US20050186615A1 - Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding - Google Patents

Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding Download PDF

Info

Publication number
US20050186615A1
US20050186615A1 US11/087,991 US8799105A US2005186615A1 US 20050186615 A1 US20050186615 A1 US 20050186615A1 US 8799105 A US8799105 A US 8799105A US 2005186615 A1 US2005186615 A1 US 2005186615A1
Authority
US
United States
Prior art keywords
seq
protein
intracellular
ligand protein
intracellular ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/087,991
Inventor
Lih-Ling Lin
James Graham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genetics Institute LLC
Original Assignee
Genetics Institute LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetics Institute LLC filed Critical Genetics Institute LLC
Priority to US11/087,991 priority Critical patent/US20050186615A1/en
Publication of US20050186615A1 publication Critical patent/US20050186615A1/en
Priority to US12/172,798 priority patent/US20090175874A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to the field of anti-inflammatory substances and other substances which act by inhibiting binding to the intracellular domain of an interleukin-1 receptor (hereinafter “IL-1-R”), such as, for example, the p80, type I IL-1 receptor. More particularly, the present invention is directed to novel ligands which bind to the IL-1-R intracellular domain and to inhibition or modulation of signal transduction by this receptor.
  • IL-1-R interleukin-1 receptor
  • Interleukin-1- ⁇ and interleukin-1- ⁇ are cytokines which produce a wide range of cellular activities. IL-1 causes an inflammatory response, which can be beneficial, such as in mounting an immune response to a pathogen, or when overexpressed can lead to other detrimental effects of inflammation.
  • IL-1-Rs receptors
  • the isolation of polynucleotides encoding IL-1-Rs and variant forms of such receptors has been described in U.S. Pat. Nos. 4,968,607, 5,081,228, 5,180,812, in PCT Publication No. WO91/18982, and by Sims et al., PNAS, 86, 8946 (1989) (disclosing the p80, type I IL-1 receptor). Processes for purification of IL-1-Rs have also been disclosed in U.S. Pat. No. 5,296,592.
  • Native IL-1-Rs are characterized by distinct extracellular, transmembrane and intracellular domains.
  • the primary purpose of the extracellular domain is to present a binding site for IL-1 on the outside of the cell.
  • a “signal” is transmitted to the inside of the cell through the transmembrane and intracellular domains, indicating that binding has occurred.
  • Transmission or “transduction” of the signal to the inside of the cell occurs by a change in conformation of the transmembrane and/or intracellular domains of the receptor. This signal is “received” by the binding of proteins and other molecules to the intracellular domain of the receptor resulting in the effects seen upon IL-1 stimulation.
  • IL-1 binding by IL-1-Rs results in beneficial cellular effects, it is often desirable to prevent or deter IL-1 binding from causing other detrimental cellular effects.
  • substantial effort has been expended investigating inhibition of IL-1 binding to the extracellular domain of IL-1-Rs, examination of binding of proteins and other molecules to the intracellular domain of IL-1-Rs has received much less attention.
  • ligands which bind to the IL-1-R intracellular domain have yet to be identified. It would be desirable to identify and isolate such ligands to examine their effects upon IL-1-R signal transduction and their use as therapeutic agents for treatment of IL-1-induced conditions. Furthermore, identification of such ligands would provide a means for screening for inhibitors of IL-1-R/intracellular ligand binding, which will also be useful as anti-inflammatory agents.
  • IL-1-R intracellular ligand proteins and have isolated polynucleotides encoding such ligands. Applicants have also identified certain known proteins which may also bind to the intracellular domain of IL-1-R.
  • the present invention provides a composition comprising an isolated polynucleotide encoding a protein having IL-1-R intracellular ligand protein activity.
  • the polynucleotide is selected from the group consisting of:
  • Processes are also provided for producing an IL-1-R intracellular ligand protein, which comprises:
  • compositions comprising a protein having IL-1-R intracellular ligand protein activity are also disclosed.
  • the protein comprises an amino acid sequence selected from the group consisting of:
  • compositions comprising an antibody which specifically reacts with such IL-1-R intracellular ligand protein are also provided by the present invention.
  • Methods are also provided for identifying an inhibitor of IL-1-R intracellular domain binding which comprise:
  • Methods are also provided for preventing or ameliorating an inflammatory condition which comprises administering a therapeutically effective amount of a composition comprising a protein having IL-1-R intracellular ligand protein activity and a pharmaceutically acceptable carrier.
  • inventions provide methods of inhibiting IL-1-R intracellular domain binding comprising administering a therapeutically effective amount of a composition comprising a protein having IL-1-R intracellular ligand protein activity and a pharmaceutically acceptable carrier.
  • Methods of preventing or ameliorating an inflammatory condition or of inhibiting IL-1-R intracellular domain binding comprise administering to a mammalian subject a therapeutically effective amount of inhibitors of IL-1-R intracellular domain binding, are also provided.
  • Methods of identifying an inhibitor of IL-1-R intracellular domain binding are also provided by the present invention which comprise:
  • FIG. 1 depicts an autoradiograph demonstrating the expression of IL-1-R intracellular ligand proteins of the present invention in mammalian cells.
  • the expression of flag-14w, -31w and -19w was detected by an anti-flag antibody, M2, as described below.
  • FIG. 2 demonstrates the effects of the clone 19w product on JNK1 activation.
  • Top panel HA-tagged JNK1 was coexpressed in COS cells with either pED flag vector of pED flag-19w. After 48 hr, the cells were treated with different concentrations of IL-1 ⁇ for 15 min. JNK1 was isolated by immunoprecipitation with 12CA5 antibody and JNK activity was measured using an immune complex kinase assay with the substrate GST-c-jun (1-79).
  • Middle panel The expression and recovery if HA-JNK1 from immunoprecipitation was examined by Western blot analysis wit 12CA5 antibody.
  • Bottom panel The expression of clone 19w was detected by Western blot analysis of cell lysate using M2 antibody.
  • IL-1-R includes all receptors for interleukin-I.
  • the type 1, p80 IL-1-R is the preferred receptor for practicing the present invention.
  • polynucleotide encoding one such protein is set forth in SEQ ID NO:1 from nucleotide 2 to 529. This polynucleotide has been identified as “clone 19w.”
  • the amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 19w is set forth in SEQ ID NO:2. It is believed that clone 19w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 19w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein).
  • Clone 19w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69774.
  • the protein encoded by clone 19w is 176 amino acids in length. No identical or closely related sequences were found using database searches. Therefore, clone 19w encodes a novel protein.
  • using an extensive FASTA search a significant homology to amino acids 330 to 390 of thrombospondin (41% identity in 59 amino acids) is found in the C-terminal portion of the 19w protein.
  • a significant homology to the Ca ⁇ binding domain, EF hand of calmodulin (25% in 65 amino acids) is observed in the region between amino acids 40 and 110 of the protein encoded by clone 19w.
  • polynucleotide encoding another such protein is set forth in SEQ ID NO:3 from nucleotide 2 to 961. This polynucleotide has been identified as “clone 31w.”
  • the amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 31w is set forth in SEQ ID NO:4. It is believed that clone 31w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 31w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein).
  • Clone 31w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69775.
  • the protein encoded by clone 31w is 320 amino acids in length. No identical or closely related sequences were found using BLASTN/BLASTX or FASTA searches. Therefore, clone 31w encodes a novel protein.
  • polynucleotide encoding another such protein is set forth in SEQ ID NO:5 from nucleotides 2 to 754. This polynucleotide has been identified as “clone 14w.”
  • the amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 14w is set forth in SEQ ID NO:6. It is believed that clone 14w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 14w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein).
  • CLone 14w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69773.
  • the protein encoded by clone 14w is identical to the sequence of amino acids 449 to 700 of calcium activated neutral protease (CANP), with the exception of an amino acid change (Val to Phe) at position 553 of CANP.
  • the sequence of CANP is disclosed in Imajoh et al., Biochemistry 1988, 27, 8122-8128, which is incorporated herein by reference (accession no. A31218).
  • the amino acid sequence of CANP is set forth in SEQ ID NO:7. Based upon this sequence homology, CANP and certain fragments thereof will exhibit IL-1-R intracellular ligand binding activity (as defined herein).
  • IL-1-R intracellular ligand protein includes proteins which exhibit IL-1-R intracellular ligand protein activity.
  • a protein is defined as having “IL-1-R intracellular ligand protein activity” when it binds to a protein derived from the IL-1-R intracellular domain. Activity can be measured by using any assay which will detect binding to an IL-1-R intracellular domain protein. Examples of such assays include without limitation the interaction trap assays and assays in which IL-1-R intracellular domain protein which is affixed to a surface in a manner conducive to observing binding, including without limitation those described in Examples 1 and 3. As used herein an “IL-1-R intracellular domain protein” includes the entire intracellular domain or fragments thereof.
  • Fragments of the IL-1-R intracellular ligand protein which are capable of interacting with the IL-1-R intracellular domain or which are capable of inhibiting IL-1-R intracellular domain binding (i.e., exhibit IL-1-R intracellular ligand protein activity) are also encompassed by the present invention. Fragments of the IL-1-R intracellular ligand protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc.
  • fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of IL-1-R intracellular ligand protein binding sites.
  • fragments of the IL-1-R intracellular ligand protein may be fused through “linker” sequences to the Fc portion of an immnunoglobulin.
  • linker For a bivalent form of the IL-1-R intracellular ligand protein, such a fusion could be to the Fc portion of an IgG molecule.
  • Other immunoglobulin isotypes may also be used to generate such fusions.
  • an IL-1-P intracellular ligand protein—IgM fusion would generate a decavalent form of the IL-1-R intracellular ligand protein of the invention.
  • the isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the IL-1-R intracellular ligand protein recombinantly.
  • an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991
  • Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990).
  • operably linked means that the isolated polynucleotide of the invention and the expression control sequence are situated within a vector or cell in such a way that the IL-1-R intracellular ligand protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.
  • Host cells include, for example. monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells,3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
  • CHO Chinese Hamster Ovary
  • human kidney 293 cells human epidermal A431 cells
  • human Colo205 cells human Colo205 cells
  • CV-1 cells other transformed primate cell lines
  • normal diploid cells cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
  • the IL-1-R intracellular ligand protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system.
  • suitable control sequences in one or more insect expression vectors, and employing an insect expression system.
  • Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) incorporated herein by reference.
  • yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins.
  • yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins.
  • yeast strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins.
  • the IL-1-R intracellular ligand protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional IL-1-R intracellular ligand protein.
  • Such covalent attachments may be accomplished using known chemical or enzymatic methods.
  • the IL-1-R intracellular ligand protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the IL-1-R intracellular ligand protein.
  • the IL-1-R intracellular ligand protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein.
  • the resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography.
  • the purification of the IL-1-R intracellular ligand protein may also include an affinity column containing the IL-1-R intracellular domain or other IL-1-R intracellular domain protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
  • affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®
  • hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether
  • immunoaffinity chromatography immunoaffinity chromatography
  • the IL-1-R intracellular ligand protein of the invention may also be expressed in a form which will facilitate purification.
  • it may be expressed as a fusion protein, such as those of maltose binding protein (MBP) or glutathione-S-transferase (GST). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.) and Pharmacia (Piscataway, N.J.), respectively.
  • MBP maltose binding protein
  • GST glutathione-S-transferase
  • Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.) and Pharmacia (Piscataway, N.J.), respectively.
  • the IL-1-R ligand protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope.
  • One such epitope (“Flag”) is commercially available from Kodak (New Haven,
  • RP-HPLC reverse-phase high performance liquid chromatography
  • hydrophobic RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups
  • RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups
  • the IL-1-R intracellular ligand protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an “isolated IL-1-R intracellular ligand protein.”
  • IL-1-R intracellular ligand proteins may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled, in the art.
  • the synthetically-constructed protein sequences by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with IL-1-R intracellular ligand proteins may possess biological properties in common therewith, including IL-1-R intracellular ligand protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified IL-1-R intracellular ligand proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.
  • the IL-1-R intracellular ligand proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified IL-1-R intracellular ligand proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the IL-1-R intracellular ligand protein sequences may include the replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Mutagenic techniques for such replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584).
  • IL-1-R intracellular ligand protein of the invention may also be used to screen for agents which are capable of inhibiting or blocking binding of an IL-1-R intracellular ligand protein to the intracellular domain of IL-1-R, and thus may act as inhibitors of IL-1-R intracellular domain binding and/or IL-1 activity.
  • Binding assays using a desired binding protein, immobilized or not, are well known in the art and may be used for this purpose using the IL-1-R intracellular ligand protein of the invention. Examples 1 and 3 describe examples of such assays.
  • Appropriate screening assays may be cell-based or cell-free. Alternatively, purified protein based screening assays may be used to identify such agents.
  • IL-1-R intracellular ligand protein may be immobilized in purified form on a carrier and binding to purified IL-1-R intracellular domain may be measured in the presence and in the absence of potential inhibiting agents.
  • a suitable binding assay may alternatively employ purified IL-1-R intracellular domain immobilized on a carrier with a soluble form of a IL-1-R intracellular ligand protein of the invention. Any IL-1-R intracellular ligand protein may be used in the screening assays described above.
  • a first binding mixture is formed by combining IL-1-R intracellular domain protein and IL-1-R intracellular ligand protein, and the amount of binding in the first binding mixture (B o ) is measured.
  • a second binding mixture is also formed by combining IL-1-R intracellular domain protein, IL-1-R intracellular ligand protein, and the compound or agent to be screened, and the amount of binding in the second binding mixture (B) is measured.
  • the amounts of binding in the first and second binding mixtures are compared, for example, by performing a B/B o calculation.
  • a compound or agent is considered to be capable of inhibiting IL-1-R intracellular domain binding if a decrease in binding in the second binding mixture as compared to the first binding mixture is observed.
  • the formulation and optimization of binding mixtures is within the level of skill in the art.
  • Such binding mixtures may also contain buffers and salts necessary to enhance or to optimize binding, and additional control assays may be included in the screening assay of the invention.
  • appropriate screening assays may be cell based.
  • the binding or interaction between an IL-1-R ligand protein and the IL-1-R intracellular domain can be measured in yeast as described below in Examples 1 and 3.
  • Compounds found to reduce, preferably by at least about 10%, more preferably greater than about 50% or more, the binding activitv of IL-1-R intracellular ligand protein to IL-1-R intracellular domain may thus be identified and then secondarily screened in other binding assays, including in vivo assays.
  • compounds having inhibitory activity for IL-1-R intracellular domain binding which may be suitable as anti-inflammatory agents may be identified.
  • Isolated IL-1-R intracellular ligand protein may be useful in treating, preventing or ameliorating inflammatory conditions and other conditions such as osteoporosis, colitis, myelogenous leukemia, diabetes, wasting and atherosclerosis.
  • Isolated IL-1-R intracellular ligand protein may be used itself as an inhibitor of IL-1-R intracellular domain binding or to design inhibitors of IL-1-R intracellular domain binding.
  • Inhibitors of binding of IL-1-R intracellular ligand protein to the IL-1-R intracellular domain (“IL-1-R intracellular binding inhibitors”) are also useful for treating such conditions.
  • the present invention encompasses both pharmaceutical compositions and therapeutic methods of treatment or use which employ isolated IL-1-R intracellular ligand protein and/or binding inhibitors of IL-1-R intracellular binding.
  • Isolated IL-1-R intracellular ligand protein or binding inhibitors may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier may also contain (in addition to IL-1-R intracellular ligand protein or binding inhibitor and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers,and other materials well known in the art.
  • pharmaceutically acceptable means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration.
  • the pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoletic factors such as M-CSF, GM-CSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, G-CSF, Meg-CSF, stem cell factor, and erythropoietin.
  • the pharmaceutical composition may further contain other anti-inflammatory agents.
  • additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with isolated IL-1-R intracellular ligand protein or binding inhibitor, or to minimize side effects caused by the isolated IL-1-R intracellular ligand protein or binding inhibitor.
  • isolated IL-1-R intracellular ligand protein or binding inhibitor may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor or anti-inflammatory agent.
  • the pharmaceutical composition of the invention may be in the form of a liposome in which isolated IL-1-R intracellular ligand protein or binding inhibitor is combined, in addition to other pharmaceutically acceptable carriers with amphipathic agents such as lipids which exist in aggregated form as micelles insoluble monolayers, liquid crystals or lamellar layers in aqueous solution.
  • Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. No. 4,235,871; U.S. Pat. No. 4,501,728; U.S. Pat. No. 5 4,837,028; and U.S. Pat. No. 4,737,323, all of which are incorporated herein by reference.
  • the term “therapeutically effective amount” means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of an inflammatory response or condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions.
  • a meaningful patient benefit i.e., treatment, healing, prevention or amelioration of an inflammatory response or condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions.
  • the term refers to that ingredient alone.
  • the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
  • a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered to a mammal having a condition to be treated.
  • Isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors.
  • other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors.
  • lymphokines or other hematopoietic factors isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially.
  • IL-1-R intracellular ligand protein or binding inhibitor in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.
  • Administration of isolated IL-1-R intracellular ligand protein or binding inhibitor used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways such as oral ingestion, inhalation, or cutaneous, subcutaneous, or intravenous injection. Intravenous administration to the patient is preferred.
  • isolated IL-1-R intracellular ligand protein or binding inhibitor When a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered orally, isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant.
  • the tablet, capsule, and powder contain from about 5 to 95% isolated IL-1-R intracellular ligand protein or binding inhibitor, and preferably from about 25 to 90% isolated IL-1-R intracellular ligand protein or binding inhibitor.
  • a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils
  • the liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol.
  • the pharmaceutical composition contains from about 0.5 to 90% by weight of isolated IL-1-R intracellular ligand protein or binding inhibitor, and preferably from about 1 to 50% isolated IL-1-R intracellular ligand protein or binding inhibitor.
  • isolated IL-1-R intracellular ligand protein or binding inhibitor When a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered by intravenous, cutaneous or subcutaneous injection, isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the form of a pyrogen-free parenterally acceptable aqueous solution.
  • parenterally acceptable protein solutions having due regard to pH, isotonicity, stability, and the like, is within the skill in the art.
  • a preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to isolated IL-1-R intracellular ligand protein or binding inhibitor, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art.
  • an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art.
  • the pharmaceutical composition of the present invention may also contain stabilizers, preservatives buffers, antioxidants, or other additives known to those of skill in the art.
  • the amount of isolated IL-1-R intracellular ligand protein or binding inhibitor in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of isolated IL-1-R intracellular ligand protein or binding inhibitor with which to treat each individual patient. Initially, the attending physician will administer low doses of isolated IL-1-R intracellular ligand protein or binding inhibitor and observe the patient's response. Larger doses of isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.1 ⁇ g to about 100 mg of isolated IL-1-R intracellular ligand protein or binding inhibitor per kg body weight.
  • the duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.
  • Isolated IL-1-R intracellular ligand protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the IL-1-R intracellular ligand protein and which may inhibit IL-1-R intracellular domain binding.
  • Such antibodies may be obtained using either the entire IL-1-R intracellular ligand protein or fragments of IL-1-R intracellular ligand protein as an immunogen.
  • the peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH).
  • KLH keyhole limpet hemocyanin
  • Monoclonal antibodies binding to IL-1-R intracellular ligand protein or to complex carbohydrate moieties characteristic of the IL-1-R intracellular ligand glycoprotein may be useful diagnostic agents for the immunodetection of IL-1-R ligand protein.
  • Neutralizing monoclonal antibodies binding to IL-1-R intracellular ligand protein or to complex carbohydrates characteristic of IL-1-R intracellular ligand glycoprotein may also be useful therapeutics for both inflammatory conditions and also in the treatment of some forms of cancer where abnormal expression of IL-1-R intracellular ligand protein is involved.
  • These neutralizing monoclonal antibodies are capable of blocking the signaling function of the IL-1-R intracellular ligand protein. By blocking the binding of IL-1-R intracellular ligand protein, certain biological responses to IL-1 are either abolished or markedly reduced.
  • neutralizing monoclonal antibodies against IL-1-R intracellular ligand protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the IL-1-R intracellular ligand protein.
  • CANP and fragments thereof which bind to the IL-1-R intracellular domain are proteins having IL-1-R intracellular ligand protein activity as defined herein. As a result, they are also useful in pharmaceutical compositions, for treating inflammatory conditions and for inhibiting IL-1-R intracellular domain binding as described above for IL-1-R intracellular ligand proteins generally.
  • a yeast genetic selection method the “interaction trap” [Gyuris et al, Cell 75:791-803, 1993, which is incorporated herein by reference] was used to screen W138 and HeLa cell cDNA libraries (preparation see below) for proteins that interact with IL-1-R-1c, the cytoplasmic portion (intracellular domain) of the interleukin-1 receptor p80, or type I.
  • the IL-1-R-1c DNA encoding amino acids 340 to 552 of the type I IL-1 receptor, was obtained via the polymerase chain reaction (PCR) of a human W138 cell cDNA library.
  • This IL-1-R-1c DNA was then cloned into pEG202 by an EcoRI site, generating the bait plasmid, pEG202-IL-1-R-1c.
  • This plasmid contains the HIS3 selectable marker, and expression of the bait, the LexA-IL-1-R-1c fusion protein, is from the strong constitutive ADH1 promoter.
  • yeast strain EGY48 containing the reporter sequence LexAop-Leu2 in place of the chromosomal LEU2 was transformed with pEG202-IL-1-R-1c and pSH18-34 (Ura+), which carries another reporter sequence, LexAop-lacZ.
  • the expression vector pJG4-5 (TRP1), containing either a W138 or HeLa cell cDNA library (see below for the cDNA library construction), was transformed into the above strain (EGY48/pEG202-IL-1-R-1c/pSH18-34) according to the method described by Gietz et al., Nucleic Acids Res., 20, 1425, 1992.
  • the bait used in obtaining clones 14w, 19w and 31w was constructed by cloning the DNA sequences encoding amino acids 477 to 527 of IL-1 receptor p80 into the EcoRI and NotI sites of EG202.
  • the resulting plasmid was named EG202-IL1R (477-527). This region of the IL-1 receptor is believed to be essential for signaling.
  • W138 cell cDNA library Double stranded cDNA was prepared from 3 ⁇ g of W138 mRNA using reagents provided by the Superscript Choice System (Gibco/BRL, Gaithersberg, Md.) with the following substitutions: the first strand synthesis was primed using an oligo dT/Xhol primer/linker, and the dNTP mix was substituted with a mix containing methyl dCTP (Stratagene, LaJolla, Calif.). The cDNA was modified at both ends by addition of an EcoRI/NotI/SalI adapter linker and subsequently digested with Xhol.
  • the resulting plasmids were then electroporated into DH10B cells (Gibco/BRL).
  • HeLa cell cDNA preparation methods are described in Gyuris et al., Cell, 75, 791-803, 1993, which is incorporated herein by reference.
  • This screen was performed as above with the following exceptions: 1) 1 ⁇ 10 6 transformants were obtained on glucose Ura ⁇ His ⁇ Trp ⁇ plates and pooled. 2) 11 ⁇ 10 6 CFU were screened. Of these, 0.5% were Leu ⁇ and of those, 1% were LacZ + . This gave a frequency of 50 double positives per 10 6 transformants screened. Colonies, exhibiting a strong LacZ + phenotype (as judged by the strength of blue color on X-Gal containing medium), were chosen for further processing. Clones with the strongest LacZ+ phenotype were chosen for further specificity tests as described above.
  • cDNAs encoding IL-1-R intracellular ligand proteins were released from the pJG4-5 vector with the appropriate restriction enzymes. For example. EcoRI and XhoI were used to release cDNA from the relevant clone. Where the restriction sites were also present in the internal sequence of the cDNA. PCR was performed to obtain the cDNA. These cDNAs were then cloned into various expression vectors. These included pGEX (Pharmacia) or pMAL (New England Biolabs) for expression as a GST (Glutathione-S-transferase) or MBP (maltose binding protein) fusion protein in E.
  • coli a pED-based vector for mammalian expression
  • pVL or pBlueBacHis Invitrogen
  • IL-1-R intracellular ligand expression in mammalian cells.
  • an epitope sequence, “Flag” was inserted into the translational start site of the pED vector, generating the pED-Flag vector.
  • cDNAs were then inserted into the pED-Flag vector.
  • affinity purification of GST-, MBP- or His-tagged fusion proteins can be performed using glutathione, amylose, or nickel columns. Detailed purification protocols are provided by the manufacturers. For many fusion proteins, the IL-1-R intracellular ligand can be released by the action of thrombin, factor Xa, or enterokinase cleavage. In the case where highly purified material is required, standard purification procedures such as ion-exchange, hydrophobic, and gel filtration chromatography will be applied in addition to the affinity purification step.
  • FIG. 1 depicts an autoradiograph demonstrating the expression of IL-1-R intracellular ligand proteins in mammalian cells.
  • FIG. 1 shows the results of expression of Flag-14w, -19w and -31w in COS cells.
  • COS cells were transfected with either pED-Flag (vector control), Flag-14w, -19w or -31w plasmid by the lipofectamine method.
  • pED-Flag vector control
  • Flag-14w Flag-14w
  • -19w or -31w plasmid by the lipofectamine method.
  • Thirty ⁇ g of each cell lysate were prepared and subjected to 4-20% SDS gel electrophoresis, followed by Western blot analysis using M2 antibody (Kodak).
  • a Flag-containing protein, Flag-BAP (Kodak) was also loaded as a standard.
  • the bands in the Flag-14w, -19w and -31w indicate significant expression of the respective IL-1-R intracellular
  • This activity can be judged by the degree of blueness on the X-Gal containing medium or filter.
  • standard assays can be found in “Methods in Yeast Genetics” Cold Spring Harbor, New York, 1990 (by Rose, M. D., Winston, F., and Hieter, P.).
  • the second assay for measuring binding is a cell-free system.
  • An example of a typical assay is described below.
  • Purified MBP-IL-1-R-1c fusion protein (2 ⁇ g) was mixed with glutathione-Sepharose 4 B beads bound with a GST-IL-1-R-1c intracellular ligand for 2 hour at 4° C. The mixture was then centrifuged to separate bound (remained with the beads) and unbound (remained in the supernatant) MBP-IL-1-R-1c. After extensive washing, the bound MBP-IL-1-R-1c was eluted with glutathione and detected by Western blot analysis using an MBP antibody.
  • the IL-1-R-1c or the intracellular ligand can also be immobilized on other solid supports, such as on plates or fluorobeads. The binding can then be measured using ELISA or SPA (scintillation proximity assay).
  • IL-1-R signaling Many of the key amino acids for IL-1-R signaling have been determined by site-directed mutagenesis (Heguy et al., 1992, JBC, 267, 2605-2609). These amino acids are conserved between IL-1-R and the Drosophila Toll protein, which is required for transducing dorsoventral positional information to cells in the developing embryo. In order to test if the IL-1-R intracellular proteins interact with these residues, these residues were mutagenized and the ability of the mutant protein to interact with the intracellular ligand in the “interaction trap” system was tested.
  • EGY48 carrying pSH18-34 (lexAop-LacZ) were cotransformed with two plasmids: one carrying 14w, 19w or 31w; the other with bait, EG202-IL1R (477-527), either wild-type or one of the mutants transformants were then streaked onto CM ura ⁇ his ⁇ trp ⁇ plates containing galactose/raffinose and ⁇ -gal. The strength of interaction (as indicated by the number of “+” signs) was judged by the blueness in the plates (indicator of LacZ expression). The results are summarized in Table I.
  • the effect of the IL-1-R intracellular ligands on the IL-1-mediated response can be evaluated in cells overexpressing the ligands.
  • a number of IL-1 mediated responses can be measured.
  • IL-1-induced kinase activity toward either MBP (myelin basic protein) or the N-terminus (amino acids 1-79) of c-jun can be measured in COS cells or CHO cells either transiently or stably overexpressing IL-1R intracellular ligand proteins.
  • MBP myelin basic protein
  • amino acids 1-79 amino acids 1-79
  • other functional assays such as the induction of gene expression or PGE 2 production after prolonged incubation with IL-1, can also be used to measure the IL-1 mediated response.
  • the significance of the IL-1-R intracellular ligand proteins in IL-1 signaling can be established by lowering or eliminating the expression of the ligands.
  • IL-1 mediated JNK (c-jun NH 2 -terminal kinase, Derjard et al., Cell 1994, 76, 1025-1037) activation was used to study the effect of the IL-1R intracellular ligands on IL-1 signaling.
  • COS cells were transfected with both pEDflag plasmid containing one of the clones (e.g., 19w) and HA-JNK1 plasmid by the DEAE-dextran method. 48 hrs after transfection, cells were starved in 0.1% BSA for 1 hr and treated with various amounts of IL-1 ⁇ for 15 min.
  • JNK activity was performed at 30° C. for 20 min using 5 ⁇ g GST-c-jun (1-79 amino acids), 20 ⁇ M ATP, and 5 ⁇ Ci [ ⁇ - 32 P]ATP in 40 ⁇ l of kinase buffer (25 mM HEPES, pH 7.5, 20 mM MgCl 2 , 20 mM ⁇ -glycerophosphate, 0.1 mM sodium orthovanadate, 2 mM DTT). The reactions were terminated using laemmli sample buffer and the products were resolved by SDS-PAGE (4-20%).
  • IL-1 binding to its receptor The signal transduction events initiated by IL-1 binding to its receptor are still largely unknown.
  • one major result of IL-1 binding is the stimulation of cellular serine/threonine kinase activity.
  • IL-1 has been shown to stimulate the activity of PC-PLC, PLA 2 , and sphingomyelinase. Therefore, some of the IL-1-R intracellular ligand proteins may possess intrinsic enzymatic activity that is responsible for these activities. Therefore, enzymatic assays can be performed to test this possibility, particularly with those clones that encode proteins with sequence homology to known enzymes.
  • other functional assays for instance, ATP binding/transporter activity for the full length protein of clone 140, can also be measured.
  • cDNAs obtained from the interaction trap method each encode only a portion of the full length protein. Therefore, it is desirable to isolate full length clones.
  • the cDNAs obtained from the screening are used as probes, and the cDNA libraries described herein, or alternatively phage cDNA libraries, are screened to obtain full length clones in accordance with known methods (see for example, “Molecular Cloning, A Laboratory Manual”, by Sarnbrook et al. 1989 Cold Spring Harbor).
  • Antibodies specific for IL-1-R intracellular ligand proteins can be produced using purified recombinant protein, as described in Example 2. as antigen. Both polyclonal and monoclonal antibodies will be produced using standard techniques, such as those described in “Antibodies, a Laboratory Manual” by Ed Harlow and David Lane (1988), Cold Spring Harbor Laboratory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Novel IL-1-R intracellular ligand proteins are disclosed. Polynucleotides encoding the IL-1-R intracellular ligand protein are also disclosed, along with vectors, host cells, and methods of making the IL-1-R intracellular ligand protein. Pharmaceutical compositions containing the IL-1-R intracellular ligand protein, methods of treating inflammatory conditions, and methods of inhibiting IL-1-R intracellular domain binding are also disclosed. Methods of identifying inhibitors of IL-1-R intracellular domain binding and inhibitors identified by such methods are also disclosed.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to the field of anti-inflammatory substances and other substances which act by inhibiting binding to the intracellular domain of an interleukin-1 receptor (hereinafter “IL-1-R”), such as, for example, the p80, type I IL-1 receptor. More particularly, the present invention is directed to novel ligands which bind to the IL-1-R intracellular domain and to inhibition or modulation of signal transduction by this receptor.
  • Interleukin-1-α and interleukin-1-β (herein collectively “IL-1”) are cytokines which produce a wide range of cellular activities. IL-1 causes an inflammatory response, which can be beneficial, such as in mounting an immune response to a pathogen, or when overexpressed can lead to other detrimental effects of inflammation.
  • The cellular effects of IL-1 are initiated by the binding of IL-1 to its receptors (IL-1-Rs) on the surface of target cells. The isolation of polynucleotides encoding IL-1-Rs and variant forms of such receptors has been described in U.S. Pat. Nos. 4,968,607, 5,081,228, 5,180,812, in PCT Publication No. WO91/18982, and by Sims et al., PNAS, 86, 8946 (1989) (disclosing the p80, type I IL-1 receptor). Processes for purification of IL-1-Rs have also been disclosed in U.S. Pat. No. 5,296,592.
  • Native IL-1-Rs are characterized by distinct extracellular, transmembrane and intracellular domains. The primary purpose of the extracellular domain is to present a binding site for IL-1 on the outside of the cell. When IL-1 is bound to the binding site, a “signal” is transmitted to the inside of the cell through the transmembrane and intracellular domains, indicating that binding has occurred. Transmission or “transduction” of the signal to the inside of the cell occurs by a change in conformation of the transmembrane and/or intracellular domains of the receptor. This signal is “received” by the binding of proteins and other molecules to the intracellular domain of the receptor resulting in the effects seen upon IL-1 stimulation.
  • While IL-1 binding by IL-1-Rs results in beneficial cellular effects, it is often desirable to prevent or deter IL-1 binding from causing other detrimental cellular effects. Although substantial effort has been expended investigating inhibition of IL-1 binding to the extracellular domain of IL-1-Rs, examination of binding of proteins and other molecules to the intracellular domain of IL-1-Rs has received much less attention.
  • However, ligands which bind to the IL-1-R intracellular domain have yet to be identified. It would be desirable to identify and isolate such ligands to examine their effects upon IL-1-R signal transduction and their use as therapeutic agents for treatment of IL-1-induced conditions. Furthermore, identification of such ligands would provide a means for screening for inhibitors of IL-1-R/intracellular ligand binding, which will also be useful as anti-inflammatory agents.
  • SUMMARY OF THE INVENTION
  • Applicants have for the first time identified novel IL-1-R intracellular ligand proteins and have isolated polynucleotides encoding such ligands. Applicants have also identified certain known proteins which may also bind to the intracellular domain of IL-1-R.
  • In one embodiment, the present invention provides a composition comprising an isolated polynucleotide encoding a protein having IL-1-R intracellular ligand protein activity. In preferred embodiments, the polynucleotide is selected from the group consisting of:
      • (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 2 to nucleotide 529;
      • (b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:1, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:2;
      • (d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 and having IL-1-R intracellular ligand protein activity;
      • (e) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3 from nucleotide 2 to nucleotide 961;
      • (f) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:3, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (g) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:4;
      • (h) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 and having IL-1-R intracellular ligand protein activity;
      • (i) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 2 to nucleotide 754;
      • (j) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:5, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (k) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:6;
      • (l) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 and having IL-1-R intracellular ligand protein activity; and
      • (m) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(l), which encodes a protein having IL-1-R intracellular ligand protein activity.
        In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions.
  • Processes are also provided for producing an IL-1-R intracellular ligand protein, which comprises:
      • (a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and
      • (b) purifying the IL-1-R intracellular ligand protein from the culture.
        The ligand protein produced according to such methods is also provided by the present invention.
  • Compositions comprising a protein having IL-1-R intracellular ligand protein activity are also disclosed. In preferred embodiments the protein comprises an amino acid sequence selected from the group consisting of:
      • (a) the amino acid sequence of SEQ ID NO:2;
      • (b) fragments of the amino acid sequence of SEQ ID NO:2;
      • (c) the amino acid sequence of SEQ ID NO:4;
      • (d) fragments of the amino acid sequence of SEQ ID NO:4;
      • (e) the amino acid sequence of SEQ ID NO:6; and
      • (f) fragments of the amino acid sequence of SEQ ID NO:6; the protein being substantially free from other mammalian proteins. Such compositions may further comprise a pharmaceutically acceptable carrier.
  • Compositions comprising an antibody which specifically reacts with such IL-1-R intracellular ligand protein are also provided by the present invention.
  • Methods are also provided for identifying an inhibitor of IL-1-R intracellular domain binding which comprise:
      • (a) combining an IL-1-R intracellular domain protein with an IL-1-R intracellular ligand protein, said combination forming a first binding mixture;
      • (b) measuring the amount of binding between the IL-1-R intracellular domain protein and the IL-1-R intracellular ligand protein in the first binding mixture;
      • (c) combining a compound with the IL-1-R intracellular domain protein and an IL-1-R intracellular ligand protein to form a second binding mixture;
      • (d) measuring the amount of binding in the second binding mixture; and
      • (e) comparing the amount of binding in the first binding mixture with the amount of binding in the second binding mixture; wherein the compound is capable of inhibiting IL-1-R intracellular domain binding when a decrease in the amount of binding of the second binding mixture occurs. In certain preferred embodiments the IL-1-R intracellular ligand protein used in such method comprises an amino acid sequence selected from the group consisting of:
      • (a) the amino acid sequence of SEQ ID NO:2;
      • (b) fragments of the amino acid sequence of SEQ ID NO:2
      • (c) the amino acid sequence of SEQ ID NO:4;
      • (d) fragments of the amino acid sequence of SEQ ID NO:4;
      • (e) the amino acid sequence of SEQ ID NO:6;
      • (f) fragments of the amino acid sequence of SEQ ID NO:6;
      • (g) the amino acid sequence of SEQ ID NO:7; and
      • (h) fragments of the amino acid sequence of SEQ ID NO:7.
        Compositions comprising inhibitors identified according to such method are also provided. Such compositions may include pharmaceutically acceptable carriers.
  • Methods are also provided for preventing or ameliorating an inflammatory condition which comprises administering a therapeutically effective amount of a composition comprising a protein having IL-1-R intracellular ligand protein activity and a pharmaceutically acceptable carrier.
  • Other embodiments provide methods of inhibiting IL-1-R intracellular domain binding comprising administering a therapeutically effective amount of a composition comprising a protein having IL-1-R intracellular ligand protein activity and a pharmaceutically acceptable carrier.
  • Methods of preventing or ameliorating an inflammatory condition or of inhibiting IL-1-R intracellular domain binding are provided which comprise administering to a mammalian subject a therapeutically effective amount of inhibitors of IL-1-R intracellular domain binding, are also provided.
  • Methods of identifying an inhibitor of IL-1-R intracellular domain binding are also provided by the present invention which comprise:
      • (a) transforming a cell with a first polynucleotide encoding an IL-1-R intracellular domain protein, a second polynucleotide encoding an IL-1-R intracellular ligand protein, and at least one reporter gene wherein the expression of the reporter gene is regulated by the binding of the IL-1-R intracellular ligand protein encoded by the second polynucleotide to the IL-1-R intracellular domain protein encoded by the first polynucleotide;
  • 1(b) growing the cell in the presence of and in the absence of a compound; and
      • (c) comparing the degree of expression of the reporter gene in the presence of and in the absence of the compound;
        wherein the compound is capable of inhibiting IL-1-R intracellular domain binding when a decrease in the degree of expression of the reporter gene occurs. In preferred embodiments, the cell is a yeast cell and the second polynucleotide is selected from the group consisting of:
      • (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 2 to nucleotide 529;
      • (b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:1, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:2;
      • (d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 and having IL-1-R intracellular ligand protein activity;
      • (e) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3 from nucleotide 2 to nucleotide 961;
      • (f) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:3, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (g) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:4;
      • (h) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 and having IL-1-R intracellular ligand protein activity;
      • (i) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 2 to nucleotide 754;
      • (j) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:5, which encodes a protein having IL-1-R intracellular ligand protein activity;
      • (k) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:6;
      • (l) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 and having IL-1-R intracellular ligand protein activity;
      • (m) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:7;
      • (n) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:7 and having IL-1-R intracellular ligand protein activity; and
      • (o) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(n), which encodes a protein having IL-1-R intracellular ligand protein activity.
    BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 depicts an autoradiograph demonstrating the expression of IL-1-R intracellular ligand proteins of the present invention in mammalian cells. The expression of flag-14w, -31w and -19w was detected by an anti-flag antibody, M2, as described below.
  • FIG. 2 demonstrates the effects of the clone 19w product on JNK1 activation. Top panel: HA-tagged JNK1 was coexpressed in COS cells with either pED flag vector of pED flag-19w. After 48 hr, the cells were treated with different concentrations of IL-1α for 15 min. JNK1 was isolated by immunoprecipitation with 12CA5 antibody and JNK activity was measured using an immune complex kinase assay with the substrate GST-c-jun (1-79). Middle panel: The expression and recovery if HA-JNK1 from immunoprecipitation was examined by Western blot analysis wit 12CA5 antibody. Bottom panel: The expression of clone 19w was detected by Western blot analysis of cell lysate using M2 antibody.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present inventors have for the first time identified and isolated novel polynucleotides which encode proteins which bind to the IL-1-R intracellular domain. As used herein “IL-1-R” includes all receptors for interleukin-I. The type 1, p80 IL-1-R is the preferred receptor for practicing the present invention.
  • The sequence of a polynucleotide encoding one such protein is set forth in SEQ ID NO:1 from nucleotide 2 to 529. This polynucleotide has been identified as “clone 19w.” The amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 19w is set forth in SEQ ID NO:2. It is believed that clone 19w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 19w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein). Clone 19w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69774. The protein encoded by clone 19w is 176 amino acids in length. No identical or closely related sequences were found using database searches. Therefore, clone 19w encodes a novel protein. However, using an extensive FASTA search, a significant homology to amino acids 330 to 390 of thrombospondin (41% identity in 59 amino acids) is found in the C-terminal portion of the 19w protein. Moreover, a significant homology to the Ca binding domain, EF hand of calmodulin (25% in 65 amino acids) is observed in the region between amino acids 40 and 110 of the protein encoded by clone 19w.
  • The sequence of a polynucleotide encoding another such protein is set forth in SEQ ID NO:3 from nucleotide 2 to 961. This polynucleotide has been identified as “clone 31w.” The amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 31w is set forth in SEQ ID NO:4. It is believed that clone 31w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 31w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein). Clone 31w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69775. The protein encoded by clone 31w is 320 amino acids in length. No identical or closely related sequences were found using BLASTN/BLASTX or FASTA searches. Therefore, clone 31w encodes a novel protein.
  • The sequence of a polynucleotide encoding another such protein is set forth in SEQ ID NO:5 from nucleotides 2 to 754. This polynucleotide has been identified as “clone 14w.” The amino acid sequence of the IL-1-R intracellular ligand protein encoded by clone 14w is set forth in SEQ ID NO:6. It is believed that clone 14w is a partial cDNA clone of a longer full length coding sequence. However, as demonstrated herein the protein encoded by clone 14w does bind the intracellular domain of IL-1-R (i.e., has “IL-1-R intracellular ligand protein activity” as defined herein). CLone 14w was deposited with the American Type Culture Collection on Mar. 31, 1995 and given the accession number ATCC 69773.
  • The protein encoded by clone 14w is identical to the sequence of amino acids 449 to 700 of calcium activated neutral protease (CANP), with the exception of an amino acid change (Val to Phe) at position 553 of CANP. The sequence of CANP is disclosed in Imajoh et al., Biochemistry 1988, 27, 8122-8128, which is incorporated herein by reference (accession no. A31218). The amino acid sequence of CANP is set forth in SEQ ID NO:7. Based upon this sequence homology, CANP and certain fragments thereof will exhibit IL-1-R intracellular ligand binding activity (as defined herein).
  • For the purposes of the present application, “IL-1-R intracellular ligand protein” includes proteins which exhibit IL-1-R intracellular ligand protein activity.
  • For the purposes of the present application, a protein is defined as having “IL-1-R intracellular ligand protein activity” when it binds to a protein derived from the IL-1-R intracellular domain. Activity can be measured by using any assay which will detect binding to an IL-1-R intracellular domain protein. Examples of such assays include without limitation the interaction trap assays and assays in which IL-1-R intracellular domain protein which is affixed to a surface in a manner conducive to observing binding, including without limitation those described in Examples 1 and 3. As used herein an “IL-1-R intracellular domain protein” includes the entire intracellular domain or fragments thereof.
  • Fragments of the IL-1-R intracellular ligand protein which are capable of interacting with the IL-1-R intracellular domain or which are capable of inhibiting IL-1-R intracellular domain binding (i.e., exhibit IL-1-R intracellular ligand protein activity) are also encompassed by the present invention. Fragments of the IL-1-R intracellular ligand protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of IL-1-R intracellular ligand protein binding sites. For example, fragments of the IL-1-R intracellular ligand protein may be fused through “linker” sequences to the Fc portion of an immnunoglobulin. For a bivalent form of the IL-1-R intracellular ligand protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, an IL-1-P intracellular ligand protein—IgM fusion would generate a decavalent form of the IL-1-R intracellular ligand protein of the invention.
  • The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the IL-1-R intracellular ligand protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein “operably linked” means that the isolated polynucleotide of the invention and the expression control sequence are situated within a vector or cell in such a way that the IL-1-R intracellular ligand protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.
  • A number of types of cells may act as suitable host cells for expression of the IL-1-R intracellular ligand protein. Host cells include, for example. monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells,3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
  • The IL-1-R intracellular ligand protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) incorporated herein by reference.
  • Alternatively, it may be possible to produce the IL-1-R intracellular ligand protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the IL-1-R intracellular ligand protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional IL-1-R intracellular ligand protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.
  • The IL-1-R intracellular ligand protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the IL-1-R intracellular ligand protein.
  • The IL-1-R intracellular ligand protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the IL-1-R intracellular ligand protein may also include an affinity column containing the IL-1-R intracellular domain or other IL-1-R intracellular domain protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
  • Alternatively, the IL-1-R intracellular ligand protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP) or glutathione-S-transferase (GST). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.) and Pharmacia (Piscataway, N.J.), respectively. The IL-1-R ligand protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope (“Flag”) is commercially available from Kodak (New Haven, Conn.).
  • Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the IL-1-R intracellular ligand protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The IL-1-R intracellular ligand protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an “isolated IL-1-R intracellular ligand protein.”
  • IL-1-R intracellular ligand proteins may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled, in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with IL-1-R intracellular ligand proteins may possess biological properties in common therewith, including IL-1-R intracellular ligand protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified IL-1-R intracellular ligand proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.
  • The IL-1-R intracellular ligand proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified IL-1-R intracellular ligand proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the IL-1-R intracellular ligand protein sequences may include the replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Mutagenic techniques for such replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584).
  • Other fragments and derivatives of the sequences of IL-1-R intracellular ligand proteins which would be expected to retain IL-1-R intracellular ligand protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.
  • IL-1-R intracellular ligand protein of the invention may also be used to screen for agents which are capable of inhibiting or blocking binding of an IL-1-R intracellular ligand protein to the intracellular domain of IL-1-R, and thus may act as inhibitors of IL-1-R intracellular domain binding and/or IL-1 activity. Binding assays using a desired binding protein, immobilized or not, are well known in the art and may be used for this purpose using the IL-1-R intracellular ligand protein of the invention. Examples 1 and 3 describe examples of such assays. Appropriate screening assays may be cell-based or cell-free. Alternatively, purified protein based screening assays may be used to identify such agents. For example, IL-1-R intracellular ligand protein may be immobilized in purified form on a carrier and binding to purified IL-1-R intracellular domain may be measured in the presence and in the absence of potential inhibiting agents. A suitable binding assay may alternatively employ purified IL-1-R intracellular domain immobilized on a carrier with a soluble form of a IL-1-R intracellular ligand protein of the invention. Any IL-1-R intracellular ligand protein may be used in the screening assays described above.
  • In such a screening assay, a first binding mixture is formed by combining IL-1-R intracellular domain protein and IL-1-R intracellular ligand protein, and the amount of binding in the first binding mixture (Bo) is measured. A second binding mixture is also formed by combining IL-1-R intracellular domain protein, IL-1-R intracellular ligand protein, and the compound or agent to be screened, and the amount of binding in the second binding mixture (B) is measured. The amounts of binding in the first and second binding mixtures are compared, for example, by performing a B/Bo calculation. A compound or agent is considered to be capable of inhibiting IL-1-R intracellular domain binding if a decrease in binding in the second binding mixture as compared to the first binding mixture is observed. The formulation and optimization of binding mixtures is within the level of skill in the art. Such binding mixtures may also contain buffers and salts necessary to enhance or to optimize binding, and additional control assays may be included in the screening assay of the invention.
  • Alternatively, appropriate screening assays may be cell based. For example, the binding or interaction between an IL-1-R ligand protein and the IL-1-R intracellular domain can be measured in yeast as described below in Examples 1 and 3.
  • Compounds found to reduce, preferably by at least about 10%, more preferably greater than about 50% or more, the binding activitv of IL-1-R intracellular ligand protein to IL-1-R intracellular domain may thus be identified and then secondarily screened in other binding assays, including in vivo assays. By these means compounds having inhibitory activity for IL-1-R intracellular domain binding which may be suitable as anti-inflammatory agents may be identified.
  • Isolated IL-1-R intracellular ligand protein may be useful in treating, preventing or ameliorating inflammatory conditions and other conditions such as osteoporosis, colitis, myelogenous leukemia, diabetes, wasting and atherosclerosis. Isolated IL-1-R intracellular ligand protein may be used itself as an inhibitor of IL-1-R intracellular domain binding or to design inhibitors of IL-1-R intracellular domain binding. Inhibitors of binding of IL-1-R intracellular ligand protein to the IL-1-R intracellular domain (“IL-1-R intracellular binding inhibitors”) are also useful for treating such conditions.
  • The present invention encompasses both pharmaceutical compositions and therapeutic methods of treatment or use which employ isolated IL-1-R intracellular ligand protein and/or binding inhibitors of IL-1-R intracellular binding.
  • Isolated IL-1-R intracellular ligand protein or binding inhibitors (from whatever source derived, including without limitation from recombinant and non-recombinant cell lines) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such a composition may also contain (in addition to IL-1-R intracellular ligand protein or binding inhibitor and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers,and other materials well known in the art. The term “pharmaceutically acceptable” means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoletic factors such as M-CSF, GM-CSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, G-CSF, Meg-CSF, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other anti-inflammatory agents. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with isolated IL-1-R intracellular ligand protein or binding inhibitor, or to minimize side effects caused by the isolated IL-1-R intracellular ligand protein or binding inhibitor. Conversely, isolated IL-1-R intracellular ligand protein or binding inhibitor may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor or anti-inflammatory agent.
  • The pharmaceutical composition of the invention may be in the form of a liposome in which isolated IL-1-R intracellular ligand protein or binding inhibitor is combined, in addition to other pharmaceutically acceptable carriers with amphipathic agents such as lipids which exist in aggregated form as micelles insoluble monolayers, liquid crystals or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. No. 4,235,871; U.S. Pat. No. 4,501,728; U.S. Pat. No. 5 4,837,028; and U.S. Pat. No. 4,737,323, all of which are incorporated herein by reference.
  • As used herein, the term “therapeutically effective amount” means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of an inflammatory response or condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
  • In practicing the method of treatment or use of the present invention, a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered to a mammal having a condition to be treated.
  • Isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines. lymphokines or other hematopoietic factors, isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering isolated IL-1-R intracellular ligand protein or binding inhibitor in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.
  • Administration of isolated IL-1-R intracellular ligand protein or binding inhibitor used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways such as oral ingestion, inhalation, or cutaneous, subcutaneous, or intravenous injection. Intravenous administration to the patient is preferred.
  • When a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered orally, isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% isolated IL-1-R intracellular ligand protein or binding inhibitor, and preferably from about 25 to 90% isolated IL-1-R intracellular ligand protein or binding inhibitor. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of isolated IL-1-R intracellular ligand protein or binding inhibitor, and preferably from about 1 to 50% isolated IL-1-R intracellular ligand protein or binding inhibitor.
  • When a therapeutically effective amount of isolated IL-1-R intracellular ligand protein or binding inhibitor is administered by intravenous, cutaneous or subcutaneous injection, isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the form of a pyrogen-free parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to isolated IL-1-R intracellular ligand protein or binding inhibitor, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives buffers, antioxidants, or other additives known to those of skill in the art.
  • The amount of isolated IL-1-R intracellular ligand protein or binding inhibitor in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of isolated IL-1-R intracellular ligand protein or binding inhibitor with which to treat each individual patient. Initially, the attending physician will administer low doses of isolated IL-1-R intracellular ligand protein or binding inhibitor and observe the patient's response. Larger doses of isolated IL-1-R intracellular ligand protein or binding inhibitor may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.1 μg to about 100 mg of isolated IL-1-R intracellular ligand protein or binding inhibitor per kg body weight.
  • The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the isolated IL-1-R intracellular ligand protein or binding inhibitor will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.
  • Isolated IL-1-R intracellular ligand protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the IL-1-R intracellular ligand protein and which may inhibit IL-1-R intracellular domain binding. Such antibodies may be obtained using either the entire IL-1-R intracellular ligand protein or fragments of IL-1-R intracellular ligand protein as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R. P. Merrifield, J. Amer. Chem. Soc. 85, 2149-2154 (1963); J. L. Krstenansky, et al., FEBS Lett. 211, 10 (1987).
  • Monoclonal antibodies binding to IL-1-R intracellular ligand protein or to complex carbohydrate moieties characteristic of the IL-1-R intracellular ligand glycoprotein may be useful diagnostic agents for the immunodetection of IL-1-R ligand protein.
  • Neutralizing monoclonal antibodies binding to IL-1-R intracellular ligand protein or to complex carbohydrates characteristic of IL-1-R intracellular ligand glycoprotein may also be useful therapeutics for both inflammatory conditions and also in the treatment of some forms of cancer where abnormal expression of IL-1-R intracellular ligand protein is involved. These neutralizing monoclonal antibodies are capable of blocking the signaling function of the IL-1-R intracellular ligand protein. By blocking the binding of IL-1-R intracellular ligand protein, certain biological responses to IL-1 are either abolished or markedly reduced. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against IL-1-R intracellular ligand protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the IL-1-R intracellular ligand protein.
  • Due to the similarity of its sequence to SEQ ID NO:6, CANP and fragments thereof which bind to the IL-1-R intracellular domain are proteins having IL-1-R intracellular ligand protein activity as defined herein. As a result, they are also useful in pharmaceutical compositions, for treating inflammatory conditions and for inhibiting IL-1-R intracellular domain binding as described above for IL-1-R intracellular ligand proteins generally.
  • EXAMPLE 1 Cloning of IL-1-R Intracellular Ligand Protein Encoding Polynucleotide
  • A yeast genetic selection method, the “interaction trap” [Gyuris et al, Cell 75:791-803, 1993, which is incorporated herein by reference], was used to screen W138 and HeLa cell cDNA libraries (preparation see below) for proteins that interact with IL-1-R-1c, the cytoplasmic portion (intracellular domain) of the interleukin-1 receptor p80, or type I. The IL-1-R-1c DNA, encoding amino acids 340 to 552 of the type I IL-1 receptor, was obtained via the polymerase chain reaction (PCR) of a human W138 cell cDNA library. This IL-1-R-1c DNA was then cloned into pEG202 by an EcoRI site, generating the bait plasmid, pEG202-IL-1-R-1c. This plasmid contains the HIS3 selectable marker, and expression of the bait, the LexA-IL-1-R-1c fusion protein, is from the strong constitutive ADH1 promoter. To create the reporter strain carrying the bait protein, yeast strain EGY48, containing the reporter sequence LexAop-Leu2 in place of the chromosomal LEU2, was transformed with pEG202-IL-1-R-1c and pSH18-34 (Ura+), which carries another reporter sequence, LexAop-lacZ. For screening cDNAs encoding proteins that interact with IL-1-R-1c, the expression vector pJG4-5 (TRP1), containing either a W138 or HeLa cell cDNA library (see below for the cDNA library construction), was transformed into the above strain (EGY48/pEG202-IL-1-R-1c/pSH18-34) according to the method described by Gietz et al., Nucleic Acids Res., 20, 1425, 1992.
  • The bait used in obtaining clones 14w, 19w and 31w was constructed by cloning the DNA sequences encoding amino acids 477 to 527 of IL-1 receptor p80 into the EcoRI and NotI sites of EG202. The resulting plasmid was named EG202-IL1R (477-527). This region of the IL-1 receptor is believed to be essential for signaling.
  • cDNA Library Construction:
  • W138 cell cDNA library: Double stranded cDNA was prepared from 3 μg of W138 mRNA using reagents provided by the Superscript Choice System (Gibco/BRL, Gaithersberg, Md.) with the following substitutions: the first strand synthesis was primed using an oligo dT/Xhol primer/linker, and the dNTP mix was substituted with a mix containing methyl dCTP (Stratagene, LaJolla, Calif.). The cDNA was modified at both ends by addition of an EcoRI/NotI/SalI adapter linker and subsequently digested with Xhol. This produced cDNA molecules possessing an EcoRI/NotI/SalI overhang at the 5′ end of the gene and an Xhol overhang at the 3 end. These fragments were then ligated into the yeast expression/fusion vector pJG4-5 (Gyuris et al., Cell, 75, 791-803, 1993), which contains at its amino terminus, the influenza virus HA1 epitope tag, the B42 acidic transcription activation domain, and the SV40 nuclear localization signal, all under the control of the galactose-dependent GAL1 promoter. The resulting plasmids were then electroporated into DH10B cells (Gibco/BRL). A total of 7.1×106 colonies were plated on LB plates containing 100 ug/ml of ampicillin. These E. coli were scraped, pooled, and a large scale plasmid prep was performed using the Wizard Maxi Prep kit (Promega, Madison, Wis.), yielding 3.2 mg of supercoiled plasmid DNA.
  • HeLa cell cDNA: HeLa cell cDNA preparation methods are described in Gyuris et al., Cell, 75, 791-803, 1993, which is incorporated herein by reference.
  • HeLa Cell cDNA Screening Results:
  • 2×105 transformants were obtained on glucose UraHisTrp plates. These transformants were pooled and resuspended in a solution of 65% glycerol, 10 nM Tris-HCl (pH 7.5), 10 mM MgCl2 and stored at −80° C. in 1 mL aliquots. For screening purposes, aliquots of these were diluted 10-fold into UraHisTrp CM dropout gal/raff medium (containing 2% galactose, 1% raffinose), which induces the expresssion of the library encoded proteins, and incubated at 30° C. for 4 hours. 2×106 colony forming units (CFUs) were then plated on standard 10 cm galactose X-Gal UraHisTrpLeu plates at a density of 2×105 CFU/plate. After 4 days at 30° C., colonies that were strong LacZ+ were chosen for further processing. In order to test if the Leu+/LacZ+ phenotype was due to the library-encoded protein, the galactose dependency of the phenotype was tested. Expression of the library-encoded proteins was turned off by growth on glucose UraHisTrp master plates and then retested for galactose-dependency on glucose UraHisTrpLeu, galactose UraHisTrpLeu, glucose X-Gal UraHisTrp, and galactose X-Gal UraHisTrp plates. Of these, many colonies showed galactose-dependent growth on Leu plates and galactose-dependent blue color on X-Gal-containing medium (LacZ phenotype). Total yeast DNA was prepared from these colonies according to the method described previously (Hoffman and Winston, 1987). In order to analyze the cDNA sequences. PCR reactions were performed using the above yeast DNA as a template and oligo primers specific for the vector pJG4-5, flanking the cDNA insertion point. PCR products were purified (Qiagen PCR purification kit), subjected to restriction digest with the enzyme HaeIII, run on 1.8% agarose gels, and the restriction patterns compared. Similar and identical restriction patterns were grouped and representatives of each group were sequenced and compared to Genbank and other databases to identify any sequence homologies.
  • W138 Cell cDNA Screening Results:
  • This screen was performed as above with the following exceptions: 1) 1×106 transformants were obtained on glucose UraHisTrp plates and pooled. 2) 11×106 CFU were screened. Of these, 0.5% were Leu and of those, 1% were LacZ+. This gave a frequency of 50 double positives per 106 transformants screened. Colonies, exhibiting a strong LacZ+ phenotype (as judged by the strength of blue color on X-Gal containing medium), were chosen for further processing. Clones with the strongest LacZ+ phenotype were chosen for further specificity tests as described above.
  • A W138 cDNA library was transformed into the reporter strain (EGY48/pSH18-34) containing the bait plasmid EG202-IL1R(477-527). 1.3 million primary transformants were harvested and 7 million colonies were screened. 192 galactose-dependent colonies were isolated. Among these, 51 clones were bait specific (i.e., interacted specifically with the original bait, but not with an unrelated bait, bicoid). These clones were then subjected to DNA sequence analysis. Clones 19w was isolated 6, times, clone 31w twice and clone 14w once.
  • EXAMPLE 2 Expression of the IL-1-R Intracellular Ligand Protein
  • cDNAs encoding IL-1-R intracellular ligand proteins were released from the pJG4-5 vector with the appropriate restriction enzymes. For example. EcoRI and XhoI were used to release cDNA from the relevant clone. Where the restriction sites were also present in the internal sequence of the cDNA. PCR was performed to obtain the cDNA. These cDNAs were then cloned into various expression vectors. These included pGEX (Pharmacia) or pMAL (New England Biolabs) for expression as a GST (Glutathione-S-transferase) or MBP (maltose binding protein) fusion protein in E. coli, a pED-based vector for mammalian expression, and pVL or pBlueBacHis (Invitrogen) for baculovirus/insect expression. For the immunodetection of IL-1-R intracellular ligand expression in mammalian cells. an epitope sequence, “Flag,” was inserted into the translational start site of the pED vector, generating the pED-Flag vector. cDNAs were then inserted into the pED-Flag vector. Thus, the expression of cDNA from pED-Flag yields a protein with an amino terminal Met, followed by the “Flag” sequence, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys. Standard DEAE-Dextran or lipofectamine methods were used to transfect COS or CHO dukx cells. Immunodetection of Flag-tagged proteins was achieved using the M2 antibody (Kodak). Moreover, an immunoaffinity column using the M2 antibody, followed by elution with the “Flag” peptide, can be used for the rapid purification of the flag-tagged protein. Similarly, affinity purification of GST-, MBP- or His-tagged fusion proteins can be performed using glutathione, amylose, or nickel columns. Detailed purification protocols are provided by the manufacturers. For many fusion proteins, the IL-1-R intracellular ligand can be released by the action of thrombin, factor Xa, or enterokinase cleavage. In the case where highly purified material is required, standard purification procedures such as ion-exchange, hydrophobic, and gel filtration chromatography will be applied in addition to the affinity purification step.
  • FIG. 1 depicts an autoradiograph demonstrating the expression of IL-1-R intracellular ligand proteins in mammalian cells. FIG. 1 shows the results of expression of Flag-14w, -19w and -31w in COS cells. COS cells were transfected with either pED-Flag (vector control), Flag-14w, -19w or -31w plasmid by the lipofectamine method. Thirty μg of each cell lysate were prepared and subjected to 4-20% SDS gel electrophoresis, followed by Western blot analysis using M2 antibody (Kodak). A Flag-containing protein, Flag-BAP (Kodak) was also loaded as a standard. The bands in the Flag-14w, -19w and -31w indicate significant expression of the respective IL-1-R intracellular ligand proteins.
  • EXAMPLE 3 Assays of IL-1-R Intracellular Domain Binding
  • Two different methods were used to assay for IL-1-R intracellular ligand protein activity. The first assay measures binding in the yeast strain in “interaction trap,” the system used here to screen for IL-1-R-1c interacting proteins. In this system, the expression of reporter genes from both LexAop-Leu2 and LexAop-LacZ relies on the interaction between the bait protein, in this case IL-1-R-1c, and the prey, the IL-1-R intracellular ligand. Thus, one can measure the strength of the interaction by the level of Leu2 or LacZ expression. The most simple method is to measure the activity of the LacZ encoded protein, β-galactosidase. This activity can be judged by the degree of blueness on the X-Gal containing medium or filter. For the quantitative measurement of β-galactosidase activity, standard assays can be found in “Methods in Yeast Genetics” Cold Spring Harbor, New York, 1990 (by Rose, M. D., Winston, F., and Hieter, P.).
  • The second assay for measuring binding is a cell-free system. An example of a typical assay is described below. Purified MBP-IL-1-R-1c fusion protein (2 μg) was mixed with glutathione-Sepharose 4 B beads bound with a GST-IL-1-R-1c intracellular ligand for 2 hour at 4° C. The mixture was then centrifuged to separate bound (remained with the beads) and unbound (remained in the supernatant) MBP-IL-1-R-1c. After extensive washing, the bound MBP-IL-1-R-1c was eluted with glutathione and detected by Western blot analysis using an MBP antibody. The IL-1-R-1c or the intracellular ligand can also be immobilized on other solid supports, such as on plates or fluorobeads. The binding can then be measured using ELISA or SPA (scintillation proximity assay).
  • EXAMPLE 4 Characterization of IL-1-R Intracellular Ligand Protein
  • Mapping the Interaction Site in IL-1-R-1c
  • Many of the key amino acids for IL-1-R signaling have been determined by site-directed mutagenesis (Heguy et al., 1992, JBC, 267, 2605-2609). These amino acids are conserved between IL-1-R and the Drosophila Toll protein, which is required for transducing dorsoventral positional information to cells in the developing embryo. In order to test if the IL-1-R intracellular proteins interact with these residues, these residues were mutagenized and the ability of the mutant protein to interact with the intracellular ligand in the “interaction trap” system was tested. Mutations that abolish IL-1R signaling were introduced into the original bait plasmid, EG202-IL-1R (477-527) (with following amino acid substitutions: F513A, W514A, K515R, R518K, and Y519S) and the ability of the IL-1R intracellular ligands to interact with these mutant proteins was tested in the interaction trap. EGY48 carrying pSH18-34 (lexAop-LacZ) were cotransformed with two plasmids: one carrying 14w, 19w or 31w; the other with bait, EG202-IL1R (477-527), either wild-type or one of the mutants transformants were then streaked onto CM urahistrp plates containing galactose/raffinose and β-gal. The strength of interaction (as indicated by the number of “+” signs) was judged by the blueness in the plates (indicator of LacZ expression). The results are summarized in Table I.
    TABLE I
    bait
    clone WT F513A W514A K515R R518K Y519S
    14 w +++ ++ + +++ −++
    19 w + + ++
    31 w ++ +++

    Clone 14w interacted with mutant baits W514A and Y519S much more weakly than with wild-type bait. Clone 19w interacted differentially with wild-type and manu of the mutant baits. It appeared to interact with the mutant bait K515R more strongly than with wild-type, while reduced interaction was observed with mutant baits F513R, R518K and Y519S. The interaction of clone 31w was significantly reduced by mutations F513A, W514A, R518K and Y519S. The change in the interaction strength by these mutations suggests that these residues are the site(s) of interaction therefore, these data suggest that clones 14w, 19w and 31w interact with many of the signaling residues and may play a role in IL-1R signaling.
  • Effect on the IL1-Mediated Response
  • The effect of the IL-1-R intracellular ligands on the IL-1-mediated response can be evaluated in cells overexpressing the ligands. A number of IL-1 mediated responses, including transient or prolonged responses, can be measured. For example, IL-1-induced kinase activity toward either MBP (myelin basic protein) or the N-terminus (amino acids 1-79) of c-jun can be measured in COS cells or CHO cells either transiently or stably overexpressing IL-1R intracellular ligand proteins. Alternatively, other functional assays, such as the induction of gene expression or PGE2 production after prolonged incubation with IL-1, can also be used to measure the IL-1 mediated response. Conversely, the significance of the IL-1-R intracellular ligand proteins in IL-1 signaling can be established by lowering or eliminating the expression of the ligands. These experiments can be performed using antisense expression or transgenic mice.
  • IL-1 mediated JNK (c-jun NH2-terminal kinase, Derjard et al., Cell 1994, 76, 1025-1037) activation was used to study the effect of the IL-1R intracellular ligands on IL-1 signaling. COS cells were transfected with both pEDflag plasmid containing one of the clones (e.g., 19w) and HA-JNK1 plasmid by the DEAE-dextran method. 48 hrs after transfection, cells were starved in 0.1% BSA for 1 hr and treated with various amounts of IL-1α for 15 min. Cells were then lysed, centrifuged and immunoprecipitation with anti-HA monoclonal antibody, 12CA5 (Boehringer Mannheim). JNK activity was performed at 30° C. for 20 min using 5 μg GST-c-jun (1-79 amino acids), 20 μM ATP, and 5 μCi [γ-32P]ATP in 40 μl of kinase buffer (25 mM HEPES, pH 7.5, 20 mM MgCl2, 20 mM β-glycerophosphate, 0.1 mM sodium orthovanadate, 2 mM DTT). The reactions were terminated using laemmli sample buffer and the products were resolved by SDS-PAGE (4-20%).
  • As shown in FIG. 2, expression of clone 19w stimulated JNK activity in all IL-1 concentrations tested as compared to the pED flag vector transfected cells. It also enhanced JNK activity even in the absence of IL-1. These data strongly suggest that clone 19w, through its interaction with the signaling domain of IL-1 receptor (i.e., amino acids 477-527 of IL-1R), may indeed participate in the signaling event.
  • Enzymatic or Functional Assays
  • The signal transduction events initiated by IL-1 binding to its receptor are still largely unknown. However, one major result of IL-1 binding is the stimulation of cellular serine/threonine kinase activity. In addition IL-1 has been shown to stimulate the activity of PC-PLC, PLA2, and sphingomyelinase. Therefore, some of the IL-1-R intracellular ligand proteins may possess intrinsic enzymatic activity that is responsible for these activities. Therefore, enzymatic assays can be performed to test this possibility, particularly with those clones that encode proteins with sequence homology to known enzymes. In addition to enzymatic activity, based on the sequence homology to proteins with known function, other functional assays, for instance, ATP binding/transporter activity for the full length protein of clone 140, can also be measured.
  • EXAMPLE 5 Isolation of Full Length Clones
  • In many cases, cDNAs obtained from the interaction trap method each encode only a portion of the full length protein. Therefore, it is desirable to isolate full length clones. The cDNAs obtained from the screening are used as probes, and the cDNA libraries described herein, or alternatively phage cDNA libraries, are screened to obtain full length clones in accordance with known methods (see for example, “Molecular Cloning, A Laboratory Manual”, by Sarnbrook et al. 1989 Cold Spring Harbor).
  • EXAMPLE 6 Antibodies Specific for IL-1-R Intracellular Ligand Protein
  • Antibodies specific for IL-1-R intracellular ligand proteins can be produced using purified recombinant protein, as described in Example 2. as antigen. Both polyclonal and monoclonal antibodies will be produced using standard techniques, such as those described in “Antibodies, a Laboratory Manual” by Ed Harlow and David Lane (1988), Cold Spring Harbor Laboratory.

Claims (25)

1. A composition comprising an isolated polynucleotide encoding a protein having IL-1-R intracellular ligand protein activity.
2. The composition of claim 1 wherein said polynucleotide is selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 2 to nucleotide 529;
(b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:1, which encodes a protein having IL-1-R intracellular ligand protein activity;
(c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:2;
(d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 and having IL-1-R intracellular ligand protein activity; and
(e) a polynucleotide capable of hybridizing under stringent conditions to any one of the poly nucleotides specified in (a)-(d), which encodes a protein having IL-1-R intracellular ligand protein activity.
3. The composition of claim 1 wherein said polynucleotide sequence is selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3 from nucleotide 2 to nucleotide 961;
(b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:3, which encodes a protein having IL-1-R intracellular ligand protein activity;
(c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:4;
(d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 and having IL-1-R intracellular ligand protein activity; and
(e) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(d), which encodes a protein having IL-1-R intracellular ligand protein activity.
4. The composition of claim 1 wherein said polynucleotide is selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 2 to nucleotide 754;
(b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:5, which encodes a protein having IL-1-R intracellular ligand protein activity;
(c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:6;
(d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 and having IL-1-R intracellular ligand protein activity; and
(e) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(d), which encodes a protein having IL-1-R intracellular ligand protein activity.
5. A composition comprising a protein having IL-1-R intracellular ligand protein activity.
6. The composition of claim 5 wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:2and
(b) fragments of the amino acid sequence of SEQ ID NO:2; said protein being substantially free from other mammalian proteins.
7. The composition of claim 5 wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:4; and
(b) fragments of the amino acid sequence of SEQ ID NO:4; said protein being substantially free from other mammalian proteins.
8. The composition of claim 5 wherein said protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:6; and
(b) fragments of the amino acid sequence of SEQ ID NO:6; said protein being substantially free from other mammalian proteins.
9. A composition of claim 1 wherein said polynucleotide is operably linked to an expression control sequence.
10. A host cell transformed with a composition of claim 9.
11. The host cell of claim 10, wherein said cell is a mammalian cell.
12. A process for producing an IL-1-R intracellular ligand protein, which comprises:
(a) growing a culture of the host cell of claim 10 in a suitable culture medium; and
(b) purifying the IL-1-R intracellular ligand protein from the culture.
13. A method of identifying an inhibitor of IL-1-R intracellular domain binding which comprises:
(a) combining an IL-1-R intracellular domain protein with a composition of claim 5, said combination forming a first binding mixture;
(b) measuring the amount of binding between the IL-1-R intracellular domain protein and the IL-1-R intracellular ligand protein in the first binding mixture;
(c) combining a compound with the IL-1-R intracellular domain protein and an IL-1-R intracellular ligand protein to form a second binding mixture;
(d) measuring the amount of binding in the second binding mixture; and
(e) comparing the amount of binding in the first binding mixture
with the amount of binding in the second binding mixture; wherein the compound is capable of inhibiting IL-1-R intracellular domain binding when a decrease in the amount of binding of the second binding mixture occurs.
14. The method of claim 13 wherein said IL-1-R intracellular ligand protein comprises an amino acid sequence selected from the group consisting of:
(a) the amino acid sequence of SEQ ID NO:2;
(b) fragments of the amino acid sequence of SEQ ID NO:2;
(c) the amino acid sequence of SEQ ID NO:4;
(d) fragments of the amino acid sequence of SEQ ID NO:4
(e) the amino acid sequence of SEQ ID NO6;
(f) fragments of the amino acid sequence of SEQ ID NO:6:
(g) the amino acid sequence of SEQ ID NO:7: and
(h) fragments of the amino acid sequence of SEQ ID NO:7.
15. A method of identifying an inhibitor of IL-1-R intracellular domain binding which comprises:
(a) transforming a cell with a first polynucleotide encoding an IL-1-R intracellular domain protein, a second polynucleotide encoding an IL-1-R intracellular ligand protein, and at least one reporter gene herein the expression of the reporter gene is regulated by the binding of the IL-1-R intracellular ligand protein encoded by the second polynucleotide to the IL-1-R intracellular domain protein encoded by the first polynucleotide:
(b) growing the cell in the presence of and in the absence of a compound; and
(c) comparing the degree of expression of the reporter gene in the presence of and in the absence of the compound;
wherein the compound is capable of inhibiting IL-1-R intracellular domain binding when a decrease in the degree of expression of the reporter gene occurs.
16. The method of claim 15 wherein the second polynucleotide is selected from the group consisting of:
(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 2 to nucleotide 529;
(b) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:1, which encodes a protein having IL-1-R intracellular ligand protein activity;
(c) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:2;
(d) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 and having IL-1-R intracellular ligand protein activity;
(e) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3 from nucleotide 2 to nucleotide 961.
(f) a polynucleotide comprising, a fragment of the nucleotide sequence of SEQ ID NO:3, which encodes a protein having IL-1-R intracellular ligand protein activity;
(g) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:4;
(h) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 and having IL-1-R intracellular ligand protein activity;
(i) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 2 to nucleotide 754;
(j) a polynucleotide comprising a fragment of the nucleotide sequence of SEQ ID NO:5, which encodes a protein having IL-1-R intracellular ligand protein activity;
(k) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:6;
(l) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 and having IL-1-R intracellular ligand protein activity;
(m) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising the amino acid sequence of SEQ ID NO:7;
(n) a polynucleotide encoding an IL-1-R intracellular ligand protein comprising a fragment of the amino acid sequence of SEQ ID NO:7 and having IL-1-R intracellular ligand protein activity; and
(o) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(n), which encodes a protein having IL-1-R intracellular ligand protein activity.
17. A composition comprising an antibody which specifically reacts with the IL-1-R intracellular ligand protein of claim 5.
18. The composition of claim 5, further comprising a pharmaceutically acceptable carrier.
19. A method of preventing or ameliorating an inflammatory condition which comprises administering a therapeutically effective amount of a composition of claim 18.
20. A method of inhibiting IL-1-R intracellular domain binding comprising administering a therapeutically effective amount of a composition of claim 18.
21. IL-1-R intracellular ligand protein produced according to the method of claim 12.
22. A composition comprising an inhibitor identified according to the method of claim 15.
23. The composition of claim 22 further comprising a pharmaceutically acceptable carrier.
24. A method of preventing or ameliorating an inflammatory condition comprising administering to a mammalian subject a therapeutically effective amount of the composition of claim 23.
25. A method of inhibiting IL-1-R intracellular domain binding comprising administering to a mammalian subject a therapeutically effective amount of the composition of claim 23.
US11/087,991 1995-06-07 2005-03-23 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding Abandoned US20050186615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/087,991 US20050186615A1 (en) 1995-06-07 2005-03-23 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding
US12/172,798 US20090175874A1 (en) 1995-06-07 2008-07-14 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/487,942 US5817476A (en) 1995-06-07 1995-06-07 Polynucleotides encoding interleukin-1 receptor intracellular ligand proteins
US08/726,525 US5789181A (en) 1995-06-07 1996-10-07 Methods for identification of inhibitors of IL-1-R intracellular ligand binding
US09/083,516 US6300086B1 (en) 1995-06-07 1998-05-22 Method of identification of inhibitors of IL-1 receptor intracellular domain binding
US09/884,319 US6899878B2 (en) 1995-06-07 2001-06-18 Antibodies to interleukin-1 receptor intracellular ligand proteins
US11/087,991 US20050186615A1 (en) 1995-06-07 2005-03-23 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/884,319 Continuation US6899878B2 (en) 1995-06-07 2001-06-18 Antibodies to interleukin-1 receptor intracellular ligand proteins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/172,798 Continuation US20090175874A1 (en) 1995-06-07 2008-07-14 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding

Publications (1)

Publication Number Publication Date
US20050186615A1 true US20050186615A1 (en) 2005-08-25

Family

ID=23937751

Family Applications (7)

Application Number Title Priority Date Filing Date
US08/487,942 Expired - Fee Related US5817476A (en) 1995-06-07 1995-06-07 Polynucleotides encoding interleukin-1 receptor intracellular ligand proteins
US08/726,036 Expired - Fee Related US5981482A (en) 1995-06-07 1996-10-07 Interleukin-1 receptor intracellular ligand proteins
US08/726,525 Expired - Lifetime US5789181A (en) 1995-06-07 1996-10-07 Methods for identification of inhibitors of IL-1-R intracellular ligand binding
US09/083,516 Expired - Fee Related US6300086B1 (en) 1995-06-07 1998-05-22 Method of identification of inhibitors of IL-1 receptor intracellular domain binding
US09/884,319 Expired - Fee Related US6899878B2 (en) 1995-06-07 2001-06-18 Antibodies to interleukin-1 receptor intracellular ligand proteins
US11/087,991 Abandoned US20050186615A1 (en) 1995-06-07 2005-03-23 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding
US12/172,798 Abandoned US20090175874A1 (en) 1995-06-07 2008-07-14 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US08/487,942 Expired - Fee Related US5817476A (en) 1995-06-07 1995-06-07 Polynucleotides encoding interleukin-1 receptor intracellular ligand proteins
US08/726,036 Expired - Fee Related US5981482A (en) 1995-06-07 1996-10-07 Interleukin-1 receptor intracellular ligand proteins
US08/726,525 Expired - Lifetime US5789181A (en) 1995-06-07 1996-10-07 Methods for identification of inhibitors of IL-1-R intracellular ligand binding
US09/083,516 Expired - Fee Related US6300086B1 (en) 1995-06-07 1998-05-22 Method of identification of inhibitors of IL-1 receptor intracellular domain binding
US09/884,319 Expired - Fee Related US6899878B2 (en) 1995-06-07 2001-06-18 Antibodies to interleukin-1 receptor intracellular ligand proteins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/172,798 Abandoned US20090175874A1 (en) 1995-06-07 2008-07-14 Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding

Country Status (3)

Country Link
US (7) US5817476A (en)
AU (1) AU5639196A (en)
WO (1) WO1996040907A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044414A1 (en) * 2005-06-21 2008-02-21 Linda Masat IL-1beta binding antibodies and fragments thereof
US20080292640A1 (en) * 2006-12-20 2008-11-27 Solinger Alan M Methods for the treatment of il-1beta related diseases
WO2009086003A1 (en) 2007-12-20 2009-07-09 Xoma Technology Ltd. Methods for the treatment of gout
US20110189172A1 (en) * 2008-06-06 2011-08-04 Xoma Technology, Ltd. Methods for the treatment of rheumatoid arthritis
US8377429B2 (en) 2008-09-05 2013-02-19 Xoma Technology Ltd. Methods for improvement of beta cell function with anti-IL-1β antibodies or fragments thereof
WO2013096516A1 (en) 2011-12-19 2013-06-27 Xoma Technology Ltd. Methods for treating acne
US8551487B2 (en) 2010-05-07 2013-10-08 Xoma Technology, Ltd. Methods for the treatment of IL-1β related conditions

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817476A (en) * 1995-06-07 1998-10-06 Genetics Institute, Inc. Polynucleotides encoding interleukin-1 receptor intracellular ligand proteins
US6592877B1 (en) * 1995-09-01 2003-07-15 Corixa Corporation Compounds and methods for immunotherapy and diagnosis of tuberculosis
AU7724398A (en) * 1997-06-06 1998-12-21 Regents Of The University Of California, The A melanoma associated antigen, t cell epitopes thereof and methods of using sa me
US5989803A (en) * 1997-09-05 1999-11-23 The Trustees Of Columbia University In The City Of New York Method for treating a subject suffering from a condition associated with an extracellular zinc sphingomyelinase
DK1095059T3 (en) * 1998-07-10 2006-10-02 Alligator Bioscience Ab Publ Chemotaxia inhibitory protein of staphylococcus (chips) and its use
AU5787399A (en) * 1998-08-28 2000-03-21 Princeton University Novel targets of p53 regulatory activity
US6808902B1 (en) 1999-11-12 2004-10-26 Amgen Inc. Process for correction of a disulfide misfold in IL-1Ra Fc fusion molecules
DE19960225B4 (en) * 1999-12-14 2007-03-01 Max Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Crystalline, in the asymmetric unit, at least one polypeptide having human m-calpain catalysis (sub) domaine, methods of identifying compounds using it, methods of crystallization thereof, and methods of representing a 3-dimensional structure of said peptide
EP1118663A1 (en) 2000-01-07 2001-07-25 Universiteit Utrecht Nucleic acids encoding chemotaxis inhibitory polypeptides
YU103003A (en) 2001-06-26 2006-05-25 Abgenix Inc. Antibodies to opgl
NZ538569A (en) 2002-09-06 2009-02-28 Amgen Inc Therapeutic human anti-IL-1R1 monoclonal antibody
US20210236599A1 (en) 2018-08-13 2021-08-05 Iltoo Pharma Combination of interleukin-2 with an interleukin 1 inhibitor, conjugates and therapeutic uses thereof
WO2023222565A1 (en) 2022-05-16 2023-11-23 Institut National de la Santé et de la Recherche Médicale Methods for assessing the exhaustion of hematopoietic stems cells induced by chronic inflammation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011912A (en) * 1986-12-19 1991-04-30 Immunex Corporation Hybridoma and monoclonal antibody for use in an immunoaffinity purification system
US5654397A (en) * 1985-06-23 1997-08-05 Tularik, Inc. Interleukin-1 receptor-associated protein kinase and assays

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783536A (en) * 1955-08-26 1957-03-05 James M Boast Knife and sheath with latch means
US4662552A (en) * 1985-07-01 1987-05-05 Uyehara James H Baton holder
US5167355A (en) * 1990-01-11 1992-12-01 Hill Ernie H Fast draw holster
US5217151A (en) * 1992-01-31 1993-06-08 Kevin Parsons Back pocket scabbard for tactical baton
US5449104A (en) * 1994-03-23 1995-09-12 Armament Systems & Procedures Baton carrier for expandable batons
US5691147A (en) * 1994-06-02 1997-11-25 Mitotix, Inc. CDK4 binding assay
US5543803A (en) * 1994-08-23 1996-08-06 Honeywell Inc. Fail safe receiver system
US5588630A (en) * 1995-01-19 1996-12-31 Chen-Chao; Huang Adjustable base to hold flag banners
US5564610A (en) * 1995-02-23 1996-10-15 Barron; Rick W. Rifle sling support apparatus
US5593074A (en) * 1995-05-26 1997-01-14 Laser Products Ltd. Bidirectional holsters
US5817476A (en) * 1995-06-07 1998-10-06 Genetics Institute, Inc. Polynucleotides encoding interleukin-1 receptor intracellular ligand proteins
US5839630A (en) * 1997-10-20 1998-11-24 Dunstan; Jacqueline M. Baton holder
US6269990B1 (en) * 1999-01-22 2001-08-07 Taylor's Beach Pty Ltd Holder for an elongate device
US6497349B1 (en) * 2000-08-18 2002-12-24 Leonard C. Ramirez Support device for an elongated weapon
US6619521B2 (en) * 2001-10-01 2003-09-16 Ronnie Hadley Umbrella support apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654397A (en) * 1985-06-23 1997-08-05 Tularik, Inc. Interleukin-1 receptor-associated protein kinase and assays
US5011912A (en) * 1986-12-19 1991-04-30 Immunex Corporation Hybridoma and monoclonal antibody for use in an immunoaffinity purification system

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829093B2 (en) 2005-06-21 2010-11-09 Xoma Technology Ltd. Method of treating an IL-1 related autoimmune disease or condition
EP3056511A2 (en) 2005-06-21 2016-08-17 Xoma (Us) Llc Il-1beta binding antibodies and fragments thereof
US20090060918A1 (en) * 2005-06-21 2009-03-05 Linda Masat Method of treating or preventing an IL-1 related disease or condition
US20090060923A1 (en) * 2005-06-21 2009-03-05 Linda Masat Method of treating or preventing an IL-1 related disease or condition
US7531166B2 (en) 2005-06-21 2009-05-12 Xoma Technology, Ltd. IL-1β binding antibodies and fragments thereof
US9206252B2 (en) 2005-06-21 2015-12-08 Xoma (Us) Llc Pharmaceutical compositions comprising IL-1B binding antibodies and fragments thereof
EP2314623A1 (en) 2005-06-21 2011-04-27 XOMA Technology Ltd. IL-1beta binding antibodies and fragments thereof
US20090214545A1 (en) * 2005-06-21 2009-08-27 Xoma Technology Ltd. Method of Treating or Preventing an IL-1 Related Disease or Condition
US20080044414A1 (en) * 2005-06-21 2008-02-21 Linda Masat IL-1beta binding antibodies and fragments thereof
US7582742B2 (en) 2005-06-21 2009-09-01 Xoma Technology Ltd. Method of treating or preventing an IL-1 related disease or condition
US20090246210A1 (en) * 2005-06-21 2009-10-01 Xoma Technology Ltd. IL-1Beta Binding Antibodies and Binding Fragments thereof
US20100061998A1 (en) * 2005-06-21 2010-03-11 Xoma Technology Ltd. Il-1beta binding antibodies and fragments thereof
EP2163562A2 (en) 2005-06-21 2010-03-17 XOMA Technology Ltd. IL-1beta binding antibodies and fragments thereof
US7988968B2 (en) 2005-06-21 2011-08-02 Xoma Technology Ltd. Method of treating an IL-1 related coronary condition
US7695717B2 (en) 2005-06-21 2010-04-13 Xoma Technology Ltd. Method of treating an IL-1 related inflammatory disease or condition
US7744865B2 (en) 2005-06-21 2010-06-29 Xoma Technology Ltd. IL1-β Binding antibodies and fragments thereof
US7744866B2 (en) 2005-06-21 2010-06-29 Xoma Technology Ltd. IL-1β binding antibodies and binding fragments thereof
US7829094B2 (en) 2005-06-21 2010-11-09 Xoma Technology Ltd. Method of treating an IL-1 related cancer
US20090214568A1 (en) * 2005-06-21 2009-08-27 Xoma Technology Ltd. Method of Treating or Preventing an IL-1 Related Disease or Condition
US7943121B2 (en) 2005-06-21 2011-05-17 Xoma Technology Ltd. IL-1β binding antibodies and fragments thereof
US8377442B2 (en) 2005-06-21 2013-02-19 Xoma Technology Ltd. Method of treating inflammatory eye disease with IL-1β binding antibodies
US9163082B2 (en) 2006-12-20 2015-10-20 Xoma (Us) Llc Methods for the treatment of IL-1β related diseases
EP3124045A2 (en) 2006-12-20 2017-02-01 Xoma (Us) Llc Treatment of il-1 beta related diseases
US7695718B2 (en) 2006-12-20 2010-04-13 Xoma Technology Ltd. Methods for the treatment of IL-1β related diseases
US8101166B2 (en) 2006-12-20 2012-01-24 Xoma Technology Ltd. Methods for the treatment of IL-1β related diseases
US20110038859A1 (en) * 2006-12-20 2011-02-17 Xoma Technology Ltd. Methods for the treatment of il-1beta related diseases
US8586036B2 (en) 2006-12-20 2013-11-19 Xoma Technology Ltd. Methods for the treatment of IL-1β related diseases
US20080292640A1 (en) * 2006-12-20 2008-11-27 Solinger Alan M Methods for the treatment of il-1beta related diseases
WO2009086003A1 (en) 2007-12-20 2009-07-09 Xoma Technology Ltd. Methods for the treatment of gout
US8637029B2 (en) 2007-12-20 2014-01-28 Xoma Technology Ltd. Methods for the treatment of gout
US20090181019A1 (en) * 2007-12-20 2009-07-16 Xoma Technology Ltd. Methods for the Treatment of Gout
EP2851373A1 (en) 2007-12-20 2015-03-25 Xoma (Us) Llc Methods for the treatment of gout
US20110189172A1 (en) * 2008-06-06 2011-08-04 Xoma Technology, Ltd. Methods for the treatment of rheumatoid arthritis
US8377429B2 (en) 2008-09-05 2013-02-19 Xoma Technology Ltd. Methods for improvement of beta cell function with anti-IL-1β antibodies or fragments thereof
US9139646B2 (en) 2010-05-07 2015-09-22 Xoma (Us) Llc Methods for the treatment of uveitis with IL-1β binding antibodies
US8551487B2 (en) 2010-05-07 2013-10-08 Xoma Technology, Ltd. Methods for the treatment of IL-1β related conditions
WO2013096516A1 (en) 2011-12-19 2013-06-27 Xoma Technology Ltd. Methods for treating acne
EP3050900A1 (en) 2011-12-19 2016-08-03 Xoma (Us) Llc Methods for treating acne

Also Published As

Publication number Publication date
US20030124625A1 (en) 2003-07-03
US5789181A (en) 1998-08-04
US5981482A (en) 1999-11-09
US5817476A (en) 1998-10-06
US20090175874A1 (en) 2009-07-09
US6300086B1 (en) 2001-10-09
US6899878B2 (en) 2005-05-31
AU5639196A (en) 1996-12-30
WO1996040907A1 (en) 1996-12-19

Similar Documents

Publication Publication Date Title
US20050186615A1 (en) Novel interleukin-1 receptor intracellular ligand proteins and inhibitors of ligand binding
US20090092613A1 (en) Novel TNF receptor death domain ligand proteins and inhibitors of ligand binding
US7109307B2 (en) TNF receptor death domain ligand proteins and inhibitors of ligand binding
EP1131351A2 (en) Peptides that modulate the interaction of b class ephrins and pdz domains
WO1996012735A9 (en) Novel tnf receptor death domain ligand proteins and inhibitors of ligand binding
JPH10510422A (en) Novel protein domain that binds tyrosine phosphorylated proteins
WO2000052173A2 (en) Cloned human sphingosine kinase homologues
WO1997032020A9 (en) Shc proteins
WO1997032020A2 (en) Shc proteins
EP1290160B1 (en) Human pellino polypeptides
US5849501A (en) TNF receptor death domain ligand proteins and method to identify inhibitors of ligand binding
US5847099A (en) TNF receptor death domain ligand proteins
JP2003523723A (en) Hermansky-Padrack syndrome protein-interacting proteins and methods of use
US7576178B2 (en) DADD, death activator death domain protein
CA2319782A1 (en) Retinoblastoma protein complexes and retinoblastoma interacting proteins
US7037683B2 (en) Human longevity assurance protein, its coding sequence and their use
CA2202912A1 (en) Novel tnf receptor death domain ligand proteins and inhibitors of ligand binding
JPH11514876A (en) Novel human cysteine protease
US20050069871A1 (en) Polypeptide-human zinc finger protein fpm315-17 and the polynucleotide encoding it
WO2001030825A1 (en) A novel polypeptide-human splicing factor 25 and the polynucleotide encoding said polypeptide
JPWO2004061102A1 (en) Cell cycle regulatory proteins and uses thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION