US20050175799A1 - Thermally insulating products for footwear and other apparel - Google Patents
Thermally insulating products for footwear and other apparel Download PDFInfo
- Publication number
- US20050175799A1 US20050175799A1 US11/106,788 US10678805A US2005175799A1 US 20050175799 A1 US20050175799 A1 US 20050175799A1 US 10678805 A US10678805 A US 10678805A US 2005175799 A1 US2005175799 A1 US 2005175799A1
- Authority
- US
- United States
- Prior art keywords
- insulating structure
- insulating
- less
- envelope
- apparel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011148 porous material Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 7
- 229910021485 fumed silica Inorganic materials 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004964 aerogel Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- GZFDAWWYGPIJCP-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-nitrosopropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)N=O GZFDAWWYGPIJCP-UHFFFAOYSA-N 0.000 claims description 2
- SUAMPXQALWYDBK-UHFFFAOYSA-N 1,1,1,2,2,3-hexafluoropropane Chemical compound FCC(F)(F)C(F)(F)F SUAMPXQALWYDBK-UHFFFAOYSA-N 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims description 2
- 239000012784 inorganic fiber Substances 0.000 claims description 2
- 239000011140 metalized polyester Substances 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 2
- 229960004424 carbon dioxide Drugs 0.000 claims 1
- 238000009413 insulation Methods 0.000 description 26
- 239000007789 gas Substances 0.000 description 21
- 239000011810 insulating material Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 11
- 239000006260 foam Substances 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 210000002683 foot Anatomy 0.000 description 6
- 239000003605 opacifier Substances 0.000 description 6
- 239000012774 insulation material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 239000011236 particulate material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002991 molded plastic Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 241000272814 Anser sp. Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000004744 fore-foot Anatomy 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B7/00—Footwear with health or hygienic arrangements
- A43B7/34—Footwear with health or hygienic arrangements with protection against heat or cold
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/015—Protective gloves
- A41D19/01529—Protective gloves with thermal or fire protection
- A41D19/01535—Heated gloves
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B23/00—Uppers; Boot legs; Stiffeners; Other single parts of footwear
- A43B23/07—Linings therefor
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B23/00—Uppers; Boot legs; Stiffeners; Other single parts of footwear
- A43B23/08—Heel stiffeners; Toe stiffeners
- A43B23/081—Toe stiffeners
- A43B23/086—Toe stiffeners made of impregnated fabrics, plastics or the like
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B3/00—Footwear characterised by the shape or the use
- A43B3/02—Boots covering the lower leg
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1334—Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/231—Filled with gas other than air; or under vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/233—Foamed or expanded material encased
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/239—Complete cover or casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/249969—Of silicon-containing material [e.g., glass, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/24997—Of metal-containing material
Definitions
- the present invention is directed to apparel having insulating material with low thermal conductivity.
- Apparel as described in the present invention, is intended to include articles such as foot, hand and head wear, as well as body coverings such as jackets, coats and the like.
- thermal insulation in apparel is well known, with conventional materials consisting of batting, foam, down and the like.
- insulation for footwear is known to include leather, felt, fleece, cork, flannel, foam and combinations thereof.
- a disadvantage of conventional insulating materials is that the achievement of high levels of insulation requires the use of a relatively large thickness of material. For example, adequate insulation in footwear for sub-freezing temperatures is several centimeters thick. In many applications, the provision of a large thickness of material is impractical especially in apparel items for work or sport. In these activities, there often exists requirements of dexterity in the hands, surefootedness and firm traction for the feet, firm control of skis, skates or snowboards, or a reasonably close and firm fit for helmets.
- Too great a thickness of insulation introduces the possibility of relative motion between the body and the item being worn and hence an insecure contact with the ground or objects that must be handled.
- the esthetics of an article may also be affected by added thickness and users may be averse to wearing bulky items of apparel which have an unflattering or unfashionable appearance.
- U.S. Pat. No. 4,055,699, to Hsiung teaches a multi-layer insole for an article of footwear to insulate the foot from cold which is sufficiently thin to insulate without changing fit.
- the insole is a multi-layered laminate having a thin soft fabric layer laminated to the top of an open cell foam layer, a dense cross-linked polyolefin layer laminated to the foam layer, and an aluminum coated barrier layer of polymeric material laminated to the bottom of the cross-linked polyolefin layer. It is taught, however, that the insole is compressible and the open celled layer tends to pump air as body pressure is alternately applied, circulating warm air around the side of the foot within the shoe. Additionally, to increase insulation it is taught to increasing the thickness of the open-celled layer.
- U.S. Pat. No. 4,535,016, to Bradley teaches an insulating material for articles such as jackets, trousers sleeping bags, and the like.
- the insulation material includes a sealed envelope that is permeable to gas and which is made of a tightly woven or knitted material.
- the envelope is filled with a fine fibrous insulating material such as goose down, and between 3% to 50% by weight of a finely divided hydrophobic particulate metal or metalloid oxide pigment in an amount in excess of that required to cover all surfaces of the insulating material.
- the pigment material is added to increase insulating power and water repellency when compared to uncoated fibrous insulating material.
- the thermal conductivity of conventional insulation material for apparel is generally greater than that of air which has a thermal conductivity of about 25 mW/m K at 25° C.
- high conductivity may result from conduction by the solid component, or in materials of intermediate density a combination of both mechanisms may result in higher conductivity.
- a substantial increase in insulation material is added, which has the above-stated disadvantages such as changing the fit of an article.
- Insulation materials having lower thermal conductivities are known for use in the building sector, storage and transport equipment such as refrigerated transporters and trucks, appliances such as high temperature ovens and furnaces, containers for storage of liquids and gases, and the like.
- storage and transport equipment such as refrigerated transporters and trucks, appliances such as high temperature ovens and furnaces, containers for storage of liquids and gases, and the like.
- appliances such as high temperature ovens and furnaces
- containers for storage of liquids and gases, and the like for use in the building sector, storage and transport equipment such as refrigerated transporters and trucks, appliances such as high temperature ovens and furnaces, containers for storage of liquids and gases, and the like.
- powder-in-vacuum insulation is known, where panels of particulate material are contained in an impermeable cover or film under an internal pressure below atmospheric pressure.
- U.S. Pat. No. 5,877,100, to Smith et al. teaches compositions with low thermal conductivity for use in insulation panels.
- the composite is a particulate composition which under 15 psi load at 20° C. and at a pressure within the range of 133.3-13332.2 Pa in nitrogen, has a packing density of less than or equal to 160 kg/m 3 , and a thermal conductivity of 4 to 6 mW/m K.
- U.S. Pat. No. 4,159,359, to Pelloux-Gervais et al. teaches insulating materials used in buildings, refrigerators, ovens and furnaces.
- the insulating material is formed of a compacted structure having a low thermal conductivity.
- the compacted structure is formed of a fine silica-based, 100 angstrom particles, obtained by the heat treatment of a silane compound, which is compacted mechanically. At atmospheric pressure, the compacted structure is reported to have about twice the insulating performance of organic foams.
- European Patent Publication No. 0 032 176 B2 to Degussa A G teaches heat insulation mixtures that exhibit the least possible shrinkage at temperatures above 950° C. to minimize loss of heat-insulating properties. Insulation mixtures are compressed into boards, surrounded by porous enclosures and used for heat insulation of heat storage furnaces, decks and heating hoods.
- the heat insulation mixtures comprise pyrogenic silica, opacifier, inorganic fiber, and organosilicon compounds. While some low thermal conductivity insulation materials have enhanced insulation values, the utility of these materials is limited. Typically configured as large blocks or panels suitable for the above mentioned uses, the structures are thick and lack pliability.
- Japanese Unexamined Patent Application No. 2-38385 teaches pliable insulating materials that may be used in non-planar arrangements, having low thermal conductivity.
- the insulating material comprises a pliable base material with open cells filled with fine particulate.
- the pliability of the open-celled material is taught to be unaffected by the fine particulate material which is formed by an anti-agglomeration treatment to ensure small void size within the cells.
- the open-celled material may be covered with porous paper or air permeable film. It is taught that hermetic sealing of the insulating material would adversely affect pliability, and cause damage to the insulating material due to expansion of internal air from increase in temperature.
- such insulating components would be incompressible, having a lower thermal conductivity than conventionally used materials, and remain sufficiently pliable to meet the requirements of various apparel applications.
- the present invention is, therefore, directed to articles of apparel having insulating components which have substantially incompressible insulating structures and which have lower thermal conductivity than that of conventional insulating materials.
- the articles of apparel have pliable, flexible insulating structures that provide enhanced insulation without the addition of thick layers of insulating materials which disadvantageously affect the fit or functionality of the design of the article.
- the present invention is directed to articles of apparel comprising insulating components having an insulating structure with a low thermal conductivity.
- the thermal conductivity of the insulating structure is less than or equal to air, or i.e., less than or equal to about 25 mW/m K at 25° C.
- Insulating structures comprise a gas impermeable envelope and structure material contained therein.
- Preferred structure materials comprise very fine porous materials, such as fumed silica, and optional other components such as binders and opacifiers.
- Preferred insulating structures comprise structure material of very fine pore sizes where the mean free path of a gas molecule, such as air, is larger than the dimensions of the pore. The mobility of the air molecule is limited, and thermal conductivity is thereby reduced.
- the gas impermeable envelope may be sealed at atmospheric pressure, or alternately, the envelope may be evacuated of air and sealed at reduced pressure to further decrease the thermal conductivity.
- Preferred insulating structures at reduced pressure may have thermal conductivities of about 2 mW/m K to about 8 mW/m K.
- the envelope may be at least partially evacuated of air and a gas having a higher molecular weight is introduced, prior to sealing the envelope.
- a method of forming incompressible insulating structures comprises compressing the structure material as a processing step. Incompressible structures maintain flexibility, and lower the thermal conductivity of the insulating structure.
- Insulating structures may be formed into any shape depending on the final end use of the structure. Further, insulating structures may be combined with conventional materials or insulating structures of the present invention to form insulating components.
- Articles of the present invention preferably comprise articles of apparel having insulating components comprising insulating structures with low thermal conductivities, such as boots, shoes, gloves, handwear, headwear, jackets, and the like.
- FIG. 1 is a side view cross section of a boot of the present invention.
- FIG. 2 is top planar view of a toe cap top and bottom insulating structure of the present invention.
- FIG. 3 is a side view of a shaped toe cap insulation structure of the present invention.
- FIG. 4 is a graph of the average toe temperature in ski boots.
- the present invention is directed to articles of apparel comprising insulating components having an insulating structure which have a low thermal conductivity. Preferred embodiments of the present invention can best be described with reference to the exemplary embodiment depicted in FIG. 1 .
- FIG. 1 illustrates a preferred embodiment of a boot, shown as a cross-sectional view of a boot having a boot upper 1 and a boot sole 2 , positioned within which is a toe cap insulating structure 6 having an envelope 3 sealed along its perimeter 4 enclosed within which is a fine porous material 5 .
- the insulating structure comprises structure material having a fine pore size. Pore size of preferred structure material is about 100 nm or less, and most preferably about 20 nm or less. Structure materials with fine pore sizes suitable for use in the present invention include fumed silica and alumina, and other fumed metal oxides, and aerogels of silica and other metal oxides.
- structure material may further comprise a blend of other optional components including but not limited to binders, opacifiers, and the like.
- Fibers such as inorganic and organic fibers may be added, for example, as a binder to bind fine porous material.
- Preferred fibers are comprised of polyester, nylon, and glass.
- Particulate components including carbon, such as carbon black, and titanium dioxide may be added as opacifiers, which are opaque in the far infrared region of the electromagnetic spectrum, and serve to reduce heat transport by thermal radiation.
- Preferred are structure materials comprising a mixture of very fine porous material, binders and opacifiers. It is preferred that the very fine porous material comprises at least about 50% of the mixture.
- a preferred structure material comprises a mixture of 50% to 100% very fine porous material, such as fumed silica, 0 to 50% binder, such as polyester, nylon or glass fiber, and 0 to 20% of a particulate material, such as carbon black.
- the structure material is contained in an envelope suitable to prevent the release of the fine porous material and the optional other components.
- the envelope is a gas impermeable envelope, and the envelope preferably comprises at least one layer of material such as polyester, nylon, aluminum, polyethylene, and laminates and combinations thereof.
- the envelope preferably has a gas permeability of less than or equal to about 10 ⁇ 3 g/m 2 atmosphere/day and more preferably about 10 ⁇ 4 g/m 2 atmosphere/day.
- Gas impermeable envelopes comprising a reflective material, such as metallized polyester, aluminum or noble metals may be used to reduce radiative heat loss in preferred embodiments which do not contain opacifiers.
- a seal is formed encapsulating the fine porous material and optional additional components within the gas impermeable membrane. Sealing may be formed by any known method such as with adhesives, heat sealing, radiative frequency welding, ultrasonic welding, and the like.
- the resulting insulating structure has a thermal conductivity less than or equal to air, or less than or equal to about 25 mW/m K at 25° C., more preferably, less than or equal to about 15-20 mW/m K at 25° C., and most preferably between about 15-18 mW/m K at 25° C.
- a mold having a desired shape.
- a mixture comprising very fine porous material and optional additional components is pressed in a flat press into an incompressible form having a density of about 150 kg/m 3 .
- the form is cut to shape and the shape is placed within the mold between sections of a gas impermeable material.
- a heat sealer is provided as a heated bar in the approximate shape of the perimeter of the mold, and pressed onto the envelope outside the perimeter of the shape to form a seal ( FIG. 1 , at 4 ).
- the preferred sealed insulating structure is incompressible, and is suitable for use in footwear and other articles of apparel that may be subject to pressure.
- Incompressible insulating structures maintain insulating properties where many conventional materials compress and lose much of their insulation value.
- Preferred insulating structures of the present invention are substantially incompressible under the weight of a human body. Insulating structures having a loss of thickness of 20% or less at a pressure of one atmosphere are considered substantially incompressible and are preferred. Structures with a loss of thickness of about 10% or less are particularly preferred, and about 5% or less are most preferred.
- preferred insulating structures which have a thickness of about 10 mm or less, most preferably about 3 mm or less and more preferably about 2 mm or less.
- the article of apparel is a work boot or ski boot
- insulation has a thickness of about 3 mm or less.
- Thicker insulating structures may be used in applications, for example, where flexibility is less critical such as liners of protective helmets. Insulating structures having a thickness of up to or greater than about 10 mm can be used where there is a substantial gap between the apparel item and the body.
- An insulating structure having a thickness of about 2 mm to about 10 mm, preferable has a thermal insulation value of about 0.3 to 1.7 m 2 K/W. Thermal insulation can be calculated as the thickness of the insulating structure divided by the thermal conductivity of the structure, or i.e., m 2 K m/(W/m K).
- the pliable nature of the insulating structure provides that the structure may be further shaped to achieve a final form.
- the structure material may be provided as a continuous compressed body contained within the envelope.
- insulating structures may comprise one or more sections of the structure material within an envelope.
- the envelope may optionally be sealed, such as through heat sealing, between sections of the structure material thereby providing a quilted or patterned construction, additionally contributing to the flexibility and pliability of the article.
- the final shape of the insulating structure depends upon the end use of the article.
- the insulating structure may be formed as a flat component, for utility as a sole of a shoe or boot, or may be shaped or curved for use as a toe cap or in head wear or gloves, or otherwise shaped to meet the requirements of the user.
- Insulating structures may be combined with traditional insulating materials or with additional insulating structures of the present invention to form insulating components useful in articles of apparel.
- a further embodiment of the present invention comprises articles of apparel having an insulating component with insulating structures wherein the structure has low thermal conductivity and in which air is encapsulated at reduced pressure.
- An insulating structure is formed, as described above, having a structure comprising a gas impermeable envelope, within which is fine porous material and optional other components, wherein the envelope is at least partially evacuated of air, and the envelope is sealed at reduced pressure by any suitable method.
- a method comprises providing a mold having an envelope and fine porous material with other optional components contained therein, placing the mold and a heat sealer in a vacuum chamber, evacuating the air to a reduced pressure, and heat sealing the envelope.
- the pressure to which the insulating structure is evacuated may depend upon the pore size of the porous material. For example, a pressure of up to about 10,000 Pa may be used for structure material with pore sizes of about 100 nanometers or less.
- the envelope is under a vacuum pressure of about 1000 Pa or less; most preferably the envelope is under a vacuum pressure of about 100 Pa or less.
- the gas impermeable envelope is sealed to maintain evacuation and reduced pressure.
- Preferred insulating components have insulating structures with reduced pressure have even lower thermal conductivities than the preferred structures described above. Thermal conductivities of preferred insulating structures at reduced pressure are less than or equal to about 15 mW/m K, with reduced pressure insulating structures having thermal conductivities of about 2 to about 10 mW/m K being particularly preferred, and reduced pressure insulating structures having thermal conductivities of about 2 mW/m K to about 8 mW/m K being most preferred.
- a further embodiment of the present invention comprises apparel having an insulating component which has an insulating structure comprising a fine pore size material and optional other components, as described above, and in which the insulating structure encapsulates gases having a molecular weight higher than that of air.
- gases have a molecular weight of about 100 or greater, and a boiling point of about 25° C. or less.
- High molecular weight gases suitable for use in the present invention include but are not limited to carbon dioxide, fluorocarbons, chlorocarbons, chlorofluorocarbons and hydrochlorofluorocarbons. Examples include, heptafluoro-1-nitrosopropane and 1,1,1,2,2,3-hexafluoropropane.
- Preferred insulating components that have insulating structures encapsulating high molecular weight gas have thermal conductivities of about 10 mW/m K to about 25 mW/m K.
- Particularly preferred high molecular weight, gas-encapsulated insulating structures have thermal conductivities of about 10 mW/m K to about 20 mW/m K, and most preferred high molecular weight, gas-encapsulated insulating structures have thermal conductivities of about 10 mW/m K to about 15 mW/m K.
- a preferred method of forming an insulating structure comprises providing a structure material, providing a gas impermeable envelope to the structure material, evacuating air from the gas impermeable envelope as described above, and filling the vacuum chamber with a high molecular weight gas, and sealing the envelope.
- Articles of the present invention preferably comprise articles of apparel having insulating components with low thermal conductivities, such as boots, shoes, gloves, handwear, headwear, jackets, and the like.
- the insulation value of the toe area of a ski boot was substantially increased without substantially altering the fit of the boot.
- the insulation value was increased by the addition of 2 mm thick insulating structures of vacuum packed, fine pore size insulation.
- the insulation structure consisted of a structure material of NP40 (from Nanopore Inc., Albuquerque, N. Mex.) which comprises fumed silica blended with about 2% by weight of polyester fiber and about 7% by weight of carbon black.
- the mixture was dried in an oven at about 100° C. for several hours before use.
- the dried mixture was laid in a flat tray and pressed at a pressure of about 10 psi to form a 2 mm thick board with a density of about 150 kg/m 3 .
- the board was cut into two shaped pieces, a shape corresponding to the top side of a toe cap ( FIG. 2 b ) and a shape corresponding to the underside ( FIG. 2 a ).
- the shaped pieces were vacuum packed at a residual air pressure of about 1,000 Pa in a gas impermeable envelope.
- the envelope was aluminized polyester which comprised 12 ⁇ m polyester with a vacuum-deposited aluminum layer of less than 1 ⁇ m thickness, a second polyester layer of about 12 ⁇ m thickness, and a heat sealable polyethylene layer of about 30 ⁇ m thickness (type 0655/002 from Remax PLC, London, UK).
- the envelope was sealed in a two step process in which the shaped piece to be enclosed was placed on one layer of polyester film and another layer of film placed on top. The two layers of film were then heat sealed around the majority of the perimeter leaving an unsealed length of about 20 mm ( FIGS. 2 a and 2 b , at 10 ).
- the shapes were then placed in a vacuum chamber and the pressure was reduced to less than 1000 Pa to form insulating structures ( FIGS. 2 a and 2 b , at 20 ). The remaining length of the perimeter was then heat-sealed.
- Insulating structures were shaped to cover approximately the front 110 mm of the foot.
- One structure covering the bottom of the front part of the foot had approximately a semicircular shape with a base of about 90 mm and a height of about 110 mm ( FIG. 3 at 40 ).
- the other structure covered a portion of the top part of the foot in approximately a rhombic shape with a base of about 180 mm and a height of about 100 mm ( FIG. 3 at 30 ).
- the inner boot was constructed of foam, textile and molded plastic of about 2 to 3 mm thickness in the toe area.
- the outer boot was constructed of molded plastic and was about 5 mm thick.
- the thermal conductivity of the insulating structures was about 6 mW/m K as measured on a heat flow meter thermal conductivity apparatus.
- the resulting insulation value was about 0.33 m 2 K/W.
- the 2 mm thickness of the insulating structures was not noticeable to the wearer in blinded trials with two test subjects wearing the boots with and without structures on alternate days.
- the test subjects wore the boots in a climatic chamber at a temperature of about ⁇ 10° C. while performing a test protocol of about 2 hours duration which consisted of alternately resting and working on a bicycle ergometer.
- the results of the test subjects' toe temperatures are shown in FIG. 4 .
- the addition of the insulating structures to the boot resulting in an increase in toe temperature of about 8° C. after about 2 hours of cold exposure.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Laminated Bodies (AREA)
- Gloves (AREA)
- Polyurethanes Or Polyureas (AREA)
- Treatment And Processing Of Natural Fur Or Leather (AREA)
- Socks And Pantyhose (AREA)
Abstract
The present invention is directed to articles of apparel comprising insulating components having insulating structures with low thermal conductivity. Preferred insulating components for use in apparel have an insulating structure comprising a gas impermeable envelope and a porous material contained within the envelope where the insulating structure has a thermal conductivity of less than 25 mW/m K.
Description
- This application is a divisional of commonly owned and co-pending U.S. patent application Ser. No. 10/207,626, filed Jul. 29, 2002.
- The present invention is directed to apparel having insulating material with low thermal conductivity. Apparel, as described in the present invention, is intended to include articles such as foot, hand and head wear, as well as body coverings such as jackets, coats and the like.
- Use of thermal insulation in apparel is well known, with conventional materials consisting of batting, foam, down and the like. By way of example, insulation for footwear is known to include leather, felt, fleece, cork, flannel, foam and combinations thereof. A disadvantage of conventional insulating materials is that the achievement of high levels of insulation requires the use of a relatively large thickness of material. For example, adequate insulation in footwear for sub-freezing temperatures is several centimeters thick. In many applications, the provision of a large thickness of material is impractical especially in apparel items for work or sport. In these activities, there often exists requirements of dexterity in the hands, surefootedness and firm traction for the feet, firm control of skis, skates or snowboards, or a reasonably close and firm fit for helmets. Too great a thickness of insulation introduces the possibility of relative motion between the body and the item being worn and hence an insecure contact with the ground or objects that must be handled. The esthetics of an article may also be affected by added thickness and users may be averse to wearing bulky items of apparel which have an unflattering or unfashionable appearance.
- U.S. Pat. No. 4,055,699, to Hsiung teaches a multi-layer insole for an article of footwear to insulate the foot from cold which is sufficiently thin to insulate without changing fit. The insole is a multi-layered laminate having a thin soft fabric layer laminated to the top of an open cell foam layer, a dense cross-linked polyolefin layer laminated to the foam layer, and an aluminum coated barrier layer of polymeric material laminated to the bottom of the cross-linked polyolefin layer. It is taught, however, that the insole is compressible and the open celled layer tends to pump air as body pressure is alternately applied, circulating warm air around the side of the foot within the shoe. Additionally, to increase insulation it is taught to increasing the thickness of the open-celled layer.
- U.S. Pat. No. 4,535,016, to Bradley teaches an insulating material for articles such as jackets, trousers sleeping bags, and the like. The insulation material includes a sealed envelope that is permeable to gas and which is made of a tightly woven or knitted material. The envelope is filled with a fine fibrous insulating material such as goose down, and between 3% to 50% by weight of a finely divided hydrophobic particulate metal or metalloid oxide pigment in an amount in excess of that required to cover all surfaces of the insulating material. The pigment material is added to increase insulating power and water repellency when compared to uncoated fibrous insulating material.
- The thermal conductivity of conventional insulation material for apparel is generally greater than that of air which has a thermal conductivity of about 25 mW/m K at 25° C. In the case of high density materials such as neoprene foam, high conductivity may result from conduction by the solid component, or in materials of intermediate density a combination of both mechanisms may result in higher conductivity. Conventionally, to substantially increase the level of insulation, a substantial increase in insulation material is added, which has the above-stated disadvantages such as changing the fit of an article.
- Insulation materials having lower thermal conductivities are known for use in the building sector, storage and transport equipment such as refrigerated transporters and trucks, appliances such as high temperature ovens and furnaces, containers for storage of liquids and gases, and the like. For example, powder-in-vacuum insulation is known, where panels of particulate material are contained in an impermeable cover or film under an internal pressure below atmospheric pressure.
- U.S. Pat. No. 5,877,100, to Smith et al. teaches compositions with low thermal conductivity for use in insulation panels. The composite is a particulate composition which under 15 psi load at 20° C. and at a pressure within the range of 133.3-13332.2 Pa in nitrogen, has a packing density of less than or equal to 160 kg/m3, and a thermal conductivity of 4 to 6 mW/m K.
- U.S. Pat. No. 4,159,359, to Pelloux-Gervais et al. teaches insulating materials used in buildings, refrigerators, ovens and furnaces. The insulating material is formed of a compacted structure having a low thermal conductivity. The compacted structure is formed of a fine silica-based, 100 angstrom particles, obtained by the heat treatment of a silane compound, which is compacted mechanically. At atmospheric pressure, the compacted structure is reported to have about twice the insulating performance of organic foams.
- European Patent Publication No. 0 032 176 B2 to Degussa A G, teaches heat insulation mixtures that exhibit the least possible shrinkage at temperatures above 950° C. to minimize loss of heat-insulating properties. Insulation mixtures are compressed into boards, surrounded by porous enclosures and used for heat insulation of heat storage furnaces, decks and heating hoods. The heat insulation mixtures comprise pyrogenic silica, opacifier, inorganic fiber, and organosilicon compounds. While some low thermal conductivity insulation materials have enhanced insulation values, the utility of these materials is limited. Typically configured as large blocks or panels suitable for the above mentioned uses, the structures are thick and lack pliability.
- Japanese Unexamined Patent Application No. 2-38385 teaches pliable insulating materials that may be used in non-planar arrangements, having low thermal conductivity. The insulating material comprises a pliable base material with open cells filled with fine particulate. The pliability of the open-celled material is taught to be unaffected by the fine particulate material which is formed by an anti-agglomeration treatment to ensure small void size within the cells. To avoid spillage of the particulate, the open-celled material may be covered with porous paper or air permeable film. It is taught that hermetic sealing of the insulating material would adversely affect pliability, and cause damage to the insulating material due to expansion of internal air from increase in temperature.
- There is a need for articles of apparel having insulating components that provide greater insulation than conventional insulating materials, and which can be incorporated into apparel without substantially changing fit or appearance.
- Advantageously, such insulating components would be incompressible, having a lower thermal conductivity than conventionally used materials, and remain sufficiently pliable to meet the requirements of various apparel applications. The present invention is, therefore, directed to articles of apparel having insulating components which have substantially incompressible insulating structures and which have lower thermal conductivity than that of conventional insulating materials. The articles of apparel have pliable, flexible insulating structures that provide enhanced insulation without the addition of thick layers of insulating materials which disadvantageously affect the fit or functionality of the design of the article.
- The present invention is directed to articles of apparel comprising insulating components having an insulating structure with a low thermal conductivity. The thermal conductivity of the insulating structure is less than or equal to air, or i.e., less than or equal to about 25 mW/m K at 25° C.
- Insulating structures comprise a gas impermeable envelope and structure material contained therein. Preferred structure materials comprise very fine porous materials, such as fumed silica, and optional other components such as binders and opacifiers. Preferred insulating structures comprise structure material of very fine pore sizes where the mean free path of a gas molecule, such as air, is larger than the dimensions of the pore. The mobility of the air molecule is limited, and thermal conductivity is thereby reduced.
- The gas impermeable envelope may be sealed at atmospheric pressure, or alternately, the envelope may be evacuated of air and sealed at reduced pressure to further decrease the thermal conductivity. Preferred insulating structures at reduced pressure may have thermal conductivities of about 2 mW/m K to about 8 mW/m K. In another embodiment, the envelope may be at least partially evacuated of air and a gas having a higher molecular weight is introduced, prior to sealing the envelope. In one embodiment, a method of forming incompressible insulating structures comprises compressing the structure material as a processing step. Incompressible structures maintain flexibility, and lower the thermal conductivity of the insulating structure.
- Insulating structures may be formed into any shape depending on the final end use of the structure. Further, insulating structures may be combined with conventional materials or insulating structures of the present invention to form insulating components. Articles of the present invention preferably comprise articles of apparel having insulating components comprising insulating structures with low thermal conductivities, such as boots, shoes, gloves, handwear, headwear, jackets, and the like.
-
FIG. 1 is a side view cross section of a boot of the present invention. -
FIG. 2 is top planar view of a toe cap top and bottom insulating structure of the present invention. -
FIG. 3 is a side view of a shaped toe cap insulation structure of the present invention. -
FIG. 4 is a graph of the average toe temperature in ski boots. - The present invention is directed to articles of apparel comprising insulating components having an insulating structure which have a low thermal conductivity. Preferred embodiments of the present invention can best be described with reference to the exemplary embodiment depicted in
FIG. 1 . -
FIG. 1 illustrates a preferred embodiment of a boot, shown as a cross-sectional view of a boot having a boot upper 1 and aboot sole 2, positioned within which is a toecap insulating structure 6 having anenvelope 3 sealed along itsperimeter 4 enclosed within which is a fineporous material 5. - The insulating structure comprises structure material having a fine pore size. Pore size of preferred structure material is about 100 nm or less, and most preferably about 20 nm or less. Structure materials with fine pore sizes suitable for use in the present invention include fumed silica and alumina, and other fumed metal oxides, and aerogels of silica and other metal oxides.
- In addition to the very fine porous material, structure material may further comprise a blend of other optional components including but not limited to binders, opacifiers, and the like. Fibers such as inorganic and organic fibers may be added, for example, as a binder to bind fine porous material. Preferred fibers are comprised of polyester, nylon, and glass. Particulate components including carbon, such as carbon black, and titanium dioxide may be added as opacifiers, which are opaque in the far infrared region of the electromagnetic spectrum, and serve to reduce heat transport by thermal radiation. Preferred are structure materials comprising a mixture of very fine porous material, binders and opacifiers. It is preferred that the very fine porous material comprises at least about 50% of the mixture. A preferred structure material comprises a mixture of 50% to 100% very fine porous material, such as fumed silica, 0 to 50% binder, such as polyester, nylon or glass fiber, and 0 to 20% of a particulate material, such as carbon black.
- The structure material is contained in an envelope suitable to prevent the release of the fine porous material and the optional other components. Most preferably the envelope is a gas impermeable envelope, and the envelope preferably comprises at least one layer of material such as polyester, nylon, aluminum, polyethylene, and laminates and combinations thereof. The envelope preferably has a gas permeability of less than or equal to about 10−3 g/m2 atmosphere/day and more preferably about 10−4 g/m2 atmosphere/day. Gas impermeable envelopes comprising a reflective material, such as metallized polyester, aluminum or noble metals may be used to reduce radiative heat loss in preferred embodiments which do not contain opacifiers. A seal is formed encapsulating the fine porous material and optional additional components within the gas impermeable membrane. Sealing may be formed by any known method such as with adhesives, heat sealing, radiative frequency welding, ultrasonic welding, and the like.
- The resulting insulating structure has a thermal conductivity less than or equal to air, or less than or equal to about 25 mW/m K at 25° C., more preferably, less than or equal to about 15-20 mW/m K at 25° C., and most preferably between about 15-18 mW/m K at 25° C.
- To form an insulating structure of the present invention, a mold is provided, having a desired shape. In one preferred method, a mixture comprising very fine porous material and optional additional components is pressed in a flat press into an incompressible form having a density of about 150 kg/m3. The form is cut to shape and the shape is placed within the mold between sections of a gas impermeable material. In a preferred embodiment a heat sealer is provided as a heated bar in the approximate shape of the perimeter of the mold, and pressed onto the envelope outside the perimeter of the shape to form a seal (
FIG. 1 , at 4). The preferred sealed insulating structure is incompressible, and is suitable for use in footwear and other articles of apparel that may be subject to pressure. Incompressible insulating structures maintain insulating properties where many conventional materials compress and lose much of their insulation value. Preferred insulating structures of the present invention are substantially incompressible under the weight of a human body. Insulating structures having a loss of thickness of 20% or less at a pressure of one atmosphere are considered substantially incompressible and are preferred. Structures with a loss of thickness of about 10% or less are particularly preferred, and about 5% or less are most preferred. - Where it is desirable to avoid altering the fit and design of the article of apparel, and to maintain pliability and flexibility, preferred insulating structures are used which have a thickness of about 10 mm or less, most preferably about 3 mm or less and more preferably about 2 mm or less. For example, where the article of apparel is a work boot or ski boot, it is desirable that insulation has a thickness of about 3 mm or less. Thicker insulating structures may be used in applications, for example, where flexibility is less critical such as liners of protective helmets. Insulating structures having a thickness of up to or greater than about 10 mm can be used where there is a substantial gap between the apparel item and the body. An insulating structure having a thickness of about 2 mm to about 10 mm, preferable has a thermal insulation value of about 0.3 to 1.7 m2 K/W. Thermal insulation can be calculated as the thickness of the insulating structure divided by the thermal conductivity of the structure, or i.e., m2K=m/(W/m K).
- The pliable nature of the insulating structure provides that the structure may be further shaped to achieve a final form. The structure material may be provided as a continuous compressed body contained within the envelope. Alternately, to provide additional flexibility insulating structures may comprise one or more sections of the structure material within an envelope. The envelope may optionally be sealed, such as through heat sealing, between sections of the structure material thereby providing a quilted or patterned construction, additionally contributing to the flexibility and pliability of the article.
- The final shape of the insulating structure depends upon the end use of the article. The insulating structure may be formed as a flat component, for utility as a sole of a shoe or boot, or may be shaped or curved for use as a toe cap or in head wear or gloves, or otherwise shaped to meet the requirements of the user. Insulating structures may be combined with traditional insulating materials or with additional insulating structures of the present invention to form insulating components useful in articles of apparel.
- A further embodiment of the present invention comprises articles of apparel having an insulating component with insulating structures wherein the structure has low thermal conductivity and in which air is encapsulated at reduced pressure. An insulating structure is formed, as described above, having a structure comprising a gas impermeable envelope, within which is fine porous material and optional other components, wherein the envelope is at least partially evacuated of air, and the envelope is sealed at reduced pressure by any suitable method. In a preferred embodiment, a method comprises providing a mold having an envelope and fine porous material with other optional components contained therein, placing the mold and a heat sealer in a vacuum chamber, evacuating the air to a reduced pressure, and heat sealing the envelope.
- The pressure to which the insulating structure is evacuated may depend upon the pore size of the porous material. For example, a pressure of up to about 10,000 Pa may be used for structure material with pore sizes of about 100 nanometers or less. Preferably, the envelope is under a vacuum pressure of about 1000 Pa or less; most preferably the envelope is under a vacuum pressure of about 100 Pa or less. The gas impermeable envelope is sealed to maintain evacuation and reduced pressure.
- Preferred insulating components have insulating structures with reduced pressure have even lower thermal conductivities than the preferred structures described above. Thermal conductivities of preferred insulating structures at reduced pressure are less than or equal to about 15 mW/m K, with reduced pressure insulating structures having thermal conductivities of about 2 to about 10 mW/m K being particularly preferred, and reduced pressure insulating structures having thermal conductivities of about 2 mW/m K to about 8 mW/m K being most preferred.
- A further embodiment of the present invention comprises apparel having an insulating component which has an insulating structure comprising a fine pore size material and optional other components, as described above, and in which the insulating structure encapsulates gases having a molecular weight higher than that of air. Preferred gases have a molecular weight of about 100 or greater, and a boiling point of about 25° C. or less. High molecular weight gases suitable for use in the present invention include but are not limited to carbon dioxide, fluorocarbons, chlorocarbons, chlorofluorocarbons and hydrochlorofluorocarbons. Examples include, heptafluoro-1-nitrosopropane and 1,1,1,2,2,3-hexafluoropropane.
- Preferred insulating components that have insulating structures encapsulating high molecular weight gas, have thermal conductivities of about 10 mW/m K to about 25 mW/m K. Particularly preferred high molecular weight, gas-encapsulated insulating structures have thermal conductivities of about 10 mW/m K to about 20 mW/m K, and most preferred high molecular weight, gas-encapsulated insulating structures have thermal conductivities of about 10 mW/m K to about 15 mW/m K.
- A preferred method of forming an insulating structure comprises providing a structure material, providing a gas impermeable envelope to the structure material, evacuating air from the gas impermeable envelope as described above, and filling the vacuum chamber with a high molecular weight gas, and sealing the envelope.
- Articles of the present invention preferably comprise articles of apparel having insulating components with low thermal conductivities, such as boots, shoes, gloves, handwear, headwear, jackets, and the like.
- The insulation value of the toe area of a ski boot was substantially increased without substantially altering the fit of the boot.
- The insulation value was increased by the addition of 2 mm thick insulating structures of vacuum packed, fine pore size insulation. The insulation structure consisted of a structure material of NP40 (from Nanopore Inc., Albuquerque, N. Mex.) which comprises fumed silica blended with about 2% by weight of polyester fiber and about 7% by weight of carbon black. The mixture was dried in an oven at about 100° C. for several hours before use. The dried mixture was laid in a flat tray and pressed at a pressure of about 10 psi to form a 2 mm thick board with a density of about 150 kg/m3. The board was cut into two shaped pieces, a shape corresponding to the top side of a toe cap (
FIG. 2 b) and a shape corresponding to the underside (FIG. 2 a). - The shaped pieces were vacuum packed at a residual air pressure of about 1,000 Pa in a gas impermeable envelope. The envelope was aluminized polyester which comprised 12 μm polyester with a vacuum-deposited aluminum layer of less than 1 μm thickness, a second polyester layer of about 12 μm thickness, and a heat sealable polyethylene layer of about 30 μm thickness (type 0655/002 from Remax PLC, London, UK). The envelope was sealed in a two step process in which the shaped piece to be enclosed was placed on one layer of polyester film and another layer of film placed on top. The two layers of film were then heat sealed around the majority of the perimeter leaving an unsealed length of about 20 mm (
FIGS. 2 a and 2 b, at 10). The shapes were then placed in a vacuum chamber and the pressure was reduced to less than 1000 Pa to form insulating structures (FIGS. 2 a and 2 b, at 20). The remaining length of the perimeter was then heat-sealed. - Insulating structures were shaped to cover approximately the front 110 mm of the foot. One structure covering the bottom of the front part of the foot, had approximately a semicircular shape with a base of about 90 mm and a height of about 110 mm (
FIG. 3 at 40). The other structure covered a portion of the top part of the foot in approximately a rhombic shape with a base of about 180 mm and a height of about 100 mm (FIG. 3 at 30). These were installed between the inner and outer boots of a pair of alpine ski boot. The inner boot was constructed of foam, textile and molded plastic of about 2 to 3 mm thickness in the toe area. The outer boot was constructed of molded plastic and was about 5 mm thick. - The thermal conductivity of the insulating structures was about 6 mW/m K as measured on a heat flow meter thermal conductivity apparatus. The resulting insulation value was about 0.33 m2 K/W. The 2 mm thickness of the insulating structures was not noticeable to the wearer in blinded trials with two test subjects wearing the boots with and without structures on alternate days. The test subjects wore the boots in a climatic chamber at a temperature of about −10° C. while performing a test protocol of about 2 hours duration which consisted of alternately resting and working on a bicycle ergometer. The results of the test subjects' toe temperatures are shown in
FIG. 4 . As illustrated by the graph, the addition of the insulating structures to the boot resulting in an increase in toe temperature of about 8° C. after about 2 hours of cold exposure.
Claims (34)
1. A method for making an insulated article of apparel comprising
providing an article of apparel,
forming a pliable insulating structure comprising
a) a gas impermeable envelope, and
b) a porous material contained within the envelope,
evacuating and sealing the insulting structure at reduced pressure;
shaping the pliable sealed insulating structure into a form;
incorporating the insulating structure into the article of apparel;
wherein the insulating structure is at least partially evacuated and has thermal conductivity less than 25 mW/m K at 25° C.
2. The method of claim 1 , wherein apparel comprises headwear, footwear or handwear.
3. The method of claim 1 , wherein apparel comprises a boot.
4. The method of claim 1 , wherein the insulating structure has a thickness of 10 mm or less.
5. The method of claim 1 , wherein the insulating structure has a thickness of 3 mm or less.
6. The method of claim 1 , wherein the insulating structure has a thermal conductivity less than 20 mW/m K.
7. The method of claim 1 , wherein the insulating structure has a thermal conductivity less than 10 mW/m K.
8. (canceled)
9. The method of claim 1 , wherein the envelope is under a vacuum pressure of less than about 10,000 Pa.
10. The method of claim 1 , wherein the insulating structure has a thermal conductivity of about 15 mW/m K or less.
11. The method of claim 1 , wherein the insulating structure has a thermal conductivity of about 2-10 mW/m K or less.
12. The method of claim 1 wherein the envelope comprises at least one layer of a material selected from metallized polyester, nylon or polyethylene.
13. The method of claim 1 , wherein the envelope is a multilayer laminate.
14. The method of claim 1 , wherein the porous material has a pore size of <100 nm.
15. The method of claim 1 , wherein the porous material has a pore size of <10 nm.
16. The method of claim 1 , wherein the porous material is selected from metal oxides.
17. The method of claim 1 , wherein the porous material is fumed silica.
18. The method of claim 1 , wherein the porous material is an aerogel.
19. The method of claim 18 , wherein the aerogel comprises silica.
20. The method of claim 1 , wherein the insulating structure further comprises a binder.
21. The method of claim 20 , wherein the binder is selected from an organic or inorganic fiber.
22. The method of claim 1 , wherein the insulating structure further comprises carbon or titanium dioxide.
23. The method of claim 1 , wherein the envelope comprises a gas having a molecular weight greater than that of air.
24. The method of claim 1 , wherein the gas has a molecular weight of 100 or greater, and a boiling point of 25° C. or less.
25. The method of claim 23 , wherein the gas is selected from carbon dioxide, fluorocarbons, chlorocarbons, and chlorofluorocarbons.
26. The method of claim 23 , wherein the gas is selected from heptafluoro-1-nitrosopropane and 1,1,1,2,2,3-hexafluoropropane.
27. The method of claim 23 , wherein the insulating structure has a thermal conductivity of about 10 mW/m K to about 25 mW/m K.
28. The method of claim 23 , wherein the insulating structure has a thermal conductivity of about 10 mW/m K to about 20 mW/m K.
29. The method of claim 1 , wherein the insulating structure is substantially incompressible under pressure equal to the weight of a human body.
30. The method of claim 1 , wherein the insulating structure has a loss of thickness of 20% or less at a pressure of 1 atmosphere.
31. The method of claim 1 , wherein the insulating component does not alter the fit of the apparel.
32. The method of claim 3 , wherein the sealed insulating structure is shaped into a toe cap.
33. The method of claim 1 , wherein the method further comprises sealing the envelope between sections of the structure material.
34. The method of claim 1 , wherein the pliable insulating structure is formed as a flat component prior to the steps of sealing and shaping.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/106,788 US20050175799A1 (en) | 2002-07-29 | 2005-04-15 | Thermally insulating products for footwear and other apparel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/207,626 US20040018336A1 (en) | 2002-07-29 | 2002-07-29 | Thermally insulating products for footwear and other apparel |
US11/106,788 US20050175799A1 (en) | 2002-07-29 | 2005-04-15 | Thermally insulating products for footwear and other apparel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/207,626 Division US20040018336A1 (en) | 2002-07-29 | 2002-07-29 | Thermally insulating products for footwear and other apparel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050175799A1 true US20050175799A1 (en) | 2005-08-11 |
Family
ID=30770486
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/207,626 Abandoned US20040018336A1 (en) | 2002-07-29 | 2002-07-29 | Thermally insulating products for footwear and other apparel |
US10/760,141 Expired - Lifetime US7752776B2 (en) | 2002-07-29 | 2004-01-16 | Thermally insulating products for footwear and other apparel |
US11/106,788 Abandoned US20050175799A1 (en) | 2002-07-29 | 2005-04-15 | Thermally insulating products for footwear and other apparel |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/207,626 Abandoned US20040018336A1 (en) | 2002-07-29 | 2002-07-29 | Thermally insulating products for footwear and other apparel |
US10/760,141 Expired - Lifetime US7752776B2 (en) | 2002-07-29 | 2004-01-16 | Thermally insulating products for footwear and other apparel |
Country Status (9)
Country | Link |
---|---|
US (3) | US20040018336A1 (en) |
EP (1) | EP1524923B1 (en) |
JP (1) | JP2005534530A (en) |
KR (1) | KR100655256B1 (en) |
AT (1) | ATE421858T1 (en) |
AU (1) | AU2003247766A1 (en) |
DE (1) | DE60326045D1 (en) |
HK (1) | HK1075370A1 (en) |
WO (1) | WO2004010810A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281988A1 (en) * | 2004-06-19 | 2005-12-22 | Polarwrap, Llc | Insulating liner for an article of clothing |
US20060254088A1 (en) * | 2004-06-19 | 2006-11-16 | Mccormick Bruce | Thermal liner for an article of clothing |
US20070066995A1 (en) * | 2004-06-10 | 2007-03-22 | Ndi Medical, Llc | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US20070068040A1 (en) * | 2005-09-28 | 2007-03-29 | Salomon S.A., Of Metz-Tessy, France | Footwear with improved tightening of the upper |
FR2894114A1 (en) | 2005-12-06 | 2007-06-08 | Salomon Sa | THERMAL INSULATION ELEMENT AND CLOTHING, SHOE PROVIDED WITH SUCH A ELEMENT |
US20070224390A1 (en) * | 2006-03-27 | 2007-09-27 | Polarwrap, Llc | Vented insulating liner method and apparatus |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US7813809B2 (en) | 2004-06-10 | 2010-10-12 | Medtronic, Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US20110030892A1 (en) * | 2004-12-07 | 2011-02-10 | Panasonic Corporation | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
US8165692B2 (en) | 2004-06-10 | 2012-04-24 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator power management |
US8195304B2 (en) | 2004-06-10 | 2012-06-05 | Medtronic Urinary Solutions, Inc. | Implantable systems and methods for acquisition and processing of electrical signals |
US8467875B2 (en) | 2004-02-12 | 2013-06-18 | Medtronic, Inc. | Stimulation of dorsal genital nerves to treat urologic dysfunctions |
US9205255B2 (en) | 2004-06-10 | 2015-12-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9308382B2 (en) | 2004-06-10 | 2016-04-12 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2862122B1 (en) * | 2003-11-10 | 2010-12-17 | Pcx | THERMAL INSULATING MATERIAL |
FR2884159B1 (en) * | 2005-04-06 | 2008-12-05 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING HIGH-TEMPERATURE VACUUM THERMAL INSULATION PANEL AND INSULATING PANEL MADE THEREBY |
JP2008012008A (en) * | 2006-07-05 | 2008-01-24 | Asahi Fiber Glass Co Ltd | Insole of shoe |
JP2008163534A (en) * | 2007-01-05 | 2008-07-17 | Du Pont Toray Co Ltd | Glove |
DE102007024027B4 (en) | 2007-05-22 | 2011-01-05 | Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - | Method and device for the combined treatment of a surface with a plasma and with electromagnetic radiation and their application |
JP5441467B2 (en) * | 2009-03-25 | 2014-03-12 | アキレス株式会社 | Composite in which fine powder of porous material having nanostructure is arranged in layers |
US8507071B1 (en) * | 2010-02-11 | 2013-08-13 | Zeroloft Corporation | Sheet insulator with improved resistance to heat transfer by conduction, convection and radiation |
DE102010015780A1 (en) * | 2010-04-20 | 2011-10-20 | Carl Zeiss Industrielle Messtechnik Gmbh | Operation of a coordinate measuring machine or a machine tool |
US8950089B2 (en) * | 2011-04-20 | 2015-02-10 | Keen, Inc. | Heat retention and insulation system for wearable articles |
JP6070710B2 (en) * | 2012-08-23 | 2017-02-01 | 旭硝子株式会社 | Vacuum insulation material manufacturing method and vacuum insulation material |
KR200472718Y1 (en) * | 2012-08-31 | 2014-05-19 | 주식회사 금강 | Insole having a insulating material for a shoe |
KR200472776Y1 (en) | 2012-08-31 | 2014-05-22 | 주식회사 금강 | Foot bed having a insulating material for a shoe |
EP3083794A1 (en) * | 2013-12-19 | 2016-10-26 | W. L. Gore & Associates, Inc. | Thermally insulative expanded polytetrafluoroethylene articles |
US9788605B2 (en) * | 2015-06-10 | 2017-10-17 | Ronie Reuben | Insulated sole for article of footwear |
US10165822B2 (en) * | 2015-10-21 | 2019-01-01 | W. L. Gore & Associates, Inc. | Insulated footwear articles |
KR101730952B1 (en) * | 2015-11-10 | 2017-04-27 | 계명대학교 산학협력단 | Sheet for insulation and method of fabricating the same |
US9693601B2 (en) | 2015-11-11 | 2017-07-04 | Cabela's Incorporated | Footwear with zoned insulation |
FR3046654B1 (en) * | 2016-01-07 | 2019-09-27 | Itp Sa | MICROPOROUS INSULATION PANELS WITH LOW DENSITY FOR DOUBLE ENVELOPE PIPE |
CN207252926U (en) | 2017-04-21 | 2018-04-20 | W.L.戈尔(意大利)有限公司 | Heat-insulated article of footwear |
US20210002162A1 (en) * | 2018-04-09 | 2021-01-07 | Whirlpool Corporation | Microsphere-based insulating materials for use in vacuum insulated structures |
WO2020074700A1 (en) * | 2018-10-11 | 2020-04-16 | Microtherm Nv | Thermally insulating fabric |
JP7426553B2 (en) * | 2019-05-29 | 2024-02-02 | パナソニックIpマネジメント株式会社 | Heat insulation sheet and its manufacturing method, electronic equipment and battery unit |
CN110419808B (en) * | 2019-06-27 | 2021-05-25 | 圣华盾防护科技股份有限公司 | Rescue protection boot |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3373512A (en) * | 1966-08-24 | 1968-03-19 | Sidney H. Jacobson | Foot cover |
US3625896A (en) * | 1968-06-07 | 1971-12-07 | Air Reduction | Thermal insulating powder for low-temperature systems and methods of making same |
US3869334A (en) * | 1971-06-10 | 1975-03-04 | Micropore Insulation Limited | Insulating materials |
US3925915A (en) * | 1975-02-19 | 1975-12-16 | Lawrence Peska Ass Inc | Sandal shoe |
US3925916A (en) * | 1973-10-04 | 1975-12-16 | Carlo Garbuio | Foot-fitting insert for ski boot or the like |
US3962014A (en) * | 1970-06-10 | 1976-06-08 | Micropore Insulation Limited | Thermal insulating materials |
US4005532A (en) * | 1975-08-20 | 1977-02-01 | Comfort Products, Inc. | Insulated insole construction |
US4055699A (en) * | 1976-12-02 | 1977-10-25 | Scholl, Inc. | Cold insulating insole |
US4159359A (en) * | 1976-08-05 | 1979-06-26 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Insulating material with low thermal conductivity, formed of a compacted granular structure |
US4460645A (en) * | 1979-02-21 | 1984-07-17 | University College Cardiff | Insulation |
US4535016A (en) * | 1983-09-12 | 1985-08-13 | Bradley John M | Insulating article and method of making same |
US4564547A (en) * | 1983-08-04 | 1986-01-14 | Micropore International Limited | Handleable shapes of thermal insulation material |
US4636416A (en) * | 1984-05-18 | 1987-01-13 | Wacker-Chemie Gmbh | Shaped microporous thermal insulation body with sheathing and process for making same |
US4729179A (en) * | 1986-06-30 | 1988-03-08 | Kinney Shoe Corporation | Shoe insole |
US4813160A (en) * | 1987-10-13 | 1989-03-21 | Lawrence Kuznetz | Ventilated and insulated athletic shoe |
US4847021A (en) * | 1986-06-26 | 1989-07-11 | Union Carbide Corporation | Process for producing high density carbon and graphite articles |
US4887368A (en) * | 1984-05-30 | 1989-12-19 | Indentor Ag | Means for storing and distributing heat and use thereof |
US4921894A (en) * | 1988-04-18 | 1990-05-01 | Manville Corporation | Novel, high temperature resistant insulation |
US5376449A (en) * | 1993-07-09 | 1994-12-27 | Martin Marietta Energy Systems, Inc. | Silica powders for powder evacuated thermal insulating panel and method |
US5584130A (en) * | 1994-12-19 | 1996-12-17 | Perron; Maurice | Therapeutic and insulating insole |
US5637389A (en) * | 1992-02-18 | 1997-06-10 | Colvin; David P. | Thermally enhanced foam insulation |
US5691392A (en) * | 1997-02-05 | 1997-11-25 | Ppg Industries, Inc. | Stable particulate dispersions |
US5851458A (en) * | 1995-12-11 | 1998-12-22 | Imperial Chemical Industries Plc | Method of forming a thermal insulating device |
US5877100A (en) * | 1996-09-27 | 1999-03-02 | Cabot Corporation | Compositions and insulation bodies having low thermal conductivity |
US5973015A (en) * | 1998-02-02 | 1999-10-26 | The Regents Of The University Of California | Flexible aerogel composite for mechanical stability and process of fabrication |
US6010762A (en) * | 1998-01-15 | 2000-01-04 | Cabot Corporation | Self-evacuating vacuum insulation panels |
US6045718A (en) * | 1995-08-02 | 2000-04-04 | The Morgan Crucible Company Plc | Microporous insulation for data recorders and the like |
US6068882A (en) * | 1995-11-09 | 2000-05-30 | Aspen Systems, Inc. | Flexible aerogel superinsulation and its manufacture |
US6121336A (en) * | 1994-06-28 | 2000-09-19 | Basf Corporation | Surfactants for incorporating silica aerogel in polyurethane foams |
US6120531A (en) * | 1987-05-20 | 2000-09-19 | Micron, Technology | Physiotherapy fiber, shoes, fabric, and clothes utilizing electromagnetic energy |
US6132837A (en) * | 1998-09-30 | 2000-10-17 | Cabot Corporation | Vacuum insulation panel and method of preparing the same |
US6185845B1 (en) * | 1999-01-22 | 2001-02-13 | Arcticshield, Inc. | Thermal foot cover |
US6221456B1 (en) * | 1994-07-26 | 2001-04-24 | Louis August Pogorski | Thermal insulation |
US20020094426A1 (en) * | 2000-12-22 | 2002-07-18 | Aspen Aerogels, Inc. | Aerogel composite with fibrous batting |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3869434A (en) * | 1973-11-19 | 1975-03-04 | Phillips Petroleum Co | Soluble arylene sulfide polymers |
US4183160A (en) * | 1978-02-27 | 1980-01-15 | Brokenspar Inc. | Evacuated mount for display objects |
DE3000542A1 (en) | 1980-01-09 | 1981-08-27 | Degussa Ag, 6000 Frankfurt | HEAT INSULATION MIXTURE AND METHOD FOR PRODUCING THE SAME |
JPH0238385A (en) | 1988-07-26 | 1990-02-07 | Matsushita Electric Works Ltd | Heat-insulating material and production thereof |
DE19512499C1 (en) | 1995-04-04 | 1996-06-05 | Gore W L & Ass Gmbh | Thermally insulating cap for toe region of footwear |
FI98042C (en) * | 1995-07-04 | 1997-04-10 | Lenkki Oy | The sole structure of a footwear |
FR2767331B1 (en) | 1997-08-13 | 1999-10-22 | Pascal Courtabessis | NEW MULCH OR THE LIKE GROUND COVERING MEDIUM |
-
2002
- 2002-07-29 US US10/207,626 patent/US20040018336A1/en not_active Abandoned
-
2003
- 2003-06-30 KR KR1020057001702A patent/KR100655256B1/en active IP Right Grant
- 2003-06-30 JP JP2004524547A patent/JP2005534530A/en active Pending
- 2003-06-30 DE DE60326045T patent/DE60326045D1/en not_active Expired - Lifetime
- 2003-06-30 EP EP03771558A patent/EP1524923B1/en not_active Expired - Lifetime
- 2003-06-30 AT AT03771558T patent/ATE421858T1/en not_active IP Right Cessation
- 2003-06-30 WO PCT/US2003/020928 patent/WO2004010810A1/en active Application Filing
- 2003-06-30 AU AU2003247766A patent/AU2003247766A1/en not_active Abandoned
-
2004
- 2004-01-16 US US10/760,141 patent/US7752776B2/en not_active Expired - Lifetime
-
2005
- 2005-04-15 US US11/106,788 patent/US20050175799A1/en not_active Abandoned
- 2005-10-21 HK HK05109382A patent/HK1075370A1/en not_active IP Right Cessation
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3373512A (en) * | 1966-08-24 | 1968-03-19 | Sidney H. Jacobson | Foot cover |
US3625896A (en) * | 1968-06-07 | 1971-12-07 | Air Reduction | Thermal insulating powder for low-temperature systems and methods of making same |
US3962014A (en) * | 1970-06-10 | 1976-06-08 | Micropore Insulation Limited | Thermal insulating materials |
US3869334A (en) * | 1971-06-10 | 1975-03-04 | Micropore Insulation Limited | Insulating materials |
US3925916A (en) * | 1973-10-04 | 1975-12-16 | Carlo Garbuio | Foot-fitting insert for ski boot or the like |
US3925915A (en) * | 1975-02-19 | 1975-12-16 | Lawrence Peska Ass Inc | Sandal shoe |
US4005532A (en) * | 1975-08-20 | 1977-02-01 | Comfort Products, Inc. | Insulated insole construction |
US4159359A (en) * | 1976-08-05 | 1979-06-26 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Insulating material with low thermal conductivity, formed of a compacted granular structure |
US4055699A (en) * | 1976-12-02 | 1977-10-25 | Scholl, Inc. | Cold insulating insole |
US4460645A (en) * | 1979-02-21 | 1984-07-17 | University College Cardiff | Insulation |
US4564547A (en) * | 1983-08-04 | 1986-01-14 | Micropore International Limited | Handleable shapes of thermal insulation material |
US4535016A (en) * | 1983-09-12 | 1985-08-13 | Bradley John M | Insulating article and method of making same |
US4636416A (en) * | 1984-05-18 | 1987-01-13 | Wacker-Chemie Gmbh | Shaped microporous thermal insulation body with sheathing and process for making same |
US4887368A (en) * | 1984-05-30 | 1989-12-19 | Indentor Ag | Means for storing and distributing heat and use thereof |
US4847021A (en) * | 1986-06-26 | 1989-07-11 | Union Carbide Corporation | Process for producing high density carbon and graphite articles |
US4729179A (en) * | 1986-06-30 | 1988-03-08 | Kinney Shoe Corporation | Shoe insole |
US6120531A (en) * | 1987-05-20 | 2000-09-19 | Micron, Technology | Physiotherapy fiber, shoes, fabric, and clothes utilizing electromagnetic energy |
US4813160A (en) * | 1987-10-13 | 1989-03-21 | Lawrence Kuznetz | Ventilated and insulated athletic shoe |
US4921894A (en) * | 1988-04-18 | 1990-05-01 | Manville Corporation | Novel, high temperature resistant insulation |
US5637389A (en) * | 1992-02-18 | 1997-06-10 | Colvin; David P. | Thermally enhanced foam insulation |
US5376449A (en) * | 1993-07-09 | 1994-12-27 | Martin Marietta Energy Systems, Inc. | Silica powders for powder evacuated thermal insulating panel and method |
US5480696A (en) * | 1993-07-09 | 1996-01-02 | The United States Of America As Represented By The United States Department Of Energy | Silica powders for powder evacuated thermal insulating panel and method |
US6121336A (en) * | 1994-06-28 | 2000-09-19 | Basf Corporation | Surfactants for incorporating silica aerogel in polyurethane foams |
US6221456B1 (en) * | 1994-07-26 | 2001-04-24 | Louis August Pogorski | Thermal insulation |
US5584130A (en) * | 1994-12-19 | 1996-12-17 | Perron; Maurice | Therapeutic and insulating insole |
US6045718A (en) * | 1995-08-02 | 2000-04-04 | The Morgan Crucible Company Plc | Microporous insulation for data recorders and the like |
US6068882A (en) * | 1995-11-09 | 2000-05-30 | Aspen Systems, Inc. | Flexible aerogel superinsulation and its manufacture |
US5851458A (en) * | 1995-12-11 | 1998-12-22 | Imperial Chemical Industries Plc | Method of forming a thermal insulating device |
US5877100A (en) * | 1996-09-27 | 1999-03-02 | Cabot Corporation | Compositions and insulation bodies having low thermal conductivity |
US5691392A (en) * | 1997-02-05 | 1997-11-25 | Ppg Industries, Inc. | Stable particulate dispersions |
US6010762A (en) * | 1998-01-15 | 2000-01-04 | Cabot Corporation | Self-evacuating vacuum insulation panels |
US5973015A (en) * | 1998-02-02 | 1999-10-26 | The Regents Of The University Of California | Flexible aerogel composite for mechanical stability and process of fabrication |
US6132837A (en) * | 1998-09-30 | 2000-10-17 | Cabot Corporation | Vacuum insulation panel and method of preparing the same |
US6185845B1 (en) * | 1999-01-22 | 2001-02-13 | Arcticshield, Inc. | Thermal foot cover |
US20020094426A1 (en) * | 2000-12-22 | 2002-07-18 | Aspen Aerogels, Inc. | Aerogel composite with fibrous batting |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8467875B2 (en) | 2004-02-12 | 2013-06-18 | Medtronic, Inc. | Stimulation of dorsal genital nerves to treat urologic dysfunctions |
US8165692B2 (en) | 2004-06-10 | 2012-04-24 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator power management |
US9308382B2 (en) | 2004-06-10 | 2016-04-12 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US7813809B2 (en) | 2004-06-10 | 2010-10-12 | Medtronic, Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9216294B2 (en) | 2004-06-10 | 2015-12-22 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US9205255B2 (en) | 2004-06-10 | 2015-12-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US10434320B2 (en) | 2004-06-10 | 2019-10-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US10293168B2 (en) | 2004-06-10 | 2019-05-21 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US9724526B2 (en) | 2004-06-10 | 2017-08-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for operating the same |
US8706252B2 (en) | 2004-06-10 | 2014-04-22 | Medtronic, Inc. | Systems and methods for clinician control of stimulation system |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US20070066995A1 (en) * | 2004-06-10 | 2007-03-22 | Ndi Medical, Llc | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US8195304B2 (en) | 2004-06-10 | 2012-06-05 | Medtronic Urinary Solutions, Inc. | Implantable systems and methods for acquisition and processing of electrical signals |
US20060254088A1 (en) * | 2004-06-19 | 2006-11-16 | Mccormick Bruce | Thermal liner for an article of clothing |
US20050281988A1 (en) * | 2004-06-19 | 2005-12-22 | Polarwrap, Llc | Insulating liner for an article of clothing |
US7410684B2 (en) | 2004-06-19 | 2008-08-12 | Polarwrap, Llc | Insulating liner for an article of clothing |
US8753471B2 (en) * | 2004-12-07 | 2014-06-17 | Panasonic Corporation | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
US20110030892A1 (en) * | 2004-12-07 | 2011-02-10 | Panasonic Corporation | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
US20070068040A1 (en) * | 2005-09-28 | 2007-03-29 | Salomon S.A., Of Metz-Tessy, France | Footwear with improved tightening of the upper |
US7841106B2 (en) | 2005-09-28 | 2010-11-30 | Salomon S.A.S. | Footwear with improved tightening of the upper |
FR2894114A1 (en) | 2005-12-06 | 2007-06-08 | Salomon Sa | THERMAL INSULATION ELEMENT AND CLOTHING, SHOE PROVIDED WITH SUCH A ELEMENT |
EP1795080A1 (en) | 2005-12-06 | 2007-06-13 | Salomon S.A. | Heat insulating element and apparel, footwear provided with such element |
US7943225B2 (en) | 2006-03-27 | 2011-05-17 | Polar Wrap, Llc | Vented insulating liner method and apparatus |
US20070224390A1 (en) * | 2006-03-27 | 2007-09-27 | Polarwrap, Llc | Vented insulating liner method and apparatus |
WO2007131028A3 (en) * | 2006-05-02 | 2008-01-17 | Polarwrap Llc | A thermal liner for an article of clothing |
WO2007131028A2 (en) * | 2006-05-02 | 2007-11-15 | Polarwrap, Llc | A thermal liner for an article of clothing |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US10322287B2 (en) | 2006-05-17 | 2019-06-18 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
Also Published As
Publication number | Publication date |
---|---|
US7752776B2 (en) | 2010-07-13 |
DE60326045D1 (en) | 2009-03-19 |
EP1524923B1 (en) | 2009-01-28 |
WO2004010810A1 (en) | 2004-02-05 |
EP1524923A1 (en) | 2005-04-27 |
AU2003247766A1 (en) | 2004-02-16 |
JP2005534530A (en) | 2005-11-17 |
US20040209061A1 (en) | 2004-10-21 |
US20040018336A1 (en) | 2004-01-29 |
KR100655256B1 (en) | 2006-12-11 |
KR20050026544A (en) | 2005-03-15 |
HK1075370A1 (en) | 2005-12-16 |
ATE421858T1 (en) | 2009-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7752776B2 (en) | Thermally insulating products for footwear and other apparel | |
JP6965410B2 (en) | Vacuum insulation panel and its manufacturing method | |
KR100888000B1 (en) | Clothing ventilation device allowing the human body to breathe, and method for producing the device | |
US20100083417A1 (en) | Thin insulative material with layered gas-filled cellular structure | |
US10112364B2 (en) | Thermally insulated personal article and sleeping bag liners | |
US20080249276A1 (en) | Thin insulative material with gas-filled cellular structure | |
CN104015414A (en) | Aerogel composite fabric utilizing aqueous adhesive and preparation method thereof | |
CN104029429A (en) | Aerogel composite cloth taking hot melt adhesive as binder and preparation method for composite cloth | |
JPH06294006A (en) | Moisture-absorbing and releasing water-absorbing heat-generation warmth-keeping article | |
US20130212771A1 (en) | Garment with Aerogel Insulation | |
US20030131967A1 (en) | Planar thermal-insulating device, in particular for the human body | |
KR102054603B1 (en) | Insulated shoe items | |
JPH08302506A (en) | Protective cloth for low temperature | |
JP2019217772A (en) | Leather material comprising multilayer structure having air permeability and waterproofness, and product formed of the leather material | |
EP1006228A4 (en) | Moisture absorbing/releasing and heat generating inner cloth and method of producing it and moisture absorbing/releasing, heat generating and heat-retaining articles | |
CN216443244U (en) | Flame-retardant polyester fabric | |
JP3191968B2 (en) | Floor heating members | |
CN207252926U (en) | Heat-insulated article of footwear | |
JP2008212529A (en) | Footwear | |
WO2010042670A2 (en) | Thin insulative material with layered gas-filled cellular structure | |
TWI244901B (en) | Shoes with cold-resistance and heat-insulation structure | |
JP2008023274A (en) | Cooling bag, cooling material, body-worn cooling member and method to use the same | |
CA2682982A1 (en) | Thin insulative material with gas-filled cellular structure | |
CN212574301U (en) | Fire-fighting boot with warm-keeping and damp-proof functions | |
CA1255496A (en) | Double-insulated rubber footwear product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508 Effective date: 20120130 |