US20050146605A1 - Video surveillance system employing video primitives - Google Patents
Video surveillance system employing video primitives Download PDFInfo
- Publication number
- US20050146605A1 US20050146605A1 US09/987,707 US98770701A US2005146605A1 US 20050146605 A1 US20050146605 A1 US 20050146605A1 US 98770701 A US98770701 A US 98770701A US 2005146605 A1 US2005146605 A1 US 2005146605A1
- Authority
- US
- United States
- Prior art keywords
- video
- computer
- code segments
- readable medium
- primitives
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004044 response Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 20
- 230000002123 temporal effect Effects 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims 1
- 239000000284 extract Substances 0.000 abstract 2
- 238000001514 detection method Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000009471 action Effects 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 241000408659 Darpa Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001092459 Rubus Species 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001595 flow curve Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/783—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/7837—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using objects detected or recognised in the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/277—Analysis of motion involving stochastic approaches, e.g. using Kalman filters
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
- G08B13/19606—Discriminating between target movement or movement in an area of interest and other non-signicative movements, e.g. target movements induced by camera shake or movements of pets, falling leaves, rotating fan
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
- G08B13/19608—Tracking movement of a target, e.g. by detecting an object predefined as a target, using target direction and or velocity to predict its new position
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
- G08B13/19613—Recognition of a predetermined image pattern or behaviour pattern indicating theft or intrusion
- G08B13/19615—Recognition of a predetermined image pattern or behaviour pattern indicating theft or intrusion wherein said pattern is defined by the user
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19695—Arrangements wherein non-video detectors start video recording or forwarding but do not generate an alarm themselves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/23412—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs for generating or manipulating the scene composition of objects, e.g. MPEG-4 objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/44—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
- H04N21/44012—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving rendering scenes according to scene graphs, e.g. MPEG-4 scene graphs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/272—Means for inserting a foreground image in a background image, i.e. inlay, outlay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
Definitions
- the invention relates to a system for automatic video surveillance employing video primitives.
- Video surveillance of public spaces has become extremely widespread and accepted by the general public. Unfortunately, conventional video surveillance systems produce such prodigious volumes of data that an intractable problem results in the analysis of video surveillance data.
- An object of the invention is to reduce the amount of video surveillance data so analysis of the video surveillance data can be conducted.
- An object of the invention is to filter video surveillance data to identify desired portions of the video surveillance data.
- An object of the invention is to produce a real time alarm based on an automatic detection of an event from video surveillance data.
- An object of the invention is to integrate data from surveillance sensors other than video for improved searching capabilities.
- An object of the invention is to integrate data from surveillance sensors other than video for improved event detection capabilities
- the invention includes an article of manufacture, a method, a system, and an apparatus for video surveillance.
- the article of manufacture of the invention includes a computer-readable medium comprising software for a video surveillance system, comprising code segments for operating the video surveillance system based on video primitives.
- the article of manufacture of the invention includes a computer-readable medium comprising software for a video surveillance system, comprising code segments for accessing archived video primitives, and code segments for extracting event occurrences from accessed archived video primitives.
- the system of the invention includes a computer system including a computer-readable medium having software to operate a computer in accordance with the invention.
- the apparatus of the invention includes a computer including a computer-readable medium having software to operate the computer in accordance with the invention.
- the article of manufacture of the invention includes a computer-readable medium having software to operate a computer in accordance with the invention.
- a “video” refers to motion pictures represented in analog and/or digital form. Examples of video include: television, movies, image sequences from a video camera or other observer, and computer-generated image sequences.
- a “frame” refers to a particular image or other discrete unit within a video.
- An “object” refers to an item of interest in a video. Examples of an object include: a person, a vehicle, an animal, and a physical subject.
- An “activity” refers to one or more actions and/or one or more composites of actions of one or more objects. Examples of an activity include: entering; exiting; stopping; moving; raising; lowering; growing; and shrinking.
- a “location” refers to a space where an activity may occur.
- a location can be, for example, scene-based or image-based.
- Examples of a scene-based location include: a public space; a store; a retail space; an office; a warehouse; a hotel room; a hotel lobby; a lobby of a building; a casino; a bus station; a train station; an airport; a port; a bus; a train; an airplane; and a ship.
- Examples of an image-based location include: a video image; a line in a video image; an area in a video image; a rectangular section of a video image; and a polygonal section of a video image.
- An “event” refers to one or more objects engaged in an activity.
- the event may be referenced with respect to a location and/or a time.
- a “computer” refers to any apparatus that is capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output.
- Examples of a computer include: a computer; a general purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a micro-computer; a server; an interactive television; a hybrid combination of a computer and an interactive television; and application-specific hardware to emulate a computer and/or software.
- a computer can have a single processor or multiple processors, which can operate in parallel and/or not in parallel.
- a computer also refers to two or more computers connected together via a network for transmitting or receiving information between the computers.
- An example of such a computer includes a distributed computer system for processing information via computers linked by a network.
- a “computer-readable medium” refers to any storage device used for storing data accessible by a computer. Examples of a computer-readable medium include: a magnetic hard disk; a floppy disk; an optical disk, such as a CD-ROM and a DVD; a magnetic tape; a memory chip; and a carrier wave used to carry computer-readable electronic data, such as those used in transmitting and receiving e-mail or in accessing a network.
- Software refers to prescribed rules to operate a computer. Examples of software include: software; code segments; instructions; computer programs; and programmed logic.
- a “computer system” refers to a system having a computer, where the computer comprises a computer-readable medium embodying software to operate the computer.
- a “network” refers to a number of computers and associated devices that are connected by communication facilities.
- a network involves permanent connections such as cables or temporary connections such as those made through telephone or other communication links.
- Examples of a network include: an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
- FIG. 1 illustrates a plan view of the video surveillance system of the invention.
- FIG. 2 illustrates a flow diagram for the video surveillance system of the invention.
- FIG. 3 illustrates a flow diagram for tasking the video surveillance system.
- FIG. 4 illustrates a flow diagram for operating the video surveillance system.
- FIG. 5 illustrates a flow diagram for extracting video primitives for the video surveillance system.
- FIG. 6 illustrates a flow diagram for taking action with the video surveillance system.
- FIG. 7 illustrates a flow diagram for semi-automatic calibration of the video surveillance system.
- FIG. 8 illustrates a flow diagram for automatic calibration of the video surveillance system.
- FIG. 9 illustrates an additional flow diagram for the video surveillance system of the invention.
- FIGS. 10-15 illustrate examples of the video surveillance system of the invention applied to monitoring a grocery store.
- the automatic video surveillance system of the invention is for monitoring a location for, for example, market research or security purposes.
- the system can be a dedicated video surveillance installation with purpose-built surveillance components, or the system can be a retrofit to existing video surveillance equipment that piggybacks off the surveillance video feeds.
- the system is capable of analyzing video data from live sources or from recorded media.
- the system can have a prescribed response to the analysis, such as record data, activate an alarm mechanism, or active another sensor system.
- the system is also capable of integrating with other surveillance system components.
- the system produces security or market research reports that can be tailored according to the needs of an operator and, as an option, can be presented through an interactive web-based interface, or other reporting mechanism.
- Event discriminators are identified with one or more objects (whose descriptions are based on video primitives), along with one or more optional spatial attributes, and/or one or more optional temporal attributes.
- an operator can define an event discriminator (called a “loitering” event in this example) as a “person” object in the “automatic teller machine” space for “longer than 15 minutes” and “between 10:00 p.m. and 6:00 a.m.”
- the video surveillance system of the invention draws on well-known computer vision techniques from the public domain
- the inventive video surveillance system has several unique and novel features that are not currently available.
- current video surveillance systems use large volumes of video imagery as the primary commodity of information interchange.
- the system of the invention uses video primitives as the primary commodity with representative video imagery being used as collateral evidence.
- the system of the invention can also be calibrated (manually, semi-automatically, or automatically) and thereafter automatically can infer video primitives from video imagery.
- the system can further analyze previously processed video without needing to reprocess completely the video. By analyzing previously processed video, the system can perform inference analysis based on previously recorded video primitives, which greatly improves the analysis speed of the computer system.
- the system of the invention provides unique system tasking.
- equipment control directives current video systems allow a user to position video sensors and, in some sophisticated conventional systems, to mask out regions of interest or disinterest.
- Equipment control directives are instructions to control the position, orientation, and focus of video cameras.
- the system of the invention uses event discriminators based on video primitives as the primary tasking mechanism. With event discriminators and video primitives, an operator is provided with a much more intuitive approach over conventional systems for extracting useful information from the system.
- the system of the invention can be tasked in a human-intuitive manner with one or more event discriminators based on video primitives, such as “a person enters restricted area A.”
- FIG. 1 illustrates a plan view of the video surveillance system of the invention.
- a computer system 11 comprises a computer 12 having a computer-readable medium 13 embodying software to operate the computer 12 according to the invention.
- the computer system 11 is coupled to one or more video sensors 14 , one or more video recorders 15 , and one or more input/output (I/O) devices 16 .
- the video sensors 14 can also be optionally coupled to the video recorders 15 for direct recording of video surveillance data.
- the computer system is optionally coupled to other sensors 17 .
- the video sensors 14 provide source video to the computer system 11 .
- Each video sensor 14 can be coupled to the computer system 11 using, for example, a direct connection (e.g., a firewire digital camera interface) or a network.
- the video sensors 14 can exist prior to installation of the invention or can be installed as part of the invention. Examples of a video sensor 14 include: a video camera; a digital video camera; a color camera; a monochrome camera; a camera; a camcorder, a PC camera; a webcam; an infra-red video camera; and a CCTV camera.
- the video recorders 15 receive video surveillance data from the computer system 11 for recording and/or provide source video to the computer system 11 .
- Each video recorder 15 can be coupled to the computer system 11 using, for example, a direct connection or a network.
- the video recorders 15 can exist prior to installation of the invention or can be installed as part of the invention. Examples of a video recorder 15 include: a video tape recorder; a digital video recorder; a video disk; a DVD; and a computer-readable medium.
- the I/O devices 16 provide input to and receive output from the computer system 11 .
- the I/O devices 16 can be used to task the computer system 11 and produce reports from the computer system 11 .
- Examples of I/O devices 16 include: a keyboard; a mouse; a stylus; a monitor; a printer; another computer system; a network; and an alarm.
- the other sensors 17 provide additional input to the computer system 11 .
- Each other sensor 17 can be coupled to the computer system 11 using, for example, a direct connection or a network.
- the other sensors 17 can exit prior to installation of the invention or can be installed as part of the invention.
- Examples of another sensor 17 include: a motion sensor; an optical tripwire; a biometric sensor; and a card-based or keypad-based authorization system.
- the outputs of the other sensors 17 can be recorded by the computer system 11 , recording devices, and/or recording systems.
- FIG. 2 illustrates a flow diagram for the video surveillance system of the invention.
- FIGS. 10-15 illustrate examples of the video surveillance system of the invention applied to monitoring a grocery store.
- the video surveillance system is set up as discussed for FIG. 1 .
- Each video sensor 14 is orientated to a location for video surveillance.
- the computer system 11 is connected to the video feeds from the video equipment 14 and 15 .
- the video surveillance system can be implemented using existing equipment or newly installed equipment for the location.
- the video surveillance system is calibrated. Once the video surveillance system is in place from block 21 , calibration occurs.
- the result of block 22 is the ability of the video surveillance system to determine an approximate absolute size and speed of a particular object (e.g., a person) at various places in the video image provided by the video sensor.
- the system can be calibrated using manual calibration, semi-automatic calibration, and automatic calibration. Calibration is further described after the discussion of block 24 .
- the video surveillance system is tasked. Tasking occurs after calibration in block 22 and is optional. Tasking the video surveillance system involves specifying one or more event discriminators. Without tasking, the video surveillance system operates by detecting and archiving video primitives and associated video imagery without taking any action, as in block 45 in FIG. 4 .
- FIG. 3 illustrates a flow diagram for tasking the video surveillance system to determine event discriminators.
- An event discriminator refers to one or more objects optionally interacting with one or more spatial attributes and/or one or more temporal attributes.
- An event discriminator is described in terms of video primitives.
- a video primitive refers to an observable attribute of an object viewed in a video feed. Examples of video primitives include the following: a classification; a size; a shape; a color; a texture; a position; a velocity; a speed; an internal motion; a motion; a salient motion; a feature of a salient motion; a scene change; a feature of a scene change; and a pre-defined model.
- a classification refers to an identification of an object as belonging to a particular category or class. Examples of a classification include: a person; a dog; a vehicle; a police car; an individual person; and a specific type of object.
- a size refers to a dimensional attribute of an object. Examples of a size include: large; medium; small; flat; taller than 6 feet; shorter than 1 foot; wider than 3 feet; thinner than 4 feet; about human size; bigger than a human; smaller than a human; about the size of a car; a rectangle in an image with approximate dimensions in pixels; and a number of image pixels.
- a color refers to a chromatic attribute of an object.
- Examples of a color include: white; black; grey; red; a range of HSV values; a range of YUV values; a range of RGB values; an average RGB value; an average YUV value; and a histogram of RGB values.
- a texture refers to a pattern attribute of an object.
- texture features include: self-similarity; spectral power; linearity; and coarseness.
- An internal motion refers to a measure of the rigidity of an object.
- An example of a fairly rigid object is a car, which does not exhibit a great amount of internal motion.
- An example of a fairly non-rigid object is a person having swinging arms and legs, which exhibits a great amount of internal motion.
- a motion refers to any motion that can be automatically detected. Examples of a motion include: appearance of an object; disappearance of an object; a vertical movement of an object; a horizontal movement of an object; and a periodic movement of an object.
- a salient motion refers to any motion that can be automatically detected and can be tracked for some period of time. Such a moving object exhibits apparently purposeful motion. Examples of a salient motion include: moving from one place to another; and moving to interact with another object.
- a feature of a salient motion refers to a property of a salient motion.
- Examples of a feature of a salient motion include: a trajectory; a length of a trajectory in image space; an approximate length of a trajectory in a three-dimensional representation of the environment; a position of an object in image space as a function of time; an approximate position of an object in a three-dimensional representation of the environment as a function of time; a duration of a trajectory; a velocity (e.g., speed and direction) in image space; an approximate velocity (e.g., speed and direction) in a three-dimensional representation of the environment; a duration of time at a velocity; a change of velocity in image space; an approximate change of velocity in a three-dimensional representation of the environment; a duration of a change of velocity; cessation of motion; and a duration of cessation of motion.
- a velocity refers to the speed and direction of an object at a particular time.
- a trajectory refers a set of (position, velocity)
- a scene change refers to any region of a scene that can be detected as changing over a period of time.
- Examples of a scene change include: an stationary object leaving a scene; an object entering a scene and becoming stationary; an object changing position in a scene; and an object changing appearance (e.g. color, shape, or size).
- a feature of a scene change refers to a property of a scene change.
- Examples of a feature of a scene change include: a size of a scene change in image space; an approximate size of a scene change in a three-dimensional representation of the environment; a time at which a scene change occurred; a location of a scene change in image space; and an approximate location of a scene change in a three-dimensional representation of the environment.
- a pre-defined model refers to an a priori known model of an object. Examples of a pre-defined include: an adult; a child; a vehicle; and a semi-trailer.
- one or more objects types of interests are identified in terms of video primitives or abstractions thereof.
- Examples of one or more objects include: an object; a person; a red object; two objects; two persons; and a vehicle.
- An area refers to one or more portions of an image from a source video or a spatial portion of a scene being viewed by a video sensor.
- An area also includes a combination of areas from various scenes and/or images.
- An area can be an image-based space (e.g., a line, a rectangle, a polygon, or a circle in a video image) or a three-dimensional space (e.g., a cube, or an area of floor space in a building).
- FIG. 12 illustrates identifying areas along an aisle in a grocery store. Four areas are identified: coffee; soda promotion; chips snacks; and bottled water. The areas are identified via a point-and-click interface with the system.
- one or more temporal attributes of interest are optionally identified.
- Examples of a temporal attribute include: every 15 minutes; between 9:00 p.m. to 6:30 a.m.; less than 5 minutes; longer than 30 seconds; over the weekend; and within 20 minutes of.
- a response is optionally identified.
- Examples of a response includes the following: activating a visual and/or audio alert on a system display; activating a visual and/or audio alarm system at the location; activating a silent alarm; activating a rapid response mechanism; locking a door; contacting a security service; forwarding data (e.g., image data, video data, video primitives; and/or analyzed data) to another computer system via a network, such as the Internet; saving such data to a designated computer-readable medium; activating some other sensor or surveillance system; tasking the computer system 11 and/or another computer system; and directing the computer system 11 and/or another computer system.
- data e.g., image data, video data, video primitives; and/or analyzed data
- one or more discriminators are identified by describing interactions between video primitives (or their abstractions), spatial areas of interest, and temporal attributes of interest. An interaction is determined for a combination of one or more objects identified in block 31 , one or more spatial areas of interest identified in block 32 , and one or more temporal attributes of interest identified in block 33 .
- One or more responses identified in block 34 are optionally associated with each event discriminator.
- Examples of an event discriminator for a single object include: an object appears; a person appears; and a red object moves faster than 10 m/s.
- Examples of an event discriminator for multiple objects include: two objects come together; a person exits a vehicle; and a red object moves next to a blue object.
- Examples of an event discriminator for an object and a spatial attribute include: an object crosses a line; an object enters an area; and a person crosses a line from the left.
- Examples of an event discriminator for an object and a temporal attribute include: an object appears at 10:00 p.m.; a person travels faster then 2 m/s between 9:00 a.m. and 5:00 p.m.; and a vehicle appears on the weekend.
- Examples of an event discriminator for an object, a spatial attribute, and a temporal attribute include: a person crosses a line between midnight and 6:00 a.m.; and a vehicle stops in an area for longer than 10 minutes.
- An example of an event discriminator for an object, a spatial attribute, and a temporal attribute associated with a response include: a person enters an area between midnight and 6:00 a.m., and a security service is notified.
- the video surveillance system is operated.
- the video surveillance system of the invention operates automatically, detects and archives video primitives of objects in the scene, and detects event occurrences in real time using event discriminators.
- action is taken in real time, as appropriate, such as activating alarms, generating reports, and generating output.
- the reports and output can be displayed and/or stored locally to the system or elsewhere via a network, such as the Internet.
- FIG. 4 illustrates a flow diagram for operating the video surveillance system.
- the computer system 11 obtains source video from the video sensors 14 and/or the video recorders 15 .
- video primitives are extracted in real time from the source video.
- non-video primitives can be obtained and/or extracted from one or more other sensors 17 and used with the invention.
- the extraction of video primitives is illustrated with FIG. 5 .
- FIG. 5 illustrates a flow diagram for extracting video primitives for the video surveillance system.
- Blocks 51 and 52 operate in parallel and can be performed in any order or concurrently.
- objects are detected via movement. Any motion detection algorithm for detecting movement between frames at the pixel level can be used for this block. As an example, the three frame differencing technique can be used, which is discussed in ⁇ 1 ⁇ .
- the detected objects are forwarded to block 53 .
- objects are detected via change. Any change detection algorithm for detecting changes from a background model can be used for this block.
- An object is detected in this block if one or more pixels in a frame are deemed to be in the foreground of the frame because the pixels do not conform to a background model of the frame.
- a stochastic background modeling technique such as dynamically adaptive background subtraction, can be used, which is described in ⁇ 1 ⁇ and U.S. patent application Ser. No. 09/694,712 filed Oct. 24, 2000.
- the detected objects are forwarded to block 53 .
- the motion detection technique of block 51 and the change detection technique of block 52 are complimentary techniques, where each technique advantageously addresses deficiencies in the other technique.
- additional and/or alternative detection schemes can be used for the techniques discussed for blocks 51 and 52 .
- Examples of an additional and/or alternative detection scheme include the following: the Pfinder detection scheme for finding people as described in ⁇ 8 ⁇ ; a skin tone detection scheme; a face detection scheme; and a model-based detection scheme. The results of such additional and/or alternative detection schemes are provided to block 53 .
- Video stabilization can be achieved by affine or projective global motion compensation. For example, image alignment described in U.S. patent application Ser. No. 09/609,919, filed Jul. 3, 2000, which is incorporated herein by reference, can be used to obtain video stabilization.
- blobs are generated.
- a blob is any object in a frame.
- Examples of a blob include: a moving object, such as a person or a vehicle; and a consumer product, such as a piece of furniture, a clothing item, or a retail shelf item.
- Blobs are generated using the detected objects from blocks 32 and 33 . Any technique for generating blobs can be used for this block.
- An exemplary technique for generating blobs from motion detection and change detection uses a connected components scheme. For example, the morphology and connected components algorithm can be used, which is described in ⁇ 1 ⁇ .
- blobs are tracked. Any technique for tracking blobs can be used for this block. For example, Kalman filtering or the CONDENSATION algorithm can be used. As another example, a template matching technique, such as described in ⁇ 1 ⁇ , can be used. As a further example, a multi-hypothesis Kalman tracker can be used, which is described in ⁇ 5 ⁇ . As yet another example, the frame-to-frame tracking technique described in U.S. patent application Ser. No. 09/694,712 filed Oct. 24, 2000, can be used. For the example of a location being a grocery store, examples of objects that can be tracked include moving people, inventory items, and inventory moving appliances, such as shopping carts or trolleys.
- blocks 51 - 54 can be replaced with any detection and tracking scheme, as is known to those of ordinary skill.
- An example of such a detection and tracking scheme is described in ⁇ 11 ⁇ .
- each trajectory of the tracked objects is analyzed to determine if the trajectory is salient. If the trajectory is insalient, the trajectory represents an object exhibiting unstable motion or represents an object of unstable size or color, and the corresponding object is rejected and is no longer analyzed by the system. If the trajectory is salient, the trajectory represents an object that is potentially of interest.
- a trajectory is determined to be salient or insalient by applying a salience measure to the trajectory. Techniques for determining a trajectory to be salient or insalient are described in ⁇ 13 ⁇ and ⁇ 18 ⁇ .
- each object is classified.
- the general type of each object is determined as the classification of the object.
- Classification can be performed by a number of techniques, and examples of such techniques include using a neural network classifier ⁇ 14 ⁇ and using a linear discriminatant classifier ⁇ 14 ⁇ . Examples of classification are the same as those discussed for block 23 .
- video primitives are identified using the information from blocks 51 - 56 and additional processing as necessary. Examples of video primitives identified are the same as those discussed for block 23 .
- the system can use information obtained from calibration in block 22 as a video primitive. From calibration, the system has sufficient information to determine the approximate size of an object. As another example, the system can use velocity as measured from block 54 as a video primitive.
- the video primitives from block 42 are archived.
- the video primitives can be archived in the computer-readable medium 13 or another computer-readable medium.
- associated frames or video imagery from the source video can be archived.
- event occurrences are extracted from the video primitives using event discriminators.
- the video primitives are determined in block 42
- the event discriminators are determined from tasking the system in block 23 .
- the event discriminators are used to filter the video primitives to determine if any event occurrences occurred.
- an event discriminator can be looking for a “wrong way” event as defined by a person traveling the “wrong way” into an area between 9:00 a.m. and 5:00 p.m.
- the event discriminator checks all video primitives being generated according to FIG. 5 and determines if any video primitives exist which have the following properties: a timestamp between 9:00 a.m. and 5:00 p.m., a classification of “person” or “group of people”, a position inside the area, and a “wrong” direction of motion.
- FIG. 6 illustrates a flow diagram for taking action with the video surveillance system.
- responses are undertaken as dictated by the event discriminators that detected the event occurrences.
- the response, if any, are identified for each event discriminator in block 34 .
- an activity record is generated for each event occurrence that occurred.
- the activity record includes, for example: details of a trajectory of an object; a time of detection of an object; a position of detection of an object, and a description or definition of the event discriminator that was employed.
- the activity record can include information, such as video primitives, needed by the event discriminator.
- the activity record can also include representative video or still imagery of the object(s) and/or area(s) involved in the event occurrence.
- the activity record is stored on a computer-readable medium.
- output is generated.
- the output is based on the event occurrences extracted in block 44 and a direct feed of the source video from block 41 .
- the output is stored on a computer-readable medium, displayed on the computer system 11 or another computer system, or forwarded to another computer system.
- information regarding event occurrences is collected, and the information can be viewed by the operator at any time, including real time. Examples of formats for receiving the information include: a display on a monitor of a computer system; a hard copy; a computer-readable medium; and an interactive web page.
- the output can include a display from the direct feed of the source video from block 41 .
- the source video can be displayed on a window of the monitor of a computer system or on a closed-circuit monitor.
- the output can include source video marked up with graphics to highlight the objects and/or areas involved in the event occurrence.
- the output can include one or more reports for an operator based on the requirements of the operator and/or the event occurrences.
- Examples of a report include: the number of event occurrences which occurred; the positions in the scene in which the event occurrence occurred; the times at which the event occurrences occurred; representative imagery of each event occurrence; representative video of each event occurrence; raw statistical data; statistics of event occurrences (e.g., how many, how often, where, and when); and/or human-readable graphical displays.
- FIGS. 13 and 14 illustrate an exemplary report for the aisle in the grocery store of FIG. 15 .
- FIGS. 13 and 14 several areas are identified in block 22 and are labeled accordingly in the images.
- the areas in FIG. 13 match those in FIG. 12
- the areas in FIG. 14 are different ones.
- the system is tasked to look for people who stop in the area.
- the exemplary report is an image from a video marked-up to include labels, graphics, statistical information, and an analysis of the statistical information.
- the area identified as coffee has statistical information of an average number of customers in the area of 2/hour and an average dwell time in the area as 5 seconds.
- the system determined this area to be a “cold” region, which means there is not much commercial activity through this region.
- the area identified as sodas has statistical information of an average number of customers in the area of 15 /hour and an average dwell time in the area as 22 seconds.
- the system determined this area to be a “hot” region, which means there is a large amount of commercial activity in this region.
- the exemplary report is an image from a video marked-up to include labels, graphics, statistical information, and an analysis of the statistical information.
- the area at the back of the aisle has average number of customers of 14/hour and is determined to have low traffic.
- the area at the front of the aisle has average number of customers of 83/hour and is determined to have high traffic.
- a point-and-click interface allows the operator to navigate through representative still and video imagery of regions and/or activities that the system has detected and archived.
- FIG. 15 illustrates another exemplary report for an aisle in a grocery store.
- the exemplary report includes an image from a video marked-up to include labels and trajectory indications and text describing the marked-up image.
- the system of the example is tasked with searching for a number of areas: length, position, and time of a trajectory of an object; time and location an object was immobile; correlation of trajectories with areas, as specified by the operator; and classification of an object as not a person, one person, two people, and three or more people.
- the video image of FIG. 15 is from a time period where the trajectories were recorded.
- two objects are each classified as one person, and one object is classified as not a person.
- Each object is assigned a label, namely Person ID 1032 , Person ID 1033 , and Object ID 32001 .
- Person ID 1032 the system determined the person spent 52 seconds in the area and 18 seconds at the position designated by the circle.
- Person ID 1033 the system determined the person spent 1 minute and 8 seconds in the area and 12 seconds at the position designated by the circle.
- the trajectories for Person ID 1032 and Person ID 1033 are included in the marked-up image.
- Object ID 32001 the system did not further analyze the object and indicated the position of the object with an X.
- calibration can be (1) manual, (2) semi-automatic using imagery from a video sensor or a video recorder, or (3) automatic using imagery from a video sensor or a video recorder. If imagery is required, it is assumed that the source video to be analyzed by the computer system 11 is from a video sensor that obtained the source video used for calibration.
- the operator provides to the computer system 11 the orientation and internal parameters for each of the video sensors 14 and the placement of each video sensor 14 with respect to the location.
- the computer system 11 can optionally maintain a map of the location, and the placement of the video sensors 14 can be indicated on the map.
- the map can be a two-dimensional or a three-dimensional representation of the environment.
- the manual calibration provides the system with sufficient information to determine the approximate size and relative position of an object.
- the operator can mark up a video image from the sensor with a graphic representing the appearance of a known-sized object, such as a person. If the operator can mark up an image in at least two different locations, the system can infer approximate camera calibration information.
- the video surveillance system is calibrated using a video source combined with input from the operator.
- a single person is placed in the field of view of the video sensor to be semi-automatic calibrated.
- the computer system 11 receives source video regarding the single person and automatically infers the size of person based on this data. As the number of locations in the field of view of the video sensor that the person is viewed is increased, and as the period of time that the person is viewed in the field of view of the video sensor is increased, the accuracy of the semi-automatic calibration is increased.
- FIG. 7 illustrates a flow diagram for semi-automatic calibration of the video surveillance system.
- Block 71 is the same as block 41 , except that a typical object moves through the scene at various trajectories.
- the typical object can have various velocities and be stationary at various positions. For example, the typical object moves as close to the video sensor as possible and then moves as far away from the video sensor as possible. This motion by the typical object can be repeated as necessary.
- Blocks 72 - 25 are the same as blocks 51 - 54 , respectively.
- the typical object is monitored throughout the scene. It is assumed that the only (or at least the most) stable object being tracked is the calibration object in the scene (i.e., the typical object moving through the scene). The size of the stable object is collected for every point in the scene at which it is observed, and this information is used to generate calibration information.
- the size of the typical object is identified for different areas throughout the scene.
- the size of the typical object is used to determine the approximate sizes of similar objects at various areas in the scene.
- a lookup table is generated matching typical apparent sizes of the typical object in various areas in the image, or internal and external camera calibration parameters are inferred.
- a display of stick-sized figures in various areas of the image indicate what the system determined as an appropriate height. Such a stick-sized figure is illustrated in FIG. 11 .
- a learning phase is conducted where the computer system 11 determines information regarding the location in the field of view of each video sensor.
- the computer system 11 receives source video of the location for a representative period of time (e.g., minutes, hours or days) that is sufficient to obtain a statistically significant sampling of objects typical to the scene and thus infer typical apparent sizes and locations.
- FIG. 8 illustrates a flow diagram for automatic calibration of the video surveillance system.
- Blocks 81 - 86 are the same as blocks 71 - 76 in FIG. 7 .
- a trackable region refers to a region in the field of view of a video sensor where an object can be easily and/or accurately tracked.
- An untrackable region refers to a region in the field of view of a video sensor where an object is not easily and/or accurately tracked and/or is difficult to track.
- An untrackable region can be referred to as being an unstable or insalient region.
- An object may be difficult to track because the object is too small (e.g., smaller than a predetermined threshold), appear for too short of time (e.g., less than a predetermined threshold), or exhibit motion that is not salient (e.g., not purposeful).
- a trackable region can be identified using, for example, the techniques described in ⁇ 13 ⁇ .
- FIG. 10 illustrates trackable regions determined for an aisle in a grocery store.
- the area at the far end of the aisle is determined to be insalient because too many confusers appear in this area.
- a confuser refers to something in a video that confuses a tracking scheme. Examples of a confuser include: leaves blowing; rain; a partially occluded object; and an object that appears for too short of time to be tracked accurately.
- the area at the near end of the aisle is determined to be salient because good tracks are determined for this area.
- the sizes of the objects are identified for different areas throughout the scene.
- the sizes of the objects are used to determine the approximate sizes of similar objects at various areas in the scene.
- a technique such as using a histogram or a statistical median, is used to determine the typical apparent height and width of objects as a function of location in the scene.
- typical objects can have a typical apparent height and width.
- a lookup table is generated matching typical apparent sizes of objects in various areas in the image, or the internal and external camera calibration parameters can be inferred.
- FIG. 11 illustrates identifying typical sizes for typical objects in the aisle of the grocery store from FIG. 10 .
- Typical objects are assumed to be people and are identified by a label accordingly.
- Typical sizes of people are determined through plots of the average height and average width for the people detected in the salient region. In the example, plot A is determined for the average height of an average person, and plot B is determined for the average width for one person, two people, and three people.
- the x-axis depicts the height of the blob in pixels
- the y-axis depicts the number of instances of a particular height, as identified on the x-axis, that occur.
- the peak of the line for plot A corresponds to the most common height of blobs in the designated region in the scene and, for this example, the peak corresponds to the average height of a person standing in the designated region.
- plot B a similar graph to plot A is generated for width as plot B.
- the x-axis depicts the width of the blobs in pixels
- the y-axis depicts the number of instances of a particular width, as identified on the x-axis, that occur.
- the peaks of the line for plot B correspond to the average width of a number of blobs. Assuming most groups contain only one person, the largest peak corresponds to the most common width, which corresponds to the average width of a single person in the designated region. Similarly, the second largest peak corresponds to the average width of two people in the designated region, and the third largest peak corresponds to the average width of three people in the designated region.
- FIG. 9 illustrates an additional flow diagram for the video surveillance system of the invention.
- the system analyses archived video primitives with event discriminators to generate additional reports, for example, without needing to review the entire source video.
- video primitives for the source video are archived in block 43 of FIG. 4 .
- the video content can be reanalyzed with the additional embodiment in a relatively short time because only the video primitives are reviewed and because the video source is not reprocessed. This provides a great efficiency improvement over current state-of-the-art systems because processing video imagery data is extremely computationally expensive, whereas analyzing the small-sized video primitives abstracted from the video is extremely computationally cheap.
- the following event discriminator can be generated: “The number of people stopping for more than 10 minutes in area A in the last two months.”
- the last two months of source video does not need to be reviewed. Instead, only the video primitives from the last two months need to be reviewed, which is a significantly more efficient process.
- Block 91 is the same as block 23 in FIG. 2 .
- archived video primitives are accessed.
- the video primitives are archived in block 43 of FIG. 4 .
- Blocks 93 and 94 are the same as blocks 44 and 45 in FIG. 4 .
- the invention can be used to analyze retail market space by measuring the efficacy of a retail display. Large sums of money are injected into retail displays in an effort to be as eye-catching as possible to promote sales of both the items on display and subsidiary items.
- the video surveillance system of the invention can be configured to measure the effectiveness of these retail displays.
- the video surveillance system is set up by orienting the field of view of a video sensor towards the space around the desired retail display.
- the operator selects an area representing the space around the desired retail display.
- the operator defines that he or she wishes to monitor people-sized objects that enter the area and either exhibit a measurable reduction in velocity or stop for an appreciable amount of time.
- the video surveillance system can provide reports for market analysis.
- the reports can include: the number of people who slowed down around the retail display; the number of people who stopped at the retail display; the breakdown of people who were interested in the retail display as a function of time, such as how many were interested on weekends and how many were interested in evenings; and video snapshots of the people who showed interest in the retail display.
- the market research information obtained from the video surveillance system can be combined with sales information from the store and customer records from the store to improve the analysts understanding of the efficacy of the retail display.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Library & Information Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
- This application claims the priority of U.S. patent application Ser. No. 09/694,712 filed Oct. 24, 2000, which is incorporated herein by reference.
- The invention relates to a system for automatic video surveillance employing video primitives.
- For the convenience of the reader, the references referred to herein are listed below. In the specification, the numerals within brackets refer to respective references. The listed references are incorporated herein by reference.
- The following references describe moving target detection:
- {1} A. Lipton, H. Fujiyoshi and R. S. Patil, “Moving Target Detection and Classification from Real-Time Video,” Proceedings of IEEE WACV '98, Princeton, N.J., 1998, pp. 8-14.
- {2} W. E. L. Grimson, et al., “Using Adaptive Tracking to Classify and Monitor Activities in a Site”, CVPR, pp. 22-29, June 1998.
- {3} A. J. Lipton, H. Fujiyoshi, R. S. Patil, “Moving Target Classification and Tracking from Real-time Video,” IUW, pp. 129-136, 1998.
- {4} T. J. Olson and F. Z. Brill, “Moving Object Detection and Event Recognition Algorithm for Smart Cameras,” IUW, pp. 159-175, May 1997.
- The following references describe detecting and tracking humans:
- {5} A. J. Lipton, “Local Application of Optical Flow to Analyse Rigid Versus Non-Rigid Motion,” International Conference on Computer Vision, Corfu, Greece, September 1999.
- {6} F. Bartolini, V. Cappellini, and A. Mecocci, “Counting people getting in and out of a bus by real-time image-sequence processing,” IVC, 12(1):36-41, January 1994.
- {7} M. Rossi and A. Bozzoli, “Tracking and counting moving people,” ICIP94, pp. 212-216, 1994.
- {8} C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time tracking of the human body,” Vismod, 1995.
- {9} L. Khoudour, L. Duvieubourg, J. P. Deparis, “Real-Time Pedestrian Counting by Active Linear Cameras,” JEI, 5(4):452-459, October 1996.
- {10} S. loffe, D. A. Forsyth, “Probabilistic Methods for Finding People,” IJCV, 43(1):45-68, June 2001.
- {11} M. Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob Tracker,” ICCV, 2001.
- The following references describe blob analysis:
- {12} D. M. Gavrila, “The Visual Analysis of Human Movement: A Survey,” CVIU, 73(1):82-98, January 1999.
- {13} Niels Haering and Niels da Vitoria Lobo, “Visual Event Detection,” Video Computing Series, Editor Mubarak Shah, 2001.
- The following references describe blob analysis for trucks, cars, and people:
- {14} Collins, Lipton, Kanade, Fujiyoshi, Duggins, Tsin, Tolliver, Enomoto, and Hasegawa, “A System for Video Surveillance and Monitoring: VSAM Final Report,” Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000.
- {15} Lipton, Fujiyoshi, and Patil, “Moving Target Classification and Tracking from Real-time Video,” 98 Darpa IUW, Nov. 20-23, 1998.
- The following reference describes analyzing a single-person blob and its contours:
- {16} C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. “Pfinder: Real-Time Tracking of the Human Body,” PAMI, vol 19, pp. 780-784, 1997.
- The following reference describes internal motion of blobs, including any motion-based segmentation:
- {17} M. Alhmen and C. Dyer, “Long-Range Spatiotemporal Motion Understanding Using Spatiotemporal Flow Curves,” Proc. IEEE CVPR, Lahaina, Maui, Hi., pp. 303-309, 1991.
- {18} L. Wixson, “Detecting Salient Motion by Accumulating Directionally Consistent Flow”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 774-781, August, 2000.
- Video surveillance of public spaces has become extremely widespread and accepted by the general public. Unfortunately, conventional video surveillance systems produce such prodigious volumes of data that an intractable problem results in the analysis of video surveillance data.
- A need exists to reduce the amount of video surveillance data so analysis of the video surveillance data can be conducted.
- A need exists to filter video surveillance data to identify desired portions of the video surveillance data.
- An object of the invention is to reduce the amount of video surveillance data so analysis of the video surveillance data can be conducted.
- An object of the invention is to filter video surveillance data to identify desired portions of the video surveillance data.
- An object of the invention is to produce a real time alarm based on an automatic detection of an event from video surveillance data.
- An object of the invention is to integrate data from surveillance sensors other than video for improved searching capabilities.
- An object of the invention is to integrate data from surveillance sensors other than video for improved event detection capabilities
- The invention includes an article of manufacture, a method, a system, and an apparatus for video surveillance.
- The article of manufacture of the invention includes a computer-readable medium comprising software for a video surveillance system, comprising code segments for operating the video surveillance system based on video primitives.
- The article of manufacture of the invention includes a computer-readable medium comprising software for a video surveillance system, comprising code segments for accessing archived video primitives, and code segments for extracting event occurrences from accessed archived video primitives.
- The system of the invention includes a computer system including a computer-readable medium having software to operate a computer in accordance with the invention.
- The apparatus of the invention includes a computer including a computer-readable medium having software to operate the computer in accordance with the invention.
- The article of manufacture of the invention includes a computer-readable medium having software to operate a computer in accordance with the invention.
- Moreover, the above objects and advantages of the invention are illustrative, and not exhaustive, of those that can be achieved by the invention. Thus, these and other objects and advantages of the invention will be apparent from the description herein, both as embodied herein and as modified in view of any variations which will be apparent to those skilled in the art.
- A “video” refers to motion pictures represented in analog and/or digital form. Examples of video include: television, movies, image sequences from a video camera or other observer, and computer-generated image sequences.
- A “frame” refers to a particular image or other discrete unit within a video.
- An “object” refers to an item of interest in a video. Examples of an object include: a person, a vehicle, an animal, and a physical subject.
- An “activity” refers to one or more actions and/or one or more composites of actions of one or more objects. Examples of an activity include: entering; exiting; stopping; moving; raising; lowering; growing; and shrinking.
- A “location” refers to a space where an activity may occur. A location can be, for example, scene-based or image-based. Examples of a scene-based location include: a public space; a store; a retail space; an office; a warehouse; a hotel room; a hotel lobby; a lobby of a building; a casino; a bus station; a train station; an airport; a port; a bus; a train; an airplane; and a ship. Examples of an image-based location include: a video image; a line in a video image; an area in a video image; a rectangular section of a video image; and a polygonal section of a video image.
- An “event” refers to one or more objects engaged in an activity. The event may be referenced with respect to a location and/or a time.
- A “computer” refers to any apparatus that is capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output. Examples of a computer include: a computer; a general purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a micro-computer; a server; an interactive television; a hybrid combination of a computer and an interactive television; and application-specific hardware to emulate a computer and/or software. A computer can have a single processor or multiple processors, which can operate in parallel and/or not in parallel. A computer also refers to two or more computers connected together via a network for transmitting or receiving information between the computers. An example of such a computer includes a distributed computer system for processing information via computers linked by a network.
- A “computer-readable medium” refers to any storage device used for storing data accessible by a computer. Examples of a computer-readable medium include: a magnetic hard disk; a floppy disk; an optical disk, such as a CD-ROM and a DVD; a magnetic tape; a memory chip; and a carrier wave used to carry computer-readable electronic data, such as those used in transmitting and receiving e-mail or in accessing a network.
- “Software” refers to prescribed rules to operate a computer. Examples of software include: software; code segments; instructions; computer programs; and programmed logic.
- A “computer system” refers to a system having a computer, where the computer comprises a computer-readable medium embodying software to operate the computer.
- A “network” refers to a number of computers and associated devices that are connected by communication facilities. A network involves permanent connections such as cables or temporary connections such as those made through telephone or other communication links. Examples of a network include: an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
- Embodiments of the invention are explained in greater detail by way of the drawings, where the same reference numerals refer to the same features.
-
FIG. 1 illustrates a plan view of the video surveillance system of the invention. -
FIG. 2 illustrates a flow diagram for the video surveillance system of the invention. -
FIG. 3 illustrates a flow diagram for tasking the video surveillance system. -
FIG. 4 illustrates a flow diagram for operating the video surveillance system. -
FIG. 5 illustrates a flow diagram for extracting video primitives for the video surveillance system. -
FIG. 6 illustrates a flow diagram for taking action with the video surveillance system. -
FIG. 7 illustrates a flow diagram for semi-automatic calibration of the video surveillance system. -
FIG. 8 illustrates a flow diagram for automatic calibration of the video surveillance system. -
FIG. 9 illustrates an additional flow diagram for the video surveillance system of the invention. -
FIGS. 10-15 illustrate examples of the video surveillance system of the invention applied to monitoring a grocery store. - The automatic video surveillance system of the invention is for monitoring a location for, for example, market research or security purposes. The system can be a dedicated video surveillance installation with purpose-built surveillance components, or the system can be a retrofit to existing video surveillance equipment that piggybacks off the surveillance video feeds. The system is capable of analyzing video data from live sources or from recorded media. The system can have a prescribed response to the analysis, such as record data, activate an alarm mechanism, or active another sensor system. The system is also capable of integrating with other surveillance system components. The system produces security or market research reports that can be tailored according to the needs of an operator and, as an option, can be presented through an interactive web-based interface, or other reporting mechanism.
- An operator is provided with maximum flexibility in configuring the system by using event discriminators. Event discriminators are identified with one or more objects (whose descriptions are based on video primitives), along with one or more optional spatial attributes, and/or one or more optional temporal attributes. For example, an operator can define an event discriminator (called a “loitering” event in this example) as a “person” object in the “automatic teller machine” space for “longer than 15 minutes” and “between 10:00 p.m. and 6:00 a.m.”
- Although the video surveillance system of the invention draws on well-known computer vision techniques from the public domain, the inventive video surveillance system has several unique and novel features that are not currently available. For example, current video surveillance systems use large volumes of video imagery as the primary commodity of information interchange. The system of the invention uses video primitives as the primary commodity with representative video imagery being used as collateral evidence. The system of the invention can also be calibrated (manually, semi-automatically, or automatically) and thereafter automatically can infer video primitives from video imagery. The system can further analyze previously processed video without needing to reprocess completely the video. By analyzing previously processed video, the system can perform inference analysis based on previously recorded video primitives, which greatly improves the analysis speed of the computer system.
- As another example, the system of the invention provides unique system tasking. Using equipment control directives, current video systems allow a user to position video sensors and, in some sophisticated conventional systems, to mask out regions of interest or disinterest. Equipment control directives are instructions to control the position, orientation, and focus of video cameras. Instead of equipment control directives, the system of the invention uses event discriminators based on video primitives as the primary tasking mechanism. With event discriminators and video primitives, an operator is provided with a much more intuitive approach over conventional systems for extracting useful information from the system. Rather than tasking a system with an equipment control directives, such as “
camera A pan 45 degrees to the left,” the system of the invention can be tasked in a human-intuitive manner with one or more event discriminators based on video primitives, such as “a person enters restricted area A.” - Using the invention for market research, the following are examples of the type of video surveillance that can be performed with the invention: counting people in a store; counting people in a part of a store; counting people who stop in a particular place in a store; measuring how long people spend in a store; measuring how long people spend in a part of a store; and measuring the length of a line in a store.
- Using the invention for security, the following are examples of the type of video surveillance that can be performed with the invention: determining when anyone enters a restricted area and storing associated imagery; determining when a person enters an area at unusual times; determining when changes to shelf space and storage space occur that might be unauthorized; determining when passengers aboard an aircraft approach the cockpit; determining when people tailgate through a secure portal; determining if there is an unattended bag in an airport; and determining if there is a theft of an asset.
-
FIG. 1 illustrates a plan view of the video surveillance system of the invention. Acomputer system 11 comprises acomputer 12 having a computer-readable medium 13 embodying software to operate thecomputer 12 according to the invention. Thecomputer system 11 is coupled to one ormore video sensors 14, one ormore video recorders 15, and one or more input/output (I/O)devices 16. Thevideo sensors 14 can also be optionally coupled to thevideo recorders 15 for direct recording of video surveillance data. The computer system is optionally coupled toother sensors 17. - The
video sensors 14 provide source video to thecomputer system 11. Eachvideo sensor 14 can be coupled to thecomputer system 11 using, for example, a direct connection (e.g., a firewire digital camera interface) or a network. Thevideo sensors 14 can exist prior to installation of the invention or can be installed as part of the invention. Examples of avideo sensor 14 include: a video camera; a digital video camera; a color camera; a monochrome camera; a camera; a camcorder, a PC camera; a webcam; an infra-red video camera; and a CCTV camera. - The
video recorders 15 receive video surveillance data from thecomputer system 11 for recording and/or provide source video to thecomputer system 11. Eachvideo recorder 15 can be coupled to thecomputer system 11 using, for example, a direct connection or a network. Thevideo recorders 15 can exist prior to installation of the invention or can be installed as part of the invention. Examples of avideo recorder 15 include: a video tape recorder; a digital video recorder; a video disk; a DVD; and a computer-readable medium. - The I/
O devices 16 provide input to and receive output from thecomputer system 11. The I/O devices 16 can be used to task thecomputer system 11 and produce reports from thecomputer system 11. Examples of I/O devices 16 include: a keyboard; a mouse; a stylus; a monitor; a printer; another computer system; a network; and an alarm. - The
other sensors 17 provide additional input to thecomputer system 11. Eachother sensor 17 can be coupled to thecomputer system 11 using, for example, a direct connection or a network. Theother sensors 17 can exit prior to installation of the invention or can be installed as part of the invention. Examples of anothersensor 17 include: a motion sensor; an optical tripwire; a biometric sensor; and a card-based or keypad-based authorization system. The outputs of theother sensors 17 can be recorded by thecomputer system 11, recording devices, and/or recording systems. -
FIG. 2 illustrates a flow diagram for the video surveillance system of the invention. Various aspects of the invention are exemplified with reference toFIGS. 10-15 , which illustrate examples of the video surveillance system of the invention applied to monitoring a grocery store. - In
block 21, the video surveillance system is set up as discussed forFIG. 1 . Eachvideo sensor 14 is orientated to a location for video surveillance. Thecomputer system 11 is connected to the video feeds from thevideo equipment - In
block 22, the video surveillance system is calibrated. Once the video surveillance system is in place fromblock 21, calibration occurs. The result ofblock 22 is the ability of the video surveillance system to determine an approximate absolute size and speed of a particular object (e.g., a person) at various places in the video image provided by the video sensor. The system can be calibrated using manual calibration, semi-automatic calibration, and automatic calibration. Calibration is further described after the discussion ofblock 24. - In
block 23 ofFIG. 2 , the video surveillance system is tasked. Tasking occurs after calibration inblock 22 and is optional. Tasking the video surveillance system involves specifying one or more event discriminators. Without tasking, the video surveillance system operates by detecting and archiving video primitives and associated video imagery without taking any action, as inblock 45 inFIG. 4 . -
FIG. 3 illustrates a flow diagram for tasking the video surveillance system to determine event discriminators. An event discriminator refers to one or more objects optionally interacting with one or more spatial attributes and/or one or more temporal attributes. An event discriminator is described in terms of video primitives. A video primitive refers to an observable attribute of an object viewed in a video feed. Examples of video primitives include the following: a classification; a size; a shape; a color; a texture; a position; a velocity; a speed; an internal motion; a motion; a salient motion; a feature of a salient motion; a scene change; a feature of a scene change; and a pre-defined model. - A classification refers to an identification of an object as belonging to a particular category or class. Examples of a classification include: a person; a dog; a vehicle; a police car; an individual person; and a specific type of object.
- A size refers to a dimensional attribute of an object. Examples of a size include: large; medium; small; flat; taller than 6 feet; shorter than 1 foot; wider than 3 feet; thinner than 4 feet; about human size; bigger than a human; smaller than a human; about the size of a car; a rectangle in an image with approximate dimensions in pixels; and a number of image pixels.
- A color refers to a chromatic attribute of an object. Examples of a color include: white; black; grey; red; a range of HSV values; a range of YUV values; a range of RGB values; an average RGB value; an average YUV value; and a histogram of RGB values.
- A texture refers to a pattern attribute of an object. Examples of texture features include: self-similarity; spectral power; linearity; and coarseness.
- An internal motion refers to a measure of the rigidity of an object. An example of a fairly rigid object is a car, which does not exhibit a great amount of internal motion. An example of a fairly non-rigid object is a person having swinging arms and legs, which exhibits a great amount of internal motion.
- A motion refers to any motion that can be automatically detected. Examples of a motion include: appearance of an object; disappearance of an object; a vertical movement of an object; a horizontal movement of an object; and a periodic movement of an object.
- A salient motion refers to any motion that can be automatically detected and can be tracked for some period of time. Such a moving object exhibits apparently purposeful motion. Examples of a salient motion include: moving from one place to another; and moving to interact with another object.
- A feature of a salient motion refers to a property of a salient motion. Examples of a feature of a salient motion include: a trajectory; a length of a trajectory in image space; an approximate length of a trajectory in a three-dimensional representation of the environment; a position of an object in image space as a function of time; an approximate position of an object in a three-dimensional representation of the environment as a function of time; a duration of a trajectory; a velocity (e.g., speed and direction) in image space; an approximate velocity (e.g., speed and direction) in a three-dimensional representation of the environment; a duration of time at a velocity; a change of velocity in image space; an approximate change of velocity in a three-dimensional representation of the environment; a duration of a change of velocity; cessation of motion; and a duration of cessation of motion. A velocity refers to the speed and direction of an object at a particular time. A trajectory refers a set of (position, velocity) pairs for an object for as long as the object can be tracked or for a time period.
- A scene change refers to any region of a scene that can be detected as changing over a period of time. Examples of a scene change include: an stationary object leaving a scene; an object entering a scene and becoming stationary; an object changing position in a scene; and an object changing appearance (e.g. color, shape, or size).
- A feature of a scene change refers to a property of a scene change. Examples of a feature of a scene change include: a size of a scene change in image space; an approximate size of a scene change in a three-dimensional representation of the environment; a time at which a scene change occurred; a location of a scene change in image space; and an approximate location of a scene change in a three-dimensional representation of the environment.
- A pre-defined model refers to an a priori known model of an object. Examples of a pre-defined include: an adult; a child; a vehicle; and a semi-trailer.
- In
block 31, one or more objects types of interests are identified in terms of video primitives or abstractions thereof. Examples of one or more objects include: an object; a person; a red object; two objects; two persons; and a vehicle. - In
block 32, one or more spatial areas of interest are identified. An area refers to one or more portions of an image from a source video or a spatial portion of a scene being viewed by a video sensor. An area also includes a combination of areas from various scenes and/or images. An area can be an image-based space (e.g., a line, a rectangle, a polygon, or a circle in a video image) or a three-dimensional space (e.g., a cube, or an area of floor space in a building). -
FIG. 12 illustrates identifying areas along an aisle in a grocery store. Four areas are identified: coffee; soda promotion; chips snacks; and bottled water. The areas are identified via a point-and-click interface with the system. - In
block 33, one or more temporal attributes of interest are optionally identified. Examples of a temporal attribute include: every 15 minutes; between 9:00 p.m. to 6:30 a.m.; less than 5 minutes; longer than 30 seconds; over the weekend; and within 20 minutes of. - In
block 34, a response is optionally identified. Examples of a response includes the following: activating a visual and/or audio alert on a system display; activating a visual and/or audio alarm system at the location; activating a silent alarm; activating a rapid response mechanism; locking a door; contacting a security service; forwarding data (e.g., image data, video data, video primitives; and/or analyzed data) to another computer system via a network, such as the Internet; saving such data to a designated computer-readable medium; activating some other sensor or surveillance system; tasking thecomputer system 11 and/or another computer system; and directing thecomputer system 11 and/or another computer system. - In
block 35, one or more discriminators are identified by describing interactions between video primitives (or their abstractions), spatial areas of interest, and temporal attributes of interest. An interaction is determined for a combination of one or more objects identified inblock 31, one or more spatial areas of interest identified inblock 32, and one or more temporal attributes of interest identified inblock 33. One or more responses identified inblock 34 are optionally associated with each event discriminator. - Examples of an event discriminator for a single object include: an object appears; a person appears; and a red object moves faster than 10 m/s.
- Examples of an event discriminator for multiple objects include: two objects come together; a person exits a vehicle; and a red object moves next to a blue object.
- Examples of an event discriminator for an object and a spatial attribute include: an object crosses a line; an object enters an area; and a person crosses a line from the left.
- Examples of an event discriminator for an object and a temporal attribute include: an object appears at 10:00 p.m.; a person travels faster then 2 m/s between 9:00 a.m. and 5:00 p.m.; and a vehicle appears on the weekend.
- Examples of an event discriminator for an object, a spatial attribute, and a temporal attribute include: a person crosses a line between midnight and 6:00 a.m.; and a vehicle stops in an area for longer than 10 minutes.
- An example of an event discriminator for an object, a spatial attribute, and a temporal attribute associated with a response include: a person enters an area between midnight and 6:00 a.m., and a security service is notified.
- In
block 24 ofFIG. 2 , the video surveillance system is operated. The video surveillance system of the invention operates automatically, detects and archives video primitives of objects in the scene, and detects event occurrences in real time using event discriminators. In addition, action is taken in real time, as appropriate, such as activating alarms, generating reports, and generating output. The reports and output can be displayed and/or stored locally to the system or elsewhere via a network, such as the Internet.FIG. 4 illustrates a flow diagram for operating the video surveillance system. - In
block 41, thecomputer system 11 obtains source video from thevideo sensors 14 and/or thevideo recorders 15. - In
block 42, video primitives are extracted in real time from the source video. As an option, non-video primitives can be obtained and/or extracted from one or moreother sensors 17 and used with the invention. The extraction of video primitives is illustrated withFIG. 5 . -
FIG. 5 illustrates a flow diagram for extracting video primitives for the video surveillance system.Blocks block 51, objects are detected via movement. Any motion detection algorithm for detecting movement between frames at the pixel level can be used for this block. As an example, the three frame differencing technique can be used, which is discussed in {1}. The detected objects are forwarded to block 53. - In
block 52, objects are detected via change. Any change detection algorithm for detecting changes from a background model can be used for this block. An object is detected in this block if one or more pixels in a frame are deemed to be in the foreground of the frame because the pixels do not conform to a background model of the frame. As an example, a stochastic background modeling technique, such as dynamically adaptive background subtraction, can be used, which is described in {1} and U.S. patent application Ser. No. 09/694,712 filed Oct. 24, 2000. The detected objects are forwarded to block 53. - The motion detection technique of
block 51 and the change detection technique ofblock 52 are complimentary techniques, where each technique advantageously addresses deficiencies in the other technique. As an option, additional and/or alternative detection schemes can be used for the techniques discussed forblocks - As an option, if the
video sensor 14 has motion (e.g., a video camera that sweeps, zooms, and/or translates), an additional block can be inserted before blocks betweenblocks blocks - In
block 53, blobs are generated. In general, a blob is any object in a frame. Examples of a blob include: a moving object, such as a person or a vehicle; and a consumer product, such as a piece of furniture, a clothing item, or a retail shelf item. Blobs are generated using the detected objects fromblocks - In
block 54, blobs are tracked. Any technique for tracking blobs can be used for this block. For example, Kalman filtering or the CONDENSATION algorithm can be used. As another example, a template matching technique, such as described in {1}, can be used. As a further example, a multi-hypothesis Kalman tracker can be used, which is described in {5}. As yet another example, the frame-to-frame tracking technique described in U.S. patent application Ser. No. 09/694,712 filed Oct. 24, 2000, can be used. For the example of a location being a grocery store, examples of objects that can be tracked include moving people, inventory items, and inventory moving appliances, such as shopping carts or trolleys. - As an option, blocks 51-54 can be replaced with any detection and tracking scheme, as is known to those of ordinary skill. An example of such a detection and tracking scheme is described in {11}.
- In
block 55, each trajectory of the tracked objects is analyzed to determine if the trajectory is salient. If the trajectory is insalient, the trajectory represents an object exhibiting unstable motion or represents an object of unstable size or color, and the corresponding object is rejected and is no longer analyzed by the system. If the trajectory is salient, the trajectory represents an object that is potentially of interest. A trajectory is determined to be salient or insalient by applying a salience measure to the trajectory. Techniques for determining a trajectory to be salient or insalient are described in {13} and {18}. - In
block 56, each object is classified. The general type of each object is determined as the classification of the object. Classification can be performed by a number of techniques, and examples of such techniques include using a neural network classifier {14} and using a linear discriminatant classifier {14}. Examples of classification are the same as those discussed forblock 23. - In
block 57, video primitives are identified using the information from blocks 51-56 and additional processing as necessary. Examples of video primitives identified are the same as those discussed forblock 23. As an example, for size, the system can use information obtained from calibration inblock 22 as a video primitive. From calibration, the system has sufficient information to determine the approximate size of an object. As another example, the system can use velocity as measured fromblock 54 as a video primitive. - In
block 43, the video primitives fromblock 42 are archived. The video primitives can be archived in the computer-readable medium 13 or another computer-readable medium. Along with the video primitives, associated frames or video imagery from the source video can be archived. - In
block 44, event occurrences are extracted from the video primitives using event discriminators. The video primitives are determined inblock 42, and the event discriminators are determined from tasking the system inblock 23. The event discriminators are used to filter the video primitives to determine if any event occurrences occurred. For example, an event discriminator can be looking for a “wrong way” event as defined by a person traveling the “wrong way” into an area between 9:00 a.m. and 5:00 p.m. The event discriminator checks all video primitives being generated according toFIG. 5 and determines if any video primitives exist which have the following properties: a timestamp between 9:00 a.m. and 5:00 p.m., a classification of “person” or “group of people”, a position inside the area, and a “wrong” direction of motion. - In
block 45, action is taken for each event occurrence extracted inblock 44, as appropriate.FIG. 6 illustrates a flow diagram for taking action with the video surveillance system. - In
block 61, responses are undertaken as dictated by the event discriminators that detected the event occurrences. The response, if any, are identified for each event discriminator inblock 34. - In
block 62, an activity record is generated for each event occurrence that occurred. The activity record includes, for example: details of a trajectory of an object; a time of detection of an object; a position of detection of an object, and a description or definition of the event discriminator that was employed. The activity record can include information, such as video primitives, needed by the event discriminator. The activity record can also include representative video or still imagery of the object(s) and/or area(s) involved in the event occurrence. The activity record is stored on a computer-readable medium. - In
block 63, output is generated. The output is based on the event occurrences extracted inblock 44 and a direct feed of the source video fromblock 41. The output is stored on a computer-readable medium, displayed on thecomputer system 11 or another computer system, or forwarded to another computer system. As the system operates, information regarding event occurrences is collected, and the information can be viewed by the operator at any time, including real time. Examples of formats for receiving the information include: a display on a monitor of a computer system; a hard copy; a computer-readable medium; and an interactive web page. - The output can include a display from the direct feed of the source video from
block 41. For example, the source video can be displayed on a window of the monitor of a computer system or on a closed-circuit monitor. Further, the output can include source video marked up with graphics to highlight the objects and/or areas involved in the event occurrence. - The output can include one or more reports for an operator based on the requirements of the operator and/or the event occurrences. Examples of a report include: the number of event occurrences which occurred; the positions in the scene in which the event occurrence occurred; the times at which the event occurrences occurred; representative imagery of each event occurrence; representative video of each event occurrence; raw statistical data; statistics of event occurrences (e.g., how many, how often, where, and when); and/or human-readable graphical displays.
-
FIGS. 13 and 14 illustrate an exemplary report for the aisle in the grocery store ofFIG. 15 . InFIGS. 13 and 14 , several areas are identified inblock 22 and are labeled accordingly in the images. The areas inFIG. 13 match those inFIG. 12 , and the areas inFIG. 14 are different ones. The system is tasked to look for people who stop in the area. - In
FIG. 13 , the exemplary report is an image from a video marked-up to include labels, graphics, statistical information, and an analysis of the statistical information. For example, the area identified as coffee has statistical information of an average number of customers in the area of 2/hour and an average dwell time in the area as 5 seconds. The system determined this area to be a “cold” region, which means there is not much commercial activity through this region. As another example, the area identified as sodas has statistical information of an average number of customers in the area of 15/hour and an average dwell time in the area as 22 seconds. The system determined this area to be a “hot” region, which means there is a large amount of commercial activity in this region. - In
FIG. 14 , the exemplary report is an image from a video marked-up to include labels, graphics, statistical information, and an analysis of the statistical information. For example, the area at the back of the aisle has average number of customers of 14/hour and is determined to have low traffic. As another example, the area at the front of the aisle has average number of customers of 83/hour and is determined to have high traffic. - For either
FIG. 13 orFIG. 14 , if the operator desires more information about any particular area or any particular area, a point-and-click interface allows the operator to navigate through representative still and video imagery of regions and/or activities that the system has detected and archived. -
FIG. 15 illustrates another exemplary report for an aisle in a grocery store. The exemplary report includes an image from a video marked-up to include labels and trajectory indications and text describing the marked-up image. The system of the example is tasked with searching for a number of areas: length, position, and time of a trajectory of an object; time and location an object was immobile; correlation of trajectories with areas, as specified by the operator; and classification of an object as not a person, one person, two people, and three or more people. - The video image of
FIG. 15 is from a time period where the trajectories were recorded. Of the three objects, two objects are each classified as one person, and one object is classified as not a person. Each object is assigned a label, namelyPerson ID 1032, Person ID 1033, and Object ID 32001. ForPerson ID 1032, the system determined the person spent 52 seconds in the area and 18 seconds at the position designated by the circle. For Person ID 1033, the system determined the person spent 1 minute and 8 seconds in the area and 12 seconds at the position designated by the circle. The trajectories forPerson ID 1032 and Person ID 1033 are included in the marked-up image. For Object ID 32001, the system did not further analyze the object and indicated the position of the object with an X. - Referring back to block 22 in
FIG. 2 , calibration can be (1) manual, (2) semi-automatic using imagery from a video sensor or a video recorder, or (3) automatic using imagery from a video sensor or a video recorder. If imagery is required, it is assumed that the source video to be analyzed by thecomputer system 11 is from a video sensor that obtained the source video used for calibration. - For manual calibration, the operator provides to the
computer system 11 the orientation and internal parameters for each of thevideo sensors 14 and the placement of eachvideo sensor 14 with respect to the location. Thecomputer system 11 can optionally maintain a map of the location, and the placement of thevideo sensors 14 can be indicated on the map. The map can be a two-dimensional or a three-dimensional representation of the environment. In addition, the manual calibration provides the system with sufficient information to determine the approximate size and relative position of an object. - Alternatively, for manual calibration, the operator can mark up a video image from the sensor with a graphic representing the appearance of a known-sized object, such as a person. If the operator can mark up an image in at least two different locations, the system can infer approximate camera calibration information.
- For semi-automatic and automatic calibration, no knowledge of the camera parameters or scene geometry is required. From semi-automatic and automatic calibration, a lookup table is generated to approximate the size of an object at various areas in the scene, or the internal and external camera calibration parameters of the camera are inferred.
- For semi-automatic calibration, the video surveillance system is calibrated using a video source combined with input from the operator. A single person is placed in the field of view of the video sensor to be semi-automatic calibrated. The
computer system 11 receives source video regarding the single person and automatically infers the size of person based on this data. As the number of locations in the field of view of the video sensor that the person is viewed is increased, and as the period of time that the person is viewed in the field of view of the video sensor is increased, the accuracy of the semi-automatic calibration is increased. -
FIG. 7 illustrates a flow diagram for semi-automatic calibration of the video surveillance system.Block 71 is the same asblock 41, except that a typical object moves through the scene at various trajectories. The typical object can have various velocities and be stationary at various positions. For example, the typical object moves as close to the video sensor as possible and then moves as far away from the video sensor as possible. This motion by the typical object can be repeated as necessary. - Blocks 72-25 are the same as blocks 51-54, respectively.
- In
block 76, the typical object is monitored throughout the scene. It is assumed that the only (or at least the most) stable object being tracked is the calibration object in the scene (i.e., the typical object moving through the scene). The size of the stable object is collected for every point in the scene at which it is observed, and this information is used to generate calibration information. - In
block 77, the size of the typical object is identified for different areas throughout the scene. The size of the typical object is used to determine the approximate sizes of similar objects at various areas in the scene. With this information, a lookup table is generated matching typical apparent sizes of the typical object in various areas in the image, or internal and external camera calibration parameters are inferred. As a sample output, a display of stick-sized figures in various areas of the image indicate what the system determined as an appropriate height. Such a stick-sized figure is illustrated inFIG. 11 . - For automatic calibration, a learning phase is conducted where the
computer system 11 determines information regarding the location in the field of view of each video sensor. During automatic calibration, thecomputer system 11 receives source video of the location for a representative period of time (e.g., minutes, hours or days) that is sufficient to obtain a statistically significant sampling of objects typical to the scene and thus infer typical apparent sizes and locations. -
FIG. 8 illustrates a flow diagram for automatic calibration of the video surveillance system. Blocks 81-86 are the same as blocks 71-76 inFIG. 7 . - In
block 87, trackable regions in the field of view of the video sensor are identified. A trackable region refers to a region in the field of view of a video sensor where an object can be easily and/or accurately tracked. An untrackable region refers to a region in the field of view of a video sensor where an object is not easily and/or accurately tracked and/or is difficult to track. An untrackable region can be referred to as being an unstable or insalient region. An object may be difficult to track because the object is too small (e.g., smaller than a predetermined threshold), appear for too short of time (e.g., less than a predetermined threshold), or exhibit motion that is not salient (e.g., not purposeful). A trackable region can be identified using, for example, the techniques described in {13}. -
FIG. 10 illustrates trackable regions determined for an aisle in a grocery store. The area at the far end of the aisle is determined to be insalient because too many confusers appear in this area. A confuser refers to something in a video that confuses a tracking scheme. Examples of a confuser include: leaves blowing; rain; a partially occluded object; and an object that appears for too short of time to be tracked accurately. In contrast, the area at the near end of the aisle is determined to be salient because good tracks are determined for this area. - In
block 88, the sizes of the objects are identified for different areas throughout the scene. The sizes of the objects are used to determine the approximate sizes of similar objects at various areas in the scene. A technique, such as using a histogram or a statistical median, is used to determine the typical apparent height and width of objects as a function of location in the scene. In one part of the image of the scene, typical objects can have a typical apparent height and width. With this information, a lookup table is generated matching typical apparent sizes of objects in various areas in the image, or the internal and external camera calibration parameters can be inferred. -
FIG. 11 illustrates identifying typical sizes for typical objects in the aisle of the grocery store fromFIG. 10 . Typical objects are assumed to be people and are identified by a label accordingly. Typical sizes of people are determined through plots of the average height and average width for the people detected in the salient region. In the example, plot A is determined for the average height of an average person, and plot B is determined for the average width for one person, two people, and three people. - For plot A, the x-axis depicts the height of the blob in pixels, and the y-axis depicts the number of instances of a particular height, as identified on the x-axis, that occur. The peak of the line for plot A corresponds to the most common height of blobs in the designated region in the scene and, for this example, the peak corresponds to the average height of a person standing in the designated region.
- Assuming people travel in loosely knit groups, a similar graph to plot A is generated for width as plot B. For plot B, the x-axis depicts the width of the blobs in pixels, and the y-axis depicts the number of instances of a particular width, as identified on the x-axis, that occur. The peaks of the line for plot B correspond to the average width of a number of blobs. Assuming most groups contain only one person, the largest peak corresponds to the most common width, which corresponds to the average width of a single person in the designated region. Similarly, the second largest peak corresponds to the average width of two people in the designated region, and the third largest peak corresponds to the average width of three people in the designated region.
-
FIG. 9 illustrates an additional flow diagram for the video surveillance system of the invention. In this additional embodiment, the system analyses archived video primitives with event discriminators to generate additional reports, for example, without needing to review the entire source video. Anytime after a video source has been processed according to the invention, video primitives for the source video are archived inblock 43 ofFIG. 4 . The video content can be reanalyzed with the additional embodiment in a relatively short time because only the video primitives are reviewed and because the video source is not reprocessed. This provides a great efficiency improvement over current state-of-the-art systems because processing video imagery data is extremely computationally expensive, whereas analyzing the small-sized video primitives abstracted from the video is extremely computationally cheap. As an example, the following event discriminator can be generated: “The number of people stopping for more than 10 minutes in area A in the last two months.” With the additional embodiment, the last two months of source video does not need to be reviewed. Instead, only the video primitives from the last two months need to be reviewed, which is a significantly more efficient process. -
Block 91 is the same asblock 23 inFIG. 2 . - In
block 92, archived video primitives are accessed. The video primitives are archived inblock 43 ofFIG. 4 . -
Blocks FIG. 4 . - As an exemplary application, the invention can be used to analyze retail market space by measuring the efficacy of a retail display. Large sums of money are injected into retail displays in an effort to be as eye-catching as possible to promote sales of both the items on display and subsidiary items. The video surveillance system of the invention can be configured to measure the effectiveness of these retail displays.
- For this exemplary application, the video surveillance system is set up by orienting the field of view of a video sensor towards the space around the desired retail display. During tasking, the operator selects an area representing the space around the desired retail display. As a discriminator, the operator defines that he or she wishes to monitor people-sized objects that enter the area and either exhibit a measurable reduction in velocity or stop for an appreciable amount of time.
- After operating for some period of time, the video surveillance system can provide reports for market analysis. The reports can include: the number of people who slowed down around the retail display; the number of people who stopped at the retail display; the breakdown of people who were interested in the retail display as a function of time, such as how many were interested on weekends and how many were interested in evenings; and video snapshots of the people who showed interest in the retail display. The market research information obtained from the video surveillance system can be combined with sales information from the store and customer records from the store to improve the analysts understanding of the efficacy of the retail display.
- The embodiments and examples discussed herein are non-limiting examples.
- The invention is described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and the invention, therefore, as defined in the claims is intended to cover all such changes and modifications as fall within the true spirit of the invention.
Claims (28)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/987,707 US20050146605A1 (en) | 2000-10-24 | 2001-11-15 | Video surveillance system employing video primitives |
EP02752397A EP1444643A4 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
KR10-2004-7007340A KR20040053307A (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
CNB028227727A CN100433048C (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
IL16177702A IL161777A0 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employingvideo primitives |
JP2003546290A JP4369233B2 (en) | 2001-11-15 | 2002-07-17 | Surveillance television equipment using video primitives |
MXPA04004698A MXPA04004698A (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives. |
CNA2008101491240A CN101399971A (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
CA002465954A CA2465954A1 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
EP12151069A EP2466546A1 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
AU2002366148A AU2002366148A1 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
EP12151067A EP2466545A1 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
PCT/US2002/022688 WO2003044727A1 (en) | 2001-11-15 | 2002-07-17 | Video surveillance system employing video primitives |
US11/057,154 US20050162515A1 (en) | 2000-10-24 | 2005-02-15 | Video surveillance system |
US11/098,385 US7868912B2 (en) | 2000-10-24 | 2005-04-05 | Video surveillance system employing video primitives |
US11/167,218 US9892606B2 (en) | 2001-11-15 | 2005-06-28 | Video surveillance system employing video primitives |
HK05106910.9A HK1073375A1 (en) | 2001-11-15 | 2005-08-11 | Video surveillance system and its method that employing video primitives |
US11/300,581 US8711217B2 (en) | 2000-10-24 | 2005-12-15 | Video surveillance system employing video primitives |
US11/828,842 US8564661B2 (en) | 2000-10-24 | 2007-07-26 | Video analytic rule detection system and method |
US12/569,116 US7932923B2 (en) | 2000-10-24 | 2009-09-29 | Video surveillance system employing video primitives |
US14/058,423 US10645350B2 (en) | 2000-10-24 | 2013-10-21 | Video analytic rule detection system and method |
US14/203,065 US9378632B2 (en) | 2000-10-24 | 2014-03-10 | Video surveillance system employing video primitives |
US15/044,902 US10026285B2 (en) | 2000-10-24 | 2016-02-16 | Video surveillance system employing video primitives |
US16/035,942 US10347101B2 (en) | 2000-10-24 | 2018-07-16 | Video surveillance system employing video primitives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/694,712 US6954498B1 (en) | 2000-10-24 | 2000-10-24 | Interactive video manipulation |
US09/987,707 US20050146605A1 (en) | 2000-10-24 | 2001-11-15 | Video surveillance system employing video primitives |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/694,712 Continuation-In-Part US6954498B1 (en) | 2000-10-24 | 2000-10-24 | Interactive video manipulation |
US11/828,842 Continuation-In-Part US8564661B2 (en) | 2000-10-24 | 2007-07-26 | Video analytic rule detection system and method |
US14/058,423 Continuation-In-Part US10645350B2 (en) | 2000-10-24 | 2013-10-21 | Video analytic rule detection system and method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/057,154 Continuation-In-Part US20050162515A1 (en) | 2000-10-24 | 2005-02-15 | Video surveillance system |
US12/569,116 Continuation US7932923B2 (en) | 2000-10-24 | 2009-09-29 | Video surveillance system employing video primitives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050146605A1 true US20050146605A1 (en) | 2005-07-07 |
Family
ID=25533496
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/987,707 Abandoned US20050146605A1 (en) | 2000-10-24 | 2001-11-15 | Video surveillance system employing video primitives |
US12/569,116 Expired - Fee Related US7932923B2 (en) | 2000-10-24 | 2009-09-29 | Video surveillance system employing video primitives |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/569,116 Expired - Fee Related US7932923B2 (en) | 2000-10-24 | 2009-09-29 | Video surveillance system employing video primitives |
Country Status (11)
Country | Link |
---|---|
US (2) | US20050146605A1 (en) |
EP (3) | EP2466545A1 (en) |
JP (1) | JP4369233B2 (en) |
KR (1) | KR20040053307A (en) |
CN (2) | CN101399971A (en) |
AU (1) | AU2002366148A1 (en) |
CA (1) | CA2465954A1 (en) |
HK (1) | HK1073375A1 (en) |
IL (1) | IL161777A0 (en) |
MX (1) | MXPA04004698A (en) |
WO (1) | WO2003044727A1 (en) |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040161133A1 (en) * | 2002-02-06 | 2004-08-19 | Avishai Elazar | System and method for video content analysis-based detection, surveillance and alarm management |
US20050036659A1 (en) * | 2002-07-05 | 2005-02-17 | Gad Talmon | Method and system for effectively performing event detection in a large number of concurrent image sequences |
US20050168576A1 (en) * | 2002-05-20 | 2005-08-04 | Junichi Tanahashi | Monitor device and monitor system |
US20050169367A1 (en) * | 2000-10-24 | 2005-08-04 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20050285941A1 (en) * | 2004-06-28 | 2005-12-29 | Haigh Karen Z | Monitoring devices |
US20060195569A1 (en) * | 2005-02-14 | 2006-08-31 | Barker Geoffrey T | System and method for using self-learning rules to enable adaptive security monitoring |
US20060222206A1 (en) * | 2005-03-30 | 2006-10-05 | Cernium, Inc. | Intelligent video behavior recognition with multiple masks and configurable logic inference module |
US20060232673A1 (en) * | 2005-04-19 | 2006-10-19 | Objectvideo, Inc. | Video-based human verification system and method |
US20060262958A1 (en) * | 2005-05-19 | 2006-11-23 | Objectvideo, Inc. | Periodic motion detection with applications to multi-grabbing |
US20060291695A1 (en) * | 2005-06-24 | 2006-12-28 | Objectvideo, Inc. | Target detection and tracking from overhead video streams |
US20070002141A1 (en) * | 2005-04-19 | 2007-01-04 | Objectvideo, Inc. | Video-based human, non-human, and/or motion verification system and method |
US20070013776A1 (en) * | 2001-11-15 | 2007-01-18 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20070127774A1 (en) * | 2005-06-24 | 2007-06-07 | Objectvideo, Inc. | Target detection and tracking from video streams |
US20070272734A1 (en) * | 2006-05-25 | 2007-11-29 | Objectvideo, Inc. | Intelligent video verification of point of sale (POS) transactions |
US20070285510A1 (en) * | 2006-05-24 | 2007-12-13 | Object Video, Inc. | Intelligent imagery-based sensor |
US20080018738A1 (en) * | 2005-05-31 | 2008-01-24 | Objectvideo, Inc. | Video analytics for retail business process monitoring |
US20080074496A1 (en) * | 2006-09-22 | 2008-03-27 | Object Video, Inc. | Video analytics for banking business process monitoring |
WO2008062068A1 (en) * | 2006-11-23 | 2008-05-29 | Inc 01 | Process for the analysis of the positioning of products on store shelves |
US20080240616A1 (en) * | 2007-04-02 | 2008-10-02 | Objectvideo, Inc. | Automatic camera calibration and geo-registration using objects that provide positional information |
US20080273754A1 (en) * | 2007-05-04 | 2008-11-06 | Leviton Manufacturing Co., Inc. | Apparatus and method for defining an area of interest for image sensing |
US20090060276A1 (en) * | 2007-09-04 | 2009-03-05 | Jie Yu | Method for detecting and/or tracking objects in motion in a scene under surveillance that has interfering factors; apparatus; and computer program |
US20090060277A1 (en) * | 2007-09-04 | 2009-03-05 | Objectvideo, Inc. | Background modeling with feature blocks |
US20090315996A1 (en) * | 2008-05-09 | 2009-12-24 | Sadiye Zeyno Guler | Video tracking systems and methods employing cognitive vision |
US20100074472A1 (en) * | 2000-02-04 | 2010-03-25 | Garoutte Maurice V | System for automated screening of security cameras |
US20100106707A1 (en) * | 2008-10-29 | 2010-04-29 | International Business Machines Corporation | Indexing and searching according to attributes of a person |
US20100114623A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Using detailed process information at a point of sale |
US20100114671A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Creating a training tool |
US20100114746A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Generating an alert based on absence of a given person in a transaction |
US20100110183A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Automatically calibrating regions of interest for video surveillance |
US20100114617A1 (en) * | 2008-10-30 | 2010-05-06 | International Business Machines Corporation | Detecting potentially fraudulent transactions |
US20100135528A1 (en) * | 2008-11-29 | 2010-06-03 | International Business Machines Corporation | Analyzing repetitive sequential events |
US20100134624A1 (en) * | 2008-10-31 | 2010-06-03 | International Business Machines Corporation | Detecting primitive events at checkout |
US7822224B2 (en) | 2005-06-22 | 2010-10-26 | Cernium Corporation | Terrain map summary elements |
US20100293220A1 (en) * | 2007-05-19 | 2010-11-18 | Videotec S.P.A. | Method for coordinating a plurality of sensors |
US20100290710A1 (en) * | 2009-04-22 | 2010-11-18 | Nikhil Gagvani | System and method for motion detection in a surveillance video |
WO2011036661A1 (en) * | 2009-09-24 | 2011-03-31 | Elbit Systems Ltd. | System and method for long-range surveillance of a scene and alerting of predetermined unusual activity |
US7932923B2 (en) | 2000-10-24 | 2011-04-26 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20110188701A1 (en) * | 2010-02-01 | 2011-08-04 | International Business Machines Corporation | Optimizing video stream processing |
US20120002054A1 (en) * | 2009-02-10 | 2012-01-05 | Panasonic Corporation | Monitoring camera system, video recording apparatus and video recording method |
US8193909B1 (en) | 2010-11-15 | 2012-06-05 | Intergraph Technologies Company | System and method for camera control in a surveillance system |
WO2012110654A1 (en) * | 2011-02-18 | 2012-08-23 | Hella Kgaa Hueck & Co. | Method for evaluating a plurality of time-offset pictures, device for evaluating pictures, and monitoring system |
US20120218414A1 (en) * | 2008-11-29 | 2012-08-30 | International Business Machines Corporation | Location-Aware Event Detection |
WO2012119903A1 (en) | 2011-03-04 | 2012-09-13 | Deutsche Telekom Ag | Method and system for detecting a fall and issuing an alarm |
EP2521101A1 (en) * | 2011-05-04 | 2012-11-07 | Infared Integrated Systems Limited | Monitoring occupancy of a space |
WO2012151651A1 (en) * | 2011-05-12 | 2012-11-15 | Solink Corporation | Video analytics system |
US8457401B2 (en) | 2001-03-23 | 2013-06-04 | Objectvideo, Inc. | Video segmentation using statistical pixel modeling |
WO2013135964A1 (en) * | 2012-03-14 | 2013-09-19 | Mirasys Oy | A method, an apparatus and a computer program for estimating a size of an object in an image |
US8564661B2 (en) | 2000-10-24 | 2013-10-22 | Objectvideo, Inc. | Video analytic rule detection system and method |
US8711217B2 (en) | 2000-10-24 | 2014-04-29 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20140132728A1 (en) * | 2012-11-12 | 2014-05-15 | Shopperception, Inc. | Methods and systems for measuring human interaction |
US20140267735A1 (en) * | 2013-03-15 | 2014-09-18 | James Carey | Investigation generation in an observation and surveillance system |
US8929588B2 (en) | 2011-07-22 | 2015-01-06 | Honeywell International Inc. | Object tracking |
US9020261B2 (en) | 2001-03-23 | 2015-04-28 | Avigilon Fortress Corporation | Video segmentation using statistical pixel modeling |
US9158974B1 (en) | 2014-07-07 | 2015-10-13 | Google Inc. | Method and system for motion vector-based video monitoring and event categorization |
US9170707B1 (en) | 2014-09-30 | 2015-10-27 | Google Inc. | Method and system for generating a smart time-lapse video clip |
US20160239782A1 (en) * | 2015-02-12 | 2016-08-18 | Wipro Limited | Method and device for estimated efficiency of an employee of an organization |
US9449229B1 (en) | 2014-07-07 | 2016-09-20 | Google Inc. | Systems and methods for categorizing motion event candidates |
US9501915B1 (en) | 2014-07-07 | 2016-11-22 | Google Inc. | Systems and methods for analyzing a video stream |
US20170053191A1 (en) * | 2014-04-28 | 2017-02-23 | Nec Corporation | Image analysis system, image analysis method, and storage medium |
USD782495S1 (en) | 2014-10-07 | 2017-03-28 | Google Inc. | Display screen or portion thereof with graphical user interface |
US10127783B2 (en) | 2014-07-07 | 2018-11-13 | Google Llc | Method and device for processing motion events |
US10140827B2 (en) | 2014-07-07 | 2018-11-27 | Google Llc | Method and system for processing motion event notifications |
US10223911B2 (en) | 2016-10-31 | 2019-03-05 | Echelon Corporation | Video data and GIS mapping for traffic monitoring, event detection and change prediction |
US10289917B1 (en) * | 2013-11-12 | 2019-05-14 | Kuna Systems Corporation | Sensor to characterize the behavior of a visitor or a notable event |
US20190172293A1 (en) * | 2013-03-15 | 2019-06-06 | James Carey | Investigation generation in an observation and surveillance system |
US10438071B2 (en) | 2017-01-25 | 2019-10-08 | Echelon Corporation | Distributed system for mining, correlating, and analyzing locally obtained traffic data including video |
US10657382B2 (en) | 2016-07-11 | 2020-05-19 | Google Llc | Methods and systems for person detection in a video feed |
US11004093B1 (en) * | 2009-06-29 | 2021-05-11 | Videomining Corporation | Method and system for detecting shopping groups based on trajectory dynamics |
US11082701B2 (en) | 2016-05-27 | 2021-08-03 | Google Llc | Methods and devices for dynamic adaptation of encoding bitrate for video streaming |
US11113937B2 (en) | 2016-03-01 | 2021-09-07 | James Carey | Theft prediction and tracking system |
US20210373526A1 (en) * | 2020-05-29 | 2021-12-02 | Sick Ag | Optoelectronic safety sensor and method for safeguarding a machine |
US11417202B2 (en) | 2016-03-01 | 2022-08-16 | James Carey | Theft prediction and tracking system |
US11424845B2 (en) * | 2020-02-24 | 2022-08-23 | Samsung Electronics Co., Ltd. | Electronic apparatus and control method thereof |
US11599259B2 (en) | 2015-06-14 | 2023-03-07 | Google Llc | Methods and systems for presenting alert event indicators |
US11710387B2 (en) | 2017-09-20 | 2023-07-25 | Google Llc | Systems and methods of detecting and responding to a visitor to a smart home environment |
US11783010B2 (en) | 2017-05-30 | 2023-10-10 | Google Llc | Systems and methods of person recognition in video streams |
US12125369B2 (en) | 2023-06-01 | 2024-10-22 | Google Llc | Systems and methods of detecting and responding to a visitor to a smart home environment |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050162515A1 (en) * | 2000-10-24 | 2005-07-28 | Objectvideo, Inc. | Video surveillance system |
US7697026B2 (en) * | 2004-03-16 | 2010-04-13 | 3Vr Security, Inc. | Pipeline architecture for analyzing multiple video streams |
WO2006011804A1 (en) * | 2004-07-30 | 2006-02-02 | Eagle Vision Systems B.V. | System and method for the detection of persons |
US8131022B2 (en) * | 2004-08-31 | 2012-03-06 | Panasonic Corporation | Surveillance recorder and its method |
SE528330C2 (en) * | 2004-11-11 | 2006-10-24 | Totalfoersvarets Forskningsins | Method for monitoring a geographical area |
US7372975B2 (en) * | 2004-12-06 | 2008-05-13 | Mitsubishi Electric Research Laboratory, Inc. | Method for secure background modeling in images |
ITMN20050003A1 (en) * | 2005-01-14 | 2006-07-15 | Renato Grassi | ANTI-ROBBERY CAMERA |
JP4449782B2 (en) * | 2005-02-25 | 2010-04-14 | ソニー株式会社 | Imaging apparatus and image distribution method |
US7240834B2 (en) * | 2005-03-21 | 2007-07-10 | Mitsubishi Electric Research Laboratories, Inc. | Real-time retail marketing system and method |
US9036028B2 (en) | 2005-09-02 | 2015-05-19 | Sensormatic Electronics, LLC | Object tracking and alerts |
JP4321541B2 (en) * | 2006-04-03 | 2009-08-26 | ソニー株式会社 | Monitoring device and monitoring method |
WO2007142777A2 (en) * | 2006-06-02 | 2007-12-13 | Intellivid Corporation | Systems and methods for distributed monitoring of remote sites |
US8072482B2 (en) | 2006-11-09 | 2011-12-06 | Innovative Signal Anlysis | Imaging system having a rotatable image-directing device |
US8098891B2 (en) * | 2007-11-29 | 2012-01-17 | Nec Laboratories America, Inc. | Efficient multi-hypothesis multi-human 3D tracking in crowded scenes |
US8180107B2 (en) * | 2009-02-13 | 2012-05-15 | Sri International | Active coordinated tracking for multi-camera systems |
US20120020518A1 (en) * | 2009-02-24 | 2012-01-26 | Shinya Taguchi | Person tracking device and person tracking program |
US9430923B2 (en) * | 2009-11-30 | 2016-08-30 | Innovative Signal Analysis, Inc. | Moving object detection, tracking, and displaying systems |
US8594482B2 (en) | 2010-05-13 | 2013-11-26 | International Business Machines Corporation | Auditing video analytics through essence generation |
US8478048B2 (en) | 2010-07-08 | 2013-07-02 | International Business Machines Corporation | Optimization of human activity determination from video |
US8953039B2 (en) | 2011-07-01 | 2015-02-10 | Utc Fire & Security Corporation | System and method for auto-commissioning an intelligent video system |
JP5423740B2 (en) * | 2011-08-23 | 2014-02-19 | 日本電気株式会社 | Video providing apparatus, video using apparatus, video providing system, video providing method, and computer program |
US8781995B2 (en) * | 2011-09-23 | 2014-07-15 | Fujitsu Limited | Range queries in binary decision diagrams |
US9338409B2 (en) | 2012-01-17 | 2016-05-10 | Avigilon Fortress Corporation | System and method for home health care monitoring |
US9195883B2 (en) | 2012-04-09 | 2015-11-24 | Avigilon Fortress Corporation | Object tracking and best shot detection system |
US9311645B2 (en) * | 2012-08-31 | 2016-04-12 | Ncr Corporation | Techniques for checkout security using video surveillance |
WO2014039050A1 (en) | 2012-09-07 | 2014-03-13 | Siemens Aktiengesellschaft | Methods and apparatus for establishing exit/entry criteria for a secure location |
US9582671B2 (en) | 2014-03-06 | 2017-02-28 | Sensity Systems Inc. | Security and data privacy for lighting sensory networks |
US9165190B2 (en) | 2012-09-12 | 2015-10-20 | Avigilon Fortress Corporation | 3D human pose and shape modeling |
US9374870B2 (en) | 2012-09-12 | 2016-06-21 | Sensity Systems Inc. | Networked lighting infrastructure for sensing applications |
US9213781B1 (en) | 2012-09-19 | 2015-12-15 | Placemeter LLC | System and method for processing image data |
US9256970B2 (en) * | 2013-03-15 | 2016-02-09 | Hewlett Packard Enterprise Development Lp | Visual analytics of multivariate session data using concentric rings with overlapping periods |
US9933297B2 (en) | 2013-03-26 | 2018-04-03 | Sensity Systems Inc. | System and method for planning and monitoring a light sensory network |
WO2014160708A1 (en) | 2013-03-26 | 2014-10-02 | Sensity Systems, Inc. | Sensor nodes with multicast transmissions in lighting sensory network |
US20160225160A1 (en) * | 2013-09-26 | 2016-08-04 | Mitsubishi Electric Corporation | Monitoring camera, monitoring system, and motion detection method |
US9746370B2 (en) | 2014-02-26 | 2017-08-29 | Sensity Systems Inc. | Method and apparatus for measuring illumination characteristics of a luminaire |
US11120271B2 (en) | 2014-02-28 | 2021-09-14 | Second Spectrum, Inc. | Data processing systems and methods for enhanced augmentation of interactive video content |
US10521671B2 (en) | 2014-02-28 | 2019-12-31 | Second Spectrum, Inc. | Methods and systems of spatiotemporal pattern recognition for video content development |
US20150248917A1 (en) * | 2014-02-28 | 2015-09-03 | Second Spectrum, Inc. | System and method for performing spatio-temporal analysis of sporting events |
US10713494B2 (en) | 2014-02-28 | 2020-07-14 | Second Spectrum, Inc. | Data processing systems and methods for generating and interactive user interfaces and interactive game systems based on spatiotemporal analysis of video content |
US11861906B2 (en) | 2014-02-28 | 2024-01-02 | Genius Sports Ss, Llc | Data processing systems and methods for enhanced augmentation of interactive video content |
US10769446B2 (en) | 2014-02-28 | 2020-09-08 | Second Spectrum, Inc. | Methods and systems of combining video content with one or more augmentations |
US10417570B2 (en) | 2014-03-06 | 2019-09-17 | Verizon Patent And Licensing Inc. | Systems and methods for probabilistic semantic sensing in a sensory network |
US10362112B2 (en) | 2014-03-06 | 2019-07-23 | Verizon Patent And Licensing Inc. | Application environment for lighting sensory networks |
US10186123B2 (en) * | 2014-04-01 | 2019-01-22 | Avigilon Fortress Corporation | Complex event recognition in a sensor network |
CN103914850B (en) * | 2014-04-22 | 2017-02-15 | 南京影迹网络科技有限公司 | Automatic video labeling method and system based on motion matching |
CN104094279B (en) * | 2014-04-30 | 2017-05-10 | 中国科学院自动化研究所 | Large-range-first cross-camera visual target re-identification method |
JP2017525064A (en) | 2014-05-30 | 2017-08-31 | プレイスメーター インコーポレイテッドPlacemeter Inc. | System and method for activity monitoring using video data |
US9384400B2 (en) * | 2014-07-08 | 2016-07-05 | Nokia Technologies Oy | Method and apparatus for identifying salient events by analyzing salient video segments identified by sensor information |
US10139819B2 (en) | 2014-08-22 | 2018-11-27 | Innovative Signal Analysis, Inc. | Video enabled inspection using unmanned aerial vehicles |
US9760792B2 (en) | 2015-03-20 | 2017-09-12 | Netra, Inc. | Object detection and classification |
US9922271B2 (en) | 2015-03-20 | 2018-03-20 | Netra, Inc. | Object detection and classification |
US11334751B2 (en) | 2015-04-21 | 2022-05-17 | Placemeter Inc. | Systems and methods for processing video data for activity monitoring |
US10043078B2 (en) | 2015-04-21 | 2018-08-07 | Placemeter LLC | Virtual turnstile system and method |
KR102307055B1 (en) * | 2015-04-28 | 2021-10-01 | 삼성전자주식회사 | Method and apparatus for extracting static pattern based on output of event-based sensor |
US10380431B2 (en) | 2015-06-01 | 2019-08-13 | Placemeter LLC | Systems and methods for processing video streams |
KR101750758B1 (en) | 2015-09-16 | 2017-06-26 | 삼성중공업 주식회사 | Transporting apparatus |
EP3513566A4 (en) * | 2016-09-16 | 2019-09-11 | Second Spectrum, Inc. | Methods and systems of spatiotemporal pattern recognition for video content development |
EP3312762B1 (en) | 2016-10-18 | 2023-03-01 | Axis AB | Method and system for tracking an object in a defined area |
EP3340104B1 (en) | 2016-12-21 | 2023-11-29 | Axis AB | A method for generating alerts in a video surveillance system |
US20180150697A1 (en) * | 2017-01-09 | 2018-05-31 | Seematics Systems Ltd | System and method for using subsequent behavior to facilitate learning of visual event detectors |
EP3619684A4 (en) | 2017-05-04 | 2021-06-09 | Second Spectrum, Inc. | Method and apparatus for automatic intrinsic camera calibration using images of a planar calibration pattern |
US10489654B1 (en) * | 2017-08-04 | 2019-11-26 | Amazon Technologies, Inc. | Video analysis method and system |
US10599947B2 (en) | 2018-03-09 | 2020-03-24 | Ricoh Co., Ltd. | On-demand visual analysis focalized on salient events |
US11206375B2 (en) | 2018-03-28 | 2021-12-21 | Gal Zuckerman | Analyzing past events by utilizing imagery data captured by a plurality of on-road vehicles |
KR102020845B1 (en) * | 2018-04-04 | 2019-09-11 | 주식회사 자비스넷 | Calibration system and method for camera using object identification |
US11138418B2 (en) | 2018-08-06 | 2021-10-05 | Gal Zuckerman | Systems and methods for tracking persons by utilizing imagery data captured by on-road vehicles |
TWI698121B (en) * | 2018-11-05 | 2020-07-01 | 緯創資通股份有限公司 | Network device, image processing method, and computer readable medium |
US11113535B2 (en) | 2019-11-08 | 2021-09-07 | Second Spectrum, Inc. | Determining tactical relevance and similarity of video sequences |
CN111107272A (en) * | 2020-01-02 | 2020-05-05 | 广州高博软件科技有限公司 | Multimedia video stream summarization system and process |
RU2730112C1 (en) * | 2020-03-02 | 2020-08-17 | ООО "Ай Ти Ви групп" | System and method of identifying objects in composite object |
Citations (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3812287A (en) * | 1969-05-12 | 1974-05-21 | J Lemelson | Video detection system |
US4249207A (en) * | 1979-02-20 | 1981-02-03 | Computing Devices Company | Perimeter surveillance system |
US4257063A (en) * | 1979-03-23 | 1981-03-17 | Ham Industries, Inc. | Video monitoring system and method |
US4737847A (en) * | 1985-10-11 | 1988-04-12 | Matsushita Electric Works, Ltd. | Abnormality supervising system |
US4908704A (en) * | 1987-12-11 | 1990-03-13 | Kabushiki Kaisha Toshiba | Method and apparatus for obtaining an object image and distance data of a moving object |
US5491511A (en) * | 1994-02-04 | 1996-02-13 | Odle; James A. | Multimedia capture and audit system for a video surveillance network |
US5515453A (en) * | 1994-01-21 | 1996-05-07 | Beacon System, Inc. | Apparatus and method for image processing in symbolic space |
US5623249A (en) * | 1995-01-26 | 1997-04-22 | New Product Development, Inc. | Video monitor motion sensor |
US5696503A (en) * | 1993-07-23 | 1997-12-09 | Condition Monitoring Systems, Inc. | Wide area traffic surveillance using a multisensor tracking system |
US5802361A (en) * | 1994-09-30 | 1998-09-01 | Apple Computer, Inc. | Method and system for searching graphic images and videos |
US5801943A (en) * | 1993-07-23 | 1998-09-01 | Condition Monitoring Systems | Traffic surveillance and simulation apparatus |
US5872865A (en) * | 1995-02-08 | 1999-02-16 | Apple Computer, Inc. | Method and system for automatic classification of video images |
US5926210A (en) * | 1995-07-28 | 1999-07-20 | Kalatel, Inc. | Mobile, ground-based platform security system which transmits images that were taken prior to the generation of an input signal |
US5956081A (en) * | 1996-10-23 | 1999-09-21 | Katz; Barry | Surveillance system having graphic video integration controller and full motion video switcher |
US5963203A (en) * | 1997-07-03 | 1999-10-05 | Obvious Technology, Inc. | Interactive video icon with designated viewing position |
US5983147A (en) * | 1997-02-06 | 1999-11-09 | Sandia Corporation | Video occupant detection and classification |
US5987211A (en) * | 1993-01-11 | 1999-11-16 | Abecassis; Max | Seamless transmission of non-sequential video segments |
US5999189A (en) * | 1995-08-04 | 1999-12-07 | Microsoft Corporation | Image compression to reduce pixel and texture memory requirements in a real-time image generator |
US6014461A (en) * | 1994-11-30 | 2000-01-11 | Texas Instruments Incorporated | Apparatus and method for automatic knowlege-based object identification |
US6031573A (en) * | 1996-10-31 | 2000-02-29 | Sensormatic Electronics Corporation | Intelligent video information management system performing multiple functions in parallel |
US6069653A (en) * | 1997-09-17 | 2000-05-30 | Sony United Kingdom Limited | Security control system and method of operation |
US6075560A (en) * | 1994-04-25 | 2000-06-13 | Katz; Barry | Asynchronous video event and transaction data multiplexing technique for surveillance systems |
US6088484A (en) * | 1996-11-08 | 2000-07-11 | Hughes Electronics Corporation | Downloading of personalization layers for symbolically compressed objects |
US6091771A (en) * | 1997-08-01 | 2000-07-18 | Wells Fargo Alarm Services, Inc. | Workstation for video security system |
US6144375A (en) * | 1998-08-14 | 2000-11-07 | Praja Inc. | Multi-perspective viewer for content-based interactivity |
US6151413A (en) * | 1997-07-14 | 2000-11-21 | Samsung Electronics Co., Ltd. | Method of coding an arbitrary shape of an object when all pixels of an entire region of a display are used as texture for the object |
US6166744A (en) * | 1997-11-26 | 2000-12-26 | Pathfinder Systems, Inc. | System for combining virtual images with real-world scenes |
US6177886B1 (en) * | 1997-02-12 | 2001-01-23 | Trafficmaster Plc | Methods and systems of monitoring traffic flow |
US6201473B1 (en) * | 1999-04-23 | 2001-03-13 | Sensormatic Electronics Corporation | Surveillance system for observing shopping carts |
US6211907B1 (en) * | 1998-06-01 | 2001-04-03 | Robert Jeff Scaman | Secure, vehicle mounted, surveillance system |
US6226388B1 (en) * | 1999-01-05 | 2001-05-01 | Sharp Labs Of America, Inc. | Method and apparatus for object tracking for automatic controls in video devices |
US20010019357A1 (en) * | 2000-02-28 | 2001-09-06 | Wataru Ito | Intruding object monitoring method and intruding object monitoring system |
US6297844B1 (en) * | 1999-11-24 | 2001-10-02 | Cognex Corporation | Video safety curtain |
US6307885B1 (en) * | 1996-09-25 | 2001-10-23 | Hyundai Electronics Ind. Co., Ltd. | Device for and method of coding/decoding image information |
US20010033330A1 (en) * | 2000-02-04 | 2001-10-25 | Garoutte Maurice V. | System for automated screening of security cameras |
US6310916B1 (en) * | 1998-03-14 | 2001-10-30 | Daewoo Electronics Co., Ltd. | Method and apparatus for encoding a video signal |
US20010035907A1 (en) * | 2000-03-10 | 2001-11-01 | Broemmelsiek Raymond M. | Method and apparatus for object tracking and detection |
US6326964B1 (en) * | 1995-08-04 | 2001-12-04 | Microsoft Corporation | Method for sorting 3D object geometry among image chunks for rendering in a layered graphics rendering system |
US6351492B1 (en) * | 1998-03-14 | 2002-02-26 | Daewoo Electronics Co., Ltd. | Method and apparatus for encoding a video signal |
US6351265B1 (en) * | 1993-10-15 | 2002-02-26 | Personalized Online Photo Llc | Method and apparatus for producing an electronic image |
US20020024446A1 (en) * | 1998-10-20 | 2002-02-28 | Vsd Limited | Smoke detection |
US20020051058A1 (en) * | 2000-09-28 | 2002-05-02 | Wataru Ito | Intruding object detecting method and intruding object monitoring apparatus employing the method |
US6404455B1 (en) * | 1997-05-14 | 2002-06-11 | Hitachi Denshi Kabushiki Kaisha | Method for tracking entering object and apparatus for tracking and monitoring entering object |
US6411724B1 (en) * | 1999-07-02 | 2002-06-25 | Koninklijke Philips Electronics N.V. | Using meta-descriptors to represent multimedia information |
US20020082769A1 (en) * | 2000-11-21 | 2002-06-27 | Gary Church | Airport auditing and information system |
US20020095490A1 (en) * | 2000-09-28 | 2002-07-18 | Barker Geoffrey T. | System and method for providing configurable security monitoring utilizing an integrated information portal |
US6424370B1 (en) * | 1999-10-08 | 2002-07-23 | Texas Instruments Incorporated | Motion based event detection system and method |
US20020135483A1 (en) * | 1999-12-23 | 2002-09-26 | Christian Merheim | Monitoring system |
US20020163521A1 (en) * | 1993-09-10 | 2002-11-07 | John Ellenby | Electro-optic vision systems |
US20020191851A1 (en) * | 2001-05-01 | 2002-12-19 | Giora Keinan | Efficient encoding of video frames using pre-encoded primitives |
US6504479B1 (en) * | 2000-09-07 | 2003-01-07 | Comtrak Technologies Llc | Integrated security system |
US6525658B2 (en) * | 2001-06-11 | 2003-02-25 | Ensco, Inc. | Method and device for event detection utilizing data from a multiplicity of sensor sources |
US20030051255A1 (en) * | 1993-10-15 | 2003-03-13 | Bulman Richard L. | Object customization and presentation system |
US20030053659A1 (en) * | 2001-06-29 | 2003-03-20 | Honeywell International Inc. | Moving object assessment system and method |
US6542840B2 (en) * | 2000-01-27 | 2003-04-01 | Matsushita Electric Industrial Co., Ltd. | Calibration system, target apparatus and calibration method |
US6570608B1 (en) * | 1998-09-30 | 2003-05-27 | Texas Instruments Incorporated | System and method for detecting interactions of people and vehicles |
US6573907B1 (en) * | 1997-07-03 | 2003-06-03 | Obvious Technology | Network distribution and management of interactive video and multi-media containers |
US6597800B1 (en) * | 1997-11-05 | 2003-07-22 | Bae Systems Plc | Automatic target recognition apparatus and process |
US6628835B1 (en) * | 1998-08-31 | 2003-09-30 | Texas Instruments Incorporated | Method and system for defining and recognizing complex events in a video sequence |
US6646676B1 (en) * | 2000-05-17 | 2003-11-11 | Mitsubishi Electric Research Laboratories, Inc. | Networked surveillance and control system |
US6696945B1 (en) * | 2001-10-09 | 2004-02-24 | Diamondback Vision, Inc. | Video tripwire |
US6707852B1 (en) * | 1997-03-14 | 2004-03-16 | Microsoft Corporation | Digital video signal encoder and encoding method |
US6724915B1 (en) * | 1998-03-13 | 2004-04-20 | Siemens Corporate Research, Inc. | Method for tracking a video object in a time-ordered sequence of image frames |
US6727938B1 (en) * | 1997-04-14 | 2004-04-27 | Robert Bosch Gmbh | Security system with maskable motion detection and camera with an adjustable field of view |
US6738424B1 (en) * | 1999-12-27 | 2004-05-18 | Objectvideo, Inc. | Scene model generation from video for use in video processing |
US6741977B1 (en) * | 1999-01-29 | 2004-05-25 | Hitachi, Ltd. | Image recording/reproducing apparatus in monitor system |
US20040161133A1 (en) * | 2002-02-06 | 2004-08-19 | Avishai Elazar | System and method for video content analysis-based detection, surveillance and alarm management |
US6801662B1 (en) * | 2000-10-10 | 2004-10-05 | Hrl Laboratories, Llc | Sensor fusion architecture for vision-based occupant detection |
US6816184B1 (en) * | 1998-04-30 | 2004-11-09 | Texas Instruments Incorporated | Method and apparatus for mapping a location from a video image to a map |
US20040240542A1 (en) * | 2002-02-06 | 2004-12-02 | Arie Yeredor | Method and apparatus for video frame sequence-based object tracking |
US6829371B1 (en) * | 2000-04-29 | 2004-12-07 | Cognex Corporation | Auto-setup of a video safety curtain system |
US6865580B1 (en) * | 1999-07-02 | 2005-03-08 | Microsoft Corporation | Dynamic multi-object collection and comparison and action |
US20050157169A1 (en) * | 2004-01-20 | 2005-07-21 | Tomas Brodsky | Object blocking zones to reduce false alarms in video surveillance systems |
US20050162515A1 (en) * | 2000-10-24 | 2005-07-28 | Objectvideo, Inc. | Video surveillance system |
US6924801B1 (en) * | 1999-02-09 | 2005-08-02 | Microsoft Corporation | Method and apparatus for early culling of occluded objects |
US20050168574A1 (en) * | 2004-01-30 | 2005-08-04 | Objectvideo, Inc. | Video-based passback event detection |
US20050169367A1 (en) * | 2000-10-24 | 2005-08-04 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US6954498B1 (en) * | 2000-10-24 | 2005-10-11 | Objectvideo, Inc. | Interactive video manipulation |
US6987883B2 (en) * | 2002-12-31 | 2006-01-17 | Objectvideo, Inc. | Video scene background maintenance using statistical pixel modeling |
US6987528B1 (en) * | 1999-05-27 | 2006-01-17 | Mitsubishi Denki Kabushiki Kaisha | Image collection apparatus and method |
US7023469B1 (en) * | 1998-04-30 | 2006-04-04 | Texas Instruments Incorporated | Automatic video monitoring system which selectively saves information |
US20060232673A1 (en) * | 2005-04-19 | 2006-10-19 | Objectvideo, Inc. | Video-based human verification system and method |
US20070002141A1 (en) * | 2005-04-19 | 2007-01-04 | Objectvideo, Inc. | Video-based human, non-human, and/or motion verification system and method |
US20070013776A1 (en) * | 2001-11-15 | 2007-01-18 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20070052803A1 (en) * | 2005-09-08 | 2007-03-08 | Objectvideo, Inc. | Scanning camera-based video surveillance system |
US20070127774A1 (en) * | 2005-06-24 | 2007-06-07 | Objectvideo, Inc. | Target detection and tracking from video streams |
US20080100704A1 (en) * | 2000-10-24 | 2008-05-01 | Objectvideo, Inc. | Video surveillance system employing video primitives |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508439B2 (en) | 1987-05-29 | 1996-06-19 | ソニー株式会社 | High efficiency encoder |
US5610653A (en) | 1992-02-07 | 1997-03-11 | Abecassis; Max | Method and system for automatically tracking a zoomed video image |
WO1994003014A1 (en) | 1992-07-24 | 1994-02-03 | Koz Mark C | Low power video security monitoring system |
US5331417A (en) | 1992-09-15 | 1994-07-19 | Digital Pictures, Inc. | System and method of displaying a plurality of digital video images |
US5850352A (en) | 1995-03-31 | 1998-12-15 | The Regents Of The University Of California | Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images |
US5860086A (en) | 1995-06-07 | 1999-01-12 | International Business Machines Corporation | Video processor with serialization FIFO |
US5912980A (en) | 1995-07-13 | 1999-06-15 | Hunke; H. Martin | Target acquisition and tracking |
US5886701A (en) | 1995-08-04 | 1999-03-23 | Microsoft Corporation | Graphics rendering device and method for operating same |
US5969755A (en) * | 1996-02-05 | 1999-10-19 | Texas Instruments Incorporated | Motion based event detection system and method |
US5959690A (en) | 1996-02-20 | 1999-09-28 | Sas Institute, Inc. | Method and apparatus for transitions and other special effects in digital motion video |
JP3800257B2 (en) * | 1996-08-02 | 2006-07-26 | オムロン株式会社 | Attention information measurement method and apparatus, and various systems using the same |
KR100211055B1 (en) | 1996-10-28 | 1999-07-15 | 정선종 | Scarable transmitting method for divided image objects based on content |
US6256115B1 (en) | 1997-02-21 | 2001-07-03 | Worldquest Network, Inc. | Facsimile network |
US5963202A (en) | 1997-04-14 | 1999-10-05 | Instant Video Technologies, Inc. | System and method for distributing and managing digital video information in a video distribution network |
JPH10290449A (en) * | 1997-04-14 | 1998-10-27 | Shimizu Corp | Video monitoring system |
US8073921B2 (en) | 1997-07-01 | 2011-12-06 | Advanced Technology Company, LLC | Methods for remote monitoring and control of appliances over a computer network |
EP0893923A1 (en) | 1997-07-23 | 1999-01-27 | Texas Instruments France | Video communication system |
US6097429A (en) | 1997-08-01 | 2000-08-01 | Esco Electronics Corporation | Site control unit for video security system |
US6360234B2 (en) | 1997-08-14 | 2002-03-19 | Virage, Inc. | Video cataloger system with synchronized encoders |
EP0967584B1 (en) * | 1998-04-30 | 2004-10-20 | Texas Instruments Incorporated | Automatic video monitoring system |
US6721454B1 (en) * | 1998-10-09 | 2004-04-13 | Sharp Laboratories Of America, Inc. | Method for automatic extraction of semantically significant events from video |
AU1468500A (en) * | 1998-11-06 | 2000-05-29 | Trustees Of Columbia University In The City Of New York, The | Systems and methods for interoperable multimedia content descriptions |
JP2000175174A (en) * | 1998-12-07 | 2000-06-23 | Mitsubishi Electric Corp | Image processor for supervision |
US7356830B1 (en) | 1999-07-09 | 2008-04-08 | Koninklijke Philips Electronics N.V. | Method and apparatus for linking a video segment to another segment or information source |
US6123123A (en) | 1999-08-03 | 2000-09-26 | M. Carder Industries, Incorporated | Non-stretch breakaway hose particularly for fuel dispenser |
JP2001175868A (en) * | 1999-12-22 | 2001-06-29 | Nec Corp | Method and device for human detection |
US6774905B2 (en) | 1999-12-23 | 2004-08-10 | Wespot Ab | Image data processing |
JP3387911B2 (en) * | 2000-01-27 | 2003-03-17 | 松下電器産業株式会社 | Calibration system and calibration method |
US7522186B2 (en) | 2000-03-07 | 2009-04-21 | L-3 Communications Corporation | Method and apparatus for providing immersive surveillance |
US20050146605A1 (en) | 2000-10-24 | 2005-07-07 | Lipton Alan J. | Video surveillance system employing video primitives |
US6678413B1 (en) * | 2000-11-24 | 2004-01-13 | Yiqing Liang | System and method for object identification and behavior characterization using video analysis |
US7167519B2 (en) | 2001-12-20 | 2007-01-23 | Siemens Corporate Research, Inc. | Real-time video object generation for smart cameras |
KR100465244B1 (en) | 2002-02-05 | 2005-01-13 | 삼성전자주식회사 | Motion detection apparatus and method for image signal |
US7197072B1 (en) | 2002-05-30 | 2007-03-27 | Intervideo, Inc. | Systems and methods for resetting rate control state variables upon the detection of a scene change within a group of pictures |
US8752197B2 (en) | 2002-06-18 | 2014-06-10 | International Business Machines Corporation | Application independent system, method, and architecture for privacy protection, enhancement, control, and accountability in imaging service systems |
DE60314223D1 (en) | 2002-07-05 | 2007-07-19 | Agent Video Intelligence Ltd | METHOD AND SYSTEM FOR EFFECTIVELY IDENTIFICATION OF EVENT IN A LARGE NUMBER OF SIMULTANEOUS IMAGES |
US7227893B1 (en) | 2002-08-22 | 2007-06-05 | Xlabs Holdings, Llc | Application-specific object-based segmentation and recognition system |
US20040113933A1 (en) | 2002-10-08 | 2004-06-17 | Northrop Grumman Corporation | Split and merge behavior analysis and understanding using Hidden Markov Models |
CA2505831C (en) | 2002-11-12 | 2014-06-10 | Intellivid Corporation | Method and system for tracking and behavioral monitoring of multiple objects moving through multiple fields-of-view |
US7660439B1 (en) | 2003-12-16 | 2010-02-09 | Verificon Corporation | Method and system for flow detection and motion analysis |
US7447331B2 (en) | 2004-02-24 | 2008-11-04 | International Business Machines Corporation | System and method for generating a viewable video index for low bandwidth applications |
US8289390B2 (en) | 2004-07-28 | 2012-10-16 | Sri International | Method and apparatus for total situational awareness and monitoring |
JP2009247654A (en) | 2008-04-08 | 2009-10-29 | Tomy Co Ltd | Toy vehicle shooting device |
-
2001
- 2001-11-15 US US09/987,707 patent/US20050146605A1/en not_active Abandoned
-
2002
- 2002-07-17 IL IL16177702A patent/IL161777A0/en unknown
- 2002-07-17 AU AU2002366148A patent/AU2002366148A1/en not_active Abandoned
- 2002-07-17 JP JP2003546290A patent/JP4369233B2/en not_active Expired - Lifetime
- 2002-07-17 WO PCT/US2002/022688 patent/WO2003044727A1/en active Application Filing
- 2002-07-17 EP EP12151067A patent/EP2466545A1/en not_active Ceased
- 2002-07-17 KR KR10-2004-7007340A patent/KR20040053307A/en not_active Application Discontinuation
- 2002-07-17 EP EP02752397A patent/EP1444643A4/en not_active Ceased
- 2002-07-17 CN CNA2008101491240A patent/CN101399971A/en active Pending
- 2002-07-17 EP EP12151069A patent/EP2466546A1/en not_active Ceased
- 2002-07-17 CN CNB028227727A patent/CN100433048C/en not_active Expired - Lifetime
- 2002-07-17 CA CA002465954A patent/CA2465954A1/en not_active Abandoned
- 2002-07-17 MX MXPA04004698A patent/MXPA04004698A/en not_active Application Discontinuation
-
2005
- 2005-08-11 HK HK05106910.9A patent/HK1073375A1/en not_active IP Right Cessation
-
2009
- 2009-09-29 US US12/569,116 patent/US7932923B2/en not_active Expired - Fee Related
Patent Citations (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3812287A (en) * | 1969-05-12 | 1974-05-21 | J Lemelson | Video detection system |
US4249207A (en) * | 1979-02-20 | 1981-02-03 | Computing Devices Company | Perimeter surveillance system |
US4257063A (en) * | 1979-03-23 | 1981-03-17 | Ham Industries, Inc. | Video monitoring system and method |
US4737847A (en) * | 1985-10-11 | 1988-04-12 | Matsushita Electric Works, Ltd. | Abnormality supervising system |
US4908704A (en) * | 1987-12-11 | 1990-03-13 | Kabushiki Kaisha Toshiba | Method and apparatus for obtaining an object image and distance data of a moving object |
US5987211A (en) * | 1993-01-11 | 1999-11-16 | Abecassis; Max | Seamless transmission of non-sequential video segments |
US5696503A (en) * | 1993-07-23 | 1997-12-09 | Condition Monitoring Systems, Inc. | Wide area traffic surveillance using a multisensor tracking system |
US5801943A (en) * | 1993-07-23 | 1998-09-01 | Condition Monitoring Systems | Traffic surveillance and simulation apparatus |
US20020163521A1 (en) * | 1993-09-10 | 2002-11-07 | John Ellenby | Electro-optic vision systems |
US6351265B1 (en) * | 1993-10-15 | 2002-02-26 | Personalized Online Photo Llc | Method and apparatus for producing an electronic image |
US20030051255A1 (en) * | 1993-10-15 | 2003-03-13 | Bulman Richard L. | Object customization and presentation system |
US5515453A (en) * | 1994-01-21 | 1996-05-07 | Beacon System, Inc. | Apparatus and method for image processing in symbolic space |
US5491511A (en) * | 1994-02-04 | 1996-02-13 | Odle; James A. | Multimedia capture and audit system for a video surveillance network |
US6075560A (en) * | 1994-04-25 | 2000-06-13 | Katz; Barry | Asynchronous video event and transaction data multiplexing technique for surveillance systems |
US5802361A (en) * | 1994-09-30 | 1998-09-01 | Apple Computer, Inc. | Method and system for searching graphic images and videos |
US6014461A (en) * | 1994-11-30 | 2000-01-11 | Texas Instruments Incorporated | Apparatus and method for automatic knowlege-based object identification |
US5623249A (en) * | 1995-01-26 | 1997-04-22 | New Product Development, Inc. | Video monitor motion sensor |
US5872865A (en) * | 1995-02-08 | 1999-02-16 | Apple Computer, Inc. | Method and system for automatic classification of video images |
US5926210A (en) * | 1995-07-28 | 1999-07-20 | Kalatel, Inc. | Mobile, ground-based platform security system which transmits images that were taken prior to the generation of an input signal |
US6326964B1 (en) * | 1995-08-04 | 2001-12-04 | Microsoft Corporation | Method for sorting 3D object geometry among image chunks for rendering in a layered graphics rendering system |
US5999189A (en) * | 1995-08-04 | 1999-12-07 | Microsoft Corporation | Image compression to reduce pixel and texture memory requirements in a real-time image generator |
US6307885B1 (en) * | 1996-09-25 | 2001-10-23 | Hyundai Electronics Ind. Co., Ltd. | Device for and method of coding/decoding image information |
US5956081A (en) * | 1996-10-23 | 1999-09-21 | Katz; Barry | Surveillance system having graphic video integration controller and full motion video switcher |
US6031573A (en) * | 1996-10-31 | 2000-02-29 | Sensormatic Electronics Corporation | Intelligent video information management system performing multiple functions in parallel |
US6088484A (en) * | 1996-11-08 | 2000-07-11 | Hughes Electronics Corporation | Downloading of personalization layers for symbolically compressed objects |
US5983147A (en) * | 1997-02-06 | 1999-11-09 | Sandia Corporation | Video occupant detection and classification |
US6177886B1 (en) * | 1997-02-12 | 2001-01-23 | Trafficmaster Plc | Methods and systems of monitoring traffic flow |
US6707852B1 (en) * | 1997-03-14 | 2004-03-16 | Microsoft Corporation | Digital video signal encoder and encoding method |
US6727938B1 (en) * | 1997-04-14 | 2004-04-27 | Robert Bosch Gmbh | Security system with maskable motion detection and camera with an adjustable field of view |
US6404455B1 (en) * | 1997-05-14 | 2002-06-11 | Hitachi Denshi Kabushiki Kaisha | Method for tracking entering object and apparatus for tracking and monitoring entering object |
US6573907B1 (en) * | 1997-07-03 | 2003-06-03 | Obvious Technology | Network distribution and management of interactive video and multi-media containers |
US5963203A (en) * | 1997-07-03 | 1999-10-05 | Obvious Technology, Inc. | Interactive video icon with designated viewing position |
US6151413A (en) * | 1997-07-14 | 2000-11-21 | Samsung Electronics Co., Ltd. | Method of coding an arbitrary shape of an object when all pixels of an entire region of a display are used as texture for the object |
US6091771A (en) * | 1997-08-01 | 2000-07-18 | Wells Fargo Alarm Services, Inc. | Workstation for video security system |
US6069653A (en) * | 1997-09-17 | 2000-05-30 | Sony United Kingdom Limited | Security control system and method of operation |
US6597800B1 (en) * | 1997-11-05 | 2003-07-22 | Bae Systems Plc | Automatic target recognition apparatus and process |
US6166744A (en) * | 1997-11-26 | 2000-12-26 | Pathfinder Systems, Inc. | System for combining virtual images with real-world scenes |
US6724915B1 (en) * | 1998-03-13 | 2004-04-20 | Siemens Corporate Research, Inc. | Method for tracking a video object in a time-ordered sequence of image frames |
US6310916B1 (en) * | 1998-03-14 | 2001-10-30 | Daewoo Electronics Co., Ltd. | Method and apparatus for encoding a video signal |
US6351492B1 (en) * | 1998-03-14 | 2002-02-26 | Daewoo Electronics Co., Ltd. | Method and apparatus for encoding a video signal |
US7023469B1 (en) * | 1998-04-30 | 2006-04-04 | Texas Instruments Incorporated | Automatic video monitoring system which selectively saves information |
US6816184B1 (en) * | 1998-04-30 | 2004-11-09 | Texas Instruments Incorporated | Method and apparatus for mapping a location from a video image to a map |
US6211907B1 (en) * | 1998-06-01 | 2001-04-03 | Robert Jeff Scaman | Secure, vehicle mounted, surveillance system |
US6144375A (en) * | 1998-08-14 | 2000-11-07 | Praja Inc. | Multi-perspective viewer for content-based interactivity |
US6628835B1 (en) * | 1998-08-31 | 2003-09-30 | Texas Instruments Incorporated | Method and system for defining and recognizing complex events in a video sequence |
US6570608B1 (en) * | 1998-09-30 | 2003-05-27 | Texas Instruments Incorporated | System and method for detecting interactions of people and vehicles |
US20020024446A1 (en) * | 1998-10-20 | 2002-02-28 | Vsd Limited | Smoke detection |
US6844818B2 (en) * | 1998-10-20 | 2005-01-18 | Vsd Limited | Smoke detection |
US6226388B1 (en) * | 1999-01-05 | 2001-05-01 | Sharp Labs Of America, Inc. | Method and apparatus for object tracking for automatic controls in video devices |
US6741977B1 (en) * | 1999-01-29 | 2004-05-25 | Hitachi, Ltd. | Image recording/reproducing apparatus in monitor system |
US6924801B1 (en) * | 1999-02-09 | 2005-08-02 | Microsoft Corporation | Method and apparatus for early culling of occluded objects |
US6201473B1 (en) * | 1999-04-23 | 2001-03-13 | Sensormatic Electronics Corporation | Surveillance system for observing shopping carts |
US6987528B1 (en) * | 1999-05-27 | 2006-01-17 | Mitsubishi Denki Kabushiki Kaisha | Image collection apparatus and method |
US6411724B1 (en) * | 1999-07-02 | 2002-06-25 | Koninklijke Philips Electronics N.V. | Using meta-descriptors to represent multimedia information |
US6865580B1 (en) * | 1999-07-02 | 2005-03-08 | Microsoft Corporation | Dynamic multi-object collection and comparison and action |
US6424370B1 (en) * | 1999-10-08 | 2002-07-23 | Texas Instruments Incorporated | Motion based event detection system and method |
US6297844B1 (en) * | 1999-11-24 | 2001-10-02 | Cognex Corporation | Video safety curtain |
US20020135483A1 (en) * | 1999-12-23 | 2002-09-26 | Christian Merheim | Monitoring system |
US6738424B1 (en) * | 1999-12-27 | 2004-05-18 | Objectvideo, Inc. | Scene model generation from video for use in video processing |
US6542840B2 (en) * | 2000-01-27 | 2003-04-01 | Matsushita Electric Industrial Co., Ltd. | Calibration system, target apparatus and calibration method |
US20010033330A1 (en) * | 2000-02-04 | 2001-10-25 | Garoutte Maurice V. | System for automated screening of security cameras |
US20010019357A1 (en) * | 2000-02-28 | 2001-09-06 | Wataru Ito | Intruding object monitoring method and intruding object monitoring system |
US20010035907A1 (en) * | 2000-03-10 | 2001-11-01 | Broemmelsiek Raymond M. | Method and apparatus for object tracking and detection |
US20020008758A1 (en) * | 2000-03-10 | 2002-01-24 | Broemmelsiek Raymond M. | Method and apparatus for video surveillance with defined zones |
US6829371B1 (en) * | 2000-04-29 | 2004-12-07 | Cognex Corporation | Auto-setup of a video safety curtain system |
US6646676B1 (en) * | 2000-05-17 | 2003-11-11 | Mitsubishi Electric Research Laboratories, Inc. | Networked surveillance and control system |
US6504479B1 (en) * | 2000-09-07 | 2003-01-07 | Comtrak Technologies Llc | Integrated security system |
US20020095490A1 (en) * | 2000-09-28 | 2002-07-18 | Barker Geoffrey T. | System and method for providing configurable security monitoring utilizing an integrated information portal |
US20020051058A1 (en) * | 2000-09-28 | 2002-05-02 | Wataru Ito | Intruding object detecting method and intruding object monitoring apparatus employing the method |
US6801662B1 (en) * | 2000-10-10 | 2004-10-05 | Hrl Laboratories, Llc | Sensor fusion architecture for vision-based occupant detection |
US20050169367A1 (en) * | 2000-10-24 | 2005-08-04 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US6954498B1 (en) * | 2000-10-24 | 2005-10-11 | Objectvideo, Inc. | Interactive video manipulation |
US20080100704A1 (en) * | 2000-10-24 | 2008-05-01 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20050162515A1 (en) * | 2000-10-24 | 2005-07-28 | Objectvideo, Inc. | Video surveillance system |
US20020082769A1 (en) * | 2000-11-21 | 2002-06-27 | Gary Church | Airport auditing and information system |
US20020191851A1 (en) * | 2001-05-01 | 2002-12-19 | Giora Keinan | Efficient encoding of video frames using pre-encoded primitives |
US6525658B2 (en) * | 2001-06-11 | 2003-02-25 | Ensco, Inc. | Method and device for event detection utilizing data from a multiplicity of sensor sources |
US20030053659A1 (en) * | 2001-06-29 | 2003-03-20 | Honeywell International Inc. | Moving object assessment system and method |
US6696945B1 (en) * | 2001-10-09 | 2004-02-24 | Diamondback Vision, Inc. | Video tripwire |
US20070013776A1 (en) * | 2001-11-15 | 2007-01-18 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20040240542A1 (en) * | 2002-02-06 | 2004-12-02 | Arie Yeredor | Method and apparatus for video frame sequence-based object tracking |
US20040161133A1 (en) * | 2002-02-06 | 2004-08-19 | Avishai Elazar | System and method for video content analysis-based detection, surveillance and alarm management |
US6987883B2 (en) * | 2002-12-31 | 2006-01-17 | Objectvideo, Inc. | Video scene background maintenance using statistical pixel modeling |
US20050157169A1 (en) * | 2004-01-20 | 2005-07-21 | Tomas Brodsky | Object blocking zones to reduce false alarms in video surveillance systems |
US20050168574A1 (en) * | 2004-01-30 | 2005-08-04 | Objectvideo, Inc. | Video-based passback event detection |
US20070002141A1 (en) * | 2005-04-19 | 2007-01-04 | Objectvideo, Inc. | Video-based human, non-human, and/or motion verification system and method |
US20060232673A1 (en) * | 2005-04-19 | 2006-10-19 | Objectvideo, Inc. | Video-based human verification system and method |
US20070127774A1 (en) * | 2005-06-24 | 2007-06-07 | Objectvideo, Inc. | Target detection and tracking from video streams |
US20070052803A1 (en) * | 2005-09-08 | 2007-03-08 | Objectvideo, Inc. | Scanning camera-based video surveillance system |
Cited By (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8682034B2 (en) | 2000-02-04 | 2014-03-25 | Checkvideo Llc | System for automated screening of security cameras |
US8345923B2 (en) | 2000-02-04 | 2013-01-01 | Cernium Corporation | System for automated screening of security cameras |
US20100074472A1 (en) * | 2000-02-04 | 2010-03-25 | Garoutte Maurice V | System for automated screening of security cameras |
US10347101B2 (en) | 2000-10-24 | 2019-07-09 | Avigilon Fortress Corporation | Video surveillance system employing video primitives |
US10645350B2 (en) | 2000-10-24 | 2020-05-05 | Avigilon Fortress Corporation | Video analytic rule detection system and method |
US10026285B2 (en) | 2000-10-24 | 2018-07-17 | Avigilon Fortress Corporation | Video surveillance system employing video primitives |
US8564661B2 (en) | 2000-10-24 | 2013-10-22 | Objectvideo, Inc. | Video analytic rule detection system and method |
US9378632B2 (en) | 2000-10-24 | 2016-06-28 | Avigilon Fortress Corporation | Video surveillance system employing video primitives |
US8711217B2 (en) | 2000-10-24 | 2014-04-29 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US20050169367A1 (en) * | 2000-10-24 | 2005-08-04 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US7868912B2 (en) | 2000-10-24 | 2011-01-11 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US7932923B2 (en) | 2000-10-24 | 2011-04-26 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US8457401B2 (en) | 2001-03-23 | 2013-06-04 | Objectvideo, Inc. | Video segmentation using statistical pixel modeling |
US9020261B2 (en) | 2001-03-23 | 2015-04-28 | Avigilon Fortress Corporation | Video segmentation using statistical pixel modeling |
US20070013776A1 (en) * | 2001-11-15 | 2007-01-18 | Objectvideo, Inc. | Video surveillance system employing video primitives |
US9892606B2 (en) | 2001-11-15 | 2018-02-13 | Avigilon Fortress Corporation | Video surveillance system employing video primitives |
US20040161133A1 (en) * | 2002-02-06 | 2004-08-19 | Avishai Elazar | System and method for video content analysis-based detection, surveillance and alarm management |
US7683929B2 (en) * | 2002-02-06 | 2010-03-23 | Nice Systems, Ltd. | System and method for video content analysis-based detection, surveillance and alarm management |
US20050168576A1 (en) * | 2002-05-20 | 2005-08-04 | Junichi Tanahashi | Monitor device and monitor system |
US8004563B2 (en) * | 2002-07-05 | 2011-08-23 | Agent Vi | Method and system for effectively performing event detection using feature streams of image sequences |
US20050036659A1 (en) * | 2002-07-05 | 2005-02-17 | Gad Talmon | Method and system for effectively performing event detection in a large number of concurrent image sequences |
US20050285941A1 (en) * | 2004-06-28 | 2005-12-29 | Haigh Karen Z | Monitoring devices |
US7944469B2 (en) * | 2005-02-14 | 2011-05-17 | Vigilos, Llc | System and method for using self-learning rules to enable adaptive security monitoring |
US20060195569A1 (en) * | 2005-02-14 | 2006-08-31 | Barker Geoffrey T | System and method for using self-learning rules to enable adaptive security monitoring |
US20060222206A1 (en) * | 2005-03-30 | 2006-10-05 | Cernium, Inc. | Intelligent video behavior recognition with multiple masks and configurable logic inference module |
US20070002141A1 (en) * | 2005-04-19 | 2007-01-04 | Objectvideo, Inc. | Video-based human, non-human, and/or motion verification system and method |
US20060232673A1 (en) * | 2005-04-19 | 2006-10-19 | Objectvideo, Inc. | Video-based human verification system and method |
US7613322B2 (en) * | 2005-05-19 | 2009-11-03 | Objectvideo, Inc. | Periodic motion detection with applications to multi-grabbing |
US20060262958A1 (en) * | 2005-05-19 | 2006-11-23 | Objectvideo, Inc. | Periodic motion detection with applications to multi-grabbing |
US9158975B2 (en) | 2005-05-31 | 2015-10-13 | Avigilon Fortress Corporation | Video analytics for retail business process monitoring |
US20080018738A1 (en) * | 2005-05-31 | 2008-01-24 | Objectvideo, Inc. | Video analytics for retail business process monitoring |
US7822224B2 (en) | 2005-06-22 | 2010-10-26 | Cernium Corporation | Terrain map summary elements |
US7796780B2 (en) | 2005-06-24 | 2010-09-14 | Objectvideo, Inc. | Target detection and tracking from overhead video streams |
US20070127774A1 (en) * | 2005-06-24 | 2007-06-07 | Objectvideo, Inc. | Target detection and tracking from video streams |
US20060291695A1 (en) * | 2005-06-24 | 2006-12-28 | Objectvideo, Inc. | Target detection and tracking from overhead video streams |
US7801330B2 (en) | 2005-06-24 | 2010-09-21 | Objectvideo, Inc. | Target detection and tracking from video streams |
WO2007002404A2 (en) | 2005-06-24 | 2007-01-04 | Objectvideo, Inc. | Target detection and tracking from overhead video streams |
US8334906B2 (en) | 2006-05-24 | 2012-12-18 | Objectvideo, Inc. | Video imagery-based sensor |
US9591267B2 (en) | 2006-05-24 | 2017-03-07 | Avigilon Fortress Corporation | Video imagery-based sensor |
US20070285510A1 (en) * | 2006-05-24 | 2007-12-13 | Object Video, Inc. | Intelligent imagery-based sensor |
US20110191195A1 (en) * | 2006-05-25 | 2011-08-04 | Objectvideo, Inc. | Intelligent video verification of point of sale (pos) transactions |
US9277185B2 (en) | 2006-05-25 | 2016-03-01 | Avigilon Fortress Corporation | Intelligent video verification of point of sale (POS) transactions |
US10755259B2 (en) | 2006-05-25 | 2020-08-25 | Avigilon Fortress Corporation | Intelligent video verification of point of sale (POS) transactions |
US20070272734A1 (en) * | 2006-05-25 | 2007-11-29 | Objectvideo, Inc. | Intelligent video verification of point of sale (POS) transactions |
US7925536B2 (en) | 2006-05-25 | 2011-04-12 | Objectvideo, Inc. | Intelligent video verification of point of sale (POS) transactions |
US20080074496A1 (en) * | 2006-09-22 | 2008-03-27 | Object Video, Inc. | Video analytics for banking business process monitoring |
WO2008062068A1 (en) * | 2006-11-23 | 2008-05-29 | Inc 01 | Process for the analysis of the positioning of products on store shelves |
US20080144934A1 (en) * | 2006-11-23 | 2008-06-19 | Raynaud Jean-Philippe | Process for the analysis of the positioning of products on store shelves |
FR2909202A1 (en) * | 2006-11-23 | 2008-05-30 | Inc 01 Soc Par Actions Simplif | METHOD OF ANALYZING THE DISPOSITION OF PRODUCTS IN A STORE LINEAR |
US20080240616A1 (en) * | 2007-04-02 | 2008-10-02 | Objectvideo, Inc. | Automatic camera calibration and geo-registration using objects that provide positional information |
US7949150B2 (en) | 2007-04-02 | 2011-05-24 | Objectvideo, Inc. | Automatic camera calibration and geo-registration using objects that provide positional information |
US20080273754A1 (en) * | 2007-05-04 | 2008-11-06 | Leviton Manufacturing Co., Inc. | Apparatus and method for defining an area of interest for image sensing |
US8370421B2 (en) * | 2007-05-19 | 2013-02-05 | Videotec S.P.A. | Method for coordinating a plurality of sensors |
US20100293220A1 (en) * | 2007-05-19 | 2010-11-18 | Videotec S.P.A. | Method for coordinating a plurality of sensors |
US8150103B2 (en) * | 2007-09-04 | 2012-04-03 | Objectvideo, Inc. | Background modeling with feature blocks |
US8879786B2 (en) | 2007-09-04 | 2014-11-04 | Robert Bosch Gmbh | Method for detecting and/or tracking objects in motion in a scene under surveillance that has interfering factors; apparatus; and computer program |
US20090060276A1 (en) * | 2007-09-04 | 2009-03-05 | Jie Yu | Method for detecting and/or tracking objects in motion in a scene under surveillance that has interfering factors; apparatus; and computer program |
US20090060277A1 (en) * | 2007-09-04 | 2009-03-05 | Objectvideo, Inc. | Background modeling with feature blocks |
EP2034461A3 (en) * | 2007-09-04 | 2013-05-22 | Robert Bosch Gmbh | Method for detecting and/or tracking moved objects in a monitoring zone with stoppers, device and computer program |
US9019381B2 (en) | 2008-05-09 | 2015-04-28 | Intuvision Inc. | Video tracking systems and methods employing cognitive vision |
US10121079B2 (en) | 2008-05-09 | 2018-11-06 | Intuvision Inc. | Video tracking systems and methods employing cognitive vision |
US20090315996A1 (en) * | 2008-05-09 | 2009-12-24 | Sadiye Zeyno Guler | Video tracking systems and methods employing cognitive vision |
US9342594B2 (en) * | 2008-10-29 | 2016-05-17 | International Business Machines Corporation | Indexing and searching according to attributes of a person |
US20100106707A1 (en) * | 2008-10-29 | 2010-04-29 | International Business Machines Corporation | Indexing and searching according to attributes of a person |
US20100114617A1 (en) * | 2008-10-30 | 2010-05-06 | International Business Machines Corporation | Detecting potentially fraudulent transactions |
US20100114746A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Generating an alert based on absence of a given person in a transaction |
US8612286B2 (en) | 2008-10-31 | 2013-12-17 | International Business Machines Corporation | Creating a training tool |
US9299229B2 (en) | 2008-10-31 | 2016-03-29 | Toshiba Global Commerce Solutions Holdings Corporation | Detecting primitive events at checkout |
US20100110183A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Automatically calibrating regions of interest for video surveillance |
US20100114671A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Creating a training tool |
US20100114623A1 (en) * | 2008-10-31 | 2010-05-06 | International Business Machines Corporation | Using detailed process information at a point of sale |
US8429016B2 (en) | 2008-10-31 | 2013-04-23 | International Business Machines Corporation | Generating an alert based on absence of a given person in a transaction |
US7962365B2 (en) | 2008-10-31 | 2011-06-14 | International Business Machines Corporation | Using detailed process information at a point of sale |
US8345101B2 (en) | 2008-10-31 | 2013-01-01 | International Business Machines Corporation | Automatically calibrating regions of interest for video surveillance |
US20100134624A1 (en) * | 2008-10-31 | 2010-06-03 | International Business Machines Corporation | Detecting primitive events at checkout |
US8638380B2 (en) * | 2008-11-29 | 2014-01-28 | Toshiba Global Commerce | Location-aware event detection |
US20100135528A1 (en) * | 2008-11-29 | 2010-06-03 | International Business Machines Corporation | Analyzing repetitive sequential events |
US20120218414A1 (en) * | 2008-11-29 | 2012-08-30 | International Business Machines Corporation | Location-Aware Event Detection |
US8165349B2 (en) | 2008-11-29 | 2012-04-24 | International Business Machines Corporation | Analyzing repetitive sequential events |
US20120002054A1 (en) * | 2009-02-10 | 2012-01-05 | Panasonic Corporation | Monitoring camera system, video recording apparatus and video recording method |
US8908042B2 (en) * | 2009-02-10 | 2014-12-09 | Panasonic Corporation | Monitoring camera system, video recording apparatus and video recording method |
US8571261B2 (en) | 2009-04-22 | 2013-10-29 | Checkvideo Llc | System and method for motion detection in a surveillance video |
US9230175B2 (en) | 2009-04-22 | 2016-01-05 | Checkvideo Llc | System and method for motion detection in a surveillance video |
US20100290710A1 (en) * | 2009-04-22 | 2010-11-18 | Nikhil Gagvani | System and method for motion detection in a surveillance video |
US11004093B1 (en) * | 2009-06-29 | 2021-05-11 | Videomining Corporation | Method and system for detecting shopping groups based on trajectory dynamics |
WO2011036661A1 (en) * | 2009-09-24 | 2011-03-31 | Elbit Systems Ltd. | System and method for long-range surveillance of a scene and alerting of predetermined unusual activity |
US8259175B2 (en) | 2010-02-01 | 2012-09-04 | International Business Machines Corporation | Optimizing video stream processing |
US9569672B2 (en) | 2010-02-01 | 2017-02-14 | International Business Machines Corporation | Optimizing video stream processing |
US9197868B2 (en) | 2010-02-01 | 2015-11-24 | International Business Machines Corporation | Optimizing video stream processing |
US20110188701A1 (en) * | 2010-02-01 | 2011-08-04 | International Business Machines Corporation | Optimizing video stream processing |
US8624709B2 (en) | 2010-11-15 | 2014-01-07 | Intergraph Technologies Company | System and method for camera control in a surveillance system |
US8193909B1 (en) | 2010-11-15 | 2012-06-05 | Intergraph Technologies Company | System and method for camera control in a surveillance system |
WO2012110654A1 (en) * | 2011-02-18 | 2012-08-23 | Hella Kgaa Hueck & Co. | Method for evaluating a plurality of time-offset pictures, device for evaluating pictures, and monitoring system |
US9589191B2 (en) | 2011-02-18 | 2017-03-07 | Hella Kgaa Hueck & Co. | Method for evaluating a plurality of time-offset pictures, device for evaluating pictures, and monitoring system |
WO2012119903A1 (en) | 2011-03-04 | 2012-09-13 | Deutsche Telekom Ag | Method and system for detecting a fall and issuing an alarm |
EP2521101A1 (en) * | 2011-05-04 | 2012-11-07 | Infared Integrated Systems Limited | Monitoring occupancy of a space |
US20140232863A1 (en) * | 2011-05-12 | 2014-08-21 | Solink Corporation | Video analytics system |
US10313635B2 (en) * | 2011-05-12 | 2019-06-04 | Solink Corporation | Video analytics system for automated teller machine |
US10477156B2 (en) * | 2011-05-12 | 2019-11-12 | Solink Corporation | Video analytics system |
WO2012151651A1 (en) * | 2011-05-12 | 2012-11-15 | Solink Corporation | Video analytics system |
US8929588B2 (en) | 2011-07-22 | 2015-01-06 | Honeywell International Inc. | Object tracking |
WO2013135964A1 (en) * | 2012-03-14 | 2013-09-19 | Mirasys Oy | A method, an apparatus and a computer program for estimating a size of an object in an image |
US20140132728A1 (en) * | 2012-11-12 | 2014-05-15 | Shopperception, Inc. | Methods and systems for measuring human interaction |
US10049281B2 (en) * | 2012-11-12 | 2018-08-14 | Shopperception, Inc. | Methods and systems for measuring human interaction |
US20190172293A1 (en) * | 2013-03-15 | 2019-06-06 | James Carey | Investigation generation in an observation and surveillance system |
US20200242876A1 (en) * | 2013-03-15 | 2020-07-30 | James Carey | Investigation generation in an observation and surveillance system |
US10846971B2 (en) * | 2013-03-15 | 2020-11-24 | James Carey | Investigation generation in an observation and surveillance system |
US20210074114A1 (en) * | 2013-03-15 | 2021-03-11 | James Carey | Investigation generation in an observation and surveillance system |
US10347070B2 (en) * | 2013-03-15 | 2019-07-09 | James Carey | Investigation generation in an observation and surveillance system |
US20190325688A1 (en) * | 2013-03-15 | 2019-10-24 | James Carey | Investigation generation in an observation and surveillance system |
US20230410588A1 (en) * | 2013-03-15 | 2023-12-21 | James Carey | Investigation generation in an observation and surveillance system |
US20140267735A1 (en) * | 2013-03-15 | 2014-09-18 | James Carey | Investigation generation in an observation and surveillance system |
US11881090B2 (en) * | 2013-03-15 | 2024-01-23 | James Carey | Investigation generation in an observation and surveillance system |
US10657755B2 (en) * | 2013-03-15 | 2020-05-19 | James Carey | Investigation generation in an observation and surveillance system |
US9786113B2 (en) * | 2013-03-15 | 2017-10-10 | James Carey | Investigation generation in an observation and surveillance system |
US20180033232A1 (en) * | 2013-03-15 | 2018-02-01 | James Carey | Investigation generation in an observation and surveillance system |
US11756367B2 (en) * | 2013-03-15 | 2023-09-12 | James Carey | Investigation generation in an observation and surveillance system |
US10289917B1 (en) * | 2013-11-12 | 2019-05-14 | Kuna Systems Corporation | Sensor to characterize the behavior of a visitor or a notable event |
US10665072B1 (en) | 2013-11-12 | 2020-05-26 | Kuna Systems Corporation | Sensor to characterize the behavior of a visitor or a notable event |
US20170053191A1 (en) * | 2014-04-28 | 2017-02-23 | Nec Corporation | Image analysis system, image analysis method, and storage medium |
US11157778B2 (en) | 2014-04-28 | 2021-10-26 | Nec Corporation | Image analysis system, image analysis method, and storage medium |
US10552713B2 (en) * | 2014-04-28 | 2020-02-04 | Nec Corporation | Image analysis system, image analysis method, and storage medium |
US9449229B1 (en) | 2014-07-07 | 2016-09-20 | Google Inc. | Systems and methods for categorizing motion event candidates |
US11011035B2 (en) | 2014-07-07 | 2021-05-18 | Google Llc | Methods and systems for detecting persons in a smart home environment |
US10127783B2 (en) | 2014-07-07 | 2018-11-13 | Google Llc | Method and device for processing motion events |
US10140827B2 (en) | 2014-07-07 | 2018-11-27 | Google Llc | Method and system for processing motion event notifications |
US10180775B2 (en) | 2014-07-07 | 2019-01-15 | Google Llc | Method and system for displaying recorded and live video feeds |
US10192120B2 (en) | 2014-07-07 | 2019-01-29 | Google Llc | Method and system for generating a smart time-lapse video clip |
US10789821B2 (en) | 2014-07-07 | 2020-09-29 | Google Llc | Methods and systems for camera-side cropping of a video feed |
US9672427B2 (en) | 2014-07-07 | 2017-06-06 | Google Inc. | Systems and methods for categorizing motion events |
US9609380B2 (en) | 2014-07-07 | 2017-03-28 | Google Inc. | Method and system for detecting and presenting a new event in a video feed |
US11250679B2 (en) | 2014-07-07 | 2022-02-15 | Google Llc | Systems and methods for categorizing motion events |
US9602860B2 (en) | 2014-07-07 | 2017-03-21 | Google Inc. | Method and system for displaying recorded and live video feeds |
US10108862B2 (en) | 2014-07-07 | 2018-10-23 | Google Llc | Methods and systems for displaying live video and recorded video |
US9420331B2 (en) | 2014-07-07 | 2016-08-16 | Google Inc. | Method and system for categorizing detected motion events |
US10452921B2 (en) | 2014-07-07 | 2019-10-22 | Google Llc | Methods and systems for displaying video streams |
US9544636B2 (en) | 2014-07-07 | 2017-01-10 | Google Inc. | Method and system for editing event categories |
US10467872B2 (en) | 2014-07-07 | 2019-11-05 | Google Llc | Methods and systems for updating an event timeline with event indicators |
US9501915B1 (en) | 2014-07-07 | 2016-11-22 | Google Inc. | Systems and methods for analyzing a video stream |
US9779307B2 (en) | 2014-07-07 | 2017-10-03 | Google Inc. | Method and system for non-causal zone search in video monitoring |
US9213903B1 (en) * | 2014-07-07 | 2015-12-15 | Google Inc. | Method and system for cluster-based video monitoring and event categorization |
US9479822B2 (en) | 2014-07-07 | 2016-10-25 | Google Inc. | Method and system for categorizing detected motion events |
US9886161B2 (en) | 2014-07-07 | 2018-02-06 | Google Llc | Method and system for motion vector-based video monitoring and event categorization |
US11062580B2 (en) | 2014-07-07 | 2021-07-13 | Google Llc | Methods and systems for updating an event timeline with event indicators |
US9940523B2 (en) | 2014-07-07 | 2018-04-10 | Google Llc | Video monitoring user interface for displaying motion events feed |
US9224044B1 (en) | 2014-07-07 | 2015-12-29 | Google Inc. | Method and system for video zone monitoring |
US9489580B2 (en) | 2014-07-07 | 2016-11-08 | Google Inc. | Method and system for cluster-based video monitoring and event categorization |
US9674570B2 (en) | 2014-07-07 | 2017-06-06 | Google Inc. | Method and system for detecting and presenting video feed |
US9158974B1 (en) | 2014-07-07 | 2015-10-13 | Google Inc. | Method and system for motion vector-based video monitoring and event categorization |
US10867496B2 (en) | 2014-07-07 | 2020-12-15 | Google Llc | Methods and systems for presenting video feeds |
US9354794B2 (en) | 2014-07-07 | 2016-05-31 | Google Inc. | Method and system for performing client-side zooming of a remote video feed |
US10977918B2 (en) | 2014-07-07 | 2021-04-13 | Google Llc | Method and system for generating a smart time-lapse video clip |
US9170707B1 (en) | 2014-09-30 | 2015-10-27 | Google Inc. | Method and system for generating a smart time-lapse video clip |
USD893508S1 (en) | 2014-10-07 | 2020-08-18 | Google Llc | Display screen or portion thereof with graphical user interface |
USD782495S1 (en) | 2014-10-07 | 2017-03-28 | Google Inc. | Display screen or portion thereof with graphical user interface |
US10043146B2 (en) * | 2015-02-12 | 2018-08-07 | Wipro Limited | Method and device for estimating efficiency of an employee of an organization |
US20160239782A1 (en) * | 2015-02-12 | 2016-08-18 | Wipro Limited | Method and device for estimated efficiency of an employee of an organization |
US11599259B2 (en) | 2015-06-14 | 2023-03-07 | Google Llc | Methods and systems for presenting alert event indicators |
US11113937B2 (en) | 2016-03-01 | 2021-09-07 | James Carey | Theft prediction and tracking system |
US11417202B2 (en) | 2016-03-01 | 2022-08-16 | James Carey | Theft prediction and tracking system |
US11710397B2 (en) | 2016-03-01 | 2023-07-25 | James Carey | Theft prediction and tracking system |
US11082701B2 (en) | 2016-05-27 | 2021-08-03 | Google Llc | Methods and devices for dynamic adaptation of encoding bitrate for video streaming |
US10657382B2 (en) | 2016-07-11 | 2020-05-19 | Google Llc | Methods and systems for person detection in a video feed |
US11587320B2 (en) | 2016-07-11 | 2023-02-21 | Google Llc | Methods and systems for person detection in a video feed |
US10223911B2 (en) | 2016-10-31 | 2019-03-05 | Echelon Corporation | Video data and GIS mapping for traffic monitoring, event detection and change prediction |
US10438071B2 (en) | 2017-01-25 | 2019-10-08 | Echelon Corporation | Distributed system for mining, correlating, and analyzing locally obtained traffic data including video |
US11783010B2 (en) | 2017-05-30 | 2023-10-10 | Google Llc | Systems and methods of person recognition in video streams |
US11710387B2 (en) | 2017-09-20 | 2023-07-25 | Google Llc | Systems and methods of detecting and responding to a visitor to a smart home environment |
US11424845B2 (en) * | 2020-02-24 | 2022-08-23 | Samsung Electronics Co., Ltd. | Electronic apparatus and control method thereof |
CN113739058A (en) * | 2020-05-29 | 2021-12-03 | 西克股份公司 | Optoelectronic safety sensor and method for safeguarding a machine |
US20210373526A1 (en) * | 2020-05-29 | 2021-12-02 | Sick Ag | Optoelectronic safety sensor and method for safeguarding a machine |
US12061457B2 (en) * | 2020-05-29 | 2024-08-13 | Sick Ag | Optoelectronic safety sensor and method for safeguarding a machine |
US12125369B2 (en) | 2023-06-01 | 2024-10-22 | Google Llc | Systems and methods of detecting and responding to a visitor to a smart home environment |
Also Published As
Publication number | Publication date |
---|---|
CN100433048C (en) | 2008-11-12 |
IL161777A0 (en) | 2005-11-20 |
CA2465954A1 (en) | 2003-05-30 |
WO2003044727A1 (en) | 2003-05-30 |
EP1444643A4 (en) | 2009-12-02 |
AU2002366148A1 (en) | 2003-06-10 |
HK1073375A1 (en) | 2005-09-30 |
EP1444643A1 (en) | 2004-08-11 |
CN101399971A (en) | 2009-04-01 |
JP2005510159A (en) | 2005-04-14 |
US20100013926A1 (en) | 2010-01-21 |
KR20040053307A (en) | 2004-06-23 |
CN1589451A (en) | 2005-03-02 |
EP2466545A1 (en) | 2012-06-20 |
MXPA04004698A (en) | 2004-08-19 |
EP2466546A1 (en) | 2012-06-20 |
US7932923B2 (en) | 2011-04-26 |
JP4369233B2 (en) | 2009-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10347101B2 (en) | Video surveillance system employing video primitives | |
US7932923B2 (en) | Video surveillance system employing video primitives | |
US7868912B2 (en) | Video surveillance system employing video primitives | |
US9892606B2 (en) | Video surveillance system employing video primitives | |
US20050162515A1 (en) | Video surveillance system | |
US8564661B2 (en) | Video analytic rule detection system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIAMONDBACK VISION, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIPTON, ALAN J.;STRAT, THOMAS M.;VENETIANER, PETER L.;AND OTHERS;REEL/FRAME:012471/0512;SIGNING DATES FROM 20011205 TO 20011219 |
|
AS | Assignment |
Owner name: OBJECTVIDEO, INC., VIRGINIA Free format text: CHANGE OF NAME;ASSIGNOR:DIAMONDBACK VISION, INC.;REEL/FRAME:014743/0573 Effective date: 20031119 |
|
AS | Assignment |
Owner name: RJF OV, LLC, DISTRICT OF COLUMBIA Free format text: SECURITY AGREEMENT;ASSIGNOR:OBJECTVIDEO, INC.;REEL/FRAME:020478/0711 Effective date: 20080208 Owner name: RJF OV, LLC,DISTRICT OF COLUMBIA Free format text: SECURITY AGREEMENT;ASSIGNOR:OBJECTVIDEO, INC.;REEL/FRAME:020478/0711 Effective date: 20080208 |
|
AS | Assignment |
Owner name: RJF OV, LLC, DISTRICT OF COLUMBIA Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:OBJECTVIDEO, INC.;REEL/FRAME:021744/0464 Effective date: 20081016 Owner name: RJF OV, LLC,DISTRICT OF COLUMBIA Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:OBJECTVIDEO, INC.;REEL/FRAME:021744/0464 Effective date: 20081016 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: OBJECTVIDEO, INC., VIRGINIA Free format text: RELEASE OF SECURITY AGREEMENT/INTEREST;ASSIGNOR:RJF OV, LLC;REEL/FRAME:027810/0117 Effective date: 20101230 |