US20050158494A1 - Gas-barrier containers - Google Patents

Gas-barrier containers Download PDF

Info

Publication number
US20050158494A1
US20050158494A1 US10/516,956 US51695604A US2005158494A1 US 20050158494 A1 US20050158494 A1 US 20050158494A1 US 51695604 A US51695604 A US 51695604A US 2005158494 A1 US2005158494 A1 US 2005158494A1
Authority
US
United States
Prior art keywords
gas
epoxy resin
xylylenediamine
barrier
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/516,956
Other languages
English (en)
Inventor
Takeshi Koyama
Takaaki Kutsuna
Shuta Kihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002185154A external-priority patent/JP4228181B2/ja
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Assigned to MITSUBISHI GAS CHEMICAL COMPANY, INC. reassignment MITSUBISHI GAS CHEMICAL COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIHARA, SHUTA, KOYAMA, TAKESHI, KUTSUNA, TAKAAKI
Publication of US20050158494A1 publication Critical patent/US20050158494A1/en
Priority to US12/551,055 priority Critical patent/US20090324865A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit

Definitions

  • the present invention relates to gas-barrier containers suitably used for the purposes of receiving and preserving foods, beverages, drugs, and so on.
  • plastic films or containers have been predominantly used because of excellent transparency, light weight and economical advantages.
  • Plastic containers have been produced by draw forming methods such as vacuum forming and pressure forming.
  • the containers formed into sheets, cups or trays have been extensively used in various applications such as containers for foods or drugs.
  • the plastic containers used for packaging foods, drugs, etc. are required to have properties such as gas-barrier properties to various gases, aroma retention property, transparency, boiling resistance, retorting resistance, impact resistance, flexibility and heat-sealability.
  • the containers are required to show high gas-barrier properties to oxygen and steam even under specific conditions including high-humidity condition and post-retort treatment condition.
  • Such gas-barrier containers have been usually produced by laminating a flexible polymer layer as a base material, a gas barrier layer and a flexible polymer sealant layer on each other to obtain a laminated sheet, and forming the thus obtained laminated sheet into a container shape.
  • ethylene-vinyl alcohol copolymers As gas-barrier materials of the gas-barrier layer, there are well known ethylene-vinyl alcohol copolymers (EVOH resins).
  • EVOH resins ethylene-vinyl alcohol copolymers
  • the gas-barrier property of the ethylene-vinyl alcohol copolymers largely depends upon humidity and, therefore, tends to be rapidly deteriorated depending upon kinds of contents to be packaged therein.
  • the ethylene-vinyl alcohol copolymers show remarkable increase in oxygen penetration.
  • the ethylene-vinyl alcohol copolymers are usable only in limited applications.
  • the hollow containers mainly made of polymers are deteriorated in barrier property to oxygen or carbon dioxide as compared to those made of glass or metals, and are therefore unsuitable for preserving foods or beverages therein for a long period of time.
  • hollow containers having a multi-layer structure including a layer made of a gas-barrier resin such as polyamides.
  • production of the multi-layer hollow containers inevitably requires the use of a molding machine having a complicated structure. Therefore, it has been demanded to develop gas-barrier hollow containers that can be produced more simply.
  • the method of coating the hollow containers mainly made of polymers with polyvinylidene chloride (PVDC) resins since the resins contain halogen atoms, the coated hollow containers tend to suffer from problems such as environmental pollution or disruption due to generation of harmful gases such as dioxin upon incineration thereof.
  • PVDC polyvinylidene chloride
  • the gas-barrier property of the coating is not enough to preserve foods or beverages for a long period of time and tends to be deteriorated under high-humidity condition. Therefore, it has been required that the coating is further improved in gas-barrier property.
  • An object of the present invention is to solve the above conventional problems and provide a gas-barrier container that is excellent in a gas-barrier property with a low humidity dependency as well as various other properties such as boiling resistance, retorting resistance, transparency, impact resistance and heat-sealability, and is usable for receiving foods, beverages and drugs for the purpose of preserving these contents.
  • the present inventors have found that when a cured product made of a specific epoxy resin is used as a gas-barrier layer, the resultant container is excellent in not only a gas-barrier property, but also various other properties such as transparency, retorting resistance and impact resistance.
  • the present invention has been accomplished on the basis of this finding.
  • the present invention provides a gas-barrier container comprising at least one gas-barrier layer made of an epoxy resin cured product that is formed by curing an epoxy resin composition mainly containing an epoxy resin and an epoxy resin-curing agent, and contains a skeletal structure represented by the formula (1): in an amount of 30% by weight or higher.
  • the gas-barrier container of the present invention contains an epoxy resin cured product obtained by curing an epoxy resin composition composed mainly of an epoxy resin and an epoxy resin-curing agent.
  • the gas-barrier container may be in the form of either a laminated container obtained by molding a laminated film or a laminated sheet containing the gas-barrier layer, or a hollow container coated with the gas-barrier layer.
  • the container obtained by molding a gas-barrier laminated film or laminated sheet including at least one flexible polymer layer and at least one gas-barrier layer according to the present invention is referred to as a “laminated container”.
  • the flexible polymer layer used in the laminated container of the present invention may be made of any film or sheet material as far as it can suitably retain or support the gas-barrier layer thereon.
  • the film or sheet material for the flexible polymer layer include film or sheet materials made of polyolefin-based resins such as polyethylene and polypropylene; film or sheet materials made of polyester-based resins such as polyethylene terephthalate; film or sheet materials made of polyacrylonitrile-based resins; film or sheet materials made of polyamide-based resins such as nylon 6 and nylon 6.6; film or sheet materials made of poly(meth)acrylic resins; film or sheet materials made of polystyrene-based resins; film or sheet materials made of saponificated ethylene-vinyl acetate copolymer (EVOH)-based resins; and film or sheet materials made of polyvinyl alcohol-based resins.
  • polyolefin-based resins such as polyethylene and polypropylene
  • polyester-based resins such as polyethylene
  • film or sheet materials made of polyolefin-based resins preferred are film or sheet materials made of polyacrylonitrile-based resins; film or sheet materials made of polyamide-based resins; and film or sheet materials made of polystyrene-based resins.
  • the flexible polymer layer acts as a heat-sealable portion.
  • the flexible polymer layer is more preferably made of polyolefin-based resins such as polyethylene, polypropylene and ethylene-vinyl acetate copolymers.
  • These film or sheet materials for the flexible polymer layer may be stretched in a monoaxial or biaxial direction, or may be made of foamed polymers.
  • the thickness of the flexible polymer layer is practically in the range of about 10 ⁇ m to 20 mm though it varies depending upon shapes of the film or sheet materials.
  • the surface of the flexible polymer layer may be subjected to various surface treatments such as flame treatment and corona discharge treatment. These surface treatments can promote an adhesion between the flexible polymer layer as a base material and the gas-barrier layer.
  • the thus appropriately surface-treated flexible polymer layer may be provided thereon with a printed layer, if desired.
  • the printed layer may be produced by ordinary printing apparatuses used for printing on conventional polymer films, such as gravure printing machines, flexographic printing machines and offset printing machines.
  • ink forming the printed layer there may also be employed various inks ordinarily used for forming a printed layer on conventional polymer films which are composed of pigments such as azo-based pigments and phthalocyanine-based pigments, resins such as rosins, polyamides and polyurethanes, and a solvent such as methanol, ethyl acetate and methyl ethyl ketone.
  • pigments such as azo-based pigments and phthalocyanine-based pigments
  • resins such as rosins, polyamides and polyurethanes
  • solvent such as methanol, ethyl acetate and methyl ethyl ketone.
  • the hollow container of the present invention means containers made of resins which have a hollow space inside thereof such as bottles, trays and cups.
  • the hollow containers may be made of any suitable resins as far as they can retain or support the gas-barrier layer formed from a coating material composed mainly of an epoxy resin and an epoxy resin-curing agent on a surface thereof.
  • suitable resins such as polyethylene and polypropylene; polyester-based resins such as polyethylene terephthalate; polyacrylonitrile-based resins; polyamide-based resins such as nylon 6 and nylon 6.6; and polystyrene-based resins.
  • the hollow containers may be produced by conventionally known methods such as indirect methods of first obtaining a film or sheet and then forming the film or sheet into a hollow container; and direct methods of directly forming a hollow container such as direct-blow molding, injection-blow molding and stretch blow molding.
  • the hollow container formed by the above methods may have a multi-layer structure including a strength-retention layer, a sealant layer, a gas-barrier layer, etc., if desired.
  • the multi-layer film or sheet material used for forming such a multi-layered hollow container may be produced by a method of melt-extruding a polyolefin-based resin, etc., on a film or sheet made of a gas-barrier resin; a method of melt-extruding a gas-barrier resin on a layer made of a polyolefin-based resin, etc.; a method of co-extruding or co-injecting a gas-barrier resin together with a polyolefin-based resin, etc.; and a method of dry-laminating a film or sheet made of a gas-barrier resin and a film or sheet made of a polyolefin-based resin, etc., through a known adhesive made of organotitanium compounds, polyurethane compounds or epoxy compounds.
  • the thus obtained multi-layer film or sheet may be formed into a hollow container having a desired shape by vacuum forming, pressure forming or vacuum pressure forming.
  • the hollow container may be directly produced by a direct blow molding method, an injection blow molding method or a stretch blow molding method using the combination of a cold parison method and a hot parison method.
  • the hollow container formed by these methods may have a multi-layer structure including a strength-retention layer and a gas-barrier layer, if desired.
  • the multi-layer hollow container may also be produced by subjecting a multi-layer parison as a container preform to biaxial stretch blow molding.
  • the multi-layer parison may be obtained, for example, by injecting a thermoplastic polyester resin and a polyamide MXD6 respectively from an injection cylinder through a mold hot liner into a mold cavity.
  • the thus obtained biaxially-stretched blow-molded bottle may be subjected to heat-setting treatment in order to impart a good heat resistance thereto.
  • polystyrene-based resins forming the hollow container examples include linear low-density polyethylene, low-density polyethylene, very low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymers and partially saponified products thereof, ionomers, ethylene-propylene (block or random) copolymers, ethylene-acrylic acid copolymers, ethylene-acrylic acid ester copolymers, ethylene-methacrylic acid copolymers, ethylene-methacrylic acid ester copolymers, polypropylene, propylene- ⁇ -olefin copolymers, polybutene, polypentene and polymethylpentene.
  • linear low-density polyethylene low-density polyethylene, high-density polyethylene, ethylene-propylene copolymers and polypropylene because of excellent mechanical properties thereof.
  • polyester-based resins forming the hollow container examples include thermoplastic polyester resins containing as main repeating units ethylene terephthalate, butylene terephthalate and ethylene naphthalate, as well as copolymerized resins thereof.
  • aromatic dicarboxylic acids such as isophthalic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenylether dicarboxylic acid and diphenylsulfone dicarboxylic acid; aromatic polycarboxylic acids such as trimellitic acid and pyromellitic acid; alicyclic dicarboxylic acids such as hexahydroterephthalic acid and hexahydroisophthalic acid; and aliphatic dicarboxylic acids such as adipic acid, sebacic acid and azelaic acid.
  • aromatic dicarboxylic acids such as isophthalic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenylether dicarboxylic acid and diphenylsulfone dicarboxylic acid
  • aromatic polycarboxylic acids such as trimellitic acid and pyromellitic acid
  • the polyol component as a comonomer of the polyester resins, there may be used trimethylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol, neopentylene glycol, diethylene glycol, 1,4-cyclohexane dimethanol, 1,3-bis(2-hydroxyethoxy)benzene, trimethylol propane and pentaerythritol.
  • the hollow container of the present invention may be subjected to various surface treatments such as flame treatment and corona discharge treatment in order to form a coating film as a gas-barrier layer having no defects such as tearing and cissing when applying a coating material thereto. These treatments can promote an adhesion between the hollow container and the gas-barrier layer.
  • the gas-barrier layer of the gas-barrier container according to the present invention contains an epoxy resin cured product formed by curing an epoxy resin composition composed mainly of an epoxy resin and an epoxy resin-curing agent.
  • the epoxy resin cured product forming the gas-barrier layer contains a skeletal structure represented by the following formula (1) in an amount of 30% by weight or higher, preferably 45% by weight or higher and more preferably 50% by weight or higher.
  • the epoxy resin cured product containing a large amount of the skeletal structure represented by the formula (1) can exhibit a high gas-barrier property.
  • the gas-barrier layer of the gas-barrier container according to the present invention has an oxygen permeability of 2 mL ⁇ mm/m 2 ⁇ day ⁇ MPa or lower as measured at a temperature of 23° C. and a relative humidity of 60%.
  • ) is an oxygen transmission rate [mL/(m 2 ⁇ day ⁇ MPa)] of the respective flexible polymer layers;
  • DFT is a thickness (mm) of the gas-barrier layer; and
  • P is an oxygen permeability [mL ⁇ mm/(m 2 ⁇ day ⁇ MPa)] of the gas-barrier layer.
  • the epoxy resin used in the gas-barrier layer may be any of saturated or unsaturated aliphatic compounds, alicyclic compounds, aromatic compounds and heterocyclic compounds.
  • an epoxy resin examples include epoxy resins containing glycidylamine moieties derived from m-xylylenediamine, epoxy resins containing glycidylamine moieties derived from 1,3-bis(aminomethyl)cyclohexane, epoxy resins containing glycidylamine moieties derived from diaminodiphenylmethane, epoxy resins containing glycidylamine moieties and/or glycidyl ether moieties derived from p-aminophenol, epoxy resins containing glycidyl ether moieties derived from bisphenol A, epoxy resins containing glycidyl ether moieties derived from bisphenol F, epoxy resins containing glycidyl ether moieties derived from phenol novolak, and epoxy resins containing glycidyl ether moieties derived from resorcinol.
  • epoxy resins preferred are epoxy resins containing glycidylamine moieties derived from m-xylylenediamine, epoxy resins containing glycidylamine moieties derived from 1,3-bis(aminomethyl)cyclohexane, epoxy resins containing glycidyl ether moieties derived from bisphenol F and epoxy resins containing glycidyl ether moieties derived from resorcinol.
  • the epoxy resin more preferably contains as a main component the epoxy resin containing glycidyl ether moieties derived from bisphenol F or the epoxy resin containing glycidylamine moieties derived from m-xylylenediamine, and most preferably contains as a main component the epoxy resin containing glycidylamine moieties derived from m-xylylenediamine.
  • the epoxy resin may also be used in the form of a mixture containing any two or more of the above-described epoxy resins at appropriate mixing ratios, in order to improve various properties of the resultant product such as flexibility, impact resistance and wet heat resistance.
  • the above epoxy resin may be produced by reacting various alcohols, phenols or amines with epihalohydrin.
  • the epoxy resins containing glycidylamine moieties derived from m-xylylenediamine may be produced by the addition reaction of epichlorohydrin to m-xylylenediamine.
  • the above glycidylamine moieties include mono-, di-, tri- and/or tetra-glycidylamine moieties that can be substituted with four hydrogen atoms of diamine in the xylylenediamine.
  • the ratio between the mono-, di-, tri- and/or tetra-glycidylamine moieties can be altered by changing the ratio between m-xylylenediamine and epichlorohydrin to be reacted.
  • epoxy resins composed mainly of tetra-glycidylamine moieties are obtained by the addition reaction in which about 4 mol of epichlorohydrin is added to one mol of m-xylylenediamine.
  • the epoxy resin used in the present invention may be synthesized by reacting various alcohols, phenols or amines with an excess amount of epihalohydrin in the presence of an alkali such as sodium hydroxide at a temperature of 20 to 140° C. and preferably 50 to 120° C. for the alcohols and phenols, and 20 to 70° C. for the amines, and then separating the resultant alkali halide from the reaction mixture.
  • an alkali such as sodium hydroxide
  • the number-average molecular weight of the thus produced epoxy resin varies depending upon the molar ratio of epichlorohydrin to various alcohols, phenols or amines, and is about 80 to 4,000, preferably about 200 to 1,000 and more preferably about 200 to 500.
  • epoxy resin-curing agent contained in the gas-barrier layer there may be used those ordinarily used for curing epoxy resins such as polyamines, phenols, acid anhydrides and carboxylic acids. These epoxy resin-curing agents may be any of saturated or unsaturated aliphatic compounds, alicyclic compounds. aromatic compounds and heterocyclic compounds. The epoxy resin-curing agent may be appropriately selected according to applications of the obtained container as well as its properties required in the applications.
  • polyamines as the epoxy resin-curing agent include aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine; aromatic ring-containing aliphatic amines such as m-xylylenediamine and p-xylylenediamine; alicyclic amines such as 1,3-bis(aminomethyl)cyclohexane, isophoronediamine and norbornanediamine; and aromatic amines such as diaminodiphenylmethane and m-phenylenediamine.
  • aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine
  • aromatic ring-containing aliphatic amines such as m-xylylenediamine and p-xylylenediamine
  • alicyclic amines such as 1,3-bis(aminomethyl)cyclohexane,
  • epoxy resin-curing agent there may also be used modified reaction products of these polyamines with epoxy resins or monoglycidyl compounds, modified reaction products of these polyamines with epichlorohydrin, reaction products of these polyamines with a polyfunctional compound having at least one acyl group which is capable of forming amido moieties and, as a result, an oligomer by the reaction with these polyamines, and reaction products of these polyamines with a polyfunctional compound having at least one acyl group which is capable of forming amido moieties and, as a result, an oligomer by the reaction with the polyamines, and a C 1 to C 8 monocarboxylic acid and/or its derivative.
  • phenols examples include poly-substituted monomers such as catechol, resorcinol and hydroquinone, and resol-type phenol resins.
  • acid anhydrides or carboxylic acids there may be used aliphatic acid anhydrides such as dodecenyl succinic anhydride and poly-adipic anhydride; alicyclic acid anhydrides such as (methyl)tetrahydrophthalic anhydride and (methyl)hexahydrophthalic anhydride; and aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride as well as corresponding carboxylic acids of these anhydrides.
  • aliphatic acid anhydrides such as dodecenyl succinic anhydride and poly-adipic anhydride
  • alicyclic acid anhydrides such as (methyl)tetrahydrophthalic anhydride and (methyl)hexahydrophthalic anhydride
  • aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride as well as corresponding carboxylic acids of these anhydrides.
  • the epoxy resin-curing agent preferably contains, as a main component, reaction products of m-xylylenediamine or p-xylylenediamine with a polyfunctional compound having at least one acyl group which is capable of forming amido moieties and, as a result, an oligomer by the reaction with these polyamines, or reaction products of m-xylylenediamine or p-xylylenediamine with a polyfunctional compound having at least one acyl group which is capable of forming amido moieties and, as a result, an oligomer by the reaction with these polyamines, and a C 1 to C 8 monocarboxylic acid and/or its derivative.
  • the epoxy resin-curing agent is more preferably composed of reaction products of the following components (A) and (B), or reaction products of the following components (A), (B) and (C):
  • Examples of the polyfunctional compound (B) having at least one acyl group which is capable of forming amido moieties and, as a result, an oligomer by the reaction with m-xylylenediamine or p-xylylenediamine include carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, succinic acid, malic acid, tartaric acid, adipic acid, isophthalic acid, terephthalic acid, pyromellitic acid and trimellitic acid; and derivatives of these carboxylic acids such as esters, amides, acid anhydrides and acid chlorides thereof.
  • carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, succinic acid, malic acid, tartaric acid, adipic acid, isophthalic acid, terephthalic acid, pyromellitic acid and trimellitic acid
  • derivatives of these carboxylic acids such as esters, amides,
  • examples of the C 1 to C 8 monocarboxylic acid (C) include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, glycolic acid and benzoic acid, and examples of derivatives thereof include esters, amides, acid anhydrides and acid chlorides of these acids. These carboxylic acids or derivatives thereof may be used in combination with the above polyfunctional compound to react with m-xylylenediamine or p-xylylenediamine.
  • the molar ratio between the components (A) and (B) to be reacted, or between the components (A), (B) and (C) to be reacted may be adjusted such that the ratio of the number of reactive functional groups contained in the component (B) to the number of amino groups contained in the component (A), or the ratio of the total number of reactive functional groups contained in the components (B) and (C) to the number of amino groups contained in the component (A), is preferably in the range of 0.1 to 0.97. If the above ratio of the reactive functional groups is less than 0.1, a sufficient amount of the amido groups are not produced in the epoxy resin-curing agent, so that the resultant cured product may fail to show a high gas-barrier property and a good adhesion strength to various materials.
  • the ratio of the reactive functional groups exceeds 0.97, the amount of amino groups in the epoxy resin-curing agent which can be reacted with the epoxy resin becomes small, so that the resultant cured product may fail to exhibit excellent impact resistance and heat resistance and also tends to be deteriorated in solubility in various organic solvent and water.
  • the amido moieties introduced into the epoxy-curing agent by the above reaction exhibit a high coagulation force. Therefore, the use of the epoxy resin curing agent having a high content of the amido moieties allows the resultant cured product to show a still higher gas-barrier property and a good adhesion strength to the flexible polymer layer. Further, various epoxy resin-curing agents mentioned above may be used in the form of a mixture prepared by mixing any two or more thereof at an appropriate blending ratio in order to enhance various properties of the resultant cured product such as flexibility, impact resistance and wet heat resistance.
  • a part or whole of the unreacted component (A) is preferably removed therefrom.
  • the removal of the unreacted component (A) may be suitably conducted by distillation using a thin-film distillation apparatus, a distillation column or the like.
  • the removal of the unreacted component (A) from the epoxy resin-curing agent prevents generation of gases upon aging, resulting in production of a good laminated container, and further prevents occurrence of malodor, resulting in production of a gas-barrier container suitable for foods.
  • the epoxy resin and the epoxy resin-curing agent as constituents of the gas barrier layer may be blended at standard ratios that are generally used for producing an epoxy resin cured product by the reaction between the epoxy resin and epoxy resin-curing agent. More specifically, the blending ratio between the epoxy resin and the epoxy resin-curing agent contained in the epoxy resin composition may be adjusted such that the equivalent ratio of active hydrogen atoms in the epoxy resin-curing agent to epoxy groups in the epoxy resin (active hydrogen/epoxy group) is in the range of 0.5 to 5.0 and preferably 0.8 to 3.0 when used as a coating material for hollow containers, and preferably in the range of 1.5 to 3.0 when used in laminated containers.
  • the resultant gas-barrier material When used in the laminated containers, if the above equivalent ratio of active hydrogen atoms (active hydrogen/epoxy group) is less than 1.5, the resultant gas-barrier material shows a too high crosslinking density and, therefore, tends to suffer from cracks or rupture upon thermoforming, resulting in poor gas-barrier property thereof. If the equivalent ratio of active hydrogen atoms (active hydrogen/epoxy group) exceeds 3.0, the resultant gas-barrier material shows a too low crosslinking density and tends to be deteriorated in adhesion to the flexible polymer layer as well as gas-barrier property.
  • thermosetting resin compositions such as polyurethane-based resin compositions, polyacrylic resin compositions and polyurea-based resin compositions may be optionally added thereto according to the requirements unless the addition thereof adversely affects the effects of the present invention.
  • the laminated container having the gas-barrier layer according to the present invention may be produced by preparing a coating solution containing an epoxy resin composition as a film-forming component composed of the epoxy resin and the epoxy resin-curing agent which forms the gas-barrier layer, and then applying the thus prepared coating solution to a surface of the flexible polymer layer of the laminated container, followed by drying or heat-treating, if desired.
  • the laminated container may be produced by applying the epoxy resin composition as an adhesive which is composed of the epoxy resin and the epoxy resin-curing agent and forms the gas-barrier layer, to a surface of the flexible polymer layer, followed by drying or heat-treating, if desired, and then laminating another flexible polymer layer thereon to form a film laminate or a sheet laminate.
  • the laminate constituting the laminated container may have a two-layer structure composed of one gas-barrier layer and one flexible polymer layer, or a three- or more-layer structure composed of one gas-barrier layer and two or more flexible polymer layers.
  • the coating solution may be prepared such that a concentration of the epoxy resin composition therein is sufficient to obtain an epoxy resin cured product.
  • concentration of the epoxy resin composition may vary depending upon starting materials as selected. More specifically, the concentration of the epoxy resin composition can be variously adjusted over a range of from the condition where no solvent is used to the condition where the composition is diluted to about 5% by weight dilute solution using a certain suitable organic solvent and/or water, according to kinds and molar ratios of the selected raw materials, etc.
  • the suitable organic solvent examples include glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2-butoxyethanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol and 1-propoxy-2-propanol; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol; aprotonic polar solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone; and non-aqueous solvents such as toluene, xylene and ethyl acetate. Of these solvents, preferred are relatively low-boiling solvents such as methanol and ethyl acetate.
  • the coating solution may also optionally contain a wetting agent such as silicone and acrylic compounds to assist wetting of a surface of the base material.
  • a wetting agent such as silicone and acrylic compounds to assist wetting of a surface of the base material.
  • suitable wetting agent include BYK331, BYK333, BYK348 and BYK3811 available from BYK Chemie GmbH.
  • the wetting agent is preferably added in an amount of 0.01 to 2.0% by weight based on the total weight of the cured product-forming components in the coating solution.
  • the coating solution may also contain an inorganic filler such as silica, alumina, mica, talc, aluminum flakes and glass flakes in order to improve various properties of the resultant gas-barrier layer such as gas-barrier property and impact resistance.
  • the inorganic filler preferably has a flat-plate shape.
  • the inorganic filler is preferably added in an amount of 0.01 to 10.0% by weight based on the total weight of the cured product-forming components in the coating solution.
  • the coating solution may also optionally contain an oxygen-capturing compound, etc., according to requirements.
  • oxygen-capturing compound include low-molecular organic compounds capable of reacting with oxygen such as hindered phenols, vitamin C, vitamin E, organophosphorus compounds, gallic acid and pyrogallol, and transition metal compounds containing metals such as cobalt, manganese, nickel, iron and copper.
  • the coating solution may be applied onto the flexible polymer layer as a base material by any suitable coating methods ordinarily used for this purpose such as roll coating, spray coating, air-knife coating, dip coating and brush coating. Of these methods, preferred are roll coating and spray coating. For example, there may be used the same roll coating or spray coating techniques and facilities as ordinarily used for applying a curable coating material.
  • the gas-barrier layer obtained after applying the coating solution onto the flexible polymer layer as a base material and then drying and heat-treating the coating film has a thickness of 0.1 to 100 ⁇ m and preferably 0.5 to 10 ⁇ m in view of practical use thereof. If the thickness of the gas-barrier layer is less than 0.1 ⁇ m, the resultant gas-barrier layer may fail to exhibit a sufficient gas-barrier property. On the other hand, if the thickness of the gas-barrier layer exceeds 100 ⁇ m, the obtained gas-barrier layer may fail to have a uniform thickness.
  • the resin composition composed of the epoxy resin and the epoxy resin-curing agent may also contain a coupling agent such as silane coupling agents and titanium coupling agents.
  • the coupling agent is preferably added in an amount of 0.01 to 5.0% by weight based on the total weight of the resin composition.
  • the above resin composition may also optionally contain a tackifier such as xylene resins, terpene resins, phenol resins and rosin resins according to the requirements in order to enhance its adhesion strength to various film materials immediately after applying the composition to the respective film materials.
  • the tackifier is preferably added in an amount of 0.01 to 5.0% by weight based on the total weight of the resin composition.
  • the method of laminating the flexible polymer layer, etc., onto a surface of the gas-barrier layer to form a film laminate or a sheet laminate there may be used conventionally known lamination methods such as dry lamination and extrusion lamination. More specifically, in the dry lamination method, a coating solution containing the epoxy resin composition as a film-forming component which is capable of forming the gas-barrier layer is applied onto a flexible polymer film as a base material, and then immediately after removing a solvent therefrom, another flexible polymer film is laminated thereon to form a laminated film. In this case, it is preferred that the thus obtained laminated film is aged at a temperature of from room temperature to 140° C. for a period of about 5 s to 2 days according to the requirements, and then cured.
  • a coating solution containing the epoxy resin composition as a film-forming component which is capable of forming the gas-barrier layer is applied onto a flexible polymer film as a base material, and then dried and cured at a temperature of from room temperature to 140° C. to remove a solvent therefrom and thereby form a gas-barrier layer. Then, a molten polymer material is laminated on the thus obtained laminated film by an extruder.
  • Examples of the above laminate include films or sheets formed by applying the gas-barrier layer onto the flexible polymer layer, laminated sheets formed by melt-bonding the laminated film prepared by applying the gas-barrier layer onto the flexible polymer layer, to a sheet, laminated sheets formed by melt-bonding a film on which a flexible polymer is laminated through the gas-barrier layer as an adhesive, to a sheet, as well as various laminates such as those laminates formed by laminating at least two film or sheet materials on each other through the gas-barrier layer as an adhesive.
  • the above laminate may also optionally contain a layer composed of an oxygen-capturing composition.
  • the oxygen-capturing composition include compositions prepared by kneading a resin with low-molecular organic compounds capable of reacting with oxygen such as hindered phenols, vitamin C, vitamin E, organophosphorus compounds, gallic acid and pyrogallol or a metal powder such iron powder; and oxygen-absorbing resins prepared by adding transition metal compounds containing metals such as cobalt, manganese nickel, iron and copper as an oxidation catalyst to olefin-based polymers or oligomers having a carbon-to-carbon double bond in a molecule thereof such as polybutadiene, polyisoprene and butadiene/isoprene copolymers, or polyamides having a m-xylylene structure.
  • the gas-barrier container (laminated container) of the present invention may be produced by pressing and molding the above laminate into a desired shape by generally known heat-forming methods.
  • the hollow container coated with the gas-barrier layer may be produced by preparing a coating material containing the epoxy resin and the epoxy resin-curing agent which may be diluted, if desired, with a certain suitable organic solvent and/or water to form a coating solution, and then applying the thus prepared coating material or coating solution on the hollow container, followed by drying or heat-treating, if desired.
  • the coating solution may be prepared such that a concentration of the coating material contained therein is sufficient to obtain an epoxy resin cured product.
  • concentration of the coating material contained in the coating solution may vary depending upon starting materials as selected. More specifically, the concentration of the coating material contained in the coating solution can be variously adjusted over a range of from the condition where no solvent is used to the condition where the coating material is diluted to about 5% by weight dilute solution using a certain suitable organic solvent and/or water according to kinds and molar ratios of the selected raw materials, etc.
  • the curing reaction temperature may vary over a broad range of from room temperature to about 140° C.
  • the organic solvent suitably used for forming the above dilute coating solution may be the same as used in the above coating solution for the laminated container.
  • the coating solution may also optionally contain the wetting agents, inorganic fillers or oxygen-capturing compounds as mentioned above, if desired.
  • the coating solution may be applied onto the hollow container by any suitable coating methods ordinarily used for this purpose, such as roll coating, spray coating, air-knife coating, dip coating and brush coating. Of these methods, especially preferred is spray coating. For example, there may be used the same spray coating techniques and facilities as ordinarily used for applying a curable coating component.
  • the hollow container is preferably coated with the coating solution such that the gas-barrier coating layer is formed over 60 to 100% of at least one of outer and inner surface areas of the hollow container. If the surface area of the hollow container which is coated with the gas-barrier layer is less than 60% on any of the outer and inner surfaces thereof, the resultant hollow container may fail to show a sufficient gas-barrier property.
  • the hollow container is required to have a still higher gas-barrier property according to kinds of foods or beverages to be filled therein.
  • the hollow container is filled with beer
  • the inclusion of only 1 ppm oxygen into beer tends to cause deterioration in flavor thereof.
  • a stretch blow-molded container made of polyethylene terephthalate which has a capacity of 500 mL and a surface area of 0.04 m 2
  • the time required until an amount of oxygen penetrated into the container through a wall thereof reaches 1 ppm based on the contents of the container is 1 to 2 weeks.
  • the thickness of the gas-barrier layer formed by applying the coating solution onto the hollow container and then drying or heat-treating the resultant coating film is 1 to 100 ⁇ m and preferably 5 to 50 ⁇ m in view of practical use thereof. If the thickness of the gas-barrier layer is less than 1 ⁇ m, the resultant hollow container may fail to show a sufficient gas-barrier property. On the other hand, if the thickness of the gas-barrier layer exceeds 100 ⁇ m, the obtained gas-barrier layer may fail to have a uniform thickness.
  • the oxygen transmission rate of the laminated container was measured at a temperature of 23° C., a relative humidity of 100% inside of the container and a relative humidity of 60% outside of the container using an oxygen transmission rate measuring device “OX-TRAN 10/50A” available from Modern Control Inc., according to ASTM D3985, thereby evaluating a gas-barrier property of the laminated container.
  • the appearance of the molded article was visually observed and evaluated.
  • the molded article was heated at 80° C. for 30 min to evaluate whether or not any odor was generated therefrom.
  • the equivalent ratio of active hydrogen atoms in the epoxy resin-curing agent A to epoxy groups in the epoxy resin was 2.5.
  • the thus obtained coating solution was applied onto a 25 ⁇ m-thick polypropylene film “PYREN” available from Toyobo Co., Ltd., using a bar coater No. 6 in a coating amount of 3 g/m 2 (solid content), dried at 80° C. for 30 s, laminated on a 30 ⁇ m-thick linear low-density polyethylene film “RIX” available from Toyobo Co., Ltd., using nip rolls, and then aged at 35° C. for one day to obtain a laminated film. It was confirmed that the content of the skeletal structure represented by the formula (1) in the resultant epoxy resin cured product was 65.4% by weight.
  • the equivalent ratio of active hydrogen atoms in the epoxy resin-curing agent B to epoxy groups in the epoxy resin was 2.5.
  • the thus obtained coating solution was applied onto a 25 ⁇ m-thick polypropylene film “PYREN” available from Toyobo Co., Ltd., using a bar coater No. 6 in a coating amount of 3 g/m 2 (solid content), dried at 80° C. for 30 s, laminated on a 30 ⁇ m-thick linear low-density polyethylene film “RIX” available from Toyobo Co., Ltd., using nip rolls, and then aged at 35° C. for one day to obtain a laminated film.
  • the content of the skeletal structure represented by the formula (1) in the resultant epoxy resin cured product was 68.0% by weight.
  • the thus obtained laminated film was thermoformed into a flat dish-shaped container by the same method as in Example 1. It was confirmed that the thus obtained container had a good appearance, and exhibited no odor since the unreacted m-xylylenediamine (A) was removed upon production of the epoxy resin-curing agent.
  • the oxygen transmission rate of the container as measured is shown in Table 1.
  • the equivalent ratio of active hydrogen atoms in the epoxy resin-curing agent C to epoxy groups in the epoxy resin was 2.5.
  • the thus obtained coating solution was applied onto a 25 ⁇ m-thick polypropylene film “PYREN” available from Toyobo Co., Ltd., using a bar coater No. 6 in a coating amount of 3 g/m 2 (solid content), dried at 80° C. for 30 s, laminated on a 30 ⁇ m-thick linear low-density polyethylene film “RIX” available from Toyobo Co., Ltd., using nip rolls, and then aged at 35° C. for one day to obtain a laminated film.
  • the equivalent ratio of active hydrogen atoms in the epoxy resin-curing agent D to epoxy groups in the epoxy resin was 2.5.
  • the thus obtained coating solution was applied onto a 25 ⁇ m-thick polypropylene film “PYREN” available from Toyobo Co., Ltd., using a bar coater No. 6 in a coating amount of 3 g/m 2 (solid content), dried at 80° C. for 30 s, laminated on a 30 ⁇ m-thick linear low-density polyethylene film “RIX” available from Toyobo Co., Ltd., using nip rolls, and then aged at 35° C. for one day to obtain a laminated film.
  • the content of the skeletal structure represented by the formula (1) in the resultant epoxy resin cured product was 71.9% by weight.
  • the thus obtained laminated film was thermoformed into a flat dish-shaped container by the same method as in Example 1. It was confirmed that the thus obtained container had a good appearance, and exhibited no odor since the unreacted m-xylylenediamine (A) was removed upon production of the epoxy resin-curing agent.
  • the oxygen transmission rate of the container as measured is shown in Table 1.
  • a laminated film composed of a 25 ⁇ m-thick polypropylene film, a 12 ⁇ m-thick ethylene-vinyl alcohol copolymer film and a 30 ⁇ m-thick linear low-density polyethylene film was overlapped on a 2 mm-thick polypropylene sheet such that the polypropylene film side of the laminated film faced to the 2 mm-thick polypropylene sheet, and then heat-sealed together.
  • the thus obtained laminated film was thermoformed into a flat dish-shaped container by the same method as in Example 1. It was confirmed that the thus obtained container had a good appearance.
  • the oxygen transmission rate of the container as measured is shown in Table 1.
  • the oxygen transmission rate of the hollow container was measured at a temperature of 23° C., a relative humidity of 100% inside of the container and a relative humidity of 50% outside of the container using an oxygen transmission rate measuring device “OX-TRAN 10/50A” available from Modern Control Inc., according to ASTM D3985, thereby evaluating a gas-barrier property of the hollow container.
  • a sample of the bottle was cut from its barrel portion to measure a haze thereof using a haze measuring apparatus “ZE-2000” available from Nippon Denshoku Kogyo Co., Ltd., according to ASTM D1003.
  • the transparency of the bottle was evaluated from the difference in haze obtained by subtracting the haze value before coating from that after coating.
  • PET Polyethylene terephthalate
  • RT543C Polyethylene terephthalate
  • parison was subjected to biaxial stretch blow molding under the following conditions using a biaxial stretch blow-molding machine to obtain a bottle-shaped hollow container (stretch blow-molded bottle A).
  • a random-copolymerized polypropylene (“X0235” available from Chisso Co., Ltd.; MFR: 0.6) was blow-molded under the following conditions to obtain a direct blow-molded bottle B.
  • TTRAD-X glycidylamine moieties derived from Mitsubishi Gas Chemical Co., Ltd.
  • the thus obtained coating solution A was sprayed onto an outer surface of the stretch blow-molded bottle A except for a mouth portion thereof, and then cured at 60° C. for 30 min. It was confirmed that the coated surface area of the bottle A was 95% of a total outer surface area thereof, and an average thickness of the resultant coating layer was 20 ⁇ m.
  • the thus obtained bottle coated with the gas-barrier layer was subjected to evaluation of an oxygen-barrier property and transparency (difference in haze) thereof. The results are shown in Table 2.
  • Example 5 The same procedure as in EXAMPLE 5 was repeated except that the coated surface area of the bottle was 50% of the total surface area thereof, thereby producing a coated bottle and evaluating properties thereof. The results are shown in Table 2. TABLE 2 Oxygen Transmission Rate (mL/ Difference in Coating Coating rate bottle ⁇ day ⁇ haze solution (%) 0.02 MPa) (%) Example 5 A 95 0.008 ⁇ 5 Example 6 B 95 0.010 ⁇ 5 Example 7 C 95 0.012 ⁇ 5 Example 8 D 95 0.007 ⁇ 5 Example 9 E 95 0.009 ⁇ 5 Example 10 F 95 0.015 ⁇ 5 Example 11 A 75 0.013 ⁇ 5 Example 12 A 65 0.016 ⁇ 5 Comparative G 95 0.019 ⁇ 5 Example 2 Comparative None 0 0.032 — Example 3 Comparative A 50 0.019 ⁇ 5 Example 4
  • the gas-barrier container according to the present invention has a less burden to environment due to the use of non-halogen gas-barrier material therein, and is excellent in economical efficiency and workability in production process thereof.
  • the gas-barrier container according to the present invention can exhibit a high gas-barrier property and is excellent in various properties such as interlaminar adhesion strength, gas-barrier property under a high-humidity condition, impact resistance and retorting resistance. Therefore, the gas-barrier container according to the present invention can be used in various applications such as containers for foods or beverages which require a high gas-barrier property as well as packaging materials for drugs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
US10/516,956 2002-06-25 2003-06-24 Gas-barrier containers Abandoned US20050158494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/551,055 US20090324865A1 (en) 2002-06-25 2009-08-31 Gas-barrier containers

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002185151 2002-06-25
JP2002-185154 2002-06-25
JP2002185154A JP4228181B2 (ja) 2002-06-25 2002-06-25 ガスバリア材で被覆された中空容器
JP2002-185151 2002-06-25
PCT/JP2003/007977 WO2004000681A1 (ja) 2002-06-25 2003-06-24 ガスバリア性容器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/551,055 Continuation US20090324865A1 (en) 2002-06-25 2009-08-31 Gas-barrier containers

Publications (1)

Publication Number Publication Date
US20050158494A1 true US20050158494A1 (en) 2005-07-21

Family

ID=30002278

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/516,956 Abandoned US20050158494A1 (en) 2002-06-25 2003-06-24 Gas-barrier containers
US12/551,055 Abandoned US20090324865A1 (en) 2002-06-25 2009-08-31 Gas-barrier containers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/551,055 Abandoned US20090324865A1 (en) 2002-06-25 2009-08-31 Gas-barrier containers

Country Status (4)

Country Link
US (2) US20050158494A1 (zh)
EP (1) EP1541489B1 (zh)
CN (1) CN100343046C (zh)
WO (1) WO2004000681A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014908A1 (en) * 2001-09-05 2005-01-20 Takaaki Kutsuna Adhesive for gas barrier laminates and laminated films
US9145251B2 (en) 2012-10-26 2015-09-29 Berry Plastics Corporation Package
US20150314503A1 (en) * 2012-11-30 2015-11-05 Resilux Overmoulding Method for Preforms to be Converted Into Containers and Device Therefor
US9604769B2 (en) 2012-03-20 2017-03-28 Berry Plastics Corporation Stand up package
US20180118877A1 (en) * 2015-06-26 2018-05-03 Mitsubishi Gas Chemical Company, Inc. Coating film having chemical resistance
US20180147814A1 (en) * 2015-07-01 2018-05-31 Hosokawa Yoko Co., Ltd. Laminate, packaging bag, packaging bag with plug, and packaging bag with plug with hydrogenous-water
US10023694B2 (en) * 2013-03-26 2018-07-17 Mitsubishi Gas Chemical Company, Inc. Active-energy-ray-curable resin, and gas barrier laminate comprising cured product of said resin
US10532872B2 (en) 2014-12-08 2020-01-14 Berry Plastics Corporation Package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562194A4 (en) * 2010-04-21 2016-08-03 Mitsubishi Gas Chemical Co EPOXY RESIN CURING AGENT, EPOXY RESIN COMPOSITION, AND ADHESIVE AGENT FOR LAMINATE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106943A (en) * 1989-10-04 1992-04-21 Takeda Chemical Industries, Ltd. Resin compositions, shaped articles, and methods for manufacture
US5637365A (en) * 1994-12-16 1997-06-10 Ppg Industries, Inc. Epoxy-amine barrier coatings with aryloxy or aryloate groups
US20020146527A1 (en) * 2000-12-08 2002-10-10 Toyo Seikan Kaisha, Ltd. Packaging material and multi-layer container

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704229A (en) * 1968-12-26 1972-11-28 Toka Shikiso Chem Ind Epoxy resin curing agent
US3683044A (en) * 1969-12-29 1972-08-08 Japan Gas Chemical Co Heat-curable composition comprising polyglycidyl xylylene-diamine and process for preparation of polyglycidyl xylylenediamine
DE3447022A1 (de) * 1984-12-22 1986-06-26 Hüls AG, 4370 Marl Kraftstoffbehaelter aus polyethylen mit verringerter durchlaessigkeit
US5006381A (en) * 1988-02-04 1991-04-09 Ppg Industries, Inc. Ungelled polyamine-polyepoxide resins
NZ281449A (en) * 1994-03-31 1997-07-27 Ppg Industries Inc Barrier coatings based on polyepoxide-polyamine resin
US5840825A (en) * 1996-12-04 1998-11-24 Ppg Incustries, Inc. Gas barrier coating compositions containing platelet-type fillers
US5728439A (en) * 1996-12-04 1998-03-17 Ppg Industries, Inc. Multilayer packaging material for oxygen sensitive food and beverage
AU8905998A (en) * 1997-09-10 1999-03-29 Ppg Industries, Inc. Plastic package containers having improved gas barrier properties
JP2000227516A (ja) * 1999-02-08 2000-08-15 Nitto Denko Corp エポキシ系基板シートの製造方法及びその基板シート
JP2001138459A (ja) * 1999-11-10 2001-05-22 Toyobo Co Ltd ガスバリアー性積層ポリアミドフィルム
US6309757B1 (en) * 2000-02-16 2001-10-30 Ppg Industries Ohio, Inc. Gas barrier coating of polyamine, polyepoxide and hydroxyaromatic compound
JP2001301109A (ja) * 2000-04-19 2001-10-30 Dainippon Printing Co Ltd バリア性フィルム
JP2002160322A (ja) * 2000-09-13 2002-06-04 Nitto Denko Corp 樹脂シートの製造方法
CA2365922C (en) * 2000-12-26 2010-03-09 Mitsubishi Gas Chemical Company, Inc. Composition for coating having a gas barrier property, coating and coated film having a gas barrier property using the same
JP2002363316A (ja) * 2001-04-03 2002-12-18 Mitsubishi Gas Chem Co Inc ガスバリア性コートフィルム
DE60207008T2 (de) * 2001-06-27 2006-05-24 Mitsubishi Gas Chemical Co., Inc. Sauerstoffabsorbierender Mehrschichtfilm
JP4003041B2 (ja) * 2001-10-24 2007-11-07 三菱瓦斯化学株式会社 脱酸素性多層フィルム
JP4035693B2 (ja) * 2001-10-25 2008-01-23 三菱瓦斯化学株式会社 物品の保存方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106943A (en) * 1989-10-04 1992-04-21 Takeda Chemical Industries, Ltd. Resin compositions, shaped articles, and methods for manufacture
US5637365A (en) * 1994-12-16 1997-06-10 Ppg Industries, Inc. Epoxy-amine barrier coatings with aryloxy or aryloate groups
US20020146527A1 (en) * 2000-12-08 2002-10-10 Toyo Seikan Kaisha, Ltd. Packaging material and multi-layer container

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425598B2 (en) * 2001-09-05 2008-09-16 Mitsubishi Gas Chemical Company, Inc. Adhesive of epoxy resin and curing agent with xylylene diamine structure
US20050014908A1 (en) * 2001-09-05 2005-01-20 Takaaki Kutsuna Adhesive for gas barrier laminates and laminated films
US9604769B2 (en) 2012-03-20 2017-03-28 Berry Plastics Corporation Stand up package
US9145251B2 (en) 2012-10-26 2015-09-29 Berry Plastics Corporation Package
US9884716B2 (en) 2012-10-26 2018-02-06 Berry Plastics Corporation Package
US20150314503A1 (en) * 2012-11-30 2015-11-05 Resilux Overmoulding Method for Preforms to be Converted Into Containers and Device Therefor
US10828814B2 (en) * 2012-11-30 2020-11-10 Resilux Nv Overmoulding method for preforms to be converted into containers and device therefor
US10023694B2 (en) * 2013-03-26 2018-07-17 Mitsubishi Gas Chemical Company, Inc. Active-energy-ray-curable resin, and gas barrier laminate comprising cured product of said resin
US10532872B2 (en) 2014-12-08 2020-01-14 Berry Plastics Corporation Package
US10752729B2 (en) * 2015-06-26 2020-08-25 Mitsubishi Gas Chemical Company, Inc. Coating film having chemical resistance
US20180118877A1 (en) * 2015-06-26 2018-05-03 Mitsubishi Gas Chemical Company, Inc. Coating film having chemical resistance
US20180147814A1 (en) * 2015-07-01 2018-05-31 Hosokawa Yoko Co., Ltd. Laminate, packaging bag, packaging bag with plug, and packaging bag with plug with hydrogenous-water
US10773491B2 (en) * 2015-07-01 2020-09-15 Hosokawa Yoko Co., Ltd. Laminate, packaging bag, packaging bag with plug, and packaging bag with plug with hydrogenous-water

Also Published As

Publication number Publication date
EP1541489A1 (en) 2005-06-15
CN100343046C (zh) 2007-10-17
WO2004000681A1 (ja) 2003-12-31
EP1541489A4 (en) 2009-06-03
US20090324865A1 (en) 2009-12-31
EP1541489B1 (en) 2015-11-04
CN1662425A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
US20090324865A1 (en) Gas-barrier containers
EP2189278B1 (en) Laminate film
WO2002092643A1 (en) Modified ethylene-vinyl alcohol copolymer and method for the production thereof
US6746772B2 (en) Oxygen-absorbing multi-layer film
JP2008188975A (ja) 多層構造物
US7387699B2 (en) Process of producing hollow shaped articles
JP5320924B2 (ja) ガスバリア性積層体
JP4228181B2 (ja) ガスバリア材で被覆された中空容器
JP4314916B2 (ja) ガスバリア性コートフィルム
JP2004027014A (ja) ガスバリア性樹脂組成物、塗料および接着剤
JPH0454702B2 (zh)
JP4196199B2 (ja) ガスバリア性中空容器
JP4117451B2 (ja) 耐屈曲性に優れたガスバリア性積層フィルム
JP4117461B2 (ja) ガスバリア性ポリオレフィン積層フィルム
JP4280892B2 (ja) ガスバリア性積層体
JP3928726B2 (ja) ガスバリア性容器
JP4742848B2 (ja) ガスバリア性容器
JP4143811B2 (ja) ガスバリア性延伸ポリエステル積層フィルム
JP4940683B2 (ja) ガスバリア性容器
JP5051030B2 (ja) ガスバリア性積層体
JP2016079285A (ja) ポリアミドポリエステルを含有する樹脂組成物、及び接着剤
JP4117460B2 (ja) ガスバリア性延伸ナイロン積層フィルム
JP2004025612A (ja) ガスバリア性積層体
JP2004025613A (ja) ガスバリア性積層フィルム
JP2023009626A (ja) 容器及びその予備成形体

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI GAS CHEMICAL COMPANY, INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYAMA, TAKESHI;KUTSUNA, TAKAAKI;KIHARA, SHUTA;REEL/FRAME:016410/0231

Effective date: 20041108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION