In the following a user/patient will be a patient having diabetes.
  • [0004]
    For a number of years it has been possible to purchase various devices for the treatment of diabetes, e.g. for injecting insulin, for measuring blood sugar (such a device is referred to as BGM in the following), for withdrawing blood samples, and other accessories, the purpose of which is to enable the patient to nurse his disease discretely and with a high standard of safety.
  • [0005]
    Many diabetic patients are elderly people who can easily get insecure with respect to the medical equipment. It is very reassuring and therefore also very important that the user can have feedback from the system which confirms to the user that everything is OK right from the technical function of the system to the patient's physiological condition. This stretches out a psychological safety net under the patient, which contributes to improving the quality of life of patients having a disease such as diabetes.
  • [0006]
    Traditionally, diabetic people live under strict rules of “do's and don'ts”. There is a historical need in order to comply with a therapeutic regimen. The purpose of this being a well controlled blood glucose level (BGL) and thereby a much lesser risk of later complications. This is a highly undesirably situation from a ‘quality-of-life’ point of view. It often results in bad mood—which is known to lead to a poor BGL regulation. Thus an evil circle is created which is hard for the diabetic to break.
  • [0007]
    Additionally, in certain cultures/societies there is a reluctance against using syringes/needles to administer medication and people therefore choose alternative ways to try to comply with a regimen. However, this often has the unfortunate result that people choose alternatives that do not fully or at all correspond to the optimal regimen and thereby choose wrong alternatives with adverse effects.
  • [0008]
    Further, the metabolism is a very complex and dynamic system. It is very hard to get and maintain an overview for the diabetic as many factors play a role. It is very likely that the diabetic looses an overview or relies on too simple rules of operation or eventually neglect the illness.
  • [0009]
    Various systems trying to ease the hazels of diabetes have been proposed over time. These systems have basically an accounting role and simply keep track of whatever input the user specifies. In these systems input of food and exercise are usually a task that the user needs to initiate. Systems that rely on the user to take action can be hard to make function well due to the user's reluctance to deal with it.
  • [0010]
    Patent specification WO 95/32480 discloses a medical information reporting system which has a patient sensor device controlled via a patient operated interface device by a micro-controller which writes data to a memory and a report writer. The specification further discloses a warning algorithm with zone boundary values which is specified by the user and consent to by a physician. This system simply keep track of whatever input the user specifies.
  • [0011]
    Patent specification WO 94/24929 discloses a patient support and monitoring system, which has a database located at a remote location for collection of information in a remote database from sensors and a medicine administration system. This system also keep track of whatever input the user specifies and may initiate a medical reaction on the basis of received parameters.
  • [0012]
    The object of the invention is to provide a method which provides a user with a freedom of operation with respect to a self-treatment.
  • [0013]
    This is achieved by guiding the user with respect to a self treatment by presenting options/possibilities in such a way that compliance to a regimen may be obtained in numerous ways.
  • [0014]
    More particularly, the invention relates to a method of assisting a user in a medical self treatment, said self treatment comprising a plurality of actions, said method comprising the steps of
      • collecting in a one or more databases data representing values of parameters relevant for said self treatment, where said method further comprises the step of
      • processing said one or more databases to provide the patient with!! SaaS' forslag!! alternative choices between two or more actions and a corresponding dose for each two or more actions.
  • [0017]
    Hereby, the user's self-treatments change from restrictions to possibilities thereby enhancing the overall ‘quality-of-life’ for the user and better ensuring that the user's self-treatment complies better or fully with a specified regimen by choosing proposed choices which complies with the regimen. This avoids that the user chooses actions and alternatives which do not fully or at all correspond to the optimal regimen due to a lack of a clear overview of the complex factors involved in the self-treatment.
  • [0018]
    By providing the user with a number of options he may choose the one(s) he likes best and still obtain the right and full treatment instead of choosing the easiest and most appealing course of action on his own, which may be wrong or insufficient and result in adverse effects.
  • [0019]
    Additionally, the possibility of choices fulfilling a prescribed regimen makes the patient feel more in control of the treatment and enhances the therapeutic value of the treatment and improves the patient's ability to adapt his treatment to his daily life.
  • [0020]
    Additionally, the user's feeling of being ill is reduced, since the user has options of choices instead of a dictation of actions.
  • [0021]
    An additional object of the invention is to estimate one or more future values for one of said parameters, in order to obtain information of the user's condition in the near future, hereby enhancing the possibilities of presenting better/more relevant choices.
  • [0022]
    One way of estimating one or more future values may be done on the basis on a dynamic model representing the human metabolism.
  • [0023]
    An additional object of the invention is to provide effective monitoring of electronic data/information which are used by a patient for self-treatment of a disease, so that a greater level of safety, both functionally and emotionally, and an effective feedback to the patient are obtained.
  • [0024]
    The invention also relates to computer system having means for executing a program, where the program when executed is to make the computer execute the method according to claims 1-19.
  • [0025]
    By computer system is meant a system comprising processing means and being programmable at one time or another in order to execute a set of instructions/commands like a system for the self-treatment of a patient e.g. comprising one or more of sensor, medication administering device, data collection, and displaying means or a general computer system as a PC, laptop, palmtop, or a system having at least one device comprising a micro controller adapted to execute a program (either in hard- and/or software), and so on.
  • [0026]
    The invention further relates to a computer readable medium having a program recorded thereon, where the program when executed is to make the computer execute the method according to claims 1-19.
  • [0027]
    The computer readable medium may e.g. be a CD-ROM, magnetic disk, ROM circuit, a network connection or generally any medium that may provide a computer system with information of how to execute instructions/commands.
  • [0028]
    The above mentioned system and method need as good as possible data collection in order to present relevant and useful choices/proposals to the user. In a preferred embodiment a system/method relating to individual apparatuses, which are provided with electronic communications equipment so that the apparatuses—when in a state of mutual communication—frequently exchange information between them, are provided. Hereby a greater functional safety can be achieved and the total data capacity of the system can be increased, so that the feedback possibilities, e.g. of the system checking that every apparatus is OK and set up properly and of the patient be given a number of possible and up to date choices to choose from in a given situation, are increased.
  • [0029]
    The individual devices may be arranged for various respective functions relevant to the treatment of e.g. diabetes, such as: a lancet device, a body fluid analyser, one or more drug administration apparatuses for administering a predetermined dose of medication to the patient. Further, there may be a number of other aids which the diabetic patient uses, e.g. test strips for the blood analyser, needles, napkins for wiping off blood, extra insulin cartridge, glucose tablets, waste containers, etc.
  • [0030]
    The apparatuses according to the example may communicate information such as: amount of medication, type of medication, the concentration of relevant substances in the body e.g. body fluid level/concentration, time stamp, amount of food (e.g. amount or units of carbohydrate), measurement of physical activity, notification (e.g. alert and warning) to the patient, body characteristics (e.g. weight, blood pressure etc.) and inventory logistics. This ensures that relevant information, for e.g. a drug administration system like a doser, i.e. number of units of insulin, insulin type and time and date for administering, can automatically be stored, displayed, received and transmitted to and from all the relevant apparatuses and more particularly in one or more database accessible by a system/method for processing in order to obtain the results described above and later. The doser could also receive information regarding a predetermined number of units of insulin to be administered and automatically set the amount of medication to be administered by electromechanical means. In this way elderly and handicapped people do not have to set the relevant amount of medication themselves but just activate the doser and a confirmation of the actual administered dose may be used as input.
  • [0031]
    Other types of drug administration systems like an inhaler adapted to administer a dose of medication in an air stream or a tablet dispenser may be included instead or in combination with the doser. The inhaler and/or tablet dispenser may also communicate with the other units for relevant information like the doser according to the invention.
  • [0032]
    It is especially useful to transmit the data from all apparatuses to the functional master module/apparatus containing the highest priority program for safe keeping, calibration and updating of data and possible transmission to e.g. an external unit like a PC or database for further data acquisition, storage and processing. In this way the patient, a physician or an expert care-team can obtain the behavior over time of the patient, and a check for compliance to a diet or treatment given to the patient by a physician or an expert care-team can be made. This enhances the possibility of choices according to the invention.
  • [0033]
    Additionally, it is also possible for the patient to manually input information about the treatment. This information may be historic information as well as information about a future scheme (behavioral pattern) e.g. planned physical exercise, administering of insulin, intake of food and other medications. This information may be collected and thus serve as an electronic diabetes diary or may be used to notify the patient through the receiving means as to whether the planned actions are dangerous or not. The patient can further receive recommended amounts of medication, exercise, food, etc. from a physician, from an expert-team or automatically. All this information may be used to estimate one or more future parameter values, e.g. BGL.
  • [0034]
    It is evident that since the apparatuses are to be carried by the patient, there is a potential lack of space for an advanced input device e.g. a keyboard.
  • [0035]
    Therefore, information which cannot be input on a standardized form e.g. personal comments on the treatment may be typed into the apparatus by the patient using a simple input device once and can subsequently be chosen from a list, if needed again.
  • [0036]
    Preferably, all the apparatuses of the system exchange information so that every apparatus (or at least every apparatus within range) is updated with the combined information, but still one particular apparatus is the link to any outside systems, so that every bit of information is mirrored for better safety and backup. This demands a greater amount of total memory capacity for the system.
  • [0037]
    For a BGM according to an embodiment of the invention the relevant information could be the time and date for measurement, measured level/concentration of blood glucose which could be stored or transmitted to another apparatus.
  • [0038]
    For a doser according to an embodiment of the invention the relevant information could be the type of medication (e.g. long acting or short acting insulin), number of units of insulin to be administered and the time and date of the administering. This information could both be set manually by the patient or remotely by a physician, an expert care-team or automatically.
  • [0039]
    For an inhaler according to an embodiment of the invention the relevant information could be the type of medication, the number of units of medication to be administered and the time and date of the administering. This information could both be set manually by the patient or remotely by a physician, an expert care-team or automatically.
  • [0040]
    For a storage container according to an embodiment of the invention the relevant information could be used to keep track of the contents of the container so that every time an object (e.g. cartridge, needle, etc.) is used, the storage container will update the inventory list. This list could be transferred to a unit of highest priority immediately or later, which could in turn update the patient's total holdings of objects, so that the system could notify the patient when he should order a new stock of objects in order to keep all the different proposed actions available. The ordering could also be done automatically by the system if the inventory list is transferred to an external unit, which greatly improves the confidence, comfort and safety of the patient.
  • [0041]
    For a tablet dispenser according to an embodiment of the invention the relevant information could be the number of dispensed tablets, the number of remaining tablets, the time of dispension and the type of dispensed tablets. The dispenser could store and/or communicate this information to an available unit of highest priority or other units within communication range.
  • [0042]
    In the following a preferred embodiment according to the invention is described in detail. This particular embodiment is meant as one example only of the invention and should not as such limit the scope of protection as claimed in the appended claims.
  • [0043]
    The term “Margin Maker” is used in the following for a method/system according to the invention.
  • [0044]
    The invention will now be explained in detail with reference to the FIGS. 1-8, in which
  • [0045]
    FIG. 1 shows a flowchart for an embodiment of the invention illustrating an exemplary implementation of a Margin Maker system;
  • [0046]
    FIGS. 2 a, 2 b and 2 c show examples of user interfaces presenting and receiving choices to and from a user;
  • [0047]
    FIG. 3 illustrates a schematic diagram of an exemplary expert system using a model;
  • [0048]
    FIG. 4 shows a more detailed representation of a time dependent dynamic patient model according to the invention;
  • [0049]
    FIG. 5 shows an example of a preferred system which may contain an embodiment according to the invention;
  • [0050]
    FIG. 6 shows another embodiment according to the invention;
  • [0051]
    FIG. 7 illustrates the general concept according to an embodiment of the invention with respect to communication and exchange of information;
  • [0052]
    FIG. 8 illustrates the communication between a system of apparatuses and a central system.
  • [0053]
    FIG. 1 shows a flowchart for an embodiment of the invention illustrating an exemplary implementation of a Margin Maker system.
  • [0054]
    In step 101 input data is provided/updated. More specifically different types of input data are updated as represented by the steps 102-105.
  • [0055]
    In step 102 data from a care-team is provided/updated. This data describes individual user/patient characteristics which are true/valid in the time interval between consultations with the care-team. The data is typically derived as a result of tests performed by health care professionals (e.g. insulin sensitivity) and entered into the system by the care-team, e.g. wireless via a mobile telephone system as described in connection with FIG. 8.
  • [0056]
    In step 103 treatment input data is provided from various devices, e.g. from a system of portable apparatus as described above and in connection with FIGS. 5-7.
  • [0057]
    Input data specified manually by a user may also be input in step 103. Manually specified input data may e.g. be a value representing the body temperature of the user e.g. because he is feverish. Manually specified input may preferably if it differs from his normal value.
  • [0058]
    This data describes the actual treatment received by the patient (e.g. insulin intake as a function of time) and the resulting effect on the user (e.g. blood glucose level as a function of time). The data is gathered by the various devices used by the patient in his home-treatment and communicated automatically to the Margin Maker.
  • [0059]
    In step 104 the previous choices, i.e. input from the user, are provided/updated.
  • [0060]
    This is a record of the previous activities which the user has chosen to perform and which are either not yet confirmed by other input means (e.g. insulin injection prior to synchronization between the insulin doser an the Margin Maker) or not confirmable by other input means (e.g. physical exercise or food intake).
  • [0061]
    In step 105 information of time is provided from a system clock in the form of a time stamp. Additionally the date may be specified as well.
  • [0062]
    It is necessary for the method to know the time because the alternative proposals available to the user change over time.
  • [0063]
    The information provided/updated in the steps 102-105 is collected in a database as a dataset at step 106.
  • [0064]
    Prior to processing the input data the system performs a test at step 107 to find out if the amount and/or quality of the input information is sufficient to produce valid and relevant proposals for user behaviour to present for the user of the Margin Maker system.
  • [0065]
    If the test fails, i.e. the input data is insufficient to produce a relevant output, the user is made aware of the fact that at the moment the Margin Maker is unable to offer guidance due to lack of input information and displays a request for more (comprehensive) data and issues a warning at step 108.
  • [0066]
    If the test is successful, the method continues in step 109, where the provided/inputted data is processed in an expert system e.g. using a model.
  • [0067]
    The expert system is in principle a model of a control loop for the blood glucose level in a human. Based on the input and the historical data accumulated in the Margin Maker the parameters of the model is adapted to mimic and predict the blood glucose control of the individual user of the Margin Maker system. Refer to FIGS. 3 and 4 for a more detailed description of the expert system.
  • [0068]
    For each of the n possible user actions implemented in the Margin Maker system the model is fed with information of the present blood glucose level, the target blood glucose level, the current time, the n−1 user actions set to their present value (ceteris paribus), and 1 user action is treated as a variable parameter. After n recalculations of the control loop, one for each of the n possible user actions treated as the variable parameter, the expert system has derived n ways of bringing the present blood glucose level to its target value. Then an evaluation of the n alternative proposals is needed in order to exclude proposals that are not implementable (e.g. it is not possible to eat a negative amount of food), thereby providing the ‘up to n’ valid and implementable proposals of possible choices 110.
  • [0069]
    In general, the sooner proposals are chosen, i.e. a is situation is acted upon, the more options/proposals is available to the user. Put in another way, as the time goes the proposals/options become fewer and fewer as well as more and more restrictive, since the user's situation gets more and more serious, i.e. drifts away from a normal BGL, if not paid attention to/acted upon.
  • [0070]
    Another criteria for exclusion of proposals may e.g. be in a system, as described above, comprising different portable/handheld devices that the specific device being used to implement the proposal is present and activated among a user selected group of the devices. In this way the user will only be presented with proposals that he actually has the possibility of executing.
  • [0071]
    Finally, the time is considered variable in the expert system—other things being equal—to test whether a potentially dangerous situation is expected to occur within a given time frame. If this is found to be the case, a warning flag is set in step 111.
  • [0072]
    In step 112 a test whether the warning flag has been set is executed. If the test is true/yes (i.e. the warning flag has been set) a warning signal is sent to the user in step 113, regardless of whether the user is accessing the system, e.g. by audio to attract the user's attention and/or by activation of the display containing appropriate information. After the signal is given the method continues in step 115 where the warning and proposals are presented as will be described later.
  • [0073]
    If the test in step 112 results in false/no, another test is executed in step 114 as to whether the system is accessed by the user. If this is not the case, the method continues from the beginning in step 101 and awaits new and/or updated input since the present situation does not specifically require the attention of the user (warning flag not set).
  • [0074]
    If the test in step 114 is true and the user is accessing/has activated the system, step 115 is executed.
  • [0075]
    In step 115 the valid and implementable proposals are presented to the user. Any warnings are also displayed to the user if the preceding step was step 113 in order to alert the user and obtain an immediate action from the user. Issued warnings could e.g. comprise information that the user should seek medical attendance or administer a given medication as quickly as possible, etc.
  • [0076]
    The proposals may e.g. be presented in the form shown in FIGS. 2 a, 2 b and 2 c or other suitable forms.
  • [0077]
    In step 116 the system awaits a user choice of one of the proposed actions or a time out from the system.
  • [0078]
    Each of the proposals presented to the user of the Margin Maker will bring his/her blood glucose level “back on track” but that does not in any way exclude the possibility that the user chooses only to partly follow a suggested proposal, e.g. administering half the dose of medication instead of the proposed dosage, or to combine several proposals fully or in part. Once the user has entered his/her choice the Margin Maker performs a rerun of the flowchart to update the relevant proposals, given the new situation. An example of proposals and selected choices is shown in FIG. 2 a.
  • [0079]
    If the user chooses to do nothing, the system will eventually issue a time out and perform a rerun of the flowchart to update the relevant proposals taking into account that time has elapsed since the last user action.
  • [0080]
    Hereby a user is presented with a number of choices each fulfilling a regimen where he may choose the one(s) he likes best and still obtain the right and full treatment instead of choosing the easiest and most appealing course of action on his own, which may be wrong or insufficient and result in adverse effects.
  • [0081]
    Additionally, the possibility of choices makes the patient feel more in control of the treatment and enhances the therapeutic value of the treatment and improves the patient's ability to adapt his treatment to his daily life.
  • [0082]
    FIGS. 2 a, 2 b and 2 c show examples of user interfaces presenting and receiving choices to and from a user.
  • [0083]
    FIG. 2 a shows an example of a user interface where one column 201 comprises different graphical icons 205-210 each representing one choice of action according to a proposal. Shown in this example are icons 205-210 for administering fast acting insulin 205, administering slow acting insulin 206, administering tablets of a given type 207, exercise 208, intake of food 209, and intake of alcohol 210. Additionally, other icons like administering tablets of another kind, administering a dosage medication from an inhaler, etc. may be presented if these options are available to the user.
  • [0084]
    At column 202 the n proposals suggested by Margin Maker are shown (corresponds to step 115 in FIG. 1), where each proposal of action, if executed, brings the current BGL to the target BGL. In this example the Margin Maker has proposed to the user/patient either to administer 10 units (IU) of fast acting insulin, administer 0 IU of slow acting insulin, administer two tablets of a given type, exercise for 60 minutes, intake 0 units of food, or drink 0 units of alcohol.
  • [0085]
    At column 203 the user input is shown. After he has input the choice and amount of action, the Margin Maker displays and derives updated proposals on the basis of the changed situation. Here the user has chosen to administer 5 IU of fast acting insulin, and the Margin Maker now presents the updated proposals at column 202′, given the new situation and taking into account the user's choice.
  • [0086]
    The updated proposals at column 202′ are now to administer additionally 5 IU of fast acting insulin, administer 0 IU of slow acting insulin, administer one tablet of a given type, exercise for 30 minutes, intake 0 units of food, or drink 0 units of alcohol.
  • [0087]
    The user now chooses to exercise 30 minutes, which is shown at column 203′, and the model updates the proposals accordingly. The proposals shown at column 202″ show that after the user has performed the specified choices/actions his BGL should be at the target level.
  • [0088]
    The columns 204 represent previous and later proposals and user input, so it is possible to scroll through the values for different points in time.
  • [0089]
    This specific form of user interface requires a display of a certain quality or with a certain resolution. Other more simple forms may be provided, e.g. as shown in FIG. 2 c, either instead or in combination in devices with a smaller display.
  • [0090]
    Alternatively, the display will only display one column of icons 201, proposals 202 and user input 203 at a time, e.g. with buttons to scroll through previous proposals and input.
  • [0091]
    The user may input data in many different ways according to specific embodiments of the invention as generally known in the art, e.g. utilising a touch screen with a stylus, touch pad and a cursor on the display, etc.
  • [0092]
    It is evident that if the apparatuses are to be carried by the patient, there is a potential lack of space for an advanced input device e.g. a keyboard. Therefore, information which cannot be input on a standardized form e.g. personal comments on the treatment is typed into the apparatus by the patient using a simple input device once and can subsequently be chosen from a list, if needed again.
  • [0093]
    Preferably, a system comprising a plurality of portable devices with mutual data communication, as described above, is used in connection with the Margin Maker.
  • [0094]
    In this way e.g. a doser may communicate an administered dose to the device containing the Margin Maker automatically or by user request and the different devices may communicate measured values representing physiological parameters automatically or by user request, e.g. a BGM may communicate the measured BGL as input to the Margin Maker.
  • [0095]
    Additionally, information of which devices are present and activated may be transmitted to the device containing the Margin Maker which may hereby only present proposals with a corresponding present and/or activated device, so that e.g. if a doser containing slow acting insulin is not available to the user, then the icon 206 and the corresponding proposal will not be displayed at all.
  • [0096]
    In FIG. 2 b an example of a user interface is shown where input of information is given to the Margin Maker which is needed in order to derive the proposals of actions. Shown is a column 220 containing icons 224 representing a value obtained from the BGM and 225 representing a value for the temperature of the user. The corresponding values, specified at a given time, are listed in a column 221 and are in this example 10.5 mmol/l and 37.5° for the BGM and the temperature, respectively. The other columns 222 represents values specified at different points in time where in this example no values are specified. Alternatively, only columns having a specified value are shown in the user interface e.g. with a corresponding time stamp.
  • [0097]
    The columns 223 represent previous and later user input, so it is possible to scroll through the values for different points in time.
  • [0098]
    This information is used by the Margin Maker together with additional information to better estimate the target glucose level and obtain a measure of the present glucose level. The input temperature is used by the expert system to determine whether the user is feverish or not as this influences the required amount of insulin.
  • [0099]
    This information may either be input manually by the user, automatically or both, e.g. by a BGM device and/or a temperature sensor with communication means which may communicate with a Margin Maker device (may correspond to step 103 in FIG. 1).
  • [0100]
    FIG. 2 c shows an example of a different user interface which may be more suited for a smaller display. Shown is an example of a graph 230 with a time axis 231 and three BGL bars 232 and 232′ obtained at three different points in time of the day. Two previously obtained BGLs 232 and one BGL 232′ obtained at the actual time. The BGL may be obtained from a BGM and may be received either automatically or manually by the Margin Maker as input for the expert system as described above.
  • [0101]
    Also shown are two bars 233 representing the dose of insulin, that the user chose to administer previously after obtaining the BGLs 232, respectively. The dosages 233 may have been fully or partly as proposed by the Margin Maker at the respective time. Alternatively, the user may have administered the dosages 233 completely on his own and just specified the dosage and type of medication. The actual dosages 233 administered may have been specified (together with the time and type of insulin) by user input or via communication from the administering doser to a device containing the Margin Maker.
  • [0102]
    The previously obtained BGLs 232 and administered dosages 233 together with the BGL 232′, obtained at the actual time and other relevant input, as described in connection with FIG. 1, and used to predict a future course of BGL for the user and derive one or more proposals to the user in order to account for the future course of BGL.
  • [0103]
    The Margin Maker has proposed in this example that the user should administer a dosage as indicated by the blinking bar 233′. Additionally, other proposals may be shown elsewhere. The proposed dosage and type of insulin may be transmitted automatically to a corresponding doser, so if the user wishes to follow this proposal fully he just has to activate a button on the doser to accurately receive the proposed dosage. Alternatively, the user may manually specify the proposed dosage on the doser.
  • [0104]
    Additionally, the user may choose to only administer a part of the proposed dosage (which may also be transmitted automatically after indication by the user) if he e.g. wants to exercise as well. After the Margin Maker has registered the user's choice of only administering a part of the proposed dosage of medication, the expert system is updated accordingly and new proposals are derived taking into account the new situation.
  • [0105]
    The user interfaces described in connection with FIGS. 2 a, 2 b and 2 c are just examples and other interfaces may be just as applicable. Alternatively, the user interface may be character based and using no graphics thereby reducing the complexity of the system with respect to implementation.
  • [0106]
    FIG. 3 illustrates a schematic diagram of an exemplary expert system using a model.
  • [0107]
    A number of models have been proposed in order to describe the metabolism of the insulin dependent diabetic patient. Furthermore, some effort has been put into constructing systems for controlling the blood glucose level using insulin.
  • [0108]
    In the following one expert system is described as an example but other expert systems known in the prior art may be used with similar results. The shown expert system comprises input variables 301 and 302, physiological parameters and model inputs 306, proposal generators 305, patient actions 304, and a patient model 303, all of which will be described in the following.
  • [0109]
    An input variable “Desired blood glucose level” 301 is specified in the expert system and is preferably (pre)determined by the care-team or other professionals. The variable 301 may be similar to the blood glucose level of a healthy person, but may due to regimen differ from this value, e.g. be higher in order to prevent hypoglycaemia.
  • [0110]
    Another input variable used by the expert system is the variable “Blood glucose measurement” 302 representing the BGL at a given time.
  • [0111]
    The patient may measure the BGL, giving the blood glucose measurement variable 302, with a certain frequency or use a continuous blood glucose sensor. Given the dynamics of the human metabolism, there is a certain lower limit of the sample frequency which will allow the expert system to work properly.
  • [0112]
    The patient model 303 is a dynamic model which describes the metabolism of the diabetic patient. The model 303 incorporates parameters 306 such as e.g. weight of the patient and insulin sensitivity, which vary from patient to patient and may be considered constant between consultations of the care-team. The model 303 may also incorporate model input 306 such as injections of long acting insulin, fast acting insulin, oral diabetic agents, exercise, food intake, alcohol intake and fever. Given a certain combination of model input 306, the model 303 describes the blood glucose level over time. The model 303 describes some key state variables of the human metabolism.
  • [0113]
    The proposal generators 305 are the analogy of regulators in a control system. The input to the proposal generators 305 is the difference between the desired blood glucose level 301 and the actual blood glucose level 302 and the state variables of the patient model. Given the input each proposal generator 305 proposes a patient action and a corresponding amount/dosage—eat a certain amount of food, exercise for a certain amount of time, inject a certain amount of fast acting insulin, etc.—as indicated in the proposal boxes 305. The proposals are calculated, presuming that only one of the proposals is followed.
  • [0114]
    The patient has the final decision as indicated by patient action 304 for each possible action in the expert system. He may or may not choose to follow the proposals. By choosing one of the proposals fully or partly, his action 304 is fed into the patient model, either by manual input or automatically by the diabetes specific devices—the dosers or the blood glucose monitor. The patient model 303 now generates a new input to the proposal generators 305 which represents the updated situation.
  • [0115]
    FIG. 4 shows a more detailed representation of a time dependent dynamic patient model according to the invention. This model is used by the expert system to give a prediction/estimate of a future BGL.
  • [0116]
    In the literature many such models are described. Here a very simple one of applicant's origin is taken to explain the principles. This model can be developed to a high degree of detail, if needed.
  • [0117]
    The model 400 simulates the dynamics of the carbohydrate metabolism. Based on the input of one or more of the following parameters
      • BGL,
      • dosage of medication,
      • type of medication,
      • food intake,
      • drinks intake,
      • exercise,
      • time stamp,
      • insulin sensitivity
      • weight of the user,
      • blood pressure,
      • temperature, and
      • other.
  • [0130]
    The model is tuned in to mimic the user's carbohydrate metabolism closely. By the continuous tuning by input of updated data from the expert system a drift away from a close mimic of the true status is prevented. The structure of the model 400 matches the functionalities of the metabolism to a needed degree. Due to this correspondence the expert system/model 400 will be able to predict trends or even future BGL.
  • [0131]
    The expert system continuously gives suggestions about the user's freedom of operation. Based on all recorded events a margin for exercise and food is suggested.
  • [0132]
    If suggestions are confirmed (e.g. tapping an indication on the touch screen of the handheld device), these are regarded as input to the algorithm and used for future suggestions.
  • [0133]
    Preferably, the dialogue is implemented via a graphic display showing the history, and input is given either via a touch screen or traditional buttons.
  • [0134]
    In order for the expert system to give recommendations and margins as described above it is needed to predict how things will evolve from any known state.
  • [0135]
    This can be done using a model 400 of the carbohydrate metabolism as an engine for the Margin Maker concept.
  • [0136]
    Shown in the figure is a model 400 with two pools: Body Blood Glucose 402 and Insulin 401. Each has a filling source 403, 403′ and a drain 404, 404′ (i.e. two rates), respectively. Body Blood Glucose 402 has the filling source POG (Production of Glucose) 403 and the drain UOG (Use of Glucose) 404, and Insulin 401 has the filling source POI (Production of Insulin) 403′ and the drain UOI (Use of Insulin) where all the rates 403, 403′, 404 and 404′ may vary with time dependent on the parameters controlling the rates.
  • [0137]
    The parameters controlling the rates, e.g. food, dosing, exercise, etc., are given in the table below.
  • [0138]
    The model 400 can also be expressed in terms of a set of differential equations for the states 402 and 401, each being controlled by their respective rates 403, 404 for the state Body Blood Glucose 402 and 403′ and 4041 for the state Insulin 401. In this form the model can be implemented in a microprocessor relatively easily and display the results of the latest input for any given time.
  • [0139]
    The differential equations for the model 400 may be expressed as:
    BBG(t)=BBG(t−dt)+(POG−UOG)*dt
      • INFLOWS: POG=f(F,t)
      • OUTFLOWS: UOG=g(BM+KD+IIUOG+E,t)
        I(t)=I(t−dt)+(POI−UOI)*dt
      • INFLOWS: POI=h(MPI,t)
      • OUTFLOWS: UOI=j(HL,t)
  • [0144]
    The factors are explained in the table below:
    Factor Explanation Unit Function
    Input/Output
    D Dosing IU Output to the user about possible insulin doses to take.
    Alternatively the user can give input about a
    wanted amount of insulin and the system can
    suggest appropriate food intake.
    Whenever an insulin dose is taken the system
    automatically loads the value into the model and
    the predictions are calculated accordingly.
    E Exercise mol Output to the user about possible exercise to take
    in the given situation.
    Alternatively the user can give input about a
    wanted amount exercise and the system can
    suggest appropriate food intake.
    The user accepting the suggestion will be an
    input to the system and calculation will be
    accordingly.
    Conversion to mol will be made by the system.
    F Food intake mol Output to the user about possible food to take in
    the given situation.
    The user accepting the suggestion will work as an
    input to the system and calculation will be
    accordingly.
    Alternatively the user can give input about a
    wanted amount of food and the system can
    suggest either dosing of insulin or exercise.
    Conversion to mol will be made by the system.
    Concentrations and levels
    BBG Body Blood mol Simulated total amount of glucose in the blood.
    Glucose It is calculated as the integration over time of
    production and usage of glucose.
    Between measurements it is used to give an
    estimate of the user's current BGL.
    At measurements the BBG is updated according
    to the measured BGL.
    BGL Blood mol/l This calculated by dividing the BBG with the
    Glucose blood volume.
    Level The model has the ability to predict the BGL over
    time and the value is very important to the user
    and can be displayed at any time.
    Every time the user makes a measurement of the
    actual BGL this is automatically loaded into the
    model by the system and it overrules the
    calculated one and resets the model.
    Initial value: 5 mmol/l
    I Insulin mol Insulin level in the body.
    The model has the ability to predict the Insulin
    level over time.
    It is calculated as the integration over time of
    production and usage of insulin.
    The initial value is set by the physician according
    to measurements and can be calibrated by the
    physician when the user meets for consultations.
    Rates
    POG Production mol/min This rate is driven by the food intake entered and
    Of Glucose accepted by the user. It is also a function of time
    as different types of food have different dynamic
    impact on BGL.
    POI Production mol/min This rate is driven by the injected insulin through
    Of Insulin a conversion factor (MPI). It is also a function of
    time as different types of insulin have different
    dynamic impacts on BGL.
    UOI Use Of mol/min This rate is defined by the half life (IHL) of insulin
    Insulin by which the level decays exponentially.
    UOG Use Of mol/min This rate is driven by 4 factors: Basal Metabolism
    Glucose (BM), Kidney Diurese (KD), Insulin Induced Use
    Of Glucose (IIUOG), Exercise (E).
    Constants & Transfer functions
    BM Basal mol/min Constant for each Individual determined by the
    Metabolism e physician.
    Typical value: 0.56 mol/min
    IHL Insulin Half min The metabolism of insulin is usually expressed in
    Life terms of half life.
    Typical value: 10 min
    IIUOG Insulin mol/min This factor describes the nonlinear relation
    Induced between insulin in the body and the
    Use Of disappearance of glucose from the blood. This
    Glucose factor can be measured or derived from literature.
    KD Kidney mol/min This factor describes the nonlinear relation
    Diurese between diurese and BGL. At BGL levels below
    10 mmol/l the KD is virtually zero. Above 10 mmol/l
    an increasing KD will occur
    MPI Mol Per IU mol/IU Conversion factor between International Units of
    insulin and mol
  • [0145]
    This model 400 is just one relatively simple example of a model that may be used to predict a future BGL.
  • [0146]
    Alternatively, the model and/expert system or parts hereof may be located in a stationary unit with greater computational power and receive input and transmit information regarding proposed choices.
  • [0147]
    FIG. 5 shows an example of a system which may contain an embodiment according to the invention.
  • [0148]
    Shown is a doser 20 with a cap 10 where the cap 10, in an embodiment, functions as the functional master module. In the preferred embodiment the Margin Maker resides in the functional master module. The functional master module 10 has displaying means 11 and buttons 36 for operation and selection of proposed choices.
  • [0149]
    The doser 20 is a conventional doser with has transmitting and receiving means 12. This enables the doser 20 to transmit stored data, i.e. the time, date, is amount and type of medication, to the functional master module 10 for storage and presentation there via the master modules receiving means 12. Additionally, the transmitted data may be input to the Margin Maker automatically, thereby updating the model and deriving and presenting new proposals/choices, reflecting the updated situation, to the user on the display 11.
  • [0150]
    The doser 20 can also receive information via the receiving means 12 from the master module 10. This information could for instance be a predetermined amount of medication as dictated by a proposal from the Margin Maker if the user chooses to administer the full amount given by the proposal. The received information is then used to automatically set the correct amount of medication to be administered so that the patient does not have to worry about that aspect. Alternatively, if the user only wishes to administer only a part of the proposed dosage, he may indicate this via the buttons 36 or directly on the doser 20, after which information of the administered dose is sent to the Margin Maker as input and used to update the model.
  • [0151]
    Also shown is a BGM 30 which has means 34 for inserting test strips 52 containing a sample of blood, for analysis by the BGM 30 by operating the buttons 36. The result of the analysis is stored and either shown in the display 32 or transmitted to the master module 10 via the transmitting means 12 for storage and input to the Margin Maker and presentation on the larger display 11 or both. The patient can at the same time be presented with the last couple of results over a time period.
  • [0152]
    A test strip container 50 is provided for the safe keeping/storing of test strips 52 in the space 55 and can be added/attached through locking means 31. With this addition, a test strip 52 will always be available.
  • [0153]
    Further shown is a lancet device 40 removably attached to the BGM 30 or the test strip container 50 by the locking means 31. This lancet device 40 is used by first loading the lancet device through the grip 44 and then pressing the button 42, which releases the lancet, piercing the skin, so that a blood sample can be obtained. With this inclusion, the lancet device 40 is always at hand. This has the advantage that a lancet device 40 is always available, for taking a blood sample and applying it to a test strip 52. The test strip 52 can then be inserted via the means 34 into the BGM 30, which will start analysing the blood sample and, after completion of the analysis, will show the result in the display 32. It is very useful to have the BGM 30 and the lancet device 40 attached together in one compact unit, since a BGM 30 would not normally be used without the lancet device 40.
  • [0154]
    In this way, information relevant to the Margin Maker and the individual devices 20, 30 may automatically be received and transmitted between the functional master module 10 and the various devices 20, 30, which ensure an automatical update of the system.
  • [0155]
    Alternatively, the Margin Maker may only present choices to the user where there is a present and activated device for performing these choices (where applicable), e.g. a proposal of administering a certain amount of long acting insulin is only presented if a doser containing long acting insulin is present, or a doser and a separate cartridge containing long acting insulin. The functional master module is responsible for keeping track of which individual devices that are present and activated.
  • [0156]
    If the device containing the master module and/or the Margin Maker, the system may designate a new master module and a new Margin Maker either by transmitting and/or activating the relevant information in the designated device(s).
  • [0157]
    FIG. 6 shows another embodiment according to the invention. Two dosers 610 are shown. The dosers 610 may contain different types of insulin (fast and slow acting). Also shown is a device 600 with a display 602, buttons for operation 601. In this particular embodiment the device 600 is both the functional master module and the Margin Maker. The device 600 is also provided with the functionality of a BGM and a slot 603 for receiving test strips containing a blood sample.
  • [0158]
    The dosers 610 and the BGM functionality may, together with user specified input e.g. a the device 600, provide the Margin Maker with relevant input information to the model and/or expert system, so that the Margin Maker may present the resulting choices on the display 602.
  • [0159]
    FIG. 7 illustrates the general concept according to an embodiment of the invention with respect to communication and exchange of information. Here the system consists of the portable units: a functional master module, a doser, a BGM, an inhaler, the remote units: Remote Receiver, Physician/Expert Care-team and Stationary Unit and a Communication Interface between them.
  • [0160]
    The functional master module controls the information and data flow between itself and the other apparatuses and is collects relevant data and information from all the other portable units and uses this information to update the model accordingly. This data and information could e.g. be amount of medication, type of medication, body fluid concentration, time stamp (date and time) and inventory logistics. Additionally, the patient can manually input information and data related to amount of food, measurement of physical activity in the way described above.
  • [0161]
    This data and information can then be transmitted via a communication interface (which may be built into the master module) to external units like a database for data acquisition of the patient's data over time or a computer which the patient uses to be kept informed about his treatment. Alternatively, all the apparatuses could communicate to all the others.
  • [0162]
    The information in the database can be accessed by a physician or an expert care-team who could easily and quickly check for compliance to e.g. a diet or treatment course/progress. The physician or expert care-team could send a notification (e.g. alert, warning and/or change of regimen) to the patient if the data shows an inappropriate future treatment span. The patient could also be notified of a future appointment in this way or receive guidance.
  • [0163]
    The system gives the patient a number of choices to a given situation based on the model as described earlier. The patient could e.g. be informed that the blood glucose level/concentration is quite high and the patient could be presented with the choices of either exercising for given amount of time or administering a given amount of a given type of medication. The possibility of choices makes the patient feel more in control of the treatment and enhances the therapeutic value of the treatment.
  • [0164]
    FIG. 8 illustrates two dosers and their communication paths. The dosers are identical for the typical patient, one doser containing fast acting insulin, the other doser containing slow acting insulin. The dosers comprise a micro controller and memory. The dosers are capable of holding information about the insulin type they contain. This information may either be obtained by the doser reading e.g. a bar code on the cartridge or the information may be input from the patient. Thus the features of the doser enable it to log information about the insulin treatment (insulin type size of the dose and time stamp).
  • [0165]
    One doser is equipped with a cap unit 73 which acts as a storage container for an extra insulin cartridge, needles etc. The storage container is capable of keeping track of the contents of the container which enables it to keep the inventory list updated, as described earlier in the present document.
  • [0166]
    The other doser is equipped with a cap unit 74 comprising a BGM, a micro controller and memory. This enables the cap unit 74 to log information about the blood glucose concentration (with time stamp).
  • [0167]
    All the dosers 71, 72 and the cap units 73, 74 comprise an interface which enables them to exchange data. In the present example the functional master device comprises the Margin Maker and is the BGM cap unit 74, which, in addition to the local interface, comprises an interface that enables it to communicate with external units through standard communication links (RS-232, Wireless local area network, phone, cellular phone, pager, satellite link, etc.). Through these communication links, the patient's treatment data can be transferred to the patient's own computer 80 or via e.g. the telephone system 75 to the patient's electronic medical record on a central server 76. From here, the treatment data may be accessed by the patient e.g. from a web page, using a stationary computer 77, a laptop computer 78, a handheld computer 79, etc. Apart from the patient, the care-team can access the patient's treatment data. The patient's master unit 74 can receive data from the central server 76, in addition to transmitting data.
  • [0168]
    This system has the advantage that the system can function on 3 levels:
  • [0169]
    If one of the patient's devices 71, 72, 73, 74 is isolated by means of communication, it will log data.
  • [0170]
    When the patient's devices 71, 72, 73, 74 are within communication distance, the treatment data are transferred to the master unit 74, enabling it to supply the patient with an overview of his treatment and present choices as well as warnings or alarms if data shows that a potential dangerous situation may occur.
  • [0171]
    When the master device 74 is connected to the central server 76 through standard communication links, the treatment data is transferred to the patient's electronic medical record. This enables an expert system on the central server to notify the care-team if needed. The care-team may send information back to the user or send help if needed.
  • [0172]
    Furthermore it is well known that due to the safety of the patient, the development of a medical device is a time consuming task. Using a local communication form between the patient's devices 71, 72, 73, 74 has the advantage that only the master device 74 need to be redesigned to keep up with the continuous change in the standard communication links.

Claims (8)

  1. 1. A system for assisting a diabetic subject in controlling blood glucose levels, the system comprising:
    a. an insulin delivery unit;
    b. a blood glucose monitor;
    c. a master module that includes a processor that is configured to receive a blood glucose value from the blood glucose monitor and to run a model that predicts a future glucose value and compares that value with a target value and then predict a dose of insulin that will result in an acceptable blood glucose level; and
    d. wherein the dose of insulin is transmitted to the insulin delivery unit.
  2. 2. The system of claim 1, wherein the processor is configured to receive other data from the subject.
  3. 3. The system of claim 2 wherein the data includes information on size and type of meal to be ingested and anticipated duration and intensity of exercise.
  4. 4. A system for assisting a diabetic subject in controling blood glucose levels, the system comprising:
    a. A first device;
    b. A blood glucose monitor;
    c. A master module that includes a processor that is configured to receive a blood glucose value from the sensor and to run a model that predicts a glucose value and compares that value with a target value and then predicts one or more courses of treatment that will result in an acceptable blood glucose level.
  5. 5. The system of claim 4, wherein the first device receives a proposed course of treatment for the subject to implement.
  6. 6. The system of claim 5, wherein the first device is an insulin delivery device.
  7. 7. A tool for assisting a diabetic in achieving glycemic control, the tool comprising:
    a. A processor configured to model the human carbohydrate metabolism
    b. An input means for receiving data about the subject
    c. a proposal generator for proposing one or more courses of treatment that will result in a future blood glucose level being in acceptable range, wherein the processor will only propose a course of treatment if there is a corresponding device present that can carry out the proposed course of treatment.
  8. 8. The tool of claim 7, wherein the processor is configured to propose at least one course of treatment includes administering a dose of insulin and wherein that proposal is automatically transmitted to an insulin delivery device.
US10664368 1998-11-30 2003-09-17 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions Abandoned US20050197621A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK199801578 1998-11-30
DKPA199801578 1998-11-30
US11172198 true 1998-12-09 1998-12-09
PCT/DK1999/000670 WO2000032258A1 (en) 1998-11-30 1999-11-30 A method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US09462128 US6656114B1 (en) 1998-11-30 1999-11-30 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US10664368 US20050197621A1 (en) 1998-11-30 2003-09-17 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10664368 US20050197621A1 (en) 1998-11-30 2003-09-17 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/DK1999/000670 Continuation WO2000032258A1 (en) 1998-11-30 1999-11-30 A method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US09462128 Continuation US6656114B1 (en) 1998-11-30 1999-11-30 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions

Publications (1)

Publication Number Publication Date
US20050197621A1 true true US20050197621A1 (en) 2005-09-08

Family

ID=26065918

Family Applications (3)

Application Number Title Priority Date Filing Date
US09462128 Active US6656114B1 (en) 1998-11-30 1999-11-30 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US10663463 Active 2021-12-24 US7282029B1 (en) 1998-11-30 2003-09-16 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US10664368 Abandoned US20050197621A1 (en) 1998-11-30 2003-09-17 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09462128 Active US6656114B1 (en) 1998-11-30 1999-11-30 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US10663463 Active 2021-12-24 US7282029B1 (en) 1998-11-30 2003-09-16 Method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions

Country Status (8)

Country Link
US (3) US6656114B1 (en)
EP (2) EP1144028B1 (en)
JP (1) JP2002531884A (en)
CA (1) CA2352295C (en)
DE (3) DE69918333D1 (en)
DK (1) DK1144028T3 (en)
ES (1) ES2224718T3 (en)
WO (1) WO2000032258A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080183060A1 (en) * 2007-01-31 2008-07-31 Steil Garry M Model predictive method and system for controlling and supervising insulin infusion
US20080208026A1 (en) * 2006-10-31 2008-08-28 Lifescan, Inc Systems and methods for detecting hypoglycemic events having a reduced incidence of false alarms
US7434724B2 (en) 2006-12-22 2008-10-14 Welch Allyn, Inc. Dynamic barcode for displaying medical data
WO2008153689A1 (en) * 2007-05-24 2008-12-18 Smiths Medical Md, Inc. Expert system for insulin pump therapy
WO2009002622A2 (en) * 2007-06-27 2008-12-31 F. Hoffman-La Roche Ag Patient information input interface for a therapy system
US20090105572A1 (en) * 2007-10-18 2009-04-23 Lifescan Scotland, Ltd. Method for predicting a user's future glycemic state
US20090105573A1 (en) * 2007-10-19 2009-04-23 Lifescan Scotland, Ltd. Medical device for predicting a user's future glycemic state
US20090253973A1 (en) * 2008-04-04 2009-10-08 Eran Bashan Apparatus for optimizing a patient's insulin dosage regimen
US20090259486A1 (en) * 2008-04-09 2009-10-15 Panasonic Corporation Patient centric medication dispensing device
US20100069890A1 (en) * 2006-12-14 2010-03-18 Novo Nordisk A/S User interface for medical system comprising diary function with time change feature
US7713229B2 (en) 2003-11-06 2010-05-11 Lifescan, Inc. Drug delivery pen with event notification means
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8208984B2 (en) 2007-01-24 2012-06-26 Smiths Medical Asd, Inc. Correction factor testing using frequent blood glucose input
US8221345B2 (en) * 2007-05-30 2012-07-17 Smiths Medical Asd, Inc. Insulin pump based expert system
US20120238854A1 (en) * 2008-01-07 2012-09-20 Michael Blomquist Insulin pump with blood glucose modules
US8346399B2 (en) 2002-02-28 2013-01-01 Tandem Diabetes Care, Inc. Programmable insulin pump
US20130030841A1 (en) * 2006-03-23 2013-01-31 Chris Bergstrom System and Methods for Improved Diabetes Data Management and Use Employing Wireless Connectivity Between Patients and Healthcare Providers and Repository of Diabetes Management Information
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8414523B2 (en) 2008-01-09 2013-04-09 Tandem Diabetes Care, Inc. Infusion pump with add-on modules
US8449524B2 (en) 2007-10-10 2013-05-28 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US8771251B2 (en) 2009-12-17 2014-07-08 Hospira, Inc. Systems and methods for managing and delivering patient therapy through electronic drug delivery systems
US8882701B2 (en) 2009-12-04 2014-11-11 Smiths Medical Asd, Inc. Advanced step therapy delivery for an ambulatory infusion pump and system
US8992464B2 (en) 2008-11-11 2015-03-31 Hygieia, Inc. Apparatus and system for diabetes management
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9220456B2 (en) 2008-04-04 2015-12-29 Hygieia, Inc. Systems, methods and devices for achieving glycemic balance
US9233204B2 (en) 2014-01-31 2016-01-12 Aseko, Inc. Insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
US9669160B2 (en) 2014-07-30 2017-06-06 Tandem Diabetes Care, Inc. Temporary suspension for closed-loop medicament therapy
US9886556B2 (en) 2015-08-20 2018-02-06 Aseko, Inc. Diabetes management therapy advisor
US9892234B2 (en) 2014-10-27 2018-02-13 Aseko, Inc. Subcutaneous outpatient management
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69829766T2 (en) 1997-09-05 2006-02-16 University Of Technology, Sydney Rotary pump with an impeller supported hydrodynamically
US6925393B1 (en) * 1999-11-18 2005-08-02 Roche Diagnostics Gmbh System for the extrapolation of glucose concentration
US20030154108A1 (en) * 2000-03-01 2003-08-14 Gambro, Inc. Extracorporeal blood processing information management system
US7025425B2 (en) * 2000-03-29 2006-04-11 University Of Virginia Patent Foundation Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US8396720B2 (en) * 2001-04-05 2013-03-12 Numoda Technologies, Inc. Patient diagnosis using triage protocols that have customized messages at exit points
WO2001093179A3 (en) * 2000-05-26 2002-06-27 Jeffrey S Albrecht Medical management system
US6517517B1 (en) * 2000-06-08 2003-02-11 Mayo Foundation For Medical Education And Research Automated injection device for administration of liquid medicament
DE60109023T2 (en) * 2000-11-20 2006-04-13 Draeger Medical Systems, Inc., Danvers A elktrisch insulated supply and signal coupler for a patient connected to a device
US6645142B2 (en) 2000-12-01 2003-11-11 Optiscan Biomedical Corporation Glucose monitoring instrument having network connectivity
US20020116224A1 (en) * 2001-02-15 2002-08-22 Arne Hengerer Networked expert system for the automated evaluation and quality control of medical point of care laboratory measuring data
WO2002078512A8 (en) * 2001-04-02 2004-12-02 Therasense Inc Blood glucose tracking apparatus and methods
GB0108228D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
GB0108215D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
GB0108208D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
GB0108213D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
EP1393253A4 (en) * 2001-05-17 2009-12-16 Entelos Inc Apparatus and method for validating a computer model
US20030032868A1 (en) * 2001-07-09 2003-02-13 Henning Graskov Method and system for controlling data information between two portable apparatuses
GB0121565D0 (en) * 2001-09-06 2001-10-24 Univ Robert Gordon Modelling metabolic systems
US20040064344A1 (en) * 2001-11-20 2004-04-01 Link Ronald J. Method for obtaining dynamic informed consent
GB0206792D0 (en) * 2002-03-22 2002-05-01 Leuven K U Res & Dev Normoglycemia
DE10219098A1 (en) * 2002-04-29 2003-11-13 Siemens Ag Patient medical data access management system comprises a centralized or decentralized data record, e.g. a CD-RW disk, with biometric or password controlled access and an expert system for preventing examination duplication
GB2418258B (en) * 2002-06-05 2006-08-23 Diabetes Diagnostics Inc Analyte testing device
US6931328B2 (en) 2002-11-08 2005-08-16 Optiscan Biomedical Corp. Analyte detection system with software download capabilities
US7725842B2 (en) * 2003-04-24 2010-05-25 Bronkema Valentina G Self-attainable analytic tool and method for adaptive behavior modification
US20050004814A1 (en) * 2003-04-29 2005-01-06 Seltzer Jonathan H. Method and system for distributing medical safety information
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
JP2007512588A (en) * 2003-10-29 2007-05-17 ノボ・ノルデイスク・エー/エス Medical advisory system
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
EP1721421A1 (en) * 2004-02-26 2006-11-15 Novo Nordisk A/S A method and a system for safe pairing of wireless communication devices
JP2007529928A (en) * 2004-03-19 2007-10-25 ノボ・ノルデイスク・エー/エス Reduction of the format size of the packet header to be used for data transmission of the medical device
EP1735729A2 (en) * 2004-03-26 2006-12-27 Novo Nordisk A/S Device for displaying data relevant for a diabetic patient
US20050273080A1 (en) * 2004-05-20 2005-12-08 Paul Patrick J Methods and systems for providing an interface between an ambulatory medical device and a display device
JP2008505414A (en) * 2004-07-01 2008-02-21 ノボ・ノルデイスク・エー/エス Method and dosage device for displaying highlights the diary data
US20080270186A1 (en) * 2004-08-24 2008-10-30 Soren Mikkelsen Giving a Service to a Patient
CA2580343A1 (en) * 2004-09-14 2006-03-23 Novartis Vaccines And Diagnostics, Inc. Imidazoquinoline compounds
WO2006032652A1 (en) * 2004-09-23 2006-03-30 Novo Nordisk A/S Remote commander to be used with a drug delivery device
US20090247931A1 (en) * 2004-09-23 2009-10-01 Novo Nordisk A/S Device for self-care support
WO2006037802A8 (en) * 2004-10-07 2007-07-05 Jon Ulrich Hansen Method and system for self- management of a disease
CN101137320B (en) * 2004-12-29 2012-10-03 生命扫描苏格兰有限公司 Method of inputting data into an analyte testing device
US7798961B1 (en) * 2005-01-11 2010-09-21 BeWell Mobile Technology Inc. Acquisition and management of time dependent health information
EP1850733A2 (en) * 2005-02-17 2007-11-07 Medingo Ltd. Method and apparatus for monitoring bodily analytes
CA2598577C (en) * 2005-02-22 2017-11-14 Bayer Healthcare Llc Iconic display of markers for a meter
US8956292B2 (en) * 2005-03-02 2015-02-17 Spacelabs Healthcare Llc Trending display of patient wellness
US20080071580A1 (en) * 2005-06-03 2008-03-20 Marcus Alan O System and method for medical evaluation and monitoring
US20060272652A1 (en) * 2005-06-03 2006-12-07 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
US20060276771A1 (en) * 2005-06-06 2006-12-07 Galley Paul J System and method providing for user intervention in a diabetes control arrangement
US8251904B2 (en) * 2005-06-09 2012-08-28 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US20060281977A1 (en) * 2005-06-09 2006-12-14 Michael Soppet Diagnostic and treatment planning calculator
GB0514554D0 (en) 2005-07-15 2005-08-24 Materialise Nv Method for (semi-) automatic dental implant planning
RU2411001C2 (en) * 2005-08-05 2011-02-10 Байер Хелткэр Ллк Measurement instrument with multi-level user interface
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7785258B2 (en) * 2005-10-06 2010-08-31 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
DE102005052507A1 (en) * 2005-11-03 2007-05-16 Medwatchdog Gmbh & Co Kg Medical monitoring and notification device in your pocket
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
DE102005058528A1 (en) * 2005-12-01 2007-06-14 Christa Herbert Operation method of nourishment support device for healthy living, involves outputting first memory signal for providing instructions for e.g. food intake, and second memory signal which is individually intended for user
US9144381B2 (en) 2005-12-30 2015-09-29 LifeWIRE Corporation Mobile self-management compliance and notification method, system and computer program product
JP5292104B2 (en) * 2006-01-05 2013-09-18 ユニバーシティ オブ バージニア パテント ファウンデーション Computer implemented method for the self-monitoring data to evaluate blood glucose variability in diabetes, system and computer program
WO2007093482A1 (en) * 2006-02-16 2007-08-23 Novo Nordisk A/S A device and a method for managing data relating to blood glucose level for a person
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US8063063B2 (en) * 2006-03-23 2011-11-22 Novartis Ag Immunopotentiating compounds
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US8092385B2 (en) 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
US20070276197A1 (en) * 2006-05-24 2007-11-29 Lifescan, Inc. Systems and methods for providing individualized disease management
DK1870026T3 (en) * 2006-06-21 2016-01-11 Hoffmann La Roche Diabetes Treatment system for detecting an analyte, and method for selective data transmission
US20090210280A1 (en) * 2006-06-27 2009-08-20 Koninklijke Philips Electronics N.V. Method and apparatus for creating a schedule based on physiological data
DE102006030210A1 (en) * 2006-06-30 2008-01-03 Augstein, Petra, Dipl.-Biolog. Dr. Method and arrangement for computer-aided determination of the characteristic daily profile of the individual glucose metabolism
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
JP2010508091A (en) 2006-10-26 2010-03-18 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. The method for detecting a decrease sensitivity of the analyte sensor in real time systems, and computer program products
GB0622091D0 (en) * 2006-11-06 2006-12-13 T & Medical Ltd Method and apparatus for providing medical information
FI20065735A0 (en) * 2006-11-20 2006-11-20 Salla Koski Measurement, monitoring and management system, as well as equipment belonging to the system
US20080154513A1 (en) * 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
US8732188B2 (en) * 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) * 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080221930A1 (en) 2007-03-09 2008-09-11 Spacelabs Medical, Inc. Health data collection tool
US8758245B2 (en) * 2007-03-20 2014-06-24 Lifescan, Inc. Systems and methods for pattern recognition in diabetes management
US20080235053A1 (en) * 2007-03-20 2008-09-25 Pinaki Ray Communication medium for diabetes management
US20080234943A1 (en) * 2007-03-20 2008-09-25 Pinaki Ray Computer program for diabetes management
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US20080262745A1 (en) * 2007-04-20 2008-10-23 David Charles Polidori Method for Determining Insulin Sensitivity and Glucose Absorption
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
CA2690870C (en) 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US8712748B2 (en) * 2007-06-27 2014-04-29 Roche Diagnostics Operations, Inc. Medical diagnosis, therapy, and prognosis system for invoked events and methods thereof
KR20120060248A (en) 2007-06-27 2012-06-11 에프. 호프만-라 로슈 아게 Therapy delivery system having an open architecture and a method thereof
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090143725A1 (en) * 2007-08-31 2009-06-04 Abbott Diabetes Care, Inc. Method of Optimizing Efficacy of Therapeutic Agent
WO2009031636A1 (en) * 2007-09-07 2009-03-12 Terumo Kabushiki Kaisha Blood sugar measuring device
US9452258B2 (en) 2007-10-09 2016-09-27 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
EP2214002A4 (en) * 2007-11-19 2016-11-30 Terumo Corp Blood glucose level measuring system and measurement data managing device
USD612279S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland Limited User interface in an analyte meter
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US20100198020A1 (en) * 2008-02-12 2010-08-05 Alferness Clifton A System And Method For Computer-Implemented Method For Actively Managing Increased Insulin Resistance In Type 2 Diabetes Mellitus
US20100145725A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for managing type 1 diabetes mellitus through a personal predictive management tool
US20100145174A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System And Method For Providing A Personalized Tool For Estimating Glycated Hemoglobin
US20100138203A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for actively managing type 2 diabetes mellitus on a personalized basis
US20100138453A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for generating a personalized diabetes management tool for diabetes mellitus
US20100198021A1 (en) * 2008-02-12 2010-08-05 Alferness Clifton A Computer-implemented method for providing a tunable personalized tool for estimating glycated hemoglobin
US20100137786A1 (en) * 2008-02-12 2010-06-03 Alferness Clifton A System and method for actively managing type 1 diabetes mellitus on a personalized basis
US20100145173A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for creating a personalized tool predicting a time course of blood glucose affect in diabetes mellitus
US20110077930A1 (en) * 2008-02-12 2011-03-31 Alferness Clifton A Computer-implemented method for providing a personalized tool for estimating 1,5-anhydroglucitol
US20100145670A1 (en) * 2008-02-12 2010-06-10 Alferness Clifton A System and method for managing type 2 diabetes mellitus through a personal predictive management tool
US20090240127A1 (en) * 2008-03-20 2009-09-24 Lifescan, Inc. Methods of determining pre or post meal time slots or intervals in diabetes management
CA2659142C (en) 2008-03-21 2017-10-03 Lifescan Scotland Limited Analyte testing method and system
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
US20110119081A1 (en) * 2008-07-10 2011-05-19 B.G. Informatica S.R.L. Method For Defining And Interactively Managing A Treatment For Glycemic Level Control In A Diabetic Patient And Device That Carries Out Said Method
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
US8454904B2 (en) * 2008-07-29 2013-06-04 Roche Diagnostics Operations, Inc. Biosensor container
DK2321755T3 (en) * 2008-08-11 2017-09-25 F Hoffmann-La Roche Ag Ambulatory medical device comprising an alarm controller
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US20100095229A1 (en) * 2008-09-18 2010-04-15 Abbott Diabetes Care, Inc. Graphical user interface for glucose monitoring system
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US20100111857A1 (en) 2008-10-31 2010-05-06 Boyden Edward S Compositions and methods for surface abrasion with frozen particles
US8788212B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US9060931B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US8725420B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9060926B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731840B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731841B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8256233B2 (en) 2008-10-31 2012-09-04 The Invention Science Fund I, Llc Systems, devices, and methods for making or administering frozen particles
US9056047B2 (en) 2008-10-31 2015-06-16 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US9050070B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8762067B2 (en) 2008-10-31 2014-06-24 The Invention Science Fund I, Llc Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data
US8858912B2 (en) 2008-10-31 2014-10-14 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US9060934B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9072799B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8793075B2 (en) * 2008-10-31 2014-07-29 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8721583B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8788211B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US20100153287A1 (en) * 2008-12-16 2010-06-17 Roger Holzberg Method and system to transition a person from diagnosis to wellness
US8849458B2 (en) * 2008-12-23 2014-09-30 Roche Diagnostics Operations, Inc. Collection device with selective display of test results, method and computer program product thereof
US20110178820A1 (en) * 2008-12-23 2011-07-21 Roche Diagnostics Operations, Inc. Status Reporting Of A Structured Collection Procedure
US9117015B2 (en) 2008-12-23 2015-08-25 Roche Diagnostics Operations, Inc. Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US9918635B2 (en) * 2008-12-23 2018-03-20 Roche Diabetes Care, Inc. Systems and methods for optimizing insulin dosage
US20110145747A1 (en) * 2008-12-23 2011-06-16 Roche Diagnostics Operations, Inc. Structured Tailoring
KR101529407B1 (en) * 2008-12-23 2015-06-16 에프. 호프만-라 로슈 아게 Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8560082B2 (en) * 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100198142A1 (en) * 2009-02-04 2010-08-05 Abbott Diabetes Care Inc. Multi-Function Analyte Test Device and Methods Therefor
US8753290B2 (en) 2009-03-27 2014-06-17 Intellectual Inspiration, Llc Fluid transfer system and method
US20100256047A1 (en) * 2009-04-03 2010-10-07 Lifescan, Inc. Analyte Measurement and Management Device and Associated Methods
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US20100324932A1 (en) * 2009-06-19 2010-12-23 Roche Diagnostics Operations, Inc. Methods and systems for advising people with diabetes
US20100331652A1 (en) * 2009-06-29 2010-12-30 Roche Diagnostics Operations, Inc. Modular diabetes management systems
US9218453B2 (en) * 2009-06-29 2015-12-22 Roche Diabetes Care, Inc. Blood glucose management and interface systems and methods
WO2011008520A3 (en) 2009-06-30 2011-04-07 Lifescan, Inc. Analyte testing methods and device for calculating basal insulin therapy
US20110012691A1 (en) * 2009-07-15 2011-01-20 Schoessow Michael J 1:9 broadband transmission line transformer
CN104799866A (en) 2009-07-23 2015-07-29 雅培糖尿病护理公司 The analyte monitoring device
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
US8641671B2 (en) 2009-07-30 2014-02-04 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
CN102639058B (en) 2009-09-29 2015-11-25 生命扫描苏格兰有限公司 Analyte testing methods and apparatus for the management of diabetes
US9604020B2 (en) 2009-10-16 2017-03-28 Spacelabs Healthcare Llc Integrated, extendable anesthesia system
WO2011046636A1 (en) 2009-10-16 2011-04-21 Spacelabs Healthcare, Llc Light enhanced flow tube
CA2790910A1 (en) 2010-02-25 2011-09-01 Lifescan Scotland Limited Analyte testing method and system with high and low blood glucose trends notification
EP2549919A4 (en) 2010-03-21 2016-11-16 Spacelabs Healthcare Llc Multi-display bedside monitoring system
US8532933B2 (en) 2010-06-18 2013-09-10 Roche Diagnostics Operations, Inc. Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US9047747B2 (en) 2010-11-19 2015-06-02 Spacelabs Healthcare Llc Dual serial bus interface
GB2501423B (en) 2010-12-24 2015-06-03 Sweetlevels Ltd Medication calculator and recorder
CN107019515A (en) 2011-02-28 2017-08-08 雅培糖尿病护理公司 Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9619625B2 (en) 2011-03-30 2017-04-11 Novo Nordisk A/S System for optimizing a patient's drug dosage regimen over time
US8766803B2 (en) 2011-05-13 2014-07-01 Roche Diagnostics Operations, Inc. Dynamic data collection
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
EP2839397A1 (en) 2012-04-17 2015-02-25 Novo Nordisk A/S Medical delivery device with regimen identification feature
US8768673B2 (en) 2012-07-26 2014-07-01 Rimidi Diabetes, Inc. Computer-implemented system and method for improving glucose management through cloud-based modeling of circadian profiles
US8744828B2 (en) 2012-07-26 2014-06-03 Rimidi Diabetes, Inc. Computer-implemented system and method for improving glucose management through modeling of circadian profiles
US8756043B2 (en) 2012-07-26 2014-06-17 Rimidi Diabetes, Inc. Blood glucose meter and computer-implemented method for improving glucose management through modeling of circadian profiles
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9119529B2 (en) 2012-10-30 2015-09-01 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9351670B2 (en) 2012-12-31 2016-05-31 Abbott Diabetes Care Inc. Glycemic risk determination based on variability of glucose levels
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US20170053100A1 (en) * 2014-01-28 2017-02-23 Debiotech S.A. Control Device with Recommendations
FR3019049A1 (en) * 2014-04-01 2015-10-02 Agece Ecole Centrale D Electronique insulin injection preparation devices, insulin injection, and determination of an insulin injection quantity

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282872A (en) * 1977-12-28 1981-08-11 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4777953A (en) * 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US5005143A (en) * 1987-06-19 1991-04-02 University Of Pennsylvania Interactive statistical system and method for predicting expert decisions
US5013362A (en) * 1987-08-19 1991-05-07 Bayer Aktiengesellschaft Fluorine-free superopaque enamel frits
US5019974A (en) * 1987-05-01 1991-05-28 Diva Medical Systems Bv Diabetes management system and apparatus
US5174291A (en) * 1987-10-05 1992-12-29 Rijksuniversiteit Te Groningen Process for using a measuring cell assembly for glucose determination
US5204670A (en) * 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
US5216597A (en) * 1987-05-01 1993-06-01 Diva Medical Systems Bv Diabetes therapy management system, apparatus and method
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5251126A (en) * 1990-10-29 1993-10-05 Miles Inc. Diabetes data analysis and interpretation method
US5299121A (en) * 1992-06-04 1994-03-29 Medscreen, Inc. Non-prescription drug medication screening system
US5370114A (en) * 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US5442728A (en) * 1988-05-12 1995-08-15 Healthtech Services Corp. Interactive patient assistance device for storing and dispensing a testing device
US5507288A (en) * 1994-05-05 1996-04-16 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5672154A (en) * 1992-08-27 1997-09-30 Minidoc I Uppsala Ab Method and apparatus for controlled individualized medication
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5822715A (en) * 1997-01-10 1998-10-13 Health Hero Network Diabetes management system and method for controlling blood glucose
US5899998A (en) * 1995-08-31 1999-05-04 Medcard Systems, Inc. Method and system for maintaining and updating computerized medical records
US5937387A (en) * 1997-04-04 1999-08-10 Real Age, Inc. System and method for developing and selecting a customized wellness plan
US5954640A (en) * 1996-06-27 1999-09-21 Szabo; Andrew J. Nutritional optimization method
US6012034A (en) * 1997-08-18 2000-01-04 Becton, Dickinson And Company System and method for selecting an intravenous device
US6167290A (en) * 1999-02-03 2000-12-26 Bayspec, Inc. Method and apparatus of non-invasive measurement of human/animal blood glucose and other metabolites
US6387349B1 (en) * 2001-03-26 2002-05-14 Council Of Scientific And Industrial Research Process for the microwave induced preparation of crystalline microporous titanium silicalite
US6540672B1 (en) * 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
US6572542B1 (en) * 2000-03-03 2003-06-03 Medtronic, Inc. System and method for monitoring and controlling the glycemic state of a patient
US6602469B1 (en) * 1998-11-09 2003-08-05 Lifestream Technologies, Inc. Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system
US20030199739A1 (en) * 2001-12-17 2003-10-23 Gordon Tim H. Printing device for personal medical monitors
US20030212317A1 (en) * 2000-03-29 2003-11-13 Kovatchev Boris P. Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US20030216628A1 (en) * 2002-01-28 2003-11-20 Bortz Jonathan David Methods and systems for assessing glycemic control using predetermined pattern label analysis of blood glucose readings
US20040018486A1 (en) * 1998-09-30 2004-01-29 Cygnus, Inc. Method and device for predicting physiological values
US20040117209A1 (en) * 1992-11-17 2004-06-17 Health Hero Network Patient control of health-related data in a remote patient monitoring system
US20040193451A1 (en) * 2003-02-11 2004-09-30 Mcnair Douglas S. System and method for risk-adjusting indicators of access and utilization based on metrics of distance and time
US20040225205A1 (en) * 2003-05-06 2004-11-11 Orsense Ltd. Glucose level control method and system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786510A (en) * 1972-07-26 1974-01-15 F Hodges Medical testing and data recording apparatus
FR2483657B1 (en) * 1980-05-30 1986-11-21 Bull Sa portable machine for the calculation or processing of information
CA1296068C (en) 1986-07-28 1992-02-18 Edward John Friesen Physiological monitoring system
US4839822A (en) 1987-08-13 1989-06-13 501 Synthes (U.S.A.) Computer system and method for suggesting treatments for physical trauma
DE3833821A1 (en) 1988-10-05 1990-04-12 Braun Melsungen Ag injection device
US5371687A (en) * 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
US5313941A (en) * 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer
US5558638A (en) 1993-04-30 1996-09-24 Healthdyne, Inc. Patient monitor and support system
US5704366A (en) 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5842976A (en) * 1996-05-16 1998-12-01 Pyxis Corporation Dispensing, storage, control and inventory system with medication and treatment chart record
EP0958778B1 (en) 1996-07-16 2002-09-04 Kyoto Daiichi Kagaku Co., Ltd. Distributed inspection/measurement system and distributed health caring system
US5687717A (en) * 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
DE29718990U1 (en) * 1997-10-24 1997-12-18 Greiner De Mothes Maria Dr display device
US6421650B1 (en) * 1998-03-04 2002-07-16 Goetech Llc Medication monitoring system and apparatus
US6024699A (en) 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
CA2326579C (en) 1998-04-03 2011-01-18 Triangle Pharmaceuticals, Inc. Systems, methods and computer program products for guiding the selection of therapeutic treatment regimens
US6363416B1 (en) * 1998-08-28 2002-03-26 3Com Corporation System and method for automatic election of a representative node within a communications network with built-in redundancy
US6155975A (en) * 1998-11-06 2000-12-05 Urich; Alex Phacoemulsification apparatus with personal computer
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282872A (en) * 1977-12-28 1981-08-11 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4777953A (en) * 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US5216597A (en) * 1987-05-01 1993-06-01 Diva Medical Systems Bv Diabetes therapy management system, apparatus and method
US5019974A (en) * 1987-05-01 1991-05-28 Diva Medical Systems Bv Diabetes management system and apparatus
US5005143A (en) * 1987-06-19 1991-04-02 University Of Pennsylvania Interactive statistical system and method for predicting expert decisions
US5013362A (en) * 1987-08-19 1991-05-07 Bayer Aktiengesellschaft Fluorine-free superopaque enamel frits
US5174291A (en) * 1987-10-05 1992-12-29 Rijksuniversiteit Te Groningen Process for using a measuring cell assembly for glucose determination
US5442728A (en) * 1988-05-12 1995-08-15 Healthtech Services Corp. Interactive patient assistance device for storing and dispensing a testing device
US5204670A (en) * 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5251126A (en) * 1990-10-29 1993-10-05 Miles Inc. Diabetes data analysis and interpretation method
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5370114A (en) * 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US5299121A (en) * 1992-06-04 1994-03-29 Medscreen, Inc. Non-prescription drug medication screening system
US5672154A (en) * 1992-08-27 1997-09-30 Minidoc I Uppsala Ab Method and apparatus for controlled individualized medication
US20040117209A1 (en) * 1992-11-17 2004-06-17 Health Hero Network Patient control of health-related data in a remote patient monitoring system
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5507288B1 (en) * 1994-05-05 1997-07-08 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5507288A (en) * 1994-05-05 1996-04-16 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5899998A (en) * 1995-08-31 1999-05-04 Medcard Systems, Inc. Method and system for maintaining and updating computerized medical records
US5954640A (en) * 1996-06-27 1999-09-21 Szabo; Andrew J. Nutritional optimization method
US6379301B1 (en) * 1997-01-10 2002-04-30 Health Hero Network, Inc. Diabetes management system and method for controlling blood glucose
US5956501A (en) * 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5822715A (en) * 1997-01-10 1998-10-13 Health Hero Network Diabetes management system and method for controlling blood glucose
US5937387A (en) * 1997-04-04 1999-08-10 Real Age, Inc. System and method for developing and selecting a customized wellness plan
US6012034A (en) * 1997-08-18 2000-01-04 Becton, Dickinson And Company System and method for selecting an intravenous device
US20040018486A1 (en) * 1998-09-30 2004-01-29 Cygnus, Inc. Method and device for predicting physiological values
US6602469B1 (en) * 1998-11-09 2003-08-05 Lifestream Technologies, Inc. Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system
US6540672B1 (en) * 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
US6167290A (en) * 1999-02-03 2000-12-26 Bayspec, Inc. Method and apparatus of non-invasive measurement of human/animal blood glucose and other metabolites
US6572542B1 (en) * 2000-03-03 2003-06-03 Medtronic, Inc. System and method for monitoring and controlling the glycemic state of a patient
US20030212317A1 (en) * 2000-03-29 2003-11-13 Kovatchev Boris P. Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US6387349B1 (en) * 2001-03-26 2002-05-14 Council Of Scientific And Industrial Research Process for the microwave induced preparation of crystalline microporous titanium silicalite
US20030199739A1 (en) * 2001-12-17 2003-10-23 Gordon Tim H. Printing device for personal medical monitors
US20030216628A1 (en) * 2002-01-28 2003-11-20 Bortz Jonathan David Methods and systems for assessing glycemic control using predetermined pattern label analysis of blood glucose readings
US20040193451A1 (en) * 2003-02-11 2004-09-30 Mcnair Douglas S. System and method for risk-adjusting indicators of access and utilization based on metrics of distance and time
US20040225205A1 (en) * 2003-05-06 2004-11-11 Orsense Ltd. Glucose level control method and system

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346399B2 (en) 2002-02-28 2013-01-01 Tandem Diabetes Care, Inc. Programmable insulin pump
US8333752B2 (en) 2003-11-06 2012-12-18 Lifescan, Inc. Drug delivery with event notification
US8551039B2 (en) 2003-11-06 2013-10-08 Lifescan, Inc. Drug delivery with event notification
US7713229B2 (en) 2003-11-06 2010-05-11 Lifescan, Inc. Drug delivery pen with event notification means
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US9848774B2 (en) * 2006-03-23 2017-12-26 Becton, Dickinson And Company System and methods for improved diabetes data management and use employing wireless connectivity between patients and healthcare providers and repository of diabetes management information
US20130030841A1 (en) * 2006-03-23 2013-01-31 Chris Bergstrom System and Methods for Improved Diabetes Data Management and Use Employing Wireless Connectivity Between Patients and Healthcare Providers and Repository of Diabetes Management Information
US8439837B2 (en) 2006-10-31 2013-05-14 Lifescan, Inc. Systems and methods for detecting hypoglycemic events having a reduced incidence of false alarms
US20080208026A1 (en) * 2006-10-31 2008-08-28 Lifescan, Inc Systems and methods for detecting hypoglycemic events having a reduced incidence of false alarms
US20100069890A1 (en) * 2006-12-14 2010-03-18 Novo Nordisk A/S User interface for medical system comprising diary function with time change feature
US8395581B2 (en) * 2006-12-14 2013-03-12 Novo Nordisk A/S User interface for medical system comprising diary function with time change feature
US7434724B2 (en) 2006-12-22 2008-10-14 Welch Allyn, Inc. Dynamic barcode for displaying medical data
US8208984B2 (en) 2007-01-24 2012-06-26 Smiths Medical Asd, Inc. Correction factor testing using frequent blood glucose input
US20080183060A1 (en) * 2007-01-31 2008-07-31 Steil Garry M Model predictive method and system for controlling and supervising insulin infusion
US9474856B2 (en) 2007-05-24 2016-10-25 Tandem Diabetes Care, Inc. Expert system for infusion pump therapy
US8219222B2 (en) 2007-05-24 2012-07-10 Smiths Medical Asd, Inc. Expert system for pump therapy
US7751907B2 (en) 2007-05-24 2010-07-06 Smiths Medical Asd, Inc. Expert system for insulin pump therapy
US9008803B2 (en) 2007-05-24 2015-04-14 Tandem Diabetes Care, Inc. Expert system for insulin pump therapy
WO2008153689A1 (en) * 2007-05-24 2008-12-18 Smiths Medical Md, Inc. Expert system for insulin pump therapy
US20120226124A1 (en) * 2007-05-30 2012-09-06 Michael Blomquist Insulin pump based expert system
US8221345B2 (en) * 2007-05-30 2012-07-17 Smiths Medical Asd, Inc. Insulin pump based expert system
US9833177B2 (en) * 2007-05-30 2017-12-05 Tandem Diabetes Care, Inc. Insulin pump based expert system
US20140171772A1 (en) * 2007-05-30 2014-06-19 Tandem Diabetes Care, Inc. Insulin pump based expert system
US8657779B2 (en) * 2007-05-30 2014-02-25 Tandem Diabetes Care, Inc. Insulin pump based expert system
WO2009002622A3 (en) * 2007-06-27 2009-04-09 Hoffmann La Roche Patient information input interface for a therapy system
US20090006133A1 (en) * 2007-06-27 2009-01-01 Roche Diagnostics Operations, Inc. Patient information input interface for a therapy system
WO2009002622A2 (en) * 2007-06-27 2008-12-31 F. Hoffman-La Roche Ag Patient information input interface for a therapy system
US9414782B2 (en) 2007-10-10 2016-08-16 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US8449524B2 (en) 2007-10-10 2013-05-28 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US20090105572A1 (en) * 2007-10-18 2009-04-23 Lifescan Scotland, Ltd. Method for predicting a user's future glycemic state
US7731659B2 (en) 2007-10-18 2010-06-08 Lifescan Scotland Limited Method for predicting a user's future glycemic state
US7695434B2 (en) 2007-10-19 2010-04-13 Lifescan Scotland, Ltd. Medical device for predicting a user's future glycemic state
US20090105573A1 (en) * 2007-10-19 2009-04-23 Lifescan Scotland, Ltd. Medical device for predicting a user's future glycemic state
US20120238854A1 (en) * 2008-01-07 2012-09-20 Michael Blomquist Insulin pump with blood glucose modules
US8718949B2 (en) * 2008-01-07 2014-05-06 Tandem Diabetes Care, Inc. Insulin pump with blood glucose modules
US8801657B2 (en) 2008-01-07 2014-08-12 Tandem Diabetes Care, Inc. Pump with therapy coaching
US8414523B2 (en) 2008-01-09 2013-04-09 Tandem Diabetes Care, Inc. Infusion pump with add-on modules
US9889250B2 (en) 2008-01-09 2018-02-13 Tandem Diabetes Care, Inc. Infusion pump with temperature monitoring
US8840582B2 (en) 2008-01-09 2014-09-23 Tandem Diabetes Care, Inc. Infusion pump with activity monitoring
US9220456B2 (en) 2008-04-04 2015-12-29 Hygieia, Inc. Systems, methods and devices for achieving glycemic balance
US8457901B2 (en) 2008-04-04 2013-06-04 Hygieia, Inc. System for optimizing a patient's insulin dosage regimen
US20090253973A1 (en) * 2008-04-04 2009-10-08 Eran Bashan Apparatus for optimizing a patient's insulin dosage regimen
US8370077B2 (en) 2008-04-04 2013-02-05 Hygieia, Inc. System for optimizing a patient's insulin dosage regimen
US8600682B2 (en) 2008-04-04 2013-12-03 Hygieia, Inc. Apparatus for optimizing a patient's insulin dosage regimen
US20090253970A1 (en) * 2008-04-04 2009-10-08 Eran Bashan System for optimizing a patient's insulin dosage regimen
US20090259486A1 (en) * 2008-04-09 2009-10-15 Panasonic Corporation Patient centric medication dispensing device
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US9302045B2 (en) 2008-09-12 2016-04-05 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8992464B2 (en) 2008-11-11 2015-03-31 Hygieia, Inc. Apparatus and system for diabetes management
US9907508B2 (en) 2008-11-11 2018-03-06 Hygieia, Inc. Apparatus and system for diabetes management
US8882701B2 (en) 2009-12-04 2014-11-11 Smiths Medical Asd, Inc. Advanced step therapy delivery for an ambulatory infusion pump and system
US8771251B2 (en) 2009-12-17 2014-07-08 Hospira, Inc. Systems and methods for managing and delivering patient therapy through electronic drug delivery systems
US9773096B2 (en) 2012-09-11 2017-09-26 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9811638B2 (en) 2012-09-11 2017-11-07 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9483619B2 (en) 2012-09-11 2016-11-01 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9710611B2 (en) 2014-01-31 2017-07-18 Aseko, Inc. Insulin management
US9898585B2 (en) 2014-01-31 2018-02-20 Aseko, Inc. Method and system for insulin management
US9604002B2 (en) 2014-01-31 2017-03-28 Aseko, Inc. Insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
US9892235B2 (en) 2014-01-31 2018-02-13 Aseko, Inc. Insulin management
US9504789B2 (en) 2014-01-31 2016-11-29 Aseko, Inc. Insulin management
US9233204B2 (en) 2014-01-31 2016-01-12 Aseko, Inc. Insulin management
US9669160B2 (en) 2014-07-30 2017-06-06 Tandem Diabetes Care, Inc. Temporary suspension for closed-loop medicament therapy
US9892234B2 (en) 2014-10-27 2018-02-13 Aseko, Inc. Subcutaneous outpatient management
US9886556B2 (en) 2015-08-20 2018-02-06 Aseko, Inc. Diabetes management therapy advisor

Also Published As

Publication number Publication date Type
EP1437674B2 (en) 2011-11-23 grant
CA2352295C (en) 2008-07-15 grant
EP1437674B1 (en) 2008-08-13 grant
DE69918333D1 (en) 2004-07-29 grant
DK1144028T3 (en) 2004-10-18 grant
DE69918333T2 (en) 2005-08-25 grant
DE69939344D1 (en) 2008-09-25 grant
EP1437674A3 (en) 2004-07-21 application
EP1144028B1 (en) 2004-06-23 grant
JP2002531884A (en) 2002-09-24 application
CA2352295A1 (en) 2000-06-08 application
US6656114B1 (en) 2003-12-02 grant
EP1144028A1 (en) 2001-10-17 application
US7282029B1 (en) 2007-10-16 grant
WO2000032258A1 (en) 2000-06-08 application
ES2224718T3 (en) 2005-03-01 grant
EP1437674A2 (en) 2004-07-14 application

Similar Documents

Publication Publication Date Title
US6687190B2 (en) Method and apparatus for clinical trials
US6269340B1 (en) Infusion pump with an electronically loadable drug library and a user interface for loading the library
US5036462A (en) Interactive patient assistance and medication delivery systems responsive to the physical environment of the patient
US20080269585A1 (en) System for determining insulin dose using carbohydrate to insulin ratio and insulin sensitivity factor
US20080077440A1 (en) Drug dispenser responsive to physiological parameters
US20100331651A1 (en) Blood glucose management and interface systems and methods
US20080103447A1 (en) Infusion Devices and Methods
US7515060B2 (en) Insulin pump for the visually impaired
US20070282186A1 (en) Blood glucose monitor with an integrated data management system
US20080300534A1 (en) Insulin pump based expert system
US6075755A (en) Medical reminder system and messaging watch
US20080119705A1 (en) Systems and Methods for Diabetes Management Using Consumer Electronic Devices
US20030181852A1 (en) External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US20080228055A1 (en) Fluctuating Blood Glucose Notification Threshold Profiles and Methods of Use
US20080177149A1 (en) System and method for collecting patient information from which diabetes therapy may be determined
US7651489B2 (en) Medication delivery system and monitor
US5267174A (en) Interactive medication delivery system
US20080172031A1 (en) Insulin pump having correction factors
US20090030366A1 (en) Self-administration injection system
US7713229B2 (en) Drug delivery pen with event notification means
US20080172027A1 (en) Insulin pump having basal rate testing features
US20110287528A1 (en) Devices, Systems, and Methods Related to Analyte Monitoring and Management
US7657443B2 (en) Intravenous medication harm index system
US20080004601A1 (en) Analyte Monitoring and Therapy Management System and Methods Therefor
US5329459A (en) Interactive medication delivery system